forked from arinkverma/google-foobar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3.3_doomsday_fuel.py
152 lines (126 loc) · 4.25 KB
/
3.3_doomsday_fuel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import copy
from fractions import Fraction, gcd
def lcm(numbers):
def lcm(a, b):
return (a * b) // gcd(a, b)
return reduce(lcm, numbers, 1)
def create_M(r,c):
row = []
col = [0]*c
for i in range(r):
row.append(copy.deepcopy(col))
return row
def mult_M(X,Y):
result = create_M(len(X),len(Y[0]))
# iterate through rows of X
for i in range(len(X)):
# iterate through columns of Y
for j in range(len(Y[0])):
# iterate through rows of Y
for k in range(len(Y)):
result[i][j] += X[i][k] * Y[k][j]
return result
def invert(X):
"""
Invert a matrix X according to gauss-jordan elimination
"""
#copy X to avoid altering input
X = copy.deepcopy(X)
#Get dimensions of X
rows = len(X)
cols = len(X[0])
#Get the identity matrix and append it to the right of X
#This is done because our row operations will make the identity into the inverse
identity = []
for i in xrange(0,rows):
row = []
for j in xrange(0,cols):
row.append((1 if i==j else 0))
identity.append(row)
for i in xrange(0,rows):
X[i]+=identity[i]
i = 0
for j in xrange(0,cols):
print("On col {0} and row {1}".format(j,i))
#Check to see if there are any nonzero values below the current row in the current column
zero_sum, first_non_zero = check_for_all_zeros(X,i,j)
#If everything is zero, increment the columns
if zero_sum==0:
if j==cols:
return X
raise Exception("Matrix is singular.")
#If X[i][j] is 0, and there is a nonzero value below it, swap the two rows
if first_non_zero != i:
X[first_non_zero], X[i] = X[i], X[first_non_zero]
#Divide X[i] by X[i][j] to make X[i][j] equal 1
X[i] = [m/X[i][j] for m in X[i]]
#Rescale all other rows to make their values 0 below X[i][j]
for q in xrange(0,rows):
if q!=i:
scaled_row = [X[q][j] * m for m in X[i]]
X[q]= [X[q][m] - scaled_row[m] for m in xrange(0,len(scaled_row))]
#If either of these is true, we have iterated through the matrix, and are done
if i==rows or j==cols:
break
i+=1
#Get just the right hand matrix, which is now our inverse
for i in xrange(0,rows):
X[i] = X[i][cols:len(X[i])]
return X
def check_for_all_zeros(X,i,j):
non_zeros = []
first_non_zero = -1
for m in xrange(i,len(X)):
non_zero = X[m][j]!=0
non_zeros.append(non_zero)
if first_non_zero==-1 and non_zero:
first_non_zero = m
zero_sum = sum(non_zeros)
return zero_sum, first_non_zero
def answer(r):
# r = [
# [0,1,0,0,0,1], # s0, the initial state, goes to s1 and s5 with equal probability
# [4,0,0,3,2,0], # s1 can become s0, s3, or s4, but with different probabilities
# [0,0,0,0,0,0], # s2 is terminal, and unreachable (never observed in practice)
# [0,0,0,0,0,0], # s3 is terminal
# [0,0,0,0,0,0], # s4 is terminal
# [0,0,0,0,0,0], # s5 is terminal
# ]
if len(r) <= 2:
return [1,1]
m = []
terminal = []
terminal_count = 0
transitional = []
transitional_count = 0
for i in xrange(len(r)):
s = sum(r[i])
if s == 0:
terminal.append((terminal_count,i))
terminal_count += 1
m.append(list(Fraction(0,1) for k in r[i]))
else:
transitional.append((transitional_count,i))
transitional_count += 1
m.append(list(Fraction(k,s) for k in r[i]))
I_Q = create_M(transitional_count,transitional_count)
R = create_M(transitional_count,terminal_count)
for i in transitional:
for j in transitional:
if i == j:
I_Q[i[0]][j[0]] = 1 - m[i[1]][j[1]]
else:
I_Q[i[0]][j[0]] = -1 * m[i[1]][j[1]]
for j in terminal:
R[i[0]][j[0]] = m[i[1]][j[1]]
F = invert(I_Q)
FR = mult_M(F,R)
nr = []
dr = []
for a in FR[0]:
nr.append(a.numerator)
dr.append(a.denominator)
l = lcm(dr)
a = list(i[0]*l/i[1] for i in zip(nr,dr))
a.append(l)
return a