-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModelToINetworkConverter.cpp
245 lines (212 loc) · 9.13 KB
/
ModelToINetworkConverter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#define LOG_TAG "ArmnnDriver"
#include "ModelToINetworkConverter.hpp"
#include "Utils.hpp"
#include <log/log.h>
#include <type_traits>
#ifdef ARMNN_ANDROID_S
#include <LegacyUtils.h>
#endif
namespace armnn_driver
{
template<typename HalPolicy>
ModelToINetworkConverter<HalPolicy>::ModelToINetworkConverter(const std::vector<armnn::BackendId>& backends,
const HalModel& model,
const std::set<unsigned int>& forcedUnsupportedOperations)
: m_Data(backends)
, m_Model(model)
, m_ForcedUnsupportedOperations(forcedUnsupportedOperations)
, m_ConversionResult(ConversionResult::Success)
{
try
{
Convert();
}
catch (std::exception& e)
{
m_ConversionResult = ConversionResult::UnsupportedFeature;
ALOGE("%s: Unexpected exception: %s", __func__, e.what());
}
}
template<typename HalPolicy>
void ModelToINetworkConverter<HalPolicy>::Convert()
{
using HalModel = typename HalPolicy::Model;
using HalOperand = typename HalPolicy::Operand;
using HalOperandType = typename HalPolicy::OperandType;
ALOGV("ModelToINetworkConverter::Convert(): %s", GetModelSummary<HalModel>(m_Model).c_str());
// map the memory pool into shared pointers
m_Data.m_MemPools.clear();
#if !defined(ARMNN_ANDROID_S)
if (!setRunTimePoolInfosFromHidlMemories(&m_Data.m_MemPools, m_Model.pools))
#else
if (!setRunTimePoolInfosFromCanonicalMemories(&m_Data.m_MemPools, uncheckedConvert(m_Model.pools)))
#endif
{
Fail("%s: Setting of run time pool infos from Hidl Memories has failed.", __func__);
m_ConversionResult = ConversionResult::ErrorMappingPools;
return;
}
uint32_t totalPoolSize = 0;
for (auto&& pool : m_Model.pools)
{
totalPoolSize += pool.size();
}
using NetworkOptions = std::vector<armnn::BackendOptions>;
NetworkOptions networkOptions;
armnn::BackendOptions shapeInferenceMethodOption("ShapeInferenceMethod",
{
{ "InferAndValidate", true }
});
networkOptions.push_back(shapeInferenceMethodOption);
// Create armnn::INetwork
m_Data.m_Network = armnn::INetwork::Create(networkOptions);
// add operations to it
// track which layer outputs each operand
ALOGV("ModelToINetworkConverter::Convert(): m_OutputSlotForOperand");
m_Data.m_OutputSlotForOperand = std::vector<armnn::IOutputSlot*>(getMainModel(m_Model).operands.size(), nullptr);
try
{
ALOGV("ModelToINetworkConverter::Convert(): for getMainModel(m_Model).inputIndexes.size()");
for (uint32_t i = 0; i < getMainModel(m_Model).inputIndexes.size(); i++)
{
ALOGV("ModelToINetworkConverter::Convert(): getMainModel(m_Model).inputIndexes[i]");
// inputs in android nn are represented by operands
uint32_t inputIndex = getMainModel(m_Model).inputIndexes[i];
ALOGV("ModelToINetworkConverter::Convert(): getMainModel(m_Model).operands[inputIndex];");
const HalOperand& operand = getMainModel(m_Model).operands[inputIndex];
ALOGV("ModelToINetworkConverter::Convert(): GetTensorInfoForOperand(operand)");
const std::string layerName = "Input_" + std::to_string(i);
ALOGV("ModelToINetworkConverter::Convert(): m_Data.m_Network->AddInputLayer(i, layerName.c_str())");
armnn::IConnectableLayer* layer = m_Data.m_Network->AddInputLayer(i, layerName.c_str());
ALOGV("ModelToINetworkConverter::Convert(): layer->GetOutputSlot(0)");
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
ALOGV("ModelToINetworkConverter::Convert(): outputSlot.SetTensorInfo(GetTensorInfoForOperand(operand))");
outputSlot.SetTensorInfo(GetTensorInfoForOperand(operand));
ALOGV("ModelToINetworkConverter::Convert(): m_Data.m_OutputSlotForOperand[inputIndex] = &outputSlot");
// store for later layers
m_Data.m_OutputSlotForOperand[inputIndex] = &outputSlot;
}
}
catch (UnsupportedOperand<HalOperandType>& e)
{
Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str());
m_ConversionResult = ConversionResult::UnsupportedFeature;
}
catch (const armnn::InvalidArgumentException& e)
{
Fail("%s: Failed to convert input operand to TensorShape: %s", __func__, e.what());
m_ConversionResult = ConversionResult::UnsupportedFeature;
}
bool UnsupportedDynamicOperation = false;
for (uint32_t operationIdx = 0; operationIdx < getMainModel(m_Model).operations.size(); operationIdx++)
{
const auto& operation = getMainModel(m_Model).operations[operationIdx];
bool ok = true;
if (m_ForcedUnsupportedOperations.find(operationIdx) != m_ForcedUnsupportedOperations.end())
{
Fail("%s: Operation at index %i has been forced to be unsupported.", __func__, operationIdx);
ok = false;
}
if (ok)
{
try
{
ok = HalPolicy::ConvertOperation(operation, m_Model, m_Data);
}
catch (UnsupportedOperand<HalOperandType>& e)
{
Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str());
ok = false;
}
catch (const armnn::InvalidArgumentException& e)
{
Fail("%s: Failed to convert operation in %s", __func__, e.what());
ok = false;
}
}
// Store whether this operation was successfully converted.
