-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdraw_cnn.py
194 lines (159 loc) · 7.21 KB
/
draw_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#Gavin Ding (https://github.com/gwding) originally wrote this Python script
#to illustrate Convolutional Neural Network architectures. I've made some minor modifications to the code.
"""
Copyright (c) 2016, Gavin Weiguang Ding
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""
import os
import numpy as np
import matplotlib.pyplot as plt
plt.rcdefaults()
from matplotlib.lines import Line2D
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
NumConvMax = 8
NumFcMax = 20
White = 1.
Light = 0.7
Medium = 0.5
Dark = 0.3
Black = 0.
def add_layer(patches, colors, size=24, num=5,
top_left=[0, 0],
loc_diff=[3, -3],
):
# add a rectangle
top_left = np.array(top_left)
loc_diff = np.array(loc_diff)
loc_start = top_left - np.array([0, size])
for ind in range(num):
patches.append(Rectangle(loc_start + ind * loc_diff, size, size))
if ind % 2:
colors.append(Medium)
else:
colors.append(Light)
def add_mapping(patches, colors, start_ratio, patch_size, ind_bgn,
top_left_list, loc_diff_list, num_show_list, size_list):
start_loc = top_left_list[ind_bgn] \
+ (num_show_list[ind_bgn] - 1) * np.array(loc_diff_list[ind_bgn]) \
+ np.array([start_ratio[0] * size_list[ind_bgn],
-start_ratio[1] * size_list[ind_bgn]])
end_loc = top_left_list[ind_bgn + 1] \
+ (num_show_list[ind_bgn + 1] - 1) \
* np.array(loc_diff_list[ind_bgn + 1]) \
+ np.array([(start_ratio[0] + .5 * patch_size / size_list[ind_bgn]) *
size_list[ind_bgn + 1],
-(start_ratio[1] - .5 * patch_size / size_list[ind_bgn]) *
size_list[ind_bgn + 1]])
patches.append(Rectangle(start_loc, patch_size, patch_size))
colors.append(Dark)
patches.append(Line2D([start_loc[0], end_loc[0]],
[start_loc[1], end_loc[1]]))
colors.append(Black)
patches.append(Line2D([start_loc[0] + patch_size, end_loc[0]],
[start_loc[1], end_loc[1]]))
colors.append(Black)
patches.append(Line2D([start_loc[0], end_loc[0]],
[start_loc[1] + patch_size, end_loc[1]]))
colors.append(Black)
patches.append(Line2D([start_loc[0] + patch_size, end_loc[0]],
[start_loc[1] + patch_size, end_loc[1]]))
colors.append(Black)
def label(xy, text, xy_off=[0, 4]):
plt.text(xy[0] + xy_off[0], xy[1] + xy_off[1], text,
family='sans-serif', size=11.25)
if __name__ == '__main__':
fc_unit_size = 2
layer_width = 50
patches = []
colors = []
fig, ax = plt.subplots()
print "1"
############################
# conv layers
size_list = [28, 28, 14, 14, 7, 7]
num_list = [1, 32, 32, 64, 64, 64]
x_diff_list = [0, layer_width, layer_width, layer_width, layer_width, layer_width]
text_list = ['Inputs'] + [''] * (len(size_list) - 1)
loc_diff_list = [[3, -3]] * len(size_list)
num_show_list = map(min, num_list, [NumConvMax] * len(num_list))
top_left_list = np.c_[np.cumsum(x_diff_list), np.zeros(len(x_diff_list))]
for ind in range(len(size_list)):
add_layer(patches, colors, size=size_list[ind],
num=num_show_list[ind],
top_left=top_left_list[ind], loc_diff=loc_diff_list[ind])
if ind == 0:
text = text_list[ind] + '\n{}x{}'.format(
size_list[ind], size_list[ind])
else:
text = '{}@\n{}x{}'.format(
num_list[ind], size_list[ind], size_list[ind])
label(top_left_list[ind], text)
print "2"
############################
# in between layers
start_ratio_list = [[0.4, 0.5], [0.4, 0.8], [0.4, 0.5], [0.4, 0.8], [0.4, 0.5]]
patch_size_list = [5, 2, 5, 2, 5]
ind_bgn_list = range(len(patch_size_list))
text_list = ['Conv.', 'Max-pool', 'Conv.', 'Max-pool','Conv.']
for ind in range(len(patch_size_list)):
add_mapping(patches, colors, start_ratio_list[ind],
patch_size_list[ind], ind,
top_left_list, loc_diff_list, num_show_list, size_list)
text = text_list[ind] + '\n{}x{}'.format(patch_size_list[ind], patch_size_list[ind])
if text_list[ind] == 'Convolution':
text = text + '\nReLU'
label(top_left_list[ind], text, xy_off=[26, -65])
print "3"
############################
# fully connected layers
size_list = [fc_unit_size, fc_unit_size]
num_list = [512, 10]
num_show_list = map(min, num_list, [NumFcMax] * len(num_list))
x_diff_list = [sum(x_diff_list) + layer_width, layer_width, layer_width]
top_left_list = np.c_[np.cumsum(x_diff_list), np.zeros(len(x_diff_list))]
loc_diff_list = [[fc_unit_size, -fc_unit_size]] * len(top_left_list)
text_list = ['Hidden'] * (len(size_list) - 1) + ['Outputs']
for ind in range(len(size_list)):
add_layer(patches, colors, size=size_list[ind], num=num_show_list[ind],
top_left=top_left_list[ind], loc_diff=loc_diff_list[ind])
label(top_left_list[ind], text_list[ind] + '\n{}'.format(
num_list[ind]))
text_list = ['Flatten\n', 'Fully\nconnected']
for ind in range(len(size_list)):
label(top_left_list[ind], text_list[ind], xy_off=[-10, -65])
############################
colors += [0, 1]
collection = PatchCollection(patches, cmap=plt.cm.gray)
collection.set_array(np.array(colors))
ax.add_collection(collection)
plt.tight_layout()
plt.axis('equal')
plt.axis('off')
plt.show()
fig.set_size_inches(8, 2.5)
fig_dir = './'
fig_ext = '.png'
fig.savefig(os.path.join(fig_dir, 'cnn_architecture' + fig_ext),
bbox_inches='tight', pad_inches=0)