-
Notifications
You must be signed in to change notification settings - Fork 23
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
error in preprocessing #28
Comments
换过很多个open3d的版本都报错 |
我想问下,你解决这个问题了吗,大佬,求教会 |
我记得好像是open3d的版本不对,又或者是是前面点云数据处理得有问题,导致没有正常读取到点云数据,我有点忘记,不好意思
…---Original---
From: ***@***.***>
Date: Sat, Mar 2, 2024 20:29 PM
To: ***@***.***>;
Cc: "Lin ***@***.******@***.***>;
Subject: Re: [nomewang/M3DM] error in preprocessing (Issue #28)
你好,我在运行python utils/preprocessing.py datasets/mvtec3d/ 这行代码的时候,出现了一个报错,(m3dm1) PS D:\M3DM-main\M3DM-main> python utils/preprocessing.py datasets/mvtec3d/ Found 4147 tiff files in datasets/mvtec3d/ ransac: 50 [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned __int64,class std::allocator > > __cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
Traceback (most recent call last): File "utils/preprocessing.py", line 142, in preprocess_pc(path) File "utils/preprocessing.py", line 113, in preprocess_pc planeless_organized_pc, planeless_organized_rgb = remove_plane(organized_pc, organized_rgb) File "utils/preprocessing.py", line 34, in remove_plane plane_model = get_plane_eq(get_edges_of_pc(organized_pc_clean)) File "utils/preprocessing.py", line 23, in get_plane_eq plane_model, inliers = o3d_pc.segment_plane(distance_threshold=0.004, ransac_n=ransac_n_pts, num_iterations=1000) RuntimeError: [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned __int64,class std::allocator > > __cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
请问您知道报错的原因吗,求教
我想问下,你解决这个问题了吗,大佬,求教会
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you authored the thread.Message ID: ***@***.***>
|
您这个项目还保留有虚拟环境吗,我遇到了和你相同的问题,我刚刚重新安装了open3d和opencv-python的版本,还是显示提取的点云数量不足 |
题主可以分享一下跑出来的最终结果吗?QQ2701484292重谢 |
I have the error too...And I don't know how to figure it out.Anyone success,please help me! |
name: m3dm
channels:
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- blas=1.0=mkl
- bottleneck=1.3.7=py38ha9d4c09_0
- brotli=1.0.9=h5eee18b_7
- brotli-bin=1.0.9=h5eee18b_7
- brotli-python=1.0.9=py38h6a678d5_7
- bzip2=1.0.8=hd590300_5
- ca-certificates=2024.3.11=h06a4308_0
- certifi=2024.2.2=py38h06a4308_0
- chardet=4.0.0=py38h06a4308_1003
- contourpy=1.0.5=py38hdb19cb5_0
- cuda-cudart=11.7.99=0
- cuda-cupti=11.7.101=0
- cuda-libraries=11.7.1=0
- cuda-nvrtc=11.7.99=0
- cuda-nvtx=11.7.91=0
- cuda-runtime=11.7.1=0
- cudatoolkit=11.3.1=hb98b00a_13
- cycler=0.11.0=pyhd3eb1b0_0
- cyrus-sasl=2.1.28=h52b45da_1
- dbus=1.13.18=hb2f20db_0
- expat=2.5.0=h6a678d5_0
- ffmpeg=4.3=hf484d3e_0
- fontconfig=2.14.1=h4c34cd2_2
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=h0708190_1
- giflib=5.2.1=h0b41bf4_3
- glib=2.78.4=h6a678d5_0
- glib-tools=2.78.4=h6a678d5_0
- gmp=6.3.0=h59595ed_1
- gmpy2=2.1.2=py38heeb90bb_0
- gnutls=3.6.13=h85f3911_1
- gst-plugins-base=1.14.1=h6a678d5_1
- gstreamer=1.14.1=h5eee18b_1
- icu=73.2=h59595ed_0
- importlib_resources=6.1.1=py38h06a4308_1
- intel-openmp=2023.1.0=hdb19cb5_46306
- jinja2=3.1.3=py38h06a4308_0
- jpeg=9e=h5eee18b_1
- kiwisolver=1.4.4=py38h6a678d5_0
- krb5=1.20.1=h143b758_1
- lame=3.100=h166bdaf_1003
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libblas=3.9.0=1_h86c2bf4_netlib
- libbrotlicommon=1.0.9=h5eee18b_7
- libbrotlidec=1.0.9=h5eee18b_7
- libbrotlienc=1.0.9=h5eee18b_7
- libcblas=3.9.0=5_h92ddd45_netlib
- libclang=14.0.6=default_hc6dbbc7_1
- libclang13=14.0.6=default_he11475f_1
- libcublas=11.10.3.66=0
- libcufft=10.7.2.124=h4fbf590_0
- libcufile=1.9.1.3=0
- libcups=2.4.2=h2d74bed_1
- libcurand=10.3.5.147=0
- libcusolver=11.4.0.1=0
- libcusparse=11.7.4.91=0
- libdeflate=1.17=h5eee18b_1
- libedit=3.1.20230828=h5eee18b_0
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=13.2.0=h807b86a_5
- libgfortran-ng=13.2.0=h69a702a_5
- libgfortran5=13.2.0=ha4646dd_5
- libglib=2.78.4=hdc74915_0
- libgomp=13.2.0=h807b86a_5
- libhwloc=2.9.1=hd6dc26d_0
- libiconv=1.17=hd590300_2
- liblapack=3.9.0=5_h92ddd45_netlib
- libllvm14=14.0.6=hdb19cb5_3
- libnpp=11.7.4.75=0
- libnvjpeg=11.8.0.2=0
- libpng=1.6.39=h5eee18b_0