m_OperationSupported.emplace(operationIdx, ok);
// Any single operation failing will fail the entire conversion.
// We still need to continue and check the other ones.
if (!ok)
{
if (m_Data.m_DynamicInputsEncountered)
{
Fail("%s: The unsupported operation at index %i has dynamic inputs.", __func__, operationIdx);
UnsupportedDynamicOperation = true;
}
m_ConversionResult = ConversionResult::UnsupportedFeature;
}
m_Data.m_DynamicInputsEncountered = false;
}
// Due to the NNAPI partitioner not supporting partition boundaries of unknown size,
// any operations who's outputs connect to an unsupported operation with with dynamic inputs
// will cause a failure.
// The simplest solution to this problem is to not support any operations in a model containing
// an unsupported operation with with dynamic inputs.
if (UnsupportedDynamicOperation)
{
Fail("%s: Unsupported operation with dynamic inputs found. Retroactively setting all operations to unsupported",
__func__);
for (auto& operation : m_OperationSupported)
{
operation.second = false;
}
}
try
{
if (m_ConversionResult == ConversionResult::Success)
{
for (uint32_t i = 0; i < getMainModel(m_Model).outputIndexes.size(); i++)
{
// outputs in android nn are represented by operands
uint32_t outputIndex = getMainModel(m_Model).outputIndexes[i];
const std::string layerName = "Output_" + std::to_string(i);
armnn::IConnectableLayer* layer = m_Data.m_Network->AddOutputLayer(i, layerName.c_str());
if (!m_Data.m_OutputSlotForOperand[outputIndex])
{
Fail("%s: OutputSlot %i does not exist", __func__, outputIndex);
m_ConversionResult = ConversionResult::UnsupportedFeature;
break;
}
m_Data.m_OutputSlotForOperand[outputIndex]->Connect(layer->GetInputSlot(0));
}
}
}
catch (const armnn::InvalidArgumentException& e)
{
Fail("%s: Failed to convert output operand to TensorShape: %s", __func__, e.what());
m_ConversionResult = ConversionResult::UnsupportedFeature;
}
}
template<typename HalPolicy>
bool ModelToINetworkConverter<HalPolicy>::IsOperationSupported(uint32_t operationIndex) const
{
std::map<uint32_t, bool>::const_iterator it = m_OperationSupported.find(operationIndex);
if (it == m_OperationSupported.end())
{
return Fail("%s: Unrecognised Operation Index: %i", __func__, operationIndex);
}
return it->second;
}
///
/// Class template specializations
///
template class ModelToINetworkConverter<hal_1_0::HalPolicy>;
#ifdef ARMNN_ANDROID_NN_V1_1
template class ModelToINetworkConverter<hal_1_1::HalPolicy>;
#endif
#ifdef ARMNN_ANDROID_NN_V1_2
template class ModelToINetworkConverter<hal_1_1::HalPolicy>;
template class ModelToINetworkConverter<hal_1_2::HalPolicy>;
#endif
#ifdef ARMNN_ANDROID_NN_V1_3
template class ModelToINetworkConverter<hal_1_1::HalPolicy>;
template class ModelToINetworkConverter<hal_1_2::HalPolicy>;
template class ModelToINetworkConverter<hal_1_3::HalPolicy>;
#endif
} // armnn_driver