-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathconvert_ernie_health.py
94 lines (88 loc) · 5.18 KB
/
convert_ernie_health.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python
# encoding: utf-8
"""
File Description:
ernie health model conversion based on paddlenlp repository
official repo:https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/ernie-health/README.md
Author: nghuyong
Mail: [email protected]
Created Time: 2022/8/17
"""
import collections
import os
import json
import paddle.fluid.dygraph as D
import torch
from paddle import fluid
def build_params_map(attention_num=12):
"""
build params map from paddle-paddle's ERNIE to transformer's BERT
:return:
"""
weight_map = collections.OrderedDict({
'electra.embeddings.word_embeddings.weight': "ernie.embeddings.word_embeddings.weight",
'electra.embeddings.position_embeddings.weight': "ernie.embeddings.position_embeddings.weight",
'electra.embeddings.token_type_embeddings.weight': "ernie.embeddings.token_type_embeddings.weight",
'electra.embeddings.task_type_embeddings.weight': "ernie.embeddings.task_type_embeddings.weight",
'electra.embeddings.layer_norm.weight': 'ernie.embeddings.LayerNorm.gamma',
'electra.embeddings.layer_norm.bias': 'ernie.embeddings.LayerNorm.beta',
})
# add attention layers
for i in range(attention_num):
weight_map[f'electra.encoder.layers.{i}.self_attn.q_proj.weight'] = f'ernie.encoder.layer.{i}.attention.self.query.weight'
weight_map[f'electra.encoder.layers.{i}.self_attn.q_proj.bias'] = f'ernie.encoder.layer.{i}.attention.self.query.bias'
weight_map[f'electra.encoder.layers.{i}.self_attn.k_proj.weight'] = f'ernie.encoder.layer.{i}.attention.self.key.weight'
weight_map[f'electra.encoder.layers.{i}.self_attn.k_proj.bias'] = f'ernie.encoder.layer.{i}.attention.self.key.bias'
weight_map[f'electra.encoder.layers.{i}.self_attn.v_proj.weight'] = f'ernie.encoder.layer.{i}.attention.self.value.weight'
weight_map[f'electra.encoder.layers.{i}.self_attn.v_proj.bias'] = f'ernie.encoder.layer.{i}.attention.self.value.bias'
weight_map[f'electra.encoder.layers.{i}.self_attn.out_proj.weight'] = f'ernie.encoder.layer.{i}.attention.output.dense.weight'
weight_map[f'electra.encoder.layers.{i}.self_attn.out_proj.bias'] = f'ernie.encoder.layer.{i}.attention.output.dense.bias'
weight_map[f'electra.encoder.layers.{i}.norm1.weight'] = f'ernie.encoder.layer.{i}.attention.output.LayerNorm.gamma'
weight_map[f'electra.encoder.layers.{i}.norm1.bias'] = f'ernie.encoder.layer.{i}.attention.output.LayerNorm.beta'
weight_map[f'electra.encoder.layers.{i}.linear1.weight'] = f'ernie.encoder.layer.{i}.intermediate.dense.weight'
weight_map[f'electra.encoder.layers.{i}.linear1.bias'] = f'ernie.encoder.layer.{i}.intermediate.dense.bias'
weight_map[f'electra.encoder.layers.{i}.linear2.weight'] = f'ernie.encoder.layer.{i}.output.dense.weight'
weight_map[f'electra.encoder.layers.{i}.linear2.bias'] = f'ernie.encoder.layer.{i}.output.dense.bias'
weight_map[f'electra.encoder.layers.{i}.norm2.weight'] = f'ernie.encoder.layer.{i}.output.LayerNorm.gamma'
weight_map[f'electra.encoder.layers.{i}.norm2.bias'] = f'ernie.encoder.layer.{i}.output.LayerNorm.beta'
return weight_map
def extract_and_convert(input_dir, output_dir):
"""
抽取并转换
:param input_dir:
:param output_dir:
:return:
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('=' * 20 + 'save config file' + '=' * 20)
config = json.load(open(os.path.join(input_dir, 'model_config.json'), 'rt', encoding='utf-8'))
del config['init_class']
config['model_type'] = 'ernie'
config['architectures'] = ["ErnieModel"] # or 'BertModel'
config['intermediate_size'] = 4 * config['hidden_size']
json.dump(config, open(os.path.join(output_dir, 'config.json'), 'wt', encoding='utf-8'), indent=4)
print('=' * 20 + 'save vocab file' + '=' * 20)
with open(os.path.join(input_dir, 'vocab.txt'), 'rt', encoding='utf-8') as f:
words = f.read().splitlines()
words = [word.split('\t')[0] for word in words]
with open(os.path.join(output_dir, 'vocab.txt'), 'wt', encoding='utf-8') as f:
for word in words:
f.write(word + "\n")
print('=' * 20 + 'extract weights' + '=' * 20)
state_dict = collections.OrderedDict()
weight_map = build_params_map(attention_num=config['num_hidden_layers'])
with fluid.dygraph.guard():
paddle_paddle_params, _ = D.load_dygraph(os.path.join(input_dir, 'ernie-health-chinese.pdparams'))
for weight_name, weight_value in paddle_paddle_params.items():
if 'weight' in weight_name:
if 'electra.encoder' in weight_name or 'electra.pooler' in weight_name or 'cls.' in weight_name:
weight_value = weight_value.transpose()
if weight_name not in weight_map:
print('=' * 20, '[SKIP]', weight_name, '=' * 20)
continue
state_dict[weight_map[weight_name]] = torch.FloatTensor(weight_value)
print(weight_name, '->', weight_map[weight_name], weight_value.shape)
torch.save(state_dict, os.path.join(output_dir, "pytorch_model.bin"))
if __name__ == '__main__':
extract_and_convert('/Users/huyong/.paddlenlp/models/ernie-health-chinese/', './convert/')