- libpq=12.17=hdbd6064_0
- libstdcxx-ng=13.2.0=h7e041cc_5
- libtiff=4.5.1=h6a678d5_0
- libuuid=1.41.5=h5eee18b_0
- libuv=1.48.0=hd590300_0
- libwebp=1.3.2=h11a3e52_0
- libwebp-base=1.3.2=h5eee18b_0
- libxcb=1.15=h7f8727e_0
- libxkbcommon=1.0.1=h5eee18b_1
- libxml2=2.10.4=hf1b16e4_1
- lz4-c=1.9.4=h6a678d5_0
- matplotlib=3.7.2=py38h06a4308_0
- matplotlib-base=3.7.2=py38h1128e8f_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py38h5eee18b_1
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py38h06a4308_0
- munkres=1.1.4=py_0
- mysql=5.7.24=h721c034_2
- ncurses=6.4=h6a678d5_0
- nettle=3.6=he412f7d_0
- networkx=3.1=py38h06a4308_0
- ninja=1.11.1=h924138e_0
- numexpr=2.8.4=py38hc78ab66_1
- numpy=1.24.4=py38h59b608b_0
- openh264=2.1.1=h780b84a_0
- openjpeg=2.4.0=h3ad879b_0
- openssl=3.2.1=hd590300_1
- pandas=2.0.3=py38h1128e8f_0
- pcre2=10.42=hebb0a14_0
- pillow=10.2.0=py38h5eee18b_0
- pip=23.3.1=py38h06a4308_0
- ply=3.11=py38_0
- pyparsing=3.0.9=py38h06a4308_0
- pyqt=5.15.10=py38h6a678d5_0
- pyqt5-sip=12.13.0=py38h5eee18b_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.19=h955ad1f_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- python_abi=3.8=2_cp38
- pytorch=2.0.1=py3.8_cuda11.7_cudnn8.5.0_0
- pytorch-cuda=11.7=h778d358_5
- pytorch-mutex=1.0=cuda
- pytz=2023.3.post1=py38h06a4308_0
- qt-main=5.15.2=h53bd1ea_10
- readline=8.2=h5eee18b_0
- requests=2.31.0=py38h06a4308_1
- sip=6.7.12=py38h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h5eee18b_0
- sympy=1.12=py38h06a4308_0
- tabulate=0.9.0=py38h06a4308_0
- tbb=2021.9.0=hf52228f_0
- tk=8.6.12=h1ccaba5_0
- tomli=2.0.1=py38h06a4308_0
- torchaudio=2.0.2=py38_cu117
- torchtriton=2.0.0=py38
- torchvision=0.15.2=py38_cu117
- tornado=6.3.3=py38h5eee18b_0
- typing_extensions=4.11.0=pyha770c72_0
- wheel=0.41.2=py38h06a4308_0
- xz=5.4.6=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- absl-py==2.1.0
- addict==2.4.0
- asttokens==2.4.1
- attrs==23.2.0
- backcall==0.2.0
- blinker==1.7.0
- cachetools==5.3.3
- charset-normalizer==3.3.2
- click==8.1.7
- comm==0.2.2
- configargparse==1.7
- dash==2.16.1
- dash-core-components==2.0.0
- dash-html-components==2.0.0
- dash-table==5.0.0
- decorator==5.1.1
- executing==2.0.1
- fastjsonschema==2.19.1
- filelock==3.13.3
- flask==3.0.2
- fsspec==2024.3.1
- google-auth==2.29.0
- google-auth-oauthlib==1.0.0
- grpcio==1.62.1
- huggingface-hub==0.22.2
- idna==3.6
- imageio==2.34.0
- importlib-metadata==7.1.0
- ipython==8.12.3
- ipywidgets==8.1.2
- itsdangerous==2.1.2
- jedi==0.19.1
- joblib==1.3.2
- jsonschema==4.21.1
- jsonschema-specifications==2023.12.1
- jupyter-core==5.7.2
- jupyterlab-widgets==3.0.10
- knn-cuda==0.2
- kornia==0.7.2
- kornia-rs==0.1.3
- lazy-loader==0.4
- markdown==3.6
- markupsafe==2.1.5
- matplotlib-inline==0.1.6
- nbformat==5.10.4
- nest-asyncio==1.6.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.19.3
- nvidia-nvjitlink-cu12==12.4.127
- nvidia-nvtx-cu12==12.1.105
- oauthlib==3.2.2
- open3d==0.18.0
- opencv-python==4.9.0.80
- packaging==24.0
- parso==0.8.4
- pexpect==4.9.0
- pickleshare==0.7.5
- pkgutil-resolve-name==1.3.10
- platformdirs==4.2.0
- plotly==5.20.0
- pointnet2-ops==3.0.0
- prompt-toolkit==3.0.43
- protobuf==5.26.1
- ptyprocess==0.7.0
- pure-eval==0.2.2
- pyasn1==0.6.0
- pyasn1-modules==0.4.0
- pygments==2.17.2
- pyquaternion==0.9.9
- pywavelets==1.4.1
- pyyaml==6.0.1
- referencing==0.34.0
- requests-oauthlib==2.0.0
- retrying==1.3.4
- rpds-py==0.18.0
- rsa==4.9
- safetensors==0.4.2
- scikit-image==0.21.0
- scikit-learn==1.3.2
- scipy==1.10.1
- setuptools==59.5.0
- stack-data==0.6.3
- tenacity==8.2.3
- tensorboard==2.14.0
- tensorboard-data-server==0.7.2
- threadpoolctl==3.4.0
- tifffile==2023.7.10
- timm==0.9.16
- tqdm==4.66.2
- traitlets==5.14.2
- triton==2.2.0
- urllib3==2.2.1
- wcwidth==0.2.13
- werkzeug==3.0.2
- wget==3.2
- widgetsnbextension==4.0.10
- zipp==3.18.1 I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you. |
thank you very much, now i have reproduced this article, your kindness is very warm ,good lucky for you.
…---- 回复的原邮件 ----
| 发件人 | ***@***.***> |
| 日期 | 2024年04月10日 20:19 |
| 收件人 | ***@***.***> |
| 抄送至 | ***@***.***>***@***.***> |
| 主题 | Re: [nomewang/M3DM] error in preprocessing (Issue #28) |
name: m3dmchannels:
- pytorch
- nvidia
- conda-forge
- defaultsdependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- blas=1.0=mkl
- bottleneck=1.3.7=py38ha9d4c09_0
- brotli=1.0.9=h5eee18b_7
- brotli-bin=1.0.9=h5eee18b_7
- brotli-python=1.0.9=py38h6a678d5_7
- bzip2=1.0.8=hd590300_5
- ca-certificates=2024.3.11=h06a4308_0
- certifi=2024.2.2=py38h06a4308_0
- chardet=4.0.0=py38h06a4308_1003
- contourpy=1.0.5=py38hdb19cb5_0
- cuda-cudart=11.7.99=0
- cuda-cupti=11.7.101=0
- cuda-libraries=11.7.1=0
- cuda-nvrtc=11.7.99=0
- cuda-nvtx=11.7.91=0
- cuda-runtime=11.7.1=0
- cudatoolkit=11.3.1=hb98b00a_13
- cycler=0.11.0=pyhd3eb1b0_0
- cyrus-sasl=2.1.28=h52b45da_1
- dbus=1.13.18=hb2f20db_0
- expat=2.5.0=h6a678d5_0
- ffmpeg=4.3=hf484d3e_0
- fontconfig=2.14.1=h4c34cd2_2
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=h0708190_1
- giflib=5.2.1=h0b41bf4_3
- glib=2.78.4=h6a678d5_0
- glib-tools=2.78.4=h6a678d5_0
- gmp=6.3.0=h59595ed_1
- gmpy2=2.1.2=py38heeb90bb_0
- gnutls=3.6.13=h85f3911_1
- gst-plugins-base=1.14.1=h6a678d5_1
- gstreamer=1.14.1=h5eee18b_1
- icu=73.2=h59595ed_0
- importlib_resources=6.1.1=py38h06a4308_1
- intel-openmp=2023.1.0=hdb19cb5_46306
- jinja2=3.1.3=py38h06a4308_0
- jpeg=9e=h5eee18b_1
- kiwisolver=1.4.4=py38h6a678d5_0
- krb5=1.20.1=h143b758_1
- lame=3.100=h166bdaf_1003
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libblas=3.9.0=1_h86c2bf4_netlib
- libbrotlicommon=1.0.9=h5eee18b_7
- libbrotlidec=1.0.9=h5eee18b_7
- libbrotlienc=1.0.9=h5eee18b_7
- libcblas=3.9.0=5_h92ddd45_netlib
- libclang=14.0.6=default_hc6dbbc7_1
- libclang13=14.0.6=default_he11475f_1
- libcublas=11.10.3.66=0
- libcufft=10.7.2.124=h4fbf590_0
- libcufile=1.9.1.3=0
- libcups=2.4.2=h2d74bed_1
- libcurand=10.3.5.147=0
- libcusolver=11.4.0.1=0
- libcusparse=11.7.4.91=0
- libdeflate=1.17=h5eee18b_1
- libedit=3.1.20230828=h5eee18b_0
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=13.2.0=h807b86a_5
- libgfortran-ng=13.2.0=h69a702a_5
- libgfortran5=13.2.0=ha4646dd_5
- libglib=2.78.4=hdc74915_0
- libgomp=13.2.0=h807b86a_5
- libhwloc=2.9.1=hd6dc26d_0
- libiconv=1.17=hd590300_2
- liblapack=3.9.0=5_h92ddd45_netlib
- libllvm14=14.0.6=hdb19cb5_3
- libnpp=11.7.4.75=0
- libnvjpeg=11.8.0.2=0
- libpng=1.6.39=h5eee18b_0
- libpq=12.17=hdbd6064_0
- libstdcxx-ng=13.2.0=h7e041cc_5
- libtiff=4.5.1=h6a678d5_0
- libuuid=1.41.5=h5eee18b_0
- libuv=1.48.0=hd590300_0
- libwebp=1.3.2=h11a3e52_0
- libwebp-base=1.3.2=h5eee18b_0
- libxcb=1.15=h7f8727e_0
- libxkbcommon=1.0.1=h5eee18b_1
- libxml2=2.10.4=hf1b16e4_1
- lz4-c=1.9.4=h6a678d5_0
- matplotlib=3.7.2=py38h06a4308_0
- matplotlib-base=3.7.2=py38h1128e8f_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py38h5eee18b_1
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py38h06a4308_0
- munkres=1.1.4=py_0
- mysql=5.7.24=h721c034_2
- ncurses=6.4=h6a678d5_0
- nettle=3.6=he412f7d_0
- networkx=3.1=py38h06a4308_0
- ninja=1.11.1=h924138e_0
- numexpr=2.8.4=py38hc78ab66_1
- numpy=1.24.4=py38h59b608b_0
- openh264=2.1.1=h780b84a_0
- openjpeg=2.4.0=h3ad879b_0
- openssl=3.2.1=hd590300_1
- pandas=2.0.3=py38h1128e8f_0
- pcre2=10.42=hebb0a14_0
- pillow=10.2.0=py38h5eee18b_0
- pip=23.3.1=py38h06a4308_0
- ply=3.11=py38_0
