-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
240 lines (188 loc) · 7.31 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from enum import Enum
from abc import ABC, abstractmethod
import math
import numpy as np
import igraph
from pyemd import emd
from synthetic.consts import SMALL_VALUE
class StatsSet(object):
def __init__(self, net, stat_types, bins, max_dist, rw, ref_stats=None):
self.stat_types = stat_types
if ref_stats is None:
self.stats = [create_stat(net, stat_type, bins, max_dist, rw) for stat_type in stat_types]
else:
assert(len(stat_types) == len(ref_stats.stat_types))
self.stats = [create_stat(net, stat_types[i], bins, max_dist, rw, ref_stat=ref_stats.stats[i])
for i in range(len(stat_types))]
class StatType(Enum):
DEGREES = 0
IN_DEGREES = 1
OUT_DEGREES = 2
U_PAGERANKS = 3
D_PAGERANKS = 4
TRIAD_CENSUS = 5
U_DISTS = 6
D_DISTS = 7
stat_types__names = {}
names__type_stats = {}
for st in StatType:
stat_name = st.name
stat_types__names[st] = stat_name
names__type_stats[stat_name] = st
def str2stat_type(name):
if name in names__type_stats:
return names__type_stats[name]
return None
def create_stat(net, stat_type, bins=None, max_dist=None, rw=False, ref_stat=None):
if stat_type == StatType.DEGREES:
stat = Degrees(bins=bins, ref_stat=ref_stat)
elif stat_type == StatType.IN_DEGREES:
stat = InDegrees(bins=bins, ref_stat=ref_stat)
elif stat_type == StatType.OUT_DEGREES:
stat = OutDegrees(bins=bins, ref_stat=ref_stat)
elif stat_type == StatType.U_PAGERANKS:
stat = UndirectedPageRanks(bins=bins, ref_stat=ref_stat)
elif stat_type == StatType.D_PAGERANKS:
stat = DirectedPageRanks(bins=bins, ref_stat=ref_stat)
elif stat_type == StatType.TRIAD_CENSUS:
stat = TriadCensus()
elif stat_type == StatType.U_DISTS:
if rw:
stat = UndirectedDistancesRW(max_dist=max_dist)
else:
stat = UndirectedDistances(max_dist=max_dist)
elif stat_type == StatType.D_DISTS:
if rw:
stat = DirectedDistancesRW(max_dist=max_dist)
else:
stat = DirectedDistances(max_dist=max_dist)
else:
raise ValueError('unknown statistic type: {}'.format(str(stat_type)))
stat.compute(net)
return stat
class DistanceType(Enum):
NORMALIZED_MANHATTAN = 0
EARTH_MOVER = 1
class Stat(ABC):
def __init__(self):
self.data = None
@abstractmethod
def compute(self, net):
pass
@abstractmethod
def distance(self, stat, distance_type):
pass
def set_data(self, values):
self.data = values
# Simple distributions
class Distrib(Stat):
@abstractmethod
def compute(self, net):
pass
def distance(self, stat, distance_type):
assert(isinstance(stat, Distrib))
if distance_type == DistanceType.NORMALIZED_MANHATTAN:
dist = 0
for i in range(len(self.data)):
# dist += max(self.data[i], stat.data[i]) / max(min(self.data[i], stat.data[i]), SMALL_VALUE)
# dist += (max(max(self.data[i], stat.data[i]), 1) / max(min(self.data[i], stat.data[i]), 1))
# Canberra distance
dist += abs(self.data[i] - stat.data[i]) / max(min(self.data[i], stat.data[i]), 1)
# chi-square statistic
# dist += ((self.data[i] - stat.data[i]) * (self.data[i] - stat.data[i])) / max((self.data[i] + stat.data[i]), 1)
return dist
else:
raise NotImplementedError('distance type {} is not supported on this statistic.'.format(distance_type))
class TriadCensus(Distrib):
def compute(self, net):
motifs = net.graph.motifs_randesu(size=3, cut_prob=None)
counts = []
for count in motifs:
if math.isnan(count):
counts.append(0)
else:
counts.append(count)
self.set_data(counts)
# Histograms
class Histogram(Distrib):
def __init__(self, bins, ref_stat):
self.bins = bins
self.ref_stat = ref_stat
self.min_value = 0
self.max_value = None
self.bin_edges = None
super().__init__()
@abstractmethod
def compute(self, net):
pass
def set_data(self, values):
if self.max_value is None:
if self.ref_stat is None:
self.max_value = np.max(values)
else:
self.max_value = self.ref_stat.max_value
self.data, self.bin_edges = np.histogram(values, bins=self.bins, range=(self.min_value, self.max_value))
def distance(self, stat, distance_type):
assert(isinstance(stat, Histogram))
if distance_type == DistanceType.EARTH_MOVER:
bin_locs = np.mean([self.bin_edges[:-1], self.bin_edges[1:]], axis=0)
bins = len(bin_locs)
distance_matrix = np.abs(np.repeat(bin_locs, bins) - np.tile(bin_locs, bins))
distance_matrix = distance_matrix.reshape(bins, bins)
assert(len(distance_matrix) == len(distance_matrix[0]))
assert(self.data.shape[0] <= len(distance_matrix))
assert(stat.data.shape[0] <= len(distance_matrix))
return emd(self.data.astype(np.float64), stat.data.astype(np.float64), distance_matrix.astype(np.float64))
else:
return Distrib.distance(self, stat, distance_type)
class Degrees(Histogram):
def compute(self, net):
values = net.graph.degree(net.graph.vs, mode=igraph.ALL)
self.set_data(values)
class InDegrees(Histogram):
def compute(self, net):
values = net.graph.indegree(net.graph.vs)
self.set_data(values)
class OutDegrees(Histogram):
def compute(self, net):
values = net.graph.outdegree(net.graph.vs)
self.set_data(values)
class UndirectedPageRanks(Histogram):
def compute(self, net):
values = net.graph.pagerank(vertices=net.graph.vs, directed=False)
self.set_data(values)
class DirectedPageRanks(Histogram):
def compute(self, net):
values = net.graph.pagerank(vertices=net.graph.vs, directed=True)
self.set_data(values)
# Distance histograms
class DistanceHistogram(Histogram):
def __init__(self, max_dist):
super().__init__(bins=max_dist, ref_stat=None)
self.min_value = 1
self.max_value = max_dist
@abstractmethod
def compute(self, net):
pass
class UndirectedDistances(DistanceHistogram):
def compute(self, net):
sp = net.graph.shortest_paths_dijkstra(mode=igraph.ALL)
# flatten shortest paths length matrix and truncate distance
values = [item for sublist in sp for item in sublist]
self.set_data(values)
class DirectedDistances(DistanceHistogram):
def compute(self, net):
sp = net.graph.shortest_paths_dijkstra(mode=igraph.OUT)
# flatten shortest paths length matrix and truncate distance
values = [item for sublist in sp for item in sublist]
self.set_data(values)
class UndirectedDistancesRW(DistanceHistogram):
def compute(self, net):
net.u_random_walkers.recompute()
values = net.u_random_walkers.dmatrix.flatten()
self.set_data(values)
class DirectedDistancesRW(DistanceHistogram):
def compute(self, net):
net.d_random_walkers.recompute()
values = net.d_random_walkers.dmatrix.flatten()
self.set_data(values)