-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathbd_intra.py
139 lines (114 loc) · 6.01 KB
/
bd_intra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
from regress import *
from loaddata import *
from util import *
def wavg(group):
b = group['pbeta']
d = group['log_ret']
w = group['mkt_cap_y'] / 1e6
res = b * ((d * w).sum() / w.sum())
return res
def wavg2(group):
b = group['pbeta']
d = group['cur_log_ret']
w = group['mkt_cap_y'] / 1e6
res = b * ((d * w).sum() / w.sum())
return res
def calc_bd_intra(intra_df):
print "Calculating bd intra..."
result_df = filter_expandable(intra_df)
result_df['cur_log_ret'] = np.log(result_df['iclose']/result_df['bopen'])
result_df['bret'] = result_df[['cur_log_ret', 'pbeta', 'mkt_cap_y', 'giclose_ts']].groupby(['giclose_ts'], sort=False).apply(wavg2).reset_index(level=0)['pbeta']
result_df['badjret'] = result_df['cur_log_ret'] - result_df['bret']
# decile = lambda x: 10.0 * x.rank()/float(len(x))
# result_df['cur_log_ret_decile'] = result_df[['cur_log_ret', 'giclose_ts']].groupby(['giclose_ts'], sort=False).transform(decile)['cur_log_ret']
print "Calulating bdC..."
result_df['bdC'] = (result_df['askHitDollars'] - result_df['bidHitDollars']) / (result_df['askHitDollars'] + result_df['midHitDollars'] + result_df['bidHitDollars'])
result_df['bdC_B'] = winsorize_by_ts(result_df['bdC'])
print "Calulating bdC_ma..."
demean = lambda x: (x - x.mean())
indgroups = result_df[['bdC_B', 'giclose_ts', 'ind1']].groupby(['giclose_ts', 'ind1'], sort=False).transform(demean)
result_df['bdC_B_ma'] = indgroups['bdC_B']
# result_df['bdC_B_ma'] = result_df['bdC_B_ma'] * np.abs(result_df['badjret'])
# result_df['bdC_B_ma'] = result_df['bdC_B_ma'].clip(0,1000) * np.sign(result_df['cur_log_ret'])
# result_df.ix[ (result_df['cur_log_ret_decile'] < 1) | (result_df['cur_log_ret_decile'] == 9), 'bdC_B_ma'] = np.nan
# result_df['bdC_B_ma'] = result_df['bdC_B_ma'] * (2 - result_df['cur_log_ret_r'])
# result_df['eod_ts'] = result_df['date'].apply(lambda x: x + timedelta(hours=15, minutes=30))
# result_df['scale'] = result_df['eod_ts'] - result_df['giclose_ts']
# result_df['scale'] = result_df['scale'].apply(lambda x: 1.0 - (x/np.timedelta64(1, 's'))/(360*60))
# result_df[ result_df['scale'] > 1 ] = 0
# result_df['bdC_B_ma_tod'] = result_df['bdC_B_ma'] * result_df['scale']
return result_df
def bd_fits(intra_df, horizon, name, middate):
insample_intra_df = intra_df
outsample_intra_df = intra_df
if middate is not None:
insample_intra_df = intra_df[ intra_df['date'] < middate ]
outsample_intra_df = intra_df[ intra_df['date'] >= middate ]
outsample_intra_df['bdma'] = np.nan
outsample_intra_df['bdC_B_ma_coef'] = np.nan
for lag in range(0, horizon+1):
outsample_intra_df[ 'bd' + str(lag) + '_B_ma_coef' ] = np.nan
fits_df = pd.DataFrame(columns=['horizon', 'coef', 'indep', 'tstat', 'nobs', 'stderr'])
fitresults_df = regress_alpha(insample_intra_df, 'bdC_B_ma', horizon, True, 'intra_eod')
fits_df = fits_df.append(fitresults_df, ignore_index=True)
plot_fit(fits_df, "bdma_intra_"+name+"_" + df_dates(insample_intra_df))
fits_df.set_index(keys=['indep', 'horizon'], inplace=True)
unstacked = outsample_intra_df[ ['ticker'] ].unstack()
coefs = dict()
coefs[1] = unstacked.between_time('09:30', '10:31').stack().index
coefs[2] = unstacked.between_time('10:30', '11:31').stack().index
coefs[3] = unstacked.between_time('11:30', '12:31').stack().index
coefs[4] = unstacked.between_time('12:30', '13:31').stack().index
coefs[5] = unstacked.between_time('13:30', '14:31').stack().index
coefs[6] = unstacked.between_time('14:30', '15:59').stack().index
print fits_df.head()
for ii in range(1,7):
outsample_intra_df.ix[ coefs[ii], 'bdC_B_ma_coef' ] = fits_df.ix['bdC_B_ma'].ix[ii].ix['coef']
outsample_intra_df[ 'bdma_i'] = outsample_intra_df['bdC_B_ma'] * outsample_intra_df['bdC_B_ma_coef']
return outsample_intra_df
def calc_bd_forecast(daily_df, intra_df, horizon):
forwards_df = calc_forward_returns(daily_df, horizon)
daily_results_df = forwards_df
intra_results_df = calc_bd_intra(intra_df)
intra_results_df = merge_intra_data(daily_results_df, intra_results_df)
full_df = bd_fits(intra_results_df, horizon, "", middate)
return full_df
if __name__=="__main__":
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--mid",action="store",dest="mid",default=None)
parser.add_argument("--freq",action="store",dest="freq",default=15)
args = parser.parse_args()
start = args.start
end = args.end
lookback = 30
horizon = 0
freq = int(args.freq)
pname = "./bd" + start + "." + end
start = dateparser.parse(start)
end = dateparser.parse(end)
middate = dateparser.parse(args.mid)
loaded = False
try:
daily_df = pd.read_hdf(pname+"_daily.h5", 'table')
intra_df = pd.read_hdf(pname+"_intra.h5", 'table')
loaded = True
except:
print "Did not load cached data..."
if not loaded:
uni_df = get_uni(start, end, lookback)
BARRA_COLS = ['ind1', 'pbeta']
barra_df = load_barra(uni_df, start, end, BARRA_COLS)
PRICE_COLS = ['close', 'overnight_log_ret', 'tradable_volume', 'tradable_med_volume_21']
price_df = load_prices(uni_df, start, end, PRICE_COLS)
BAR_COLS = ['askHitDollars', 'midHitDollars', 'bidHitDollars', 'bopen']
intra_df = load_bars(price_df[['ticker']], start, end, BAR_COLS, freq)
daily_df = merge_barra_data(price_df, barra_df)
daily_df = merge_intra_eod(daily_df, intra_df)
intra_df = merge_intra_data(daily_df, intra_df)
daily_df.to_hdf(pname+"_daily.h5", 'table', complib='zlib')
intra_df.to_hdf(pname+"_intra.h5", 'table', complib='zlib')
outsample_df = calc_bd_forecast(daily_df, intra_df, horizon)
dump_alpha(outsample_df, 'bdma_i')