- pyparsing=3.0.9=py38h06a4308_0
- pyqt=5.15.10=py38h6a678d5_0
- pyqt5-sip=12.13.0=py38h5eee18b_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.19=h955ad1f_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- python_abi=3.8=2_cp38
- pytorch=2.0.1=py3.8_cuda11.7_cudnn8.5.0_0
- pytorch-cuda=11.7=h778d358_5
- pytorch-mutex=1.0=cuda
- pytz=2023.3.post1=py38h06a4308_0
- qt-main=5.15.2=h53bd1ea_10
- readline=8.2=h5eee18b_0
- requests=2.31.0=py38h06a4308_1
- sip=6.7.12=py38h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h5eee18b_0
- sympy=1.12=py38h06a4308_0
- tabulate=0.9.0=py38h06a4308_0
- tbb=2021.9.0=hf52228f_0
- tk=8.6.12=h1ccaba5_0
- tomli=2.0.1=py38h06a4308_0
- torchaudio=2.0.2=py38_cu117
- torchtriton=2.0.0=py38
- torchvision=0.15.2=py38_cu117
- tornado=6.3.3=py38h5eee18b_0
- typing_extensions=4.11.0=pyha770c72_0
- wheel=0.41.2=py38h06a4308_0
- xz=5.4.6=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- absl-py==2.1.0
- addict==2.4.0
- asttokens==2.4.1
- attrs==23.2.0
- backcall==0.2.0
- blinker==1.7.0
- cachetools==5.3.3
- charset-normalizer==3.3.2
- click==8.1.7
- comm==0.2.2
- configargparse==1.7
- dash==2.16.1
- dash-core-components==2.0.0
- dash-html-components==2.0.0
- dash-table==5.0.0
- decorator==5.1.1
- executing==2.0.1
- fastjsonschema==2.19.1
- filelock==3.13.3
- flask==3.0.2
- fsspec==2024.3.1
- google-auth==2.29.0
- google-auth-oauthlib==1.0.0
- grpcio==1.62.1
- huggingface-hub==0.22.2
- idna==3.6
- imageio==2.34.0
- importlib-metadata==7.1.0
- ipython==8.12.3
- ipywidgets==8.1.2
- itsdangerous==2.1.2
- jedi==0.19.1
- joblib==1.3.2
- jsonschema==4.21.1
- jsonschema-specifications==2023.12.1
- jupyter-core==5.7.2
- jupyterlab-widgets==3.0.10
- knn-cuda==0.2
- kornia==0.7.2
- kornia-rs==0.1.3
- lazy-loader==0.4
- markdown==3.6
- markupsafe==2.1.5
- matplotlib-inline==0.1.6
- nbformat==5.10.4
- nest-asyncio==1.6.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.19.3
- nvidia-nvjitlink-cu12==12.4.127
- nvidia-nvtx-cu12==12.1.105
- oauthlib==3.2.2
- open3d==0.18.0
- opencv-python==4.9.0.80
- packaging==24.0
- parso==0.8.4
- pexpect==4.9.0
- pickleshare==0.7.5
- pkgutil-resolve-name==1.3.10
- platformdirs==4.2.0
- plotly==5.20.0
- pointnet2-ops==3.0.0
- prompt-toolkit==3.0.43
- protobuf==5.26.1
- ptyprocess==0.7.0
- pure-eval==0.2.2
- pyasn1==0.6.0
- pyasn1-modules==0.4.0
- pygments==2.17.2
- pyquaternion==0.9.9
- pywavelets==1.4.1
- pyyaml==6.0.1
- referencing==0.34.0
- requests-oauthlib==2.0.0
- retrying==1.3.4
- rpds-py==0.18.0
- rsa==4.9
- safetensors==0.4.2
- scikit-image==0.21.0
- scikit-learn==1.3.2
- scipy==1.10.1
- setuptools==59.5.0
- stack-data==0.6.3
- tenacity==8.2.3
- tensorboard==2.14.0
- tensorboard-data-server==0.7.2
- threadpoolctl==3.4.0
- tifffile==2023.7.10
- timm==0.9.16
- tqdm==4.66.2
- traitlets==5.14.2
- triton==2.2.0
- urllib3==2.2.1
- wcwidth==0.2.13
- werkzeug==3.0.2
- wget==3.2
- widgetsnbextension==4.0.10
- zipp==3.18.1
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you commented.Message ID: ***@***.***>
|
THANKS
林俊杰
***@***.***
…------------------ 原始邮件 ------------------
发件人: ***@***.***>;
发送时间: 2024年4月10日(星期三) 晚上11:34
收件人: ***@***.***>;
抄送: ***@***.***>; ***@***.***>;
主题: Re: [nomewang/M3DM] error in preprocessing (Issue #28)
thank you very much, now i have reproduced this article, your kindness is very warm ,good lucky for you.
