-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathdata.py
28 lines (26 loc) · 1.12 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class DataSet(object):
def __init__(self, images_list_path, num_epoch, batch_size):
# filling the record_list
input_file = open(images_list_path, 'r')
self.record_list = []
for line in input_file:
line = line.strip()
self.record_list.append(line)
filename_queue = tf.train.string_input_producer(self.record_list, num_epochs=num_epoch)
image_reader = tf.WholeFileReader()
_, image_file = image_reader.read(filename_queue)
image = tf.image.decode_jpeg(image_file, 3)
#preprocess
hr_image = tf.image.resize_images(image, [32, 32])
lr_image = tf.image.resize_images(image, [8, 8])
hr_image = tf.cast(hr_image, tf.float32)
lr_image = tf.cast(lr_image, tf.float32)
#
min_after_dequeue = 1000
capacity = min_after_dequeue + 400 * batch_size
self.hr_images, self.lr_images = tf.train.shuffle_batch([hr_image, lr_image], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)