-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnew.py
74 lines (53 loc) · 2.07 KB
/
new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import random
import json
import pickle
import numpy as np
import tensorflow as tf
import nltk
nltk.download('punkt')
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
intents =json.loads(open('intents.json').read())
words = []
classes=[]
documents=[]
ignoreLetters =['?', '!', '.', ',']
for intent in intents['intents']:
for pattern in intent['patterns']:
wordList = nltk.word_tokenize(pattern)
words.extend(wordList)
documents.append((wordList, intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [lemmatizer.lemmatize(word) for word in words if word not in ignoreLetters]
words = sorted(set(words))
classes = sorted(set(classes))
pickle.dump(words, open('words.pkl', 'wb'))
pickle.dump(classes, open('classes.pkl', 'wb'))
training = []
outputEmpty = [0] * len(classes)
for document in documents:
bag = []
wordPatterns = document[0]
wordPatterns = [lemmatizer.lemmatize(word.lower()) for word in wordPatterns]
for word in words:
bag.append(1) if word in wordPatterns else bag.append(0)
outputRow = list(outputEmpty)
outputRow[classes.index(document[1])] = 1
training.append(bag + outputRow)
random.shuffle(training)
training = np.array(training)
trainX = training[:, :len(words)]
trainY = training[:, len(words):]
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(128, input_shape=(len(trainX[0]),), activation = 'relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(64, activation = 'relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(len(trainY[0]), activation='softmax'))
sgd = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
hist = model.fit(np.array(trainX), np.array(trainY), epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)
print('Executed')