---- 回复的原邮件 ----
| 发件人 | ***@***.***> |
| 日期 | 2024年04月10日 20:19 |
| 收件人 | ***@***.***> |
| 抄送至 | ***@***.***>***@***.***> |
| 主题 | Re: [nomewang/M3DM] error in preprocessing (Issue #28) |
name: m3dmchannels:
- pytorch
- nvidia
- conda-forge
- defaultsdependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- blas=1.0=mkl
- bottleneck=1.3.7=py38ha9d4c09_0
- brotli=1.0.9=h5eee18b_7
- brotli-bin=1.0.9=h5eee18b_7
- brotli-python=1.0.9=py38h6a678d5_7
- bzip2=1.0.8=hd590300_5
- ca-certificates=2024.3.11=h06a4308_0
- certifi=2024.2.2=py38h06a4308_0
- chardet=4.0.0=py38h06a4308_1003
- contourpy=1.0.5=py38hdb19cb5_0
- cuda-cudart=11.7.99=0
- cuda-cupti=11.7.101=0
- cuda-libraries=11.7.1=0
- cuda-nvrtc=11.7.99=0
- cuda-nvtx=11.7.91=0
- cuda-runtime=11.7.1=0
- cudatoolkit=11.3.1=hb98b00a_13
- cycler=0.11.0=pyhd3eb1b0_0
- cyrus-sasl=2.1.28=h52b45da_1
- dbus=1.13.18=hb2f20db_0
- expat=2.5.0=h6a678d5_0
- ffmpeg=4.3=hf484d3e_0
- fontconfig=2.14.1=h4c34cd2_2
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=h0708190_1
- giflib=5.2.1=h0b41bf4_3
- glib=2.78.4=h6a678d5_0
- glib-tools=2.78.4=h6a678d5_0
- gmp=6.3.0=h59595ed_1
- gmpy2=2.1.2=py38heeb90bb_0
- gnutls=3.6.13=h85f3911_1
- gst-plugins-base=1.14.1=h6a678d5_1
- gstreamer=1.14.1=h5eee18b_1
- icu=73.2=h59595ed_0
- importlib_resources=6.1.1=py38h06a4308_1
- intel-openmp=2023.1.0=hdb19cb5_46306
- jinja2=3.1.3=py38h06a4308_0
- jpeg=9e=h5eee18b_1
- kiwisolver=1.4.4=py38h6a678d5_0
- krb5=1.20.1=h143b758_1
- lame=3.100=h166bdaf_1003
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libblas=3.9.0=1_h86c2bf4_netlib
- libbrotlicommon=1.0.9=h5eee18b_7
- libbrotlidec=1.0.9=h5eee18b_7
- libbrotlienc=1.0.9=h5eee18b_7
- libcblas=3.9.0=5_h92ddd45_netlib
- libclang=14.0.6=default_hc6dbbc7_1
- libclang13=14.0.6=default_he11475f_1
- libcublas=11.10.3.66=0
- libcufft=10.7.2.124=h4fbf590_0
- libcufile=1.9.1.3=0
- libcups=2.4.2=h2d74bed_1
- libcurand=10.3.5.147=0
- libcusolver=11.4.0.1=0
- libcusparse=11.7.4.91=0
- libdeflate=1.17=h5eee18b_1
- libedit=3.1.20230828=h5eee18b_0
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=13.2.0=h807b86a_5
- libgfortran-ng=13.2.0=h69a702a_5
- libgfortran5=13.2.0=ha4646dd_5
- libglib=2.78.4=hdc74915_0
- libgomp=13.2.0=h807b86a_5
- libhwloc=2.9.1=hd6dc26d_0
- libiconv=1.17=hd590300_2
- liblapack=3.9.0=5_h92ddd45_netlib
- libllvm14=14.0.6=hdb19cb5_3
- libnpp=11.7.4.75=0
- libnvjpeg=11.8.0.2=0
- libpng=1.6.39=h5eee18b_0
- libpq=12.17=hdbd6064_0
- libstdcxx-ng=13.2.0=h7e041cc_5
- libtiff=4.5.1=h6a678d5_0
- libuuid=1.41.5=h5eee18b_0
- libuv=1.48.0=hd590300_0
- libwebp=1.3.2=h11a3e52_0
- libwebp-base=1.3.2=h5eee18b_0
- libxcb=1.15=h7f8727e_0
- libxkbcommon=1.0.1=h5eee18b_1
- libxml2=2.10.4=hf1b16e4_1
- lz4-c=1.9.4=h6a678d5_0
- matplotlib=3.7.2=py38h06a4308_0
- matplotlib-base=3.7.2=py38h1128e8f_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py38h5eee18b_1
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py38h06a4308_0
- munkres=1.1.4=py_0
- mysql=5.7.24=h721c034_2
- ncurses=6.4=h6a678d5_0
- nettle=3.6=he412f7d_0
- networkx=3.1=py38h06a4308_0
- ninja=1.11.1=h924138e_0
- numexpr=2.8.4=py38hc78ab66_1
- numpy=1.24.4=py38h59b608b_0
- openh264=2.1.1=h780b84a_0
- openjpeg=2.4.0=h3ad879b_0
- openssl=3.2.1=hd590300_1
- pandas=2.0.3=py38h1128e8f_0
- pcre2=10.42=hebb0a14_0
- pillow=10.2.0=py38h5eee18b_0
- pip=23.3.1=py38h06a4308_0
- ply=3.11=py38_0
- pyparsing=3.0.9=py38h06a4308_0
- pyqt=5.15.10=py38h6a678d5_0
- pyqt5-sip=12.13.0=py38h5eee18b_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.19=h955ad1f_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- python_abi=3.8=2_cp38
- pytorch=2.0.1=py3.8_cuda11.7_cudnn8.5.0_0
- pytorch-cuda=11.7=h778d358_5
- pytorch-mutex=1.0=cuda
- pytz=2023.3.post1=py38h06a4308_0
- qt-main=5.15.2=h53bd1ea_10
- readline=8.2=h5eee18b_0
- requests=2.31.0=py38h06a4308_1
- sip=6.7.12=py38h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h5eee18b_0
- sympy=1.12=py38h06a4308_0
- tabulate=0.9.0=py38h06a4308_0
- tbb=2021.9.0=hf52228f_0
- tk=8.6.12=h1ccaba5_0
- tomli=2.0.1=py38h06a4308_0
- torchaudio=2.0.2=py38_cu117
- torchtriton=2.0.0=py38
- torchvision=0.15.2=py38_cu117
- tornado=6.3.3=py38h5eee18b_0
- typing_extensions=4.11.0=pyha770c72_0
- wheel=0.41.2=py38h06a4308_0
- xz=5.4.6=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- absl-py==2.1.0
- addict==2.4.0
- asttokens==2.4.1
- attrs==23.2.0
- backcall==0.2.0
- blinker==1.7.0
- cachetools==5.3.3
- charset-normalizer==3.3.2
- click==8.1.7
- comm==0.2.2
- configargparse==1.7
- dash==2.16.1
- dash-core-components==2.0.0
- dash-html-components==2.0.0
- dash-table==5.0.0
- decorator==5.1.1
- executing==2.0.1
- fastjsonschema==2.19.1
- filelock==3.13.3
- flask==3.0.2
- fsspec==2024.3.1
- google-auth==2.29.0
- google-auth-oauthlib==1.0.0
- grpcio==1.62.1
- huggingface-hub==0.22.2
- idna==3.6
- imageio==2.34.0
- importlib-metadata==7.1.0
- ipython==8.12.3
- ipywidgets==8.1.2
- itsdangerous==2.1.2
- jedi==0.19.1
- joblib==1.3.2
- jsonschema==4.21.1
- jsonschema-specifications==2023.12.1
- jupyter-core==5.7.2
- jupyterlab-widgets==3.0.10
- knn-cuda==0.2
- kornia==0.7.2
- kornia-rs==0.1.3
- lazy-loader==0.4
- markdown==3.6
- markupsafe==2.1.5
- matplotlib-inline==0.1.6
- nbformat==5.10.4
- nest-asyncio==1.6.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.19.3
- nvidia-nvjitlink-cu12==12.4.127
- nvidia-nvtx-cu12==12.1.105
- oauthlib==3.2.2
- open3d==0.18.0
- opencv-python==4.9.0.80
- packaging==24.0
- parso==0.8.4
- pexpect==4.9.0
- pickleshare==0.7.5
- pkgutil-resolve-name==1.3.10
- platformdirs==4.2.0
- plotly==5.20.0
- pointnet2-ops==3.0.0
- prompt-toolkit==3.0.43
- protobuf==5.26.1
- ptyprocess==0.7.0
- pure-eval==0.2.2
- pyasn1==0.6.0
- pyasn1-modules==0.4.0
- pygments==2.17.2
- pyquaternion==0.9.9
- pywavelets==1.4.1
- pyyaml==6.0.1
- referencing==0.34.0
- requests-oauthlib==2.0.0
- retrying==1.3.4
- rpds-py==0.18.0
- rsa==4.9
- safetensors==0.4.2
- scikit-image==0.21.0
- scikit-learn==1.3.2
- scipy==1.10.1
- setuptools==59.5.0
- stack-data==0.6.3
- tenacity==8.2.3
- tensorboard==2.14.0
- tensorboard-data-server==0.7.2
- threadpoolctl==3.4.0
- tifffile==2023.7.10
- timm==0.9.16
- tqdm==4.66.2
- traitlets==5.14.2
- triton==2.2.0
- urllib3==2.2.1
- wcwidth==0.2.13
- werkzeug==3.0.2
- wget==3.2
- widgetsnbextension==4.0.10
- zipp==3.18.1
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you commented.Message ID: ***@***.***>
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you authored the thread.Message ID: ***@***.***>
|
THANKS
林俊杰
***@***.***
…------------------ 原始邮件 ------------------
发件人: ***@***.***>;
发送时间: 2024年4月10日(星期三) 晚上8:19
收件人: ***@***.***>;
抄送: ***@***.***>; ***@***.***>;
主题: Re: [nomewang/M3DM] error in preprocessing (Issue #28)
name: m3dm channels: - pytorch - nvidia - conda-forge - defaults dependencies: - _libgcc_mutex=0.1=conda_forge - _openmp_mutex=4.5=2_gnu - blas=1.0=mkl - bottleneck=1.3.7=py38ha9d4c09_0 - brotli=1.0.9=h5eee18b_7 - brotli-bin=1.0.9=h5eee18b_7 - brotli-python=1.0.9=py38h6a678d5_7 - bzip2=1.0.8=hd590300_5 - ca-certificates=2024.3.11=h06a4308_0 - certifi=2024.2.2=py38h06a4308_0 - chardet=4.0.0=py38h06a4308_1003 - contourpy=1.0.5=py38hdb19cb5_0 - cuda-cudart=11.7.99=0 - cuda-cupti=11.7.101=0 - cuda-libraries=11.7.1=0 - cuda-nvrtc=11.7.99=0 - cuda-nvtx=11.7.91=0 - cuda-runtime=11.7.1=0 - cudatoolkit=11.3.1=hb98b00a_13 - cycler=0.11.0=pyhd3eb1b0_0 - cyrus-sasl=2.1.28=h52b45da_1 - dbus=1.13.18=hb2f20db_0 - expat=2.5.0=h6a678d5_0 - ffmpeg=4.3=hf484d3e_0 - fontconfig=2.14.1=h4c34cd2_2 - fonttools=4.25.0=pyhd3eb1b0_0 - freetype=2.10.4=h0708190_1 - giflib=5.2.1=h0b41bf4_3 - glib=2.78.4=h6a678d5_0 - glib-tools=2.78.4=h6a678d5_0 - gmp=6.3.0=h59595ed_1 - gmpy2=2.1.2=py38heeb90bb_0 - gnutls=3.6.13=h85f3911_1 - gst-plugins-base=1.14.1=h6a678d5_1 - gstreamer=1.14.1=h5eee18b_1 - icu=73.2=h59595ed_0 - importlib_resources=6.1.1=py38h06a4308_1 - intel-openmp=2023.1.0=hdb19cb5_46306 - jinja2=3.1.3=py38h06a4308_0 - jpeg=9e=h5eee18b_1 - kiwisolver=1.4.4=py38h6a678d5_0 - krb5=1.20.1=h143b758_1 - lame=3.100=h166bdaf_1003 - lcms2=2.12=h3be6417_0 - ld_impl_linux-64=2.38=h1181459_1 - lerc=3.0=h295c915_0 - libblas=3.9.0=1_h86c2bf4_netlib - libbrotlicommon=1.0.9=h5eee18b_7 - libbrotlidec=1.0.9=h5eee18b_7 - libbrotlienc=1.0.9=h5eee18b_7 - libcblas=3.9.0=5_h92ddd45_netlib - libclang=14.0.6=default_hc6dbbc7_1 - libclang13=14.0.6=default_he11475f_1 - libcublas=11.10.3.66=0 - libcufft=10.7.2.124=h4fbf590_0 - libcufile=1.9.1.3=0 - libcups=2.4.2=h2d74bed_1 - libcurand=10.3.5.147=0 - libcusolver=11.4.0.1=0 - libcusparse=11.7.4.91=0 - libdeflate=1.17=h5eee18b_1 - libedit=3.1.20230828=h5eee18b_0 - libffi=3.4.4=h6a678d5_0 - libgcc-ng=13.2.0=h807b86a_5 - libgfortran-ng=13.2.0=h69a702a_5 - libgfortran5=13.2.0=ha4646dd_5 - libglib=2.78.4=hdc74915_0 - libgomp=13.2.0=h807b86a_5 - libhwloc=2.9.1=hd6dc26d_0 - libiconv=1.17=hd590300_2 - liblapack=3.9.0=5_h92ddd45_netlib - libllvm14=14.0.6=hdb19cb5_3 - libnpp=11.7.4.75=0 - libnvjpeg=11.8.0.2=0 - libpng=1.6.39=h5eee18b_0 - libpq=12.17=hdbd6064_0 - libstdcxx-ng=13.2.0=h7e041cc_5 - libtiff=4.5.1=h6a678d5_0 - libuuid=1.41.5=h5eee18b_0 - libuv=1.48.0=hd590300_0 - libwebp=1.3.2=h11a3e52_0 - libwebp-base=1.3.2=h5eee18b_0 - libxcb=1.15=h7f8727e_0 - libxkbcommon=1.0.1=h5eee18b_1 - libxml2=2.10.4=hf1b16e4_1 - lz4-c=1.9.4=h6a678d5_0 - matplotlib=3.7.2=py38h06a4308_0 - matplotlib-base=3.7.2=py38h1128e8f_0 - mkl=2023.1.0=h213fc3f_46344 - mkl-service=2.4.0=py38h5eee18b_1 - mpc=1.1.0=h10f8cd9_1 - mpfr=4.0.2=hb69a4c5_1 - mpmath=1.3.0=py38h06a4308_0 - munkres=1.1.4=py_0 - mysql=5.7.24=h721c034_2 - ncurses=6.4=h6a678d5_0 - nettle=3.6=he412f7d_0 - networkx=3.1=py38h06a4308_0 - ninja=1.11.1=h924138e_0 - numexpr=2.8.4=py38hc78ab66_1 - numpy=1.24.4=py38h59b608b_0 - openh264=2.1.1=h780b84a_0 - openjpeg=2.4.0=h3ad879b_0 - openssl=3.2.1=hd590300_1 - pandas=2.0.3=py38h1128e8f_0 - pcre2=10.42=hebb0a14_0 - pillow=10.2.0=py38h5eee18b_0 - pip=23.3.1=py38h06a4308_0 - ply=3.11=py38_0 - pyparsing=3.0.9=py38h06a4308_0 - pyqt=5.15.10=py38h6a678d5_0 - pyqt5-sip=12.13.0=py38h5eee18b_0 - pysocks=1.7.1=py38h06a4308_0 - python=3.8.19=h955ad1f_0 - python-dateutil=2.8.2=pyhd3eb1b0_0 - python-tzdata=2023.3=pyhd3eb1b0_0 - python_abi=3.8=2_cp38 - pytorch=2.0.1=py3.8_cuda11.7_cudnn8.5.0_0 - pytorch-cuda=11.7=h778d358_5 - pytorch-mutex=1.0=cuda - pytz=2023.3.post1=py38h06a4308_0 - qt-main=5.15.2=h53bd1ea_10 - readline=8.2=h5eee18b_0 - requests=2.31.0=py38h06a4308_1 - sip=6.7.12=py38h6a678d5_0 - six=1.16.0=pyhd3eb1b0_1 - sqlite=3.41.2=h5eee18b_0 - sympy=1.12=py38h06a4308_0 - tabulate=0.9.0=py38h06a4308_0 - tbb=2021.9.0=hf52228f_0 - tk=8.6.12=h1ccaba5_0 - tomli=2.0.1=py38h06a4308_0 - torchaudio=2.0.2=py38_cu117 - torchtriton=2.0.0=py38 - torchvision=0.15.2=py38_cu117 - tornado=6.3.3=py38h5eee18b_0 - typing_extensions=4.11.0=pyha770c72_0 - wheel=0.41.2=py38h06a4308_0 - xz=5.4.6=h5eee18b_0 - zlib=1.2.13=h5eee18b_0 - zstd=1.5.5=hc292b87_0 - pip: - absl-py==2.1.0 - addict==2.4.0 - asttokens==2.4.1 - attrs==23.2.0 - backcall==0.2.0 - blinker==1.7.0 - cachetools==5.3.3 - charset-normalizer==3.3.2 - click==8.1.7 - comm==0.2.2 - configargparse==1.7 - dash==2.16.1 - dash-core-components==2.0.0 - dash-html-components==2.0.0 - dash-table==5.0.0 - decorator==5.1.1 - executing==2.0.1 - fastjsonschema==2.19.1 - filelock==3.13.3 - flask==3.0.2 - fsspec==2024.3.1 - google-auth==2.29.0 - google-auth-oauthlib==1.0.0 - grpcio==1.62.1 - huggingface-hub==0.22.2 - idna==3.6 - imageio==2.34.0 - importlib-metadata==7.1.0 - ipython==8.12.3 - ipywidgets==8.1.2 - itsdangerous==2.1.2 - jedi==0.19.1 - joblib==1.3.2 - jsonschema==4.21.1 - jsonschema-specifications==2023.12.1 - jupyter-core==5.7.2 - jupyterlab-widgets==3.0.10 - knn-cuda==0.2 - kornia==0.7.2 - kornia-rs==0.1.3 - lazy-loader==0.4 - markdown==3.6 - markupsafe==2.1.5 - matplotlib-inline==0.1.6 - nbformat==5.10.4 - nest-asyncio==1.6.0 - nvidia-cublas-cu12==12.1.3.1 - nvidia-cuda-cupti-cu12==12.1.105 - nvidia-cuda-nvrtc-cu12==12.1.105 - nvidia-cuda-runtime-cu12==12.1.105 - nvidia-cudnn-cu12==8.9.2.26 - nvidia-cufft-cu12==11.0.2.54 - nvidia-curand-cu12==10.3.2.106 - nvidia-cusolver-cu12==11.4.5.107 - nvidia-cusparse-cu12==12.1.0.106 - nvidia-nccl-cu12==2.19.3 - nvidia-nvjitlink-cu12==12.4.127 - nvidia-nvtx-cu12==12.1.105 - oauthlib==3.2.2 - open3d==0.18.0 - opencv-python==4.9.0.80 - packaging==24.0 - parso==0.8.4 - pexpect==4.9.0 - pickleshare==0.7.5 - pkgutil-resolve-name==1.3.10 - platformdirs==4.2.0 - plotly==5.20.0 - pointnet2-ops==3.0.0 - prompt-toolkit==3.0.43 - protobuf==5.26.1 - ptyprocess==0.7.0 - pure-eval==0.2.2 - pyasn1==0.6.0 - pyasn1-modules==0.4.0 - pygments==2.17.2 - pyquaternion==0.9.9 - pywavelets==1.4.1 - pyyaml==6.0.1 - referencing==0.34.0 - requests-oauthlib==2.0.0 - retrying==1.3.4 - rpds-py==0.18.0 - rsa==4.9 - safetensors==0.4.2 - scikit-image==0.21.0 - scikit-learn==1.3.2 - scipy==1.10.1 - setuptools==59.5.0 - stack-data==0.6.3 - tenacity==8.2.3 - tensorboard==2.14.0 - tensorboard-data-server==0.7.2 - threadpoolctl==3.4.0 - tifffile==2023.7.10 - timm==0.9.16 - tqdm==4.66.2 - traitlets==5.14.2 - triton==2.2.0 - urllib3==2.2.1 - wcwidth==0.2.13 - werkzeug==3.0.2 - wget==3.2 - widgetsnbextension==4.0.10 - zipp==3.18.1
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you authored the thread.Message ID: ***@***.***>
|
你好,我在运行python utils/preprocessing.py datasets/mvtec3d/ 这行代码的时候,出现了一个报错,(m3dm1) PS D:\M3DM-main\M3DM-main> python utils/preprocessing.py datasets/mvtec3d/
Found 4147 tiff files in datasets/mvtec3d/
ransac: 50
[Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned __int64,class std::allocator > > __cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
Traceback (most recent call last):
File "utils/preprocessing.py", line 142, in
preprocess_pc(path)
File "utils/preprocessing.py", line 113, in preprocess_pc
planeless_organized_pc, planeless_organized_rgb = remove_plane(organized_pc, organized_rgb)
File "utils/preprocessing.py", line 34, in remove_plane
plane_model = get_plane_eq(get_edges_of_pc(organized_pc_clean))
File "utils/preprocessing.py", line 23, in get_plane_eq
plane_model, inliers = o3d_pc.segment_plane(distance_threshold=0.004, ransac_n=ransac_n_pts, num_iterations=1000)
RuntimeError: [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned __int64,class std::allocator > > __cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
请问您知道报错的原因吗,求教
The text was updated successfully, but these errors were encountered: