diff --git a/.gitignore b/.gitignore index 23d538a..a16f25f 100644 --- a/.gitignore +++ b/.gitignore @@ -10,7 +10,7 @@ __pycache__/ .Python build/ develop-eggs/ -dist/ +#dist/ downloads/ eggs/ .eggs/ diff --git a/dist/metrolopy-0.5.0-py3-none-any.whl b/dist/metrolopy-0.5.0-py3-none-any.whl deleted file mode 100644 index 0f42bd3..0000000 Binary files a/dist/metrolopy-0.5.0-py3-none-any.whl and /dev/null differ diff --git a/dist/metrolopy-0.5.0.tar.gz b/dist/metrolopy-0.5.0.tar.gz deleted file mode 100644 index ddafe60..0000000 Binary files a/dist/metrolopy-0.5.0.tar.gz and /dev/null differ diff --git a/dist/metrolopy-0.5.0.zip b/dist/metrolopy-0.5.0.zip deleted file mode 100644 index 0472f5f..0000000 Binary files a/dist/metrolopy-0.5.0.zip and /dev/null differ diff --git a/dist/metrolopy-0.5.1-py3-none-any.whl b/dist/metrolopy-0.5.1-py3-none-any.whl new file mode 100644 index 0000000..4356f80 Binary files /dev/null and b/dist/metrolopy-0.5.1-py3-none-any.whl differ diff --git a/dist/metrolopy-0.5.1.tar.gz b/dist/metrolopy-0.5.1.tar.gz new file mode 100644 index 0000000..db190a3 Binary files /dev/null and b/dist/metrolopy-0.5.1.tar.gz differ diff --git a/dist/metrolopy-0.5.1.zip b/dist/metrolopy-0.5.1.zip new file mode 100644 index 0000000..2698c1d Binary files /dev/null and b/dist/metrolopy-0.5.1.zip differ diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle index bb44c12..7bd0cfd 100644 Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ diff --git a/docs/_build/doctrees/hand_made_doc.doctree b/docs/_build/doctrees/hand_made_doc.doctree index a1c4572..7835bca 100644 Binary files a/docs/_build/doctrees/hand_made_doc.doctree and b/docs/_build/doctrees/hand_made_doc.doctree differ diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree index 33fa23d..0fdaa8f 100644 Binary files a/docs/_build/doctrees/index.doctree and b/docs/_build/doctrees/index.doctree differ diff --git a/docs/_build/doctrees/metrolopy.doctree b/docs/_build/doctrees/metrolopy.doctree index c92b1e1..b7652f5 100644 Binary files a/docs/_build/doctrees/metrolopy.doctree and b/docs/_build/doctrees/metrolopy.doctree differ diff --git a/docs/_build/doctrees/metrolopy.tests.doctree b/docs/_build/doctrees/metrolopy.tests.doctree index 917fc03..3e59272 100644 Binary files a/docs/_build/doctrees/metrolopy.tests.doctree and b/docs/_build/doctrees/metrolopy.tests.doctree differ diff --git a/docs/_build/doctrees/modules.doctree b/docs/_build/doctrees/modules.doctree index 04e36cf..db266c0 100644 Binary files a/docs/_build/doctrees/modules.doctree and b/docs/_build/doctrees/modules.doctree differ diff --git a/docs/_build/doctrees/todo.doctree b/docs/_build/doctrees/todo.doctree index 0336d89..29760f7 100644 Binary files a/docs/_build/doctrees/todo.doctree and b/docs/_build/doctrees/todo.doctree differ diff --git a/docs/_build/html/_downloads/tutorial.ipynb b/docs/_build/html/_downloads/tutorial.ipynb index f3a6e5d..b432ef4 100644 --- a/docs/_build/html/_downloads/tutorial.ipynb +++ b/docs/_build/html/_downloads/tutorial.ipynb @@ -82,7 +82,7 @@ { "data": { "text/html": [ - "1.234(23) cm" + "1.234(23) cm" ], "text/plain": [ "1.234(23) cm" @@ -115,7 +115,7 @@ { "data": { "text/html": [ - "(1.234 ± 0.023) cm" + "(1.234 ± 0.023) cm" ], "text/plain": [ "(1.234 ± 0.023) cm" @@ -148,7 +148,7 @@ { "data": { "text/html": [ - "1.234 cm ± 234 μm" + "1.234 cm ± 234 μm" ], "text/plain": [ "1.234 cm ± 234 μm" @@ -181,7 +181,7 @@ { "data": { "text/html": [ - "1.234 cm ± 1.9%" + "1.234 cm ± 1.9%" ], "text/plain": [ "1.234 cm ± 1.9%" @@ -216,7 +216,7 @@ { "data": { "text/html": [ - "3.03(17) mm" + "3.03(17) mm" ], "text/plain": [ "3.03(17) mm" @@ -301,7 +301,7 @@ { "data": { "text/html": [ - "0.375(23) cm2" + "0.375(23) cm2" ], "text/plain": [ "0.375(23) cm²" @@ -363,7 +363,7 @@ { "data": { "text/html": [ - "0.934(55) N" + "0.934(55) N" ], "text/plain": [ "0.934(55) N" @@ -396,7 +396,7 @@ { "data": { "text/html": [ - "2.50(21) N/cm2" + "2.50(21) N/cm2" ], "text/plain": [ "2.50(21) N/cm²" @@ -422,7 +422,7 @@ { "data": { "text/html": [ - "25.0(21) kPa" + "25.0(21) kPa" ], "text/plain": [ "25.0(21) kPa" @@ -456,9 +456,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEzCAYAAADjIn5GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HFWd9/HPl7A5IQpIQJaEiMOwqYCEIBp9WIVkQEBx\nZFEEdRhcEJxRQR9mJuPjAu4LCEZABAUUBUUEFFTEyJrEEPYtJCRhSUCWACrb7/njnDtUOt19u253\ndfe9+b5fr3rdrqpTVb+qW92/Pqeq6ygiMDMzq8IqvQ7AzMxGLicZMzOrjJOMmZlVxknGzMwq4yRj\nZmaVcZIxM7PKOMmYmVllnGTMSpI0SdK1kq6WdJ6k1Xodk1m/cpIxK28hsFtEvBWYD+zX23DM+peT\nTBdI+qKkY3sdx8pA0g2StqlyGxHxYET8NY8+C7zYzvok3Spplybz50vao51t9KNu7NdQtyFpC0lz\nJC2T9LEqYmtluy2cG2dJ+ly34huKYZ9kJF0l6TFJa/Q6lnokjQUOA75bmLaupIskPS1pgaRDmiz/\nQ0kPSXpS0l2SPlgz/6ma4QVJ3y7Mv0rS3wrz76xoP8vsU0tlJW2eY/9hiXlfAT7b3t60RtKmwNuA\nX7aznojYJiKuKqy3a0lF0laSfifpCUn3SDqgZn7D80fSN/J771pJmxSmHyLpW92Iv0KfAn4fEWMi\nopv7stx2a8+N4WhYJxlJE4C3AAG8vUm5VbsUUj2HA5cWvvkCnEL6BrwBcChwapNv3ycCm0XEy0n7\n+DlJOwzMjIi1BgbgVcBfgQtq1vHRQrktWgla0jRJ01opO4R9arXsKcCNTdZRb97FwK6SXlUi9tIk\nvRw4Bzg8Ip6rcltVye+LXwCXAOsCRwI/lPRPNUVXOH8kTQJ2IJ1zM4Dj8/RXAJ8ETujOXlRmU+DW\nlWi7lRnWSYZUQ7gOOAt4X3FG/jZ4nKS5wNOSVpW0kaSfSVoq6b5iNVjS8ZLuzdXU22q/0bVhCvCH\nwnZGA+8E/jMinoqIGaQ3+nvrLRwRt0TEMwOjeXhNg229E1gC/LFDsbekzD61WlbSQcDjwG/rrKPh\nvIj4GzAL2KvOcuMkXZj//49KOrkwb76kT0qam2tYZ0jaQNJl+Zy4UtI6ueyqwPnA/0RE3ZqhpCMk\n/bIwfrekCwrjCyVtV9j2Hvn1OcB44Je55vCpvMh2ObYnJP1Y0pr1tpvX0eq5vCWwEfD1iHghIn4H\n/IkG52KNVwMzIuLvpP/DZnn654EvR8STLayjGHPd92Z+D/+0puw3B2pKzd7TLWxzq1xTe1ypWert\nefrvgF2Bk/P/oDbpDnYu1V1vnjdf0ifq/S/rbVc1tVpJ20uanf+3PwbWLMxreiwG2Xaz/RnyMQYg\nIobtANwDfJj0jeo5YIPCvPnAHGAc8DJSQp0F/BewOulNMQ/YK5d/F+kNtwrwbuBpYMM627yE9AFX\nb7ikTvmlwI6F8e2BZ2rK/Afwyyb7+R3gGVKCmQ2s1aDc74BpNdOuyjE8QvoA2aXFYzutdl1Nyra8\nT62UBV4O3AVskuP4YSvzCmW+BXytZtoo4Cbg68Bo0ptzcs35ch2pdrUxKVnPzvGumY/tf+ey7wUe\nzcf2KuDddWLYLJ8Tq+TzagGwqDDvMWCVwrb3qImldvyGvJ51gduBo5r8P1o9l18LPAWoMO0K4KLB\nzp+87AzSe+vLeZgIXFHi/Tsf2IMm703SN/tngDGF/+ODwBubLdfoWBamr0b6/PhMXnY3YBmwRWG/\nP9gg7obnUgvrbfq/rN1uMf68vgXAx/N2DiR97n2uxLFYYduD7M+g6x30/9xqwX4bgMn5AK+Xx+8A\nPl5zQN9fGN8JuL9mHZ8Gvt9g/XOA/ToQ53PAloXxtwAP1ZT5V+CqQdYzKu/zCcBqdeZvCrwAvLpm\n+k7AGGANUm1vGfCaBtsoJtC/5aFhAh3KPrVSFvgmcFx+PY3lk0zDeYUynwfOrJm2M+nDctUG+zAf\nOLQw/jPg1ML40cDPS/7vFwJvAA4Cpuc3+JbAEcDFNdseLMm8pzD+JeC0EnHUPZdJH1TzSNcBViNd\nX3oW+HUr5w/pw+4m4MfAWOAaYCvgY8DVwI+AtZvENZ+UZJq+N0nJ7LD8ek/g3kJsTd/Ttcey9jwk\nJ/o87TzyFyuaJ5mG51IL6236v6zdLssnmbcCD7D8l4JrSEmm1WOxwrYH2Z9Sn5v1hl5eq2jX+4Df\nRMQjefzcPO3rhTILC683BTaS9Hhh2ihy05Kkw4B/BybkeWsB63UgzsdIb9IBT5G+jRe9gvTmbSgi\nXgBmSHoP8CHSt/Wi95KaL+6rWe76wugPJB0MTAW+TY2I2GfgtfL1mIiY1iyurMw+NS2bm5D2INUg\nltNsXo0xpMRYNA5YEBHPN1nu4cLrv9YZX2uQ7db6A7AL8I/59ePA/yG9qf/QeLG6Hiq8fob0bbSu\nVs/liHhO0v6kc+E4YCbwE+DvhTINz5+I+Dr5/SbpI6TEsgrp2s72eZ3H56GZpu9N0nv7YOBs4JA8\n3spyzWwELIyI4p2BC0i12ME0O5daWW/L/8s6614c+ZO+sG5o/VjU23az/WnnGAMMzyQj6WXAvwCj\nJA0ctDWAtSVtGxE35WnFf8ZC4L6I2LzO+jYFvgfsDlwbES9ImgOoTtnLSN9W6vljREypmTYX+Cde\nukh9F7CqpM0j4u48bVtav9i3KvWvyRxGuklgMEGd/WpTmX0arOwupA/H+yVB+oAcJWlr0odM3XkR\n8YbCNrYCau86WwiMl7TqIImmk/4A7Eu6fvEFUpI5lJRkTm6yXDSZ11SZcxkgIuaSEt/A8tcAPxgk\ntuXWJWkDUmLZmbS/c3MCuxE4poWwG743swuAryrdwXZA3k4ryzXzADBO0iqFhDCedH62Em+jc6md\n9Q7mQWBjSSokmvHAvbR3LJrtTzvrBYbvhf/9SU1DWwPb5WErUnY9rMEyNwDL8oXEl0kaJem1knYk\ntUMGqcqIpCNIbc4riIgpUbijq2aoTTAAl1J4E0fE08CFwGcljZY0mXTX2Dm1C0paX9JBktbK8e5F\n+kb325pybyJ9U7qgZvrakvaStKbSjQ+Hkqrclzc4RsX9nNZiLabUPrVQdjopiQ78X08DfkVqn282\nb2Cf1yRdo7uiZtM3kN6kJ+btrinpza3sXxv+QLqQ+7KIWEQ6P/cGXgn8uclyD/PShfSyWj6X8/zX\n52PxD5I+AWxIupGmzPnzNVJz0DPAfcCOktYifWGY10LMzd6bRMRSUjPS90kfeLe3stwgrid9k/+U\npNWUfouyL+mGjlbibXQutbPewVwLPA98LK/7HcCkQkxDPRbN9qed9QLDN8m8j9QmeH9EPDQwkL4d\nHqo6tyzn5qZ9SB9O95EuZJ4OvCIibgO+SvonPgy8jnSRsxPOBqbm2teAD5MumC4hVf0/FBG3Qqop\nSfrMQNikprFFpGa3rwDHRsTFNdt4H3BhRNQ2T61Gaq8duHB7NLB/RNT9VpW3Xfu7m4HhskH2s9V9\nalo2Ip6p+Z8+BfwtIpY2m1dY976k6zsPFIPL//99SU1X95OO6bsH2ae25OP8FLlpIdIdV/OAP+V4\nGvkicILS3UmfKLnNsufye0kfMEtItZ89I90xBi2cP5J2I113uShv/wZS4l9ISrCD1q6bvTcLxc4l\nNZWeW3K5Rtt8lnQ+TMnLfYd03eeOFuOtey61s94WY34H6WcRf8nbvLAQ01CPRbP9GfJ6B2j55j2r\ngqQvAEsi4hu9jmWkk3Q98IGIuKXXsZiZk4yZmVVouDaXmZnZMOAkY2ZmlXGSMTOzyjjJmJlZZZxk\nzMysMk4yZmZWGScZMzOrjJOMmY1IkiYp9dp5taTzJK3W65hWRk4yZjZSLQR2i4i3kh5zv19vw1k5\nOclYT0g6S9LnerW+Tm1fqefDXbq9rA0uIh6Ml7o9fxZ4sVl5q4aTjDWkmq5fbUURsU1EXNVK2drj\nWWbZqkhaV9JFSl1OL5B0yFDKS1pDqcvqBUpdA8+RNKVm2R9KekjSk5LukvTBKvetsN1NSR2y/XKw\nstZ5w7I/GVt5qbv9wawMTiF9y9+A9KTdX0m6aeCp2K2WJzVHLSR1a3E/qWOzn0h6XUTMz8ueCBwZ\nEc9I2hK4StKfI2JWNbsGkl5O6kbi8Ih4rqrtWGOuyRi5r4jF+RvonZJ2l3QOqUOkX+ZH/X9K0vGS\n7s3lbpN0QM165kv6hKS5kp6Q9GOl/l2QtL2k2XnZH5P6ES8u23Ddeb3HSZoLPK3Ut0nT9dXZx4bl\nJW0k6WeSlkq6T9LHao7NT2vW9U1J3yrEtkcL+1DveC5Xs5G0laSr8iP+b5X09laO7VBJGg28E/jP\niHgqImYAvyA9/r9U+Yh4OvdBND8iXoyIS0iPht9hYPmIuCX3OQOpG4ugTgd8ksZJujD/Px6VdHJh\n3nxJn8zH4elce9pAqTuJZZKulLROLrsqqR+X/4mIO9s5VtaGKNFnuYeRNwBbkL6BbpTHJ/BSH+7z\nWb6v+XeRumtdhdTfxNPAhoX580mdHG0ErAvcDhwFrE7qJvbjpD5KDgSeAz7XyrrzeueQuol9WSvr\nq9nHhuXz9mYB/5XLbUbq82WvvOympE6oxuTxUaT+V95Ye4xaPD571BvPcd0DfCbHsRupS+otmh3b\nOvt6CakHznrDJTVltweeqZn2H8AvGxzHlsuTajp/A7asmf6dfDwDmA2sVTN/FHATqVvn0aQvA5Nr\njtl1ef0bk/rBmZ1jWxP4HfDfuex7gUdJHZ5dBby71++3lXHoeQAeenwCpI6KlpA6hFqtZt5yH4p1\nlp0D7FdT/j2F8S+Req98K6lbWhXmXUODpFC77rze9xfmlVpfs/LATsD9NeU/TeoUb2B8BqnjKYA9\ngXtbOUYNjk+jJPMWUv/rqxTmn0fqcbLhsW3zf/8W4KGaaf9K6vRtyOVJCfNK4LsN1jMKmAycUOec\n25nUSdqqDZadDxxaGP8ZcGph/Gjg591473hobXBz2UouIu4BjgWmAUsknS9po3plJR2WL+g+Lulx\nUre+69UUe6jw+hlgLdK378WRPwWyBSXXvbDwetD11WhWflNgo4Ht5m1/hvRNecC5pG6vAQ6h0Dtj\nyX1oZiNgYbzUL/xAjBsXxusd23Y8Bby8ZtorSDWoIZWXtArpGsizwEfrrSQiXojU1LYJqefXonHA\ngmh+3e3hwuu/1hlv97hYBznJGBFxbkRMJn3gBnDSwKyBMvkOne+RPjheGRFrA7cAamETDwIbSyqW\nHV9y3cUE0XR9Jbe/kNRv/NqFYUxETC2UvQDYRdImwAHUSTJD2IdaDwDj8od0McbFTZZZgcp1oX0X\nsKqkzQvTtgUaXfRvWj4f3zNICfqdMfiF9lVZ8ZrMQmC86nShbsOTk8xKTtIWknaTtAapDf2vvPR7\ngodJ1yggtY8HqSkDSUeQvqm34lrgeeBjklaT9A5gUmF+2XUPtr4y5W8AluUL/C+TNErSayXtOLBw\nRCwltel/n5SQbq+zjVb2oXg8a11Pqp18Kse4C6nf9fOb7NcKImJKRKzVYJhSU/ZpUh/xn5U0WtJk\n4O2kmki9dQ9W/lRgK2DfeOn3KQBIWl/SQZLWysd4L1Lt8Lc1m7mB9KXgxLyNNSW9ucwxsP7iJGNr\nkG4tfYTUHLM+6ZoEwBeBE3LTz1Tgq6QP7IeB1wF/amUDEfEs8A7gcOAvpIviFxbm31Zm3YOtr0z5\niHgB2Id0O+59+TicTmoGKjqXdN2qblNZi/vwv8dT0ifqxLgvMCXH8B3SdaA7Gu1Xh3yYdDPFEtK+\nfSgKty/nmtFnBiufa3L/RjqODxVqT4fm5YLUNLYIeAz4CnBsRFxcDCb/P/YlXSu8P5d/d4f32bpI\nyzdTm5mZdY5rMmZmVhknGTMzq4yTjJmZVcZJxszMKuMkY2ZmlRnRP3hab731YsKECb0Ow4Zg5513\nBuDaa6/tcST9YdasWeywww6DF1wJ+Nyo1qxZsx6JiLGdWt+IvoV54sSJMXPmzF6HYUNw1llnAXD4\n4Yf3NI5+IYmR/F4tw+dGtSTNioiJnVqfm8vMzKwyTjJmZlYZJxkzM6uMk4yZmVXGScbMzCrjJGNm\nZpVxkjEzs8o4yZiZWWVG9C/+zYazCcf/qtchmLXNNRkzM6uMk4yZmVWma81lks4k9aW+JCJem6f9\nGNgiF1kbeDwitquz7HxgGfAC8Hwnn6tjZmbV6eY1mbOAk4GzByZExLsHXkv6KvBEk+V3jYhHKovO\nbJgoXquZf+I/9zASs8F1LclExNWSJtSbJ0nAvwC7dSses37ki/020vTLNZm3AA9HxN0N5gdwpaRZ\nko7sYlxmZtaGfrmF+WDgvCbzJ0fEYknrA1dIuiMirq5XMCehIwHGjx/f+UjNzKxlPU8yklYF3gE0\n7PYvIhbnv0skXQRMAuommYiYDkyH1GlZxwM267BWm8jclGbDUT80l+0B3BERi+rNlDRa0piB18Db\ngFu6GJ+ZmQ1R15KMpPOAa4EtJC2S9IE86yBqmsokbSTp0jy6ATBD0k3ADcCvIuLybsVtZmZD1827\nyw5uMP3wOtMeAKbm1/OAbSsNzmyY8u3M1u/6obnMzMxGKCcZMzOrTM/vLjNbGflOMVtZOMmYjRC+\nPmP9yM1lZmZWGScZMzOrjJOMmZlVxknGzMwq4wv/Zl3iO8psZeQkYzYC+U4z6xduLjMzs8o4yZiZ\nWWWcZMzMrDK+JmNWIV/st5WdazJmZlYZJxkzM6uMk4yZmVXGScbMzCrjC/9mI5x/mGm95JqMmZlV\npmtJRtKZkpZIuqUwbZqkxZLm5GFqg2X3lnSnpHskHd+tmM3MrD3drMmcBexdZ/rXI2K7PFxaO1PS\nKOAUYAqwNXCwpK0rjdTMzDqia0kmIq4G/jKERScB90TEvIh4Fjgf2K+jwZmZWSX64ZrM0ZLm5ua0\nderM3xhYWBhflKfVJelISTMlzVy6dGmnYzUzsxJ6nWROBTYDtgMeBL7a7gojYnpETIyIiWPHjm13\ndWZm1oae3sIcEQ8PvJb0PeCSOsUWA+MK45vkaWZ9yc8rM3tJT5OMpA0j4sE8egBwS51iNwKbS3o1\nKbkcBBzSpRDNRhT/Zsa6rWtJRtJ5wC7AepIWAf8N7CJpOyCA+cC/5bIbAadHxNSIeF7SR4FfA6OA\nMyPi1m7FbWZmQ9e1JBMRB9eZfEaDsg8AUwvjlwIr3N5sZmb9rdcX/s3MbARzkjEzs8o4yZiZWWWc\nZMzMrDJ+1L9ZB/i3MWb1uSZjZmaVcU3GbCXlH2ZaNzjJmA2Rm8jMBufmMjMzq4yTjJmZVcZJxszM\nKuMkY2ZmlXGSMTOzyrScZCQd3aB7ZDMzs7rK1GQ2AG6U9BNJe0tSVUGZmdnI0HKSiYgTgM1JfcAc\nDtwt6QuSXlNRbGZmNsyVuiYTEQE8lIfngXWAn0r6UgWxmZnZMNfyL/4lHQMcBjwCnA58MiKek7QK\ncDfwqWpCNDOz4arMY2XWBd4REQuKEyPiRUn7dDYsM+um2kfk+Flm1illmsvWrE0wkk4CiIjbOxqV\nmZmNCGWSzJ51pk1pdWFJZ0paIumWwrQvS7pD0lxJF0lau8Gy8yXdLGmOpJklYjYzsx4aNMlI+pCk\nm4EtcjIYGO4D5pbY1lnA3jXTrgBeGxGvB+4CPt1k+V0jYruImFhim2Zm1kOtXJM5F7gM+CJwfGH6\nsoj4S6sbioirJU2omfabwuh1wIGtrs/MzPrfoEkmIp4AngAOrjiW9wM/bhQGcKWkF4DvRsT0RiuR\ndCRwJMD48eM7HqSZmbWuleayGfnvMklP5mHZwHgngpD0f0m/u/lRgyKTI2I70jWgj0h6a6N1RcT0\niJgYERPHjh3bifDMzGyIWqnJTM5/x1QRgKTDgX2A3fOPPevFsDj/XSLpImAScHUV8ZiZWeeUeUDm\nuySNya9PkHShpO3b2bikvUk/4nx7RDzToMzownZHA28DbqlX1szM+kuZW5j/MyKWSZoM7EF6htlp\nrS4s6TzgWtJdaoskfQA4GRgDXJFvTz4tl91I0qV50Q2AGZJuAm4AfhURl5eI28zMeqTML/5fyH//\nGZgeEb+S9LlWF46IejcOnNGg7APA1Px6HrBtiTjNKlP7y3gza65Mklks6buk5qqTJK2BOz0zG5GK\nydSPmLF2lEky/0L6MeVXIuJxSa8CPllNWGb9w7UXs6Er21y2JvAuScXlftOgvJmZreTKJJlfAI8D\ns4G/VxOOmZmNJGWSzCYRUfvsMTMzs4bKXLi/RtLrKovEzMxGnDI1mcnAEZLmkZrLROqR+fWVRGZm\nZsNemSTTct8xZmZmUK657H7gLcD7cg+ZQfo1vpmZWV1lksx3gJ156ZH/y4BTOh6RmZmNGGWay3aK\niDdI+jNARDwmafWK4jKzPuFf/1s7ytRknpM0itRMhqSxwIuVRGVmZiNCmSTzLeAiYH1JnwdmAF+o\nJCozMxsRWm4ui4gfSZoF7E66fXn/iLi9ssjMzGzYK3NNhoi4A7ijoljMzGyEGTTJSPr3ZvMj4mud\nC8fMzEaSVmoyY/LfLYAdgYvz+L6knirNRhw/3r8+32lmZQ2aZCLifwAkXQ28ISKW5fFpgN+JZmbW\nUJm7yzYAni2MP4t/8W9mZk2USTJnAzdImpZrMdcDZ7W6sKQzJS2RdEth2rqSrpB0d/67ToNl95Z0\np6R7JB1fImYzM+uhlpNMRHweOAJ4LA9HRMQXS2zrLFL3zUXHA7+NiM2B3+bx5eQfgJ5CekDn1sDB\nkrYusV0zM+uRsrcwzyb1jFlaRFwtaULN5P2AXfLrHwBXAcfVlJkE3BMR8wAknZ+Xu20ocZiZWfeU\naS6rwgYR8WB+/RD1r/FsDCwsjC/K08zMrM+1nGQkHd3omkknRESQn4vWDklHSpopaebSpUs7EJmZ\nmQ1V2bvLbpT0k3whXh3Y/sOSNgTIf5fUKbMYGFcY3yRPqysipkfExIiYOHbs2A6EaGZmQ1Xmwv8J\nwObAGcDhwN2SviDpNW1s/2Lgffn1+4Bf1ClzI7C5pFfnrgUO4qUfhJqZWR8rdU0mN2k9lIfngXWA\nn0r60mDLSjoPuBbYQtIiSR8ATgT2lHQ3sEceR9JGki7N23we+Cjwa+B24CcRcWuZuM3MrDdavrtM\n0jHAYcAjwOnAJyPiOUmrAHcDn2q2fEQc3GDW7nXKPgBMLYxfClzaaqxmQ+FHyZh1XplbmNcF3hER\nC4oTI+JFSft0NiwzMxsJyiSZNWsTjKSTIuI49ytjtvLxwzKtFWWuyexZZ9qUTgViZmYjTyv9yXwI\n+DCwmaS5hVljgD9VFZiZmQ1/rTSXnQtcBnyR5Z8ttiwi/lJJVGZd4ov9ZtVqpT+ZJ4AngEZ3h5mZ\nmdU16DUZSTPy32WSnsx/B4Ynqw/RzMyGq1ZqMpPz3zGDlTUzMytq5cL/Mpo8uDIiXt7RiMzMbMRo\npSbjGoyZNeXfzFgjve5PxszMRjBf+Dczs8r4wr+ZmVWmzFOY1yT98n8y6UaAPwKnRcTfKorNzMyG\nuTIPyDwbWAZ8O48fApwDvKvTQZmZ2chQJsm8NiK2Loz/XtJtnQ7IzMxGjjJ3l82W9MaBEUk7ATM7\nH5KZmY0UrfwY82bSNZjVgGsk3Z/HNwXuqDY8s87yAzHNuquV5jL3emlmZkPSyi3MCwYrY2ZmVk+p\nX/xLWkfSJElvHRjaDUDSFpLmFIYnJR1bU2YXSU8UyvxXu9s1M7PqlfmdzAeBY4BNgDnAG4Frgd3a\nCSAi7gS2y9sYBSwGLqpT9I8R4aY7sz7n55hZUZmazDHAjsCCiNgV2B54vMPx7A7c6yY6M7ORoUyS\n+dvAr/slrRERdwBbdDieg4DzGsx7k6S5ki6TtE2jFUg6UtJMSTOXLl3a4fDMzKyMMklmkaS1gZ8D\nV0j6BdCxGoek1YG3AxfUmT0bGB8Rryc9ceDnjdYTEdMjYmJETBw7dmynwjMzsyFo+ZpMRByQX06T\n9HvgFcDlHYxlCjA7Ih6us+0nC68vlfQdSetFxCMd3L6ZmXVYOw/InEFn+6M5mAZNZZJeBTwcESFp\nUt7uox3ctpmZVaAvHpApaTSwJ/BvhWlHAUTEacCBwIckPQ/8FTgoIhp2CW1mZv2hLx6QGRFPA6+s\nmXZa4fXJwMmd2JaZmXWPH5BpZmaVGeoDMgHG4wdk2jDgh2Ka9Y4fkGlmZpUp9YBMSdsCb8mjf4yI\nm6oKzMyGPz9ixlq+JiPpGOBHwPp5+KGko6sKzMzMhr8yd5d9ANgp3wmGpJNID8j8dtOlzMxspVXm\n7jIBLxTGX8jTzMzM6ipTk/k+cL2kgcfw7w+c0fmQzMxspGgpyUgS6cGVV5EeKwNwRET8uaK4zMxs\nBGgpyeRnhl0aEa8jPRHZrK/5tzH9x3earZzK/uJ/x8oiMTOzEafMNZmdgPdImg88TbroH7mPFzMz\nsxWUSTJ7VRaFmZmNSGWSzMOs2J/MqVUEZTYUvg5j1n/6oj8ZMzMbmfqiPxkzMxuZ3J+MmZlVpkxN\nZgdW7E/mzoH+ZnyXmZm1yr+ZWXmUSTJ7VxaFmZmNSC0nmWK/Mp2Wf3uzjPTQzecjYmLNfAHfBKYC\nzwCHR4SfPGBm1ufK1GSqtmtEPNJg3hRg8zzsRLp1eqduBWZmZkNT5sJ/L+0HnB3JdcDakjbsdVBm\nZtZcvySZAK6UNEvSkXXmbwwsLIwvytPMzKyP9Utz2eSIWCxpfeAKSXdExNVDWVFOUkcCjB8/vpMx\nmplZSX1Rk4mIxfnvEuAiYFJNkcXAuML4JnlavXVNj4iJETFx7NixVYRrZmYt6nlNRtJoYJWIWJZf\nvw34bE2xi4GPSjqfdMH/iYh4sMuhmlkF/JuZka3nSQbYALgo3aXMqsC5EXG5pKMAIuI04FLS7cv3\nkG5hPqJHsZqZWQk9TzIRMQ/Yts700wqvA/hIN+MyM7P29cU1GTMzG5mcZMzMrDJOMmZmVpmeX5Mx\na4d7wzTrb67JmJlZZZxkzMysMm4us2HHTWRmw4eTjJn1Df/6f+Rxc5mZmVXGScbMzCrjJGNmZpVx\nkjEzs8rJolOZAAAKSElEQVT4wr8NC76jzGx4ck3GzMwq45qMmfUl3848MrgmY2ZmlXGSMTOzyri5\nzMz6XrHpbNqWPQzESnOSsb513bxHmea7ysyGNTeXmZlZZXqeZCSNk/R7SbdJulXSMXXK7CLpCUlz\n8vBfvYjVzMzK6YfmsueB/4iI2ZLGALMkXRERt9WU+2NE7NOD+MzMbIh6XpOJiAcjYnZ+vQy4Hdi4\nt1GZmVkn9DzJFEmaAGwPXF9n9pskzZV0maRtmqzjSEkzJc1cunRpRZGaWa9cN+9Rrpv3qB81NEz0\nQ3MZAJLWAn4GHBsRT9bMng2Mj4inJE0Ffg5sXm89ETEdmA4wceLEqDBkq8DAB8feqz/a40jMrBP6\noiYjaTVSgvlRRFxYOz8inoyIp/LrS4HVJK3X5TDNzKyknicZSQLOAG6PiK81KPOqXA5Jk0hx+6uu\nmVmf64fmsjcD7wVuljQnT/sMMB4gIk4DDgQ+JOl54K/AQRHhpjAzsz7X8yQTETMADVLmZODk7kRk\nZsOFn9Tc/3reXGZmZiNXz2syZr4V1TrBtZr+5JqMmZlVxknGzMwq4+Yy6wk3kZmtHFyTMTOzyrgm\nY2Yjjm8C6B+uyZiZWWVck7Gu8XUYs5WPazJmZlYZ12SsUq69WK/5+kxvuSZjZmaVcU3GzFYartV0\nn5OMdYSbxWy4ccLpDjeXmZlZZZxkzMysMm4usyFzE5mNFG46q46TjJXixGJmZTjJmJkVNPsi5VpO\neU4yNijXXswSN6uV1xdJRtLewDeBUcDpEXFizXzl+VOBZ4DDI2J21wNdiTixmDXnhNOanicZSaOA\nU4A9gUXAjZIujojbCsWmAJvnYSfg1PzX2uRkYta+Ru8jJ58+SDLAJOCeiJgHIOl8YD+gmGT2A86O\niACuk7S2pA0j4sHuh9tfGn2bcvIw672y78ORmJT6IclsDCwsjC9ixVpKvTIbAyskGUlHAkfm0ack\n3dm5UJtaD3ikS9uqSyfVndzzuBpoGtd3uxhIjX49Xiw4aZ9+ja2rcZU4N/r1eEGD2Bq8h7tpPWDT\nTq6wH5JMR0XEdGB6t7craWZETOz2dgfjuMrp17igf2NzXOX1a2w5rgmdXGc//OJ/MTCuML5Jnla2\njJmZ9Zl+SDI3AptLerWk1YGDgItrylwMHKbkjcATvh5jZtb/et5cFhHPS/oo8GvSLcxnRsStko7K\n808DLiXdvnwP6RbmI3oVbxNdb6JrkeMqp1/jgv6NzXGV16+xdTwupRu2zMzMOq8fmsvMzGyEcpIx\nM7PKOMnUIWlvSXdKukfS8XXmHypprqSbJV0jads8fQtJcwrDk5KOzfOmSVpcmDe1grj2y3HNkTRT\n0uTBlpW0rqQrJN2d/67TrbgkjZP0e0m3SbpV0jGFZdo+Xu3ElufNz//jOZJmFqb38pj19BwrlNtR\n0vOSDhxs2U4cr3Ziq/o8a/OY9ewcaxRXx8+xiPBQGEg3H9wLbAasDtwEbF1T5k3AOvn1FOD6But5\nCNg0j08DPlFxXGvx0nW21wN3DLYs8CXg+Pz6eOCkLsa1IfCG/HoMcFchrraOV7ux5fH5wHp11tuz\nY9brc6xQ7nekG3IOrPoc60BslZ1n7cTV63OsWVydPMdck1nR/z7mJiKeBQYec/O/IuKaiHgsj15H\n+t1Ord2BeyNiQRfjeirymQCMBqKFZfcDfpBf/wDYv1txRcSDkR90GhHLgNtJT3LolHaOWTM9O2Y1\nun6OZUcDPwOWtLhsu8errdgqPs/aOWbNVH6OtRhX2+eYk8yKGj3CppEPAJfVmX4QcF7NtKNzE8iZ\nQ6j+thSXpAMk3QH8Cnh/C8tuEC/95ughYIMuxlWcPwHYHri+MLmd49WJ2AK4UtIspccVDeiLY0YP\nzjFJGwMHkB5S2+qy7R6vdmMrlplAZ8+zduPq2TnWyvGiA+eYk0wbJO1KSjLH1UxfHXg7cEFh8qmk\nqut2pGeufbWKmCLioojYkvTN5/+VXDZo7Zt8R+OStBbp29SxEfFkntyV4zVIbJMjYjtSk+hHJL21\nzrK9Oma9Ose+ARwXES8OZeEqjxeDxNbD86xZXL08xwY7Xh05x3r+Y8w+1NIjbCS9HjgdmBIRj9bM\nngLMjoiHByYUX0v6HnBJFXEVtne1pM0krTfIsg8rP9Fa0oa0Xp1vO66IeETSaqQ3/o8i4sJCuXaP\nV9uxRcTiPH2JpItITRBX0+Njlif36hybCJwvCdLDFKdKen6QZds9Xm3FFhE/r/A8ayuuHp9jDePK\n8ztzjpW5gLMyDKTEOw94NS9dMNumpsx40tMH3tRgHecDR9RM27Dw+uPA+RXE9Y+8dLH4DfmkUrNl\ngS+z/AXGL3UxLgFnA9+os962jlcHYhsNjMnTRwPXAHv3+pj1+hyrKX8WL11cr+wc60BslZ1nbcbV\n03OsUVydPsdK/aNXloH0CJu7SHdn/N887SjgqPz6dOAxYE4eZhaWHQ08CryiZp3nADcDc0nPYtuw\ngriOA27NMV1Lqoo3XDZPfyXwW+Bu4Epg3W7FBUwmNQPMLRzLqZ06Xm3Gtll+Y96U5/fFMev1OVZT\n9iyWv1OqsnOsndiqPs/aiKun59gg/8uOnWN+rIyZmVXGF/7NzKwyTjJmZlYZJxkzM6uMk4yZmVXG\nScbMzCrjJGNmZpXxL/7NRghJ+wP/DLwcOCMiftPjkMxckzFrRtL+kkLSlhWt/zRJb+7EuiI9puRf\nST+4e3cn1mnWLicZs+YOBmbkv8tR0u576I2k7iI66QTglA6v02xInGTMGshP7Z1MetL2QXnahNzb\n4NnALcA4Se+RdEPuKfC7kkYV1vHz/Bj3W2se5Y6krYC7IuKFwrTD8mPUb5J0TmGbd0g6S9Jdkn4k\naQ9Jf1LqOXFSLidJJwGXRe4/xazXnGTMGtsPuDwi7gIelbRDnr458J2I2Ab4B1LT1JsjPbL9BeDQ\nwjreHxE7kJ54+zFJryzMmwJcPjAiaRtSLWS3iNgWOKZQ9h9Jj1XfMg+HkBLgJ4DP5DJHA3sAB0o6\nqt2dN+sEX/g3a+xg4Jv59fl5/GRgQUQMNHHtDuwA3Jgfmf4yln8s+8ckHZBfjyMlqIGuIfYCjiiU\n3Q24IPLj/CPiL4V590XEzQCSbgV+GxEh6WZgQi7/LeBb7eywWac5yZjVIWld0of+6yQFqa/zIF3r\neLpYFPhBRHy6zjp2IdUsdo6IZyRdBayZ5/0DsHZEPNBiSH8vvH6xMP4ifh9bH3NzmVl9BwLnRMSm\nETEhIsYB97F8R1CQHsd+oKT1ISUnSZvmea8AHssJZkvSRf4BuwK/r1nX74B3DTSp5URnNqw5yZjV\ndzBwUc20nwHL1Vgi4jbSdZTfSJoLXAFsmGdfDqwq6XbgRJa/i2y56zF5XbcCnwf+IOkm4Gud2RWz\n3nF/MmY9IGk2sFNEPNfrWMyq5CRjZmaVcXOZmZlVxknGzMwq4yRjZmaVcZIxM7PKOMmYmVllnGTM\nzKwyTjJmZlYZJxkzM6uMk4yZmVXm/wOVMr0EtfpD4QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEzCAYAAAD96071AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HFWZ//HPl4TFgSggIRJIiMwwLC6ABHCJDquQCAKK\nI4giqJMBFdERJTo4Ij8XcF9AEAERlEWEKMqioCJG1iSGsO8JSYAkIEsAFRKe3x/nXKl0uvt2365e\n7r3f9+vVr9tVdarqqbrV/fSpU1VHEYGZmVmZVut2AGZmNvQ4uZiZWemcXMzMrHROLmZmVjonFzMz\nK52Ti5mZlc7JxczMSufkYtYkSTtKuk7SNZLOk7R6t2My6zVOLmbNWwDsGhFvAeYB+3Y3HLPe4+TS\nAZK+Iunj3Y5jOJB0o6RXtXMdEfFwRPwtDz4HvNDK8iTdJmnnOtPnSdq9lXX0ok5s10DXIWkLSXMk\nLZP0sXbE1sh6Gzg2zpL0xU7F14xBn1wkXS3pcUlrdjuWaiSNBg4BflAYt76k6ZKekTRf0nvqzP8T\nSY9IekrS3ZI+VDH96YrXCknfK0y/WtLfC9PvatN2NrNNDZWVtHmO/SdNTPs6cHxrW9MYSZsCbwV+\n1cpyIuJVEXF1YbkdSyaStpL0e0lPSrpX0v4V02seP5K+nT9710napDD+PZK+24n42+jTwB8iYlRE\ndHJbVlpv5bExmAzq5CJpAvBmIIC31yk3skMhVXMocFnhly7AyaRfvGOAg4FT6vzaPgHYLCJeStrG\nL0ravm9iRKzT9wJeAfwNuLBiGR8tlNuikaAlHSfpuEbKDmCbGi17MnBTnWVUm3YJsIukVzQRe9Mk\nvRQ4Bzg0Ip5v57raJX8ufgn8GlgfmAr8RNK/VxRd5fiRtCOwPemYmwFMy+NfBnwKOLYzW9E2mwK3\nDaP1lm5QJxdSjeB64Czg/cUJ+dffMZLmAs9IGilprKSLJC2V9ECxuitpmqT7cnX09spfcC2YDPyx\nsJ61gXcCn4uIpyNiBukD/r5qM0fErRHxbN9gfv1rjXW9E1gC/Kmk2BvSzDY1WlbSgcATwO+qLKPm\ntIj4OzAL2LPKfOMkXZz//49JOqkwbZ6kT0mam2tUZ0gaI+nyfExcJWm9XHYkcD7whYioWhOUdJik\nXxWG75F0YWF4gaRtC+vePb8/BxgP/CrXFD6dZ9k2x/akpAskrVVtvXkZjR7LWwJjgW9FxIqI+D3w\nZ2ocixVeCcyIiH+Q/g+b5fFfAr4WEU81sIxizFU/m/kz/POKst/pqxnV+0w3sM6tcs3sCaXTT2/P\n438P7AKclP8Hlcm2v2Op6nLztHmSjq72v6y2XlXUYiVtJ2l2/t9eAKxVmFZ3X/Sz7nrbM7B9HBGD\n9gXcC3yY9AvqeWBMYdo8YA4wDngJKZHOAv4PWIP0Ybgf2DOXfxfpg7Ya8G7gGWCjKuv8NemLrdrr\n11XKLwV2KAxvBzxbUeaTwK/qbOf3gWdJiWU2sE6Ncr8HjqsYd3WO4VHSF8fODe7b4yqXVadsw9vU\nSFngpcDdwCY5jp80Mq1Q5rvANyvGjQBuBr4FrE36UE6qOF6uJ9WmNiYl6dk53rXyvv18Lvs+4LG8\nb68G3l0lhs3yMbFaPq7mAwsL0x4HViuse/eKWCqHb8zLWR+4Azi8zv+j0WP51cDTgArjrgSm93f8\n5HlnkD5bX8uvicCVTXx+5wG7U+ezSfol/ywwqvB/fBh4fb35au3LwvjVSd8fn83z7gosA7YobPeH\nasRd81hqYLl1/5eV6y3Gn5c3H/hEXs8BpO+9LzaxL1ZZdz/b0+9ya/5/Gz0Qeu0FTMo7doM8fCfw\niYod+YHC8E7AgxXL+AzwoxrLnwPsW0KczwNbFobfDDxSUea/gKv7Wc6IvM3HAqtXmb4psAJ4ZcX4\nnYBRwJqk2t0y4F9rrKOYOP+eXzUT50C2qZGywHeAY/L741g5udScVijzJeDMinFvIH1JjqyxDfOA\ngwvDFwGnFIaPBH7R5P9+AfA64EDgtPzB3hI4DLikYt39JZf3Foa/CpzaRBxVj2XSF9T9pPP8q5Pa\nj54DftPI8UP6krsZuAAYDVwLbAV8DLgG+Cmwbp245pGSS93PJimJHZLf7wHcV4it7me6cl9WHofk\nBJ/HnUf+QUX95FLzWGpguXX/l5XrZeXk8hbgIVb+MXAtKbk0ui9WWXc/29PU92bx1c22iFa9H/ht\nRDyah8/N475VKLOg8H5TYKykJwrjRpBPIUk6BPgfYEKetg6wQQlxPk76cPZ5mvTru+hlpA9tTRGx\nApgh6b3AEaRf50XvI52meKBivhsKgz+WdBAwBfgeFSJi7773yu0tEXFcvbiyZrapbtl8qmh3Uo1h\nJfWmVRhFSohF44D5EbG8znyLC+//VmV4nX7WW+mPwM7Av+X3TwD/Qfow/7H2bFU9Unj/LOnXZ1WN\nHssR8byk/UjHwjHATOBnwD8KZWoePxHxLfLnTdJHSAllNVLbzXZ5mdPyq566n03SZ/sg4GzgPXm4\nkfnqGQssiIjilX7zSbXW/tQ7lhpZbsP/yyrLXhT5G76wbGh8X1Rbd73tGfA+HpTJRdJLgP8ERkjq\n21lrAutK2iYibs7jiv+EBcADEbF5leVtCvwQ2A24LiJWSJoDqErZy0m/Tqr5U0RMrhg3F/h3Xmx8\nvhsYKWnziLgnj9uGxhvxRlK9zeUQUuN/f4Iq29WiZrapv7I7k74UH5QE6YtxhKStSV8uVadFxOsK\n69gKqLyKbAEwXtLIfhJMmf4I7ENqn/gyKbkcTEouJ9WZL+pMq6uZYxkgIuaSEl7f/NcCP+4ntpWW\nJWkMKaG8gbS9c3Piugk4qoGwa342swuBbyhdkbZ/Xk8j89XzEDBO0mqFRDCedHw2Em+tY6mV5fbn\nYWBjSSokmPHAfbS2L+ptz4CXO1gb9PcjnQLaGtg2v7YiZdNDasxzI7AsNxC+RNIISa+WtAPpPGOQ\nqoZIOox0TnkVETE5CldoVbwqEwvAZRQ+vBHxDHAxcLyktSVNIl0Fdk7ljJI2lHSgpHVyvHuSfsH9\nrqLcG0m/jC6sGL+upD0lraV0QcPBpKr1FTX2UXE7j2uw1tLUNjVQ9jRS8uz7v54KXEo6/15vWt82\nr0Vqg7uyYtU3kj6cJ+T1riXpTY1sXwv+SGqgfUlELCQdn3sBLwf+Ume+xbzYQN6sho/lPP21eV/8\ni6SjgY1IF8g0c/x8k3Ta51ngAWAHSeuQfijc30DM9T6bRMRS0umiH5G+6O5oZL5+3ED65f5pSasr\n3UuyD+lCjUbirXUstbLc/lwHLAc+lpf9DmDHQkwD3Rf1tmfAyx2syeX9pHN+D0bEI30v0q/Bg1Xl\n0uN8Wmlv0pfSA6QGytOBl0XE7cA3SP+8xcBrSI2XZTgbmJJrW30+TGoIXUKq4h8REbdBqhlJ+mxf\n2KRTYAtJp9e+Dnw8Ii6pWMf7gYsjovI01Oqk87F9DbJHAvtFRNVfUXndlffN9L0u72c7G92mumUj\n4tmK/+nTwN8jYmm9aYVl70Nqv3moGFz+/+9DOkX1IGmfvrufbWpJ3s9Pk08hRLqC6n7gzzmeWr4C\nHKt0tdHRTa6z2WP5faQvliWk2s4eka4AgwaOH0m7ktpVpuf130hK+AtIibXf2nS9z2ah2LmkU6Ln\nNjlfrXU+RzoeJuf5vk9q17mzwXirHkutLLfBmN9Bur3hr3mdFxdiGui+qLc9A16uVj59Z+0g6cvA\nkoj4drdjGeok3QB8MCJu7XYsZsOZk4uZmZVusJ4WMzOzHubkYmZmpXNyMTOz0jm5mJlZ6ZxczMys\ndE4uZmZWOicXMzMrnZOLmQ1JknZU6iXzGknnSVq92zENJ04uZjZULQB2jYi3kB43v293wxlenFys\nKySdJemL3VpeWetX6mlw507Pa/2LiIfjxe7FnwNeqFfeyuXkYjWpootVW1VEvCoirm6kbOX+bGbe\ndpG0vqTpSl07z5f0noGUl7SmUtfQ85W64J0jaXLFvD+R9IikpyTdLelD7dy2wno3JXWE9qv+ylp5\nBmV/LjZ8qbP9sQwHJ5N+1Y8hPfn2Ukk39z2lutHypNNOC0jdSzxI6lDsZ5JeExHz8rwnAFMj4llJ\nWwJXS/pLRMxqz6aBpJeSunM4NCKeb9d6bFWuuRi5r4ZF+RfnXZJ2k3QOqSOiX+VH7n9a0jRJ9+Vy\nt0vav2I58yQdLWmupCclXaDUvwqStpM0O897Aamf7uK8NZedl3uMpLnAM0p9i9RdXpVtrFle0lhJ\nF0laKukBSR+r2Dc/r1jWdyR9txDb7g1sQ7X9uVJNRtJWkq7Oj9q/TdLbG9m3AyVpbeCdwOci4umI\nmAH8kvQY/qbKR8QzuQ+geRHxQkT8mvSI9u375o+IW3OfL5C6kwiqdHwnaZyki/P/4zFJJxWmzZP0\nqbwfnsm1pTFK3Tosk3SVpPVy2ZGkflS+EBF3tbKvbACiiT7B/Rp6L2AL0i/OsXl4Ai/2kT6Plfty\nfxepW9TVSP09PANsVJg+j9S50FhgfeAO4HBgDVJ3rJ8g9RFyAPA88MVGlp2XO4fUHetLGllexTbW\nLJ/XNwv4v1xuM1KfK3vmeTcldf40Kg+PIPV/8vrKfdTg/tm92nCO617gszmOXUldP29Rb99W2dZf\nk3q8rPb6dUXZ7YBnK8Z9EvhVjf3YcHlSzebvwJYV47+f92cAs4F1KqaPAG4mdZ+8NulHwKSKfXZ9\nXv7GpH5oZufY1gJ+D3w+l30f8Bipo7GrgXd3+/M2nF5dD8CvLh8AqYOgJaSOmFavmLbSl2GVeecA\n+1aUf29h+Kuk3iLfQur+VYVp11IjGVQuOy/3A4VpTS2vXnlgJ+DBivKfIXVG1zc8g9ThE8AewH2N\n7KMa+6dWcnkzqX/z1QrTzyP18Fhz37b4v38z8EjFuP8idbY24PKkRHkV8IMayxkBTAKOrXLMvYHU\nOdnIGvPOAw4uDF8EnFIYPhL4RSc+O37Vf/m02DAXEfcCHweOA5ZIOl/S2GplJR2SG2qfkPQEqfvc\nDSqKPVJ4/yypn/uxwKLIn/5sfpPLXlB43+/yKtQrvykwtm+9ed2fJf0y7nMuqXtpgPdQ6A2xyW2o\nZyywIF7sd70vxo0Lw9X2bSueBl5aMe5lpBrTgMpLWo3UxvEc8NFqC4mIFZFOqW1C6mm1aBwwP+q3\nqy0uvP9bleFW94uVwMnFiIhzI2IS6Ys2gBP7JvWVyVfc/JD0hfHyiFgXuBVQA6t4GNhYUrHs+CaX\nXUwMdZfX5PoXkPplX7fwGhURUwplLwR2lrQJsD9VkssAtqHSQ8C4/OVcjHFRnXlWoea6qr4bGClp\n88K4bYBajfl1y+f9ewYpMb8z+m9AH8mqbS4LgPGq0lW5DS5OLsOcpC0k7SppTdI58r/x4v0Ai0lt\nEJDOfwfplAWSDiP9Mm/EdcBy4GOSVpf0DmDHwvRml93f8popfyOwLDfcv0TSCEmvlrRD38wRsZR0\nzv5HpER0R5V1NLINxf1Z6QZSbeTTOcadSf2an19nu1YREZMjYp0ar8kVZZ8h9cF+vKS1JU0C3k6q\neVRbdn/lTwG2AvaJF+8vAUDShpIOlLRO3sd7kmqDv6tYzY2kHwMn5HWsJelNzewD6w1OLrYm6RLR\nR0mnXTYktTkAfAU4Np/imQJ8g/RFvRh4DfDnRlYQEc8B7wAOBf5Kauy+uDD99maW3d/ymikfESuA\nvUmX1T6Q98PppNM9ReeS2qWqnhJrcBv+uT8lHV0lxn2AyTmG75Paee6stV0l+TDpIoklpG07IgqX\nIeea0Gf7K59rbv9N2o+PFGpLB+f5gnQKbCHwOPB14OMRcUkxmPz/2IfUFvhgLv/ukrfZOkArn4Y2\nMzNrnWsuZmZWOicXMzMrnZOLmZmVzsnFzMxK5+RiZmalG9I3Km2wwQYxYcKEbocx5L3hDW8A4Lrr\nrutyJL1j1qxZbL/99v0XHAZ8fAwus2bNejQiRre6nCF9KfLEiRNj5syZ3Q5jyDvrrLMAOPTQQ7sa\nRy+RxFD+bDXDx8fgImlWRExsdTk+LWZmZqVzcjEzs9I5uZiZWemcXMzMrHROLmZmVjonFzMzK52T\ni5mZlc7JxczMStexO/QlnUnqlGlJRLw6j7sA2CIXWRd4IiK2rTLvPFI/3SuA5WXc4GNWpgnTLv3n\n+3knvK2LkZj1hk7WXM4C9iqOiIh3R8S2OaFcRJ3eBIFdclknFutpfYmmmHDMhpuO1Vwi4hpJE6pN\nkyTgP4FdOxWPWSe4RmPDVa+0ubwZWBwR99SYHsBVkmZJmlpvQZKmSpopaebSpUtLD9TMzPrXK8nl\nIOC8OtMn5VNnk4GPSHpLrYIRcVpETIyIiaNHt/xgTzMzG4CuJxdJI4F3ABfUKhMRi/LfJcB0YMfO\nRGdmZgPRC/257A7cGRELq02UtDawWkQsy+/fChzfyQDNqnGDvVltnbwU+TxgZ2ADSQuBz0fEGcCB\nVJwSkzQWOD0ipgBjgOmpzZ+RwLkRcUWn4jZrNzf621DUyavFDqox/tAq4x4CpuT39wPbtDU4MzMr\nVS+cFjMbNFo5FeYaig0nXW/QNzOzocfJxczMSufTYmZd4CvNbKhzcjHrhxOBWfN8WszMzErn5GJm\nZqXzaTGzKnwqzKw1rrmYmVnpnFzMzKx0Ti5mZlY6JxczMyudk4uZmZXOycXMzErn5GJmZqVzcjEz\ns9L5JkqzzDdOmpXHycWsh7hDMRsqfFrMzMxK5+RiZmal61hykXSmpCWSbi2MO07SIklz8mtKjXn3\nknSXpHslTetUzGZmNjCdrLmcBexVZfy3ImLb/LqscqKkEcDJwGRga+AgSVu3NVIzM2tJx5JLRFwD\n/HUAs+4I3BsR90fEc8D5wL6lBmdmZqXqhTaXIyXNzafN1qsyfWNgQWF4YR5XlaSpkmZKmrl06dKy\nYzUzswZ0O7mcAmwGbAs8DHyj1QVGxGkRMTEiJo4ePbrVxZl1zYRpl/7zZTbYdDW5RMTiiFgRES8A\nPySdAqu0CBhXGN4kjzMzsx7V1eQiaaPC4P7ArVWK3QRsLumVktYADgQu6UR8ZmY2MB27Q1/SecDO\nwAaSFgKfB3aWtC0QwDzgv3PZscDpETElIpZL+ijwG2AEcGZE3NapuM3MrHkdSy4RcVCV0WfUKPsQ\nMKUwfBmwymXKZmbWm/xsMRvW3Fhu1h7dvlrMzMyGICcXMzMrnZOLmZmVzsnFzMxK5+RiZmalc3Ix\nM7PS+VJks0HA3R/bYOOai5mZlc7JxczMSufTYjas+I58s85wzcXMzErn5GJmZqXzaTEb8nwqzKzz\nXHMxM7PSueZiNsj4nhcbDBquuUg6UtJ67QzGzMyGhmZOi40BbpL0M0l7SVK7gjIzs8Gt4eQSEccC\nm5O6Jj4UuEfSlyX9a5tiMzOzQaqpBv2ICOCR/FoOrAf8XNJX2xCbmZkNUs20uRwlaRbwVeDPwGsi\n4ghge+CdDcx/pqQlkm4tjPuapDslzZU0XdK6NeadJ+kWSXMkzWw0ZjMz645mai7rA++IiD0j4sKI\neB4gIl4A9m5g/rOAvSrGXQm8OiJeC9wNfKbO/LtExLYRMbGJmM3MrAuaSS5rRcT84ghJJwJExB39\nzRwR1wB/rRj324hYngevBzZpIh4zM+tRzSSXPaqMm1xWIMAHgMtrTAvgKkmzJE2ttxBJUyXNlDRz\n6dKlJYZnZmaN6vcmSklHAB8GNpM0tzBpFKntpWWS/pd0gcBPaxSZFBGLJG0IXCnpzlwTWkVEnAac\nBjBx4sQoIz4zM2tOI3fon0uqUXwFmFYYvywi/lp9lsZJOpTUZrNbvhptFRGxKP9dImk6sCNQNbmY\nDSe+W996Vb/JJSKeBJ4EDip75ZL2Aj4N/EdEPFujzNrAahGxLL9/K3B82bHY0OKHVZp1V79tLpJm\n5L/LJD2VX8v6hhtdkaTzgOuALSQtlPRB4CTS6bUr82XGp+ayYyVdlmcdA8yQdDNwI3BpRFzR1Faa\nmVlHNVJzmZT/jmplRRFRreZzRo2yDwFT8vv7gW1aWbeZmXVWMzdRvkvSqPz+WEkXS9qufaGZmdlg\n1cylyJ/L7R6TgN1JtY5T2xOWmZkNZs0klxX579uA0yLiUmCN8kMyM7PBrpnkskjSD4ADgcskrdnk\n/GZmNkw0kxz+E/gN8NaIeIL0RORPtSUqMzMb1Jrp5ngFsBbwLknF+X5bbkhmNhC+odJ6STPJ5ZfA\nE8Bs4B/tCcfMzIaCZpLLJhFR+ch8MzOzVTSTXK6V9JqIuKVt0Zi1wI98MesdzSSXScBhku4nnRYT\nqefj17YlMjMzG7SaSS5l9t1iZmZDWDOXIj8IvBl4f+6RMkgPlTQzM1tJMzWX7wMvALuSHnm/DLgI\n2KENcZlZC3xZsnVbM8llp4h4naS/AETE45L8+BczM1tFM6fFnpc0gnQ6DEmjSTUZMzOzlTSTXL4L\nTAc2lPQlYAbw5bZEZWZmg1rDp8Ui4qeSZgG7kS5D3i8i7mhbZGYN8L0tZr2pmTYXIuJO4M42xWJm\nZkNEv8lF0v/Umx4R3ywvHDMzGwoaqbmMyn+3IF12fEke3ge4sR1BmZnZ4NZvg35EfCEivgBsArwu\nIj4ZEZ8EtgfGN7oiSWdKWiLp1sK49SVdKeme/He9GvPuJekuSfdKmtboOs3MrDuauVpsDPBcYfg5\nmrtD/yyg8qnK04DfRcTmwO/y8Ery5c8nkx4/szVwkKStm1ivmZl1WDMN+mcDN0qanof3IyWMhkTE\nNZImVIzeF9g5v/8xcDVwTEWZHYF7I+J+AEnn5/lubzhyMzPrqGYuRf6SpMtJzxcDOCwi/tLi+sdE\nxMP5/SNUrwltDCwoDC8EdmpxvWZm1kbNXoo8m9QTZekiIiRFq8uRNBWYCjB+fMNNQmZmVqJm2lza\nYbGkjQDy3yVVyiwCxhWGN8njqoqI0yJiYkRMHD16dKnBmplZYxpOLpKOrHU1VwsuAd6f378f+GWV\nMjcBm0t6ZX5Q5oG8eDm0mfVjwrRL//ky65Rmrxa7SdLP8qXBamZFks4DrgO2kLRQ0geBE4A9JN0D\n7J6HkTRW0mUAEbEc+CjwG+AO4GcRcVsz6zYzs85qpkH/WEmfA94KHAacJOlnwBkRcV8D8x9UY9Ju\nVco+BEwpDF8GXNZorGZm1l1NtblERJCu6noEWA6sB/xc0lfbEJuZmQ1SDddcJB0FHAI8CpwOfCoi\nnpe0GnAP8On2hGhmZoNNM5cirw+8IyLmF0dGxAuS9i43LDMzG8yaSS5rVSYWSSdGxDHu18U6yVc9\nDVxx38074W1djMSGumbaXPaoMm5yWYGYmdnQ0Uh/LkcAHwY2kzS3MGkU8Od2BWZmZoNXI6fFzgUu\nB77Cyk8tXhYRf21LVGZmNqj1m1wi4kngSaDWfSpmZmYr6bfNRdKM/HeZpKfy377XU+0P0czMBptG\nai6T8t9R/ZU1MzODxhr0lwE1H4UfES8tNSIzMxv0Gqm5uMZiZmZN6XZ/LmZmNgQ1clpsRkRMKpwe\nKz5qP3xazDrBd+WbDS5u0Dczs9I181TktUh36k8i1WD+BJwaEX9vU2xmZjZINfPgyrOBZcD38vB7\ngHOAd5UdlJmZDW7NJJdXR8TWheE/SLq97IDMzGzwaya5zJb0+oi4HkDSTsDM9oRlZu3mx+9bOzVy\ntdgtpDaW1YFrJT2YhzcF7mxveGZmNhg1UnNpay+TkrYALiiM2gz4v4j4dqHMzsAvgQfyqIsj4vh2\nxmVmZgPXyKXI8/sr04qIuAvYFkDSCGARML1K0T9FhLtTNjMbBJppc0HSesDmwFp94yLimhLj2Q24\nr90JzczM2quZ+1w+BBwFbALMAV4PXAfsWmI8BwLn1Zj2xtwT5iLg6Ii4rcT1Wg/yXflmg1czNZej\ngB2A6yNiF0lbAl8uKxBJawBvBz5TZfJsYHxEPC1pCvALUg2q2nKmAlMBxo8fX1Z4ZkNaZSL31WPW\nqmYeXPn3vrvxJa0ZEXcCW5QYy2RgdkQsrpwQEU9FxNP5/WXA6pI2qLaQiDgtIiZGxMTRo0eXGJ6Z\nmTWqmZrLQknrkmoNV0p6HCizbeQgapwSk/QKYHFEhKQdSUnxsRLXbWZmJWo4uUTE/vntcZL+ALwM\nuKKMICStDewB/Hdh3OF5vacCBwBHSFoO/A04MCJqdmBmZmbd1cqDK2dQUn8wEfEM8PKKcacW3p8E\nnFTGuszMrP384EozMyudH1xpZmal84Mrraf43hazoWGgD64EGI8fXGlmZlV0/cGVZmY29DT14EpJ\n2wBvzoN/ioib2xWYmZkNXg1fSizpKOCnwIb59RNJR7YrMDMzG7yaadD/ILBTvicFSSeSHlz5vbpz\nmdmg414qrVXN3AQpYEVheEUeZ2ZmtpJmai4/Am6Q1NeR137AGeWHZGZmg11DyUWSgAuBq0mPfwE4\nLCL+0qa4zMxsEGsoueSnEV8WEa8h9a1iVhrfOGk29DTT5jJb0g5ti8TMzIaMZtpcdgLeK2ke8Ayp\nMT8i4rXtCMzMzAavZpLLnm2LwszMhpRmkstiVu3P5ZR2BGVmZoOb+3MxM7PSuT8XMzMrXbNXi72+\nb8D9uZiZWS3N1Fy2Z9X+XO7q6+/FV42ZmVmfZpLLXu0KIl/evIz0vLLlETGxYrqA7wBTgGeBQyPC\nN3OadYAfYmkD0XByKfbr0ia7RMSjNaZNBjbPr51IV6nt1OZ4rI18V77Z0NZMm0s37QucHcn1wLqS\nNup2UGZmVl2vJJcArpI0S9LUKtM3BhYUhhfmcWZm1oOaaXNpp0kRsUjShsCVku6MiGsGsqCcnKYC\njB8/vswYzcysQT1Rc4mIRfnvEmA6sGNFkUXAuMLwJnlctWWdFhETI2Li6NGj2xGumZn1o+s1F0lr\nA6tFxLL8/q3A8RXFLgE+Kul8UkP+kxHxcIdDNRv2fOWYNarryQUYA0xPVxszEjg3Iq6QdDhARJwK\nXEa6DPle0qXIh3UpVjMza0DXk0tE3A9sU2X8qYX3AXykk3GZmdnA9USbi5mZDS1OLmZmVrqunxaz\n4cN35ZvraklkAAAKmElEQVQNH04uZjYgvnLM6vFpMTMzK52Ti5mZlc6nxcysZT5FZpVcczEzs9I5\nuZiZWemcXMzMrHRuc7G28r0tZsOTay5mZlY6JxczMyudk4uZmZXOycXMzErnBn0rnRvxzcw1FzMz\nK51rLmZWKj8KxsA1FzMzawMnFzMzK52Ti5mZla7rbS6SxgFnA2OAAE6LiO9UlNkZ+CXwQB51cUQc\n38k4rb7r73+M43yVmFWYMO1S9lrjMQAO7W4o1mFdTy7AcuCTETFb0ihglqQrI+L2inJ/ioi9uxCf\nmZk1qeunxSLi4YiYnd8vA+4ANu5uVGZm1oquJ5ciSROA7YAbqkx+o6S5ki6X9Ko6y5gqaaakmUuX\nLm1TpGZmVk/PJBdJ6wAXAR+PiKcqJs8GxkfEa4HvAb+otZyIOC0iJkbExNGjR7cvYDMzq6knkouk\n1UmJ5acRcXHl9Ih4KiKezu8vA1aXtEGHwzQzswZ1vUFfkoAzgDsi4ps1yrwCWBwRIWlHUlJ8rINh\nmlmLfOf+8NL15AK8CXgfcIukOXncZ4HxABFxKnAAcISk5cDfgAMjIroRrL2o78ui71JTM7M+XU8u\nETEDUD9lTgJO6kxEZmbWqq4nFxtc/Dh9M2uEk4uZdZzbX4a+nrhazMzMhhYnFzMzK51Pi1m/3M5i\n7eRTZEOTay5mZlY6JxczMyudk4uZmZXObS5WldtZzKwVTi5m1jPcuD90+LSYmZmVzjUX+yefCrNe\n4lrM4ObkMsw5odhg4EQz+Pi0mJmZlc7JxczMSufTYsOQT4XZYOZTZIODay5mZlY611yGCddWbChy\nLaZ3ObkMUU4mNtzUOuaddLrDyWUIcUIxs17RE8lF0l7Ad4ARwOkRcULFdOXpU4BngUMjYnbHA+1B\nTihm9fnUWXd0PblIGgGcDOwBLARuknRJRNxeKDYZ2Dy/dgJOyX+HDScRs9Y18jlyAipH15MLsCNw\nb0TcDyDpfGBfoJhc9gXOjogArpe0rqSNIuLhzodbPicOs95R+XksJhu36zSuF5LLxsCCwvBCVq2V\nVCuzMbBKcpE0FZiaB5+WdFeN9W4APDqQgNts0MX1gw4HUqFX9xfzT9y7V2PraFxNHB89ub90Yv9x\n6cQOBbOqduyzTctYSC8kl1JFxGnAaf2VkzQzIiZ2IKSmOK7m9Gpc0LuxOa7m9Gpc0Nux9cJNlIuA\ncYXhTfK4ZsuYmVmP6IXkchOwuaRXSloDOBC4pKLMJcAhSl4PPDlU2lvMzIairp8Wi4jlkj4K/IZ0\nKfKZEXGbpMPz9FOBy0iXId9LuhT5sBJW3e+psy5xXM3p1bigd2NzXM3p1bigh2NTugDLzMysPL1w\nWszMzIYYJxczMyvdkEgukvaSdJekeyVNqzL9YElzJd0i6VpJ2+TxW0iaU3g9JenjedpxkhYVpk1p\nQ1z75rjmSJopaVJ/80paX9KVku7Jf9frVFySxkn6g6TbJd0m6ajCPC3vr1Ziy9Pm5f/xHEkzC+O7\nuc+6eowVyu0gabmkA/qbtxP7q1ZcvXCM1Yotj+vaMVYrrnYfYwMWEYP6RboI4D5gM2AN4GZg64oy\nbwTWy+8nAzfUWM4jwKZ5+Djg6DbHtQ4vtnu9Frizv3mBrwLT8vtpwIkdjGsj4HX5/Sjg7kJcLe2v\nVmPLw/OADaost2v7rNvHWKHc70kXxhzQC8dYnbi6fozViq3bx1i9uNp1jLXyGgo1l38+PiYingP6\nHh/zTxFxbUQ8ngevJ90nU2k34L6ImN/BuJ6OfAQAawPRwLz7Aj/O738M7NepuCLi4cgPDI2IZcAd\npCcllKWVfVZP1/ZZhY4fY9mRwEXAkgbnbfv+qhVXLxxjtWLrR9f2WYWyj7EBGwrJpdajYWr5IHB5\nlfEHAudVjDsyn+o4cwDV3IbikrS/pDuBS4EPNDDvmHjxHp9HgDEdjKs4fQKwHXBDYXQr+6uM2AK4\nStIspccA9emJfUYXjjFJGwP7kx722ui8bd9fdeIqlplAF46xfmLr2jHWyD6j/GNswIZCcmmYpF1I\nyeWYivFrAG8HLiyMPoVURd2W9Ayzb7QjpoiYHhFbkn7p/L8m5w0a++VealyS1iH9evp4RDyVR3dk\nf/UT26SI2JZ06vMjkt5SZd5u7bNuHWPfBo6JiBcGMnMb91fduLp8jNWLrZvHWH/7rGvfY9V0/SbK\nEjT0aBhJrwVOByZHxGMVkycDsyNicd+I4ntJPwR+3Y64Cuu7RtJmkjboZ97Fyk+ElrQRjVfbW44r\nIh6VtDrpQ//TiLi4UK7V/dVybBGxKI9fImk66VTDNXR5n+XR3TrGJgLnS4L0kMMpkpb3M28n9lfV\nuCLiFz1wjNWMrcvHWM248vR2HGMD16nGnXa9SAnyfuCVvNgQ9qqKMuNJd/e/scYyzgcOqxi3UeH9\nJ4Dz2xDXv/FiI/DrSAeT6s0LfI2VGw6/2sG4BJwNfLvKclvaXyXEtjYwKo9fG7gW2Kvb+6zbx1hF\n+bN4seG8q8dYnbi6fozVia2rx1ituNp5jLXy6shK2r4R6dEwd5OutvjfPO5w4PD8/nTgcWBOfs0s\nzLs28BjwsoplngPcAswlPdtsozbEdQxwW47pOlKVu+a8efzLgd8B9wBXAet3Ki5gEqm6P7ewL6eU\ntb9ajG2z/IG8OU/viX3W7WOsouxZrHzlU9eOsVpx9cIxVie2rh5j/fwv23aMDfTlx7+YmVnphlWD\nvpmZdYaTi5mZlc7JxczMSufkYmZmpXNyMTOz0jm5mJlZ6YbCHfpmBkjaD3gb8FLgjIj4bZdDsmHM\nNRezOiTtJykkbdmm5Z8q6U1lLCvS40n+i3Tj3bvLWKbZQDm5mNV3EDAj/12JklY/Q68ndQNRpmOB\nk0tepllTnFzMashP5p1EepL2gXnchNxb4NnArcA4Se+VdGPu6e8HkkYUlvGL/Hj22yoe0Y6krYC7\nI2JFYdwh+fHoN0s6p7DOOyWdJeluST+VtLukPyv1fLhjLidJJwKXR+4TxaxbnFzMatsXuCIi7gYe\nk7R9Hr858P2IeBXwL6RTUG+K9Cj2FcDBhWV8ICK2Jz3R9mOSXl6YNhm4om9A0qtItY5dI2Ib4KhC\n2X8jPS59y/x6DynxHQ18Npc5EtgdOEDS4a1uvFkr3KBvVttBwHfy+/Pz8EnA/IjoO5W1G7A9cFN+\nFPpLWPlx6x+TtH9+P46UmPq6fNgTOKxQdlfgwsiP6Y+IvxamPRARtwBIug34XUSEpFuACbn8d4Hv\ntrLBZmVxcjGrQtL6pC/710gKUt/kQWrLeKZYFPhxRHymyjJ2JtUk3hARz0q6GlgrT/sXYN2IeKjB\nkP5ReP9CYfgF/Dm2HuTTYmbVHQCcExGbRsSEiBgHPMDKHTpBesz6AZI2hJSUJG2ap70MeDwnli1J\njfd9dgH+ULGs3wPv6jt1lhOc2aDk5GJW3UHA9IpxFwEr1VAi4nZSO8lvJc0FrgQ2ypOvAEZKugM4\ngZWvClupvSUv6zbgS8AfJd0MfLOcTTHrPPfnYtYFkmYDO0XE892OxawdnFzMzKx0Pi1mZmalc3Ix\nM7PSObmYmVnpnFzMzKx0Ti5mZlY6JxczMyudk4uZmZXOycXMzErn5GJmZqX7/87c36DYwKrsAAAA\nAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -466,9 +466,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEsCAYAAADKGWQqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HFWd9/HPlxAEIWwSGBBCBh8miihb2F4GRxBkERWZ\ncQQXhEeGlzoizIg+6MOMkccFcHQYxYWMC4LggoIii4rKIopAAiGCYTeR1QQRCIgC4ff8ceomlU4v\nVfd2Vfe99X2/Xv263dVV5/yquqp+Xaf6nqOIwMzMmmeNQQdgZmaD4QRgZtZQTgBmZg3lBGBm1lBO\nAGZmDeUEYGbWUE4AZmYN5QRgZtZQTgA1kvRJSccPOo7xQtL1kl46gHpvlfSqLu8vkrRvjSFVrq51\nGm09kmZImi9pmaT3VRFbkXq77RuSzpL0sbpi64dxlQCynecpSU/kHlsMOq4iJE0FjgDOzE3bWNKF\nkp6UtFjSW3qU8RJJP5f0mKS7JL0x9943JD0k6XFJd0g6uqL1KBtz1/m7rRPwn8DJHcpdJGmJpHVz\n046WdOUYVg+AiHhpRFyZq6e2k32P7YGkKyX9Jbf/355773RJf5J0raQtc9PfIumzda1DRT4IXBER\nUyKiznVZpd78vjERjKsEkHldRKyXezxQZmFJa1YVWA9HApdGxFO5aZ8HngY2A94KfLHTN94s7h8A\nFwMbA8cA35D0d9kspwDbRMT6wOuBj0napUhgkmZLml1wPQrH3Gv+Aut0EbC3pL/pUPYk4LiCcQ+9\nAttjxHtz+/+MbNndgF2AvwGuAU7Mpm8AfAA4qZ61qMzWwK0NqrcW4zEBrCb71nSlpEezS7TXt7y/\nSNL/kbQAeFLSmpK2knSBpKWS/ijpjGzeLSR9L5v+uz5ebh4IXJWLaV3gH4B/j4gnIuIa0sH/9g7L\nvxjYAviviFgeET8Hfjkyf0TcEhF/zuaN7PGiPsU+qpgLzN9rnf4CzAP27xDSp4ATJG1YIPajJP0w\n9/pOSefnXt8racfs+SJJ+0o6B5gG/DD7tv3BXJE7SlqQfVP/tqS1u9R9oqS7s2aE37Z+q8/puj16\n+Fvgmoj4K/AzYJts+seBT0XE4wXKyMfc9jjIjqPvtsz73yNXGGM5fjodx5J+DuwNnJF9Dq0JkU7H\nc7dys/cWSTqh3WfZrt78FaGknSTdmH2u3wbWbomp47boVm+B9enbOWrcJwBJk4EfAj8BNgWOBc6V\nNKNl1sOB1wIbkk6OFwOLgenAC4FvSVojK+vmbNqrgeMlrXYCknRxtkO1e1zcJtSXAbfnXv8d8GxE\n3JGbdjNQps1bwPa5mL4g6c/AbcCDwKUlyiqibMyjWcdV1glYCOzQYd65wJXACV3KG3EVsJekNZSa\nDdcC9gSQtA2wHrAgv0BEvB34PSuvOk/Lvf1PwAGkE+/LSVd4ndwN7AVsAHyU9K1+8wIxw+rbA+CT\nkh6W9EutbI++NVu/dUj77a2SZgIzIuK8gnWlCrsfB98CDpI0JZt3EmlbnFfm+GlTZ8fjOCL2AX7B\nyiufO1qWnUSb47lXubki2n6W3eqVtBbwfeAc0tXa+aQvO0W2Ydd6e6zPqLdxWxExbh7AIuAJ4NHs\n8X3SgfUQsEZuvm8Cs1uW+9+513sCS4E1W8rfHfh9y7QPAV/rQ+zPAC/Ovd4LeKhlnn8Gruyw/GTg\nHlKb5GTgNaSmlR+3zDcJmEW65J/cJZ6Lc9vxL9lj5PXFHZYpG3PX+YusE+kb7Fc77Av7kk6OjwFT\ngaM7xZItcy+wM3AYMAe4nvSt+yjgotayW5+3vP+23OvTgC+V2BfmA28YzWec7aNTgOcB7wCWAS/K\n3vtX0onh29n2+BXwEuB9wNXAucCGXY6tfXN1dDwOSE1MR2TP9wPuLnr8tNue+X2FDscxKdEf3SH2\ntsdzwXK7fpat9eb2u1cCDwDKvfcr4GMFt2HHenusT1/PUePxCuCQiNgwexxCumS+NyKey82zmJQd\n8+7NPd8KWBwRz7bMszWwRf7bPPBhUvv1WP2JdOCOeAJYv2WeDUgH9Goi4hngENJVzEPA+4HvAPe1\nzLc8UlPLlsC7OwUTEQePbEfS/YNTctv14A6LlYq51/wF12kKKSl1Wo9bSMnsxE7z5FwFvIp08F5F\nOrj/Pntc1XGp9h7KPf8z6QqiLUlHKP2SZGSf2h7YpHW+ItsjIq6LiGUR8deI+Dqpieig7L3/iogd\nIuLNpG+XV5Ou8o8hfVNcSLHt1Os4OI90RQ3wlux1keW6KXoct9PpeC5abuHPsqXc+yM7A+fKHVFk\nW3Sqt9v69PUcNagbov30ALCVpDVyH/I04I6W+fIf1L3ANElrtmzke4HfRcS2vSqVdBnp20U7v4iI\nA1umLSA1idyQvb4DWFPSthFxZzZtB7rccIqIBaST1UgMvwK+3mH2NenzPQDKx9xz/gLr9BLgGz3i\n+ghwI/DpHvNdBbyOdMn9CVJieSvpG9cZHZYZ04AZkrYG/od0Ar42IpZLmk9q2lm9snKf8Uh8q5Ql\naTPSSX9P0vouiIhnJN1AsZvmvY6D84FPK/3S6I1ZPUWW66bocdwp3nbH81jL7eZB4IWSlEsC00jN\nfSMxjXZbdFufsZS7mvF4BdDqOlL2/KCkyVmb6OvI2sw6uJ70AZ4iaV1Ja0t6RTZ9mdKNrnUkTZK0\nvaRdWwuIiANj1V8j5R+tJ39I7fF/n1v+SeAC4OQshlmkX++c0yloSS/PYn2+pBOAzYGzJG0q6TBJ\n62Ux70/6hvazbhsuF8vsiJhdYL5SMReZv9M6Ze+tTfply+U94rqL1OzR62bYVaSbeutExH2k9t0D\ngBcAN3VY5g+svKE6GuuSTtJLId2MZvU2/RV6bI8NJe2fvb+mpLeSrmZ+1FLMZ0hNHH8GfgfsKmk9\n0tXPPQVi7nocRMRS0tXT10gno4VFluthNMdxPt52x/NYy+3mWuBZ4H1ZuYcCu7XENNpt0W19xlLu\nasZ9AoiIp0kf6IHAw8AXSO2Tt3VZZnm2zP8i3eS7D3hzNv1gYEfSgfMw8GVSs8VYnU26ebZObtp7\ngHWAJaTL6HdHxIpvx5Iuk/Th3PxvJ+0YS0jfKPeL9KuPIDX33EdqavpP4PiIuKhTMFnZT3R4XNZl\nPcrG3HX+LusE6TO6Mor91Pdk0sm2o0g38Z4gnfiJ9MuYe4BfZp99O58ETsout4vcbG6t87ekK5Nr\nScnkZaRmm066bY/JwMdIyeRh0g3NQ2LVm5P7kNr5L8zqvx64hPTNcW9Sc1+vmIscB+eR2sLPK7lc\npzpLH8ct9a52PI+13ALxHkq6cftIVt8FLTGNdlt0W5++nqO0ahOWVUnSJ4AlEXH6oGMZDyRdB7wz\na+c3sz5zAjAza6hx3wRkZmaj4wRgZtZQTgBmZg3lBGBm1lBOAFYL9bmv9LLl9at+9RgroKplzarg\nBGAraAIOdNJvUaI/+NbtWWbZqqj/4zkcJmlh9v7dktr+d7wqHL/BRs8JwIaaBjd+w0TVz/Ec9gNO\nJXWmN4X0X8nd/tN4Qo3fMBE4ATRQ9m/k9yv1Y367pFerTd/36tGPvbr3pd6rr/SOZav9+A1dy2uz\njh3nV/d+2nv1d5/vD77bOrTbnqtcEWiU/dSPlvo/nsNHgZMj4tcR8VxE3B8R93cJofD4DVaTTt2E\n+jExH8AMUrcAW2Svp7OyO+FF5LrqBd5E6vVwDdK/oj8JbJ57fxGpb5ItSH2iLwTeReprfzGpe+LJ\nwD+SusP+WJGys3Lnk3pFXKdIeS3r2HH+rL55wH9k821D+ta6f7bs1qS+Y6ZkryeRumbYo3UbFdw+\n+7Z7ncV1F6knx7WAfUi9pM7otm3brGu+W+/Wx8Ut8+4E/Lll2vuBH3bYjh3nz7bL06TeRe8idVdw\nBqmfpXZlLSJ1HXEBK7tM7tp9tx/VP3wF0DzLSX3JbydpckQsioi7280YEedHxAORvt19G7iTVTu8\nAvhsNs8jpBPDjsAepBPc6RHxTER8l5W9oBYt+7MRcW+kITR7ltei2/y7AlMj4uSIeDoi7iH11nlY\nFtdiUs+iI9/m9yGdBH89yu3TLcb1SN1wPx1p9K+LWdnN8sg2aN22rTGs6Na7zaO1W+/1gNaRwR5n\n1W7Ki86/GSuT615ZbDvRe+jJ/wCOVRoj2wbMCaBhIvWceTwwG1gi6VtKI2StRsX6sW/Xp3mvvtKL\nlJ0fv6FneS26zV+kP/VO/d2vouD26RZjFf3Ud9PP8RxGxrb+XEQ8GBEPk3ohPahbAFFu/AarmBNA\nA0XEeRExi3QyDNKNPMj1fa+V/di/F3hBpIFjbqFDP/YtVvSVnps2rWTZ+ZN31/JK1j/Sn3r+m/KU\niMifuM4HXqWV/d2vlgBGsQ6tVvRT3xJjtzb01ahcr64rxmfITSs0nkPr/BHxJ1KzT34di3Ys9hHS\nyHBFBnuxCjkBNIykGZL2kfQ80jCQTwEj30Lzfd+X6se+Ra++0suW3au8MvP37E89Ovd3n1dkHbqN\nJdCXfuqjxLgU0f/xHL5Gas7ZVNJGpHsu7cbDbi236PgNVjEngOZ5HqlP+IdJTQybksYUhVzf96RL\n+TL92K8QvftKL9VHfq/yyswfxftTX62/+5Y6iqxDx7EEoqJ+6gvo53gO/490b+UO0k3qm0hjOBfR\nc/wGq567gzYzayhfAZiZNZQTgJlZQzkBmJk1lBOAmVlDOQGYmTXUUPe0uMkmm8T06dP7Wuaee+4J\nwLXXXtvXcq1Z5s2bxy677DLoMGycqvI8NG/evIcjolBXG0P9M9CZM2fG3Llz+1rmWWedBcCRRx7Z\n13KtWSQxzMeODbcqz0OS5kXEzCLzugnIzKyhnADMzBrKCcDMrKGcAMzMGsoJwMysoZwAzMwaygnA\nzKyhnADMzBrKCcDMrKGGuisIM+ts+omXrHi+6JTXDjASG6+cAMzMcpqUWN0EZGbWUE4AZmYN5QRg\nZtZQvgcwQTWpHdPMRscJYJzwCb1Z/HlbHZwA2qji4KvjgM7XMVG1ruN4OTk25YTelPWswiC2nROA\nrcYHsQ0T74/VcQKwCc8nELP2nABsXPPJvT/Kbsci83eaZzx9ZuMp1tGYsAlgPH5w4zHmYVLFSazp\nyp7oqzaePrPxEOuETQDWf50O9LHs3FWUOZr6htl4OJEMgrfL2DUiAeR3lNkvHmAgmYm240609ZnI\n/Fm1N6gvBoP+QtKIBDAWPmD6YyzbcdAHyTCpY1tUUcegmomg+uN2PJ8jnADMRmnkwB/GG5zDEkcv\ng4yzbFLqV6zTT7yEA9b6Y/Zq6qjL6YfGJYBf35M2/OwTLxnqA2MiK3LgjfUb4zBfNYyXk7OVN8z7\nXTuNSwD94p+4TSwTeVuMt5PSaAz7Og5rfE4AmfHe7mnVGMvVij//4dOvz2SifLa1JgBJi4BlwHLg\n2YiYWWf9ZsNmIl952PAbxBXA3hHx8ADqXc1EyeK9DNs/85i1U9U+6H27MzcBWVeD+qWEVc8nRqs7\nAQTwU0nLgTMjYk7N9U8I4+Uk6xOM2XCrOwHMioj7JW0KXC7ptoi4Oj+DpGOAYwCmTZtWc3hmTlyd\neLtMPLUmgIi4P/u7RNKFwG7A1S3zzAHmAMycOTPqjK+XQf4341jnMzNrVdug8JLWlTRl5DnwGuCW\nuuo3M7NV1XkFsBlwoaSRes+LiB/VWP9Q8jd4MxuU2hJARNwD7FBXfXXySdzMxqPamoDMzGy4+P8A\nzCYAX4XaaDgBNIxPFGY2wk1AZmYN5SsAsyHhqzOrm68AzMwaygnAzKyhnADMzBrKCcDMrKGcAMzM\nGsoJwMysoZwAzMwaygnAzKyhnADMzBrKCcDMrKGcAMzMGsoJwMysoZwAzMwaygnAzKyhnADMzBrK\nCcDMrKGcAMzMGsoJwMysoZwAzMwaygnAzKyhCicAScdK2qjKYMzMrD5lrgA2A26Q9B1JB0hSVUGZ\nmVn1CieAiDgJ2Bb4CnAkcKekT0h6UUWxmZlZhUrdA4iIAB7KHs8CGwHflXRa0TIkTZJ0k6SLS0Vq\nZmZ9tWbRGSUdBxwBPAx8GfhARDwjaQ3gTuCDBYs6DlgIrF8yVjMz66MyVwAbA4dGxP4RcX5EPAMQ\nEc8BBxcpQNKWwGtJCcTMzAaoTAJYOyIW5ydIOhUgIhYWLON00pXCc51mkHSMpLmS5i5durREeGZm\nVkaZBLBfm2kHFl1Y0sHAkoiY122+iJgTETMjYubUqVNLhGdmZmX0vAcg6d3Ae4BtJC3IvTUF+GWJ\nul4BvF7SQcDawPqSvhERbysTsJmZ9UeRm8DnAZcBnwROzE1fFhGPFK0oIj4EfAhA0quAE3zyNzMb\nnJ4JICIeAx4DDq8+HDMzq0uRJqBrImKWpGVAjEzO/kZElP45Z0RcCVxZdjkzM+ufIlcAs7K/U6oP\nx8zM6lKmM7g3SZqSPT9J0gWSdqouNDMzq1KZn4H+e0QskzQL2JfUJ9CXqgnLzMyqViYBLM/+vhaY\nExGXAGv1PyQzM6tDmQRwv6QzgcOASyU9r+TyZmY2RMqcwP8J+DHwmoh4lNQT6AcqicrMzCpXuDdQ\nUhPQ2sCbJOWX+0l/QzIzszqUSQA/AB4FbgT+Wk04ZmZWlzIJYMuIOKCySMzMrFZl7gH8StLLKovE\nzMxqVeYKYBZwlKR7SE1AInUF8fJKIjMzs0qVSQCF+/43M7PhV6YJ6PfAXsA7spHBAtiskqjMzKxy\nZRLAF4A9Wdkt9DLg832PyMzMalGmCWj3iNhZ0k0AEfEnSe4KwsxsnCpzBfCMpElkYwJImkqXwd3N\nzGy4lUkAnwUuBDaV9HHgGuATlURlZmaVK9wEFBHnSpoHvJr0E9BDImJhZZGZmVmlytwDICJuA26r\nKBYzM6tRkTGB/63b+xHxmf6FY2ZmdSlyBTAyFvAMYFfgouz164DrqwjKzMyqV2RQ+I8CSLoa2Dki\nlmWvZwOXVBqdmZlVpsyvgDYDns69fhr/J7CZ2bhV5ibw2cD1ki7MXh8CnNX3iMzMrBZlfgb6cUmX\nkfoDAjgqIm6qJiwzM6ta2Z+B3kgaEczMzMa5MvcAzMxsAimcACQdK2mj0VYkaW1J10u6WdKtkj46\n2rLMzGzsyv4K6AZJ35F0gCSVrOuvwD4RsQOwI3CApD1KlmFmZn1SOAFExEnAtsBXgCOBOyV9QtKL\nCi4fEfFE9nJy9ohy4ZqZWb+UugcQEQE8lD2eBTYCvivptCLLS5okaT6wBLg8Iq4rGa+ZmfVJmXsA\nx2W9gZ4G/BJ4WUS8G9gF+IciZUTE8ojYEdgS2E3S9m3qOUbSXElzly5dWjQ8MzMrqcwVwMbAoRGx\nf0ScHxHPAETEc8DBZSqNiEeBK4AD2rw3JyJmRsTMqVOnlinWzMxKKJMA1s4Gg19B0qkARcYFkDRV\n0obZ83WA/XDX0mZmA1MmAezXZtqBJZbfHLhC0gLgBtI9gItLLG9mZn1UZDyAdwPvAbbJTt4jppDu\nBRQSEQuAnUpHaGZmlSjSFcR5wGXAJ4ETc9OXRcQjlURlZmaVKzIewGPAY8Dh1YdjZmZ16XkPQNI1\n2d9lkh7P/o48Hq8+RDMzq0KRK4BZ2d8pveY1M7Pxo8hN4GV06bIhItbva0RmZlaLIlcA/uZvZjYB\neTwAM7OG8k1gM7OG8k1gM7OGKjwmsKS1Sf8RPIt0U/gXwJci4i8VxWZmZhUqMyj82cAy4HPZ67cA\n5wBv6ndQZmZWvTIJYPuI2C73+gpJv+13QGZmVo8yvwK6MT+Gr6Tdgbn9D8nMzOpQ5B/BfkNq858M\n/ErS77PXW+P+/M3Mxq0iTUClRvsyM7PxocjPQBf3msfMzMafMjeBkbQRsC2w9si0iLi630GZmVn1\nyvwfwNHAccCWwHxgD+BaYJ9qQjMzsyqV+RXQccCuwOKI2Js0vOOjlURlZmaVK5MA/jLyX7+SnhcR\ntwEzqgnLzMyqVuYewH2SNgS+D1wu6U+AbxCbmY1ThRNARLwxezpb0hXABsCPKonKzMwqN5bO4K7B\n4wmYmY1b7gzOzKyh3BmcmVlDuTM4M7OGGm1ncADTcGdwZmbjljuDMzNrqFKdwUnaAdgre/mLiLi5\naEWStiLdSN6MdEUxJyL+u1y4ZmbWL4XvAUg6DjgX2DR7fEPSsSXqehZ4f3YjeQ/gXyRt12MZMzOr\nSJlfAb0T2D0ingSQdCqpM7jPdV0qExEPAg9mz5dJWgi8EPAviczMBqDMr4AELM+9Xp5NK03SdFJn\ncteNZnkzMxu7MlcAXwOuk3Rh9voQ4CtlK5S0HvA94PiIeLzN+8cAxwBMmzatbPFmZlZQoSsASQLO\nB44CHskeR0XE6WUqkzSZdPI/NyIuaDdPRMyJiJkRMXPq1KllijczsxIKXQFEREi6NCJeBtw4moqy\nJPIVYGFEfGY0ZZiZWf+U/U/gXcdQ1yuAtwP7SJqfPQ4aQ3lmZjYGZe4B7A68TdIi4EnSDeCIiJcX\nWTgirmGUN43NzKz/yiSA/SuLwszMalcmAfyB1ccD+GIVQZmZWfU8HoCZWUN5PAAzs4byeABmZg1V\n5gpgF1YfD+D2kfECiv4ayMzMhkOZBHBAZVGYmVntCieA/LgAZmY2/pW5B2BmZhOIE4CZWUM5AZiZ\nNZQTgJlZQzkBmJk1lBOAmVlDOQGYmTWUE4CZWUM5AZiZNZQTgJlZQzkBmJk1lBOAmVlDOQGYmTWU\nE4CZWUM5AZiZNZQTgJlZQzkBmJk1lBOAmVlDOQGYmTWUE4CZWUPVlgAkfVXSEkm31FWnmZl1VucV\nwFnAATXWZ2ZmXdSWACLiauCRuuozM7PufA/AzKyhhi4BSDpG0lxJc5cuXTrocMzMJqyhSwARMSci\nZkbEzKlTpw46HDOzCWvoEoCZmdWjzp+BfhO4Fpgh6T5J76yrbjMzW92adVUUEYfXVZeZmfXmJiAz\ns4ZyAjAzaygnADOzhnICMDNrKCcAM7OGcgIwM2soJwAzs4ZyAjAzaygnADOzhnICMDNrKCcAM7OG\ncgIwM2soJwAzs4ZyAjAzaygnADOzhnICMDNrKCcAM7OGcgIwM2soJwAzs4ZyAjAzaygnADOzhnIC\nMDNrKCcAM7OGcgIwM2soJwAzs4ZyAjAzaygnADOzhnICMDNrqFoTgKQDJN0u6S5JJ9ZZt5mZraq2\nBCBpEvB54EBgO+BwSdvVVb+Zma2qziuA3YC7IuKeiHga+BbwhhrrNzOznDoTwAuBe3Ov78ummZnZ\nAKw56ABaSToGOCZ7+YSk2/tZ/pnlF9kEeLifMfTZMMc3zLHBGONbfOrBfQylrWHefsMcGwx3fJuc\n2SM2nTqm8rcuOmOdCeB+YKvc6y2zaauIiDnAnLqC6kXS3IiYOeg4Ohnm+IY5NnB8YzHMscFwxzdM\nsdXZBHQDsK2kv5W0FnAYcFGN9ZuZWU5tVwAR8ayk9wI/BiYBX42IW+uq38zMVlXrPYCIuBS4tM46\n+2BomqM6GOb4hjk2cHxjMcyxwXDHNzSxKSIGHYOZmQ2Au4IwM2uoRiWAXl1RSNpA0g8l3SzpVklH\n5d5bJOk3kuZLmpubvrGkyyXdmf3dqO74JM3I4hp5PC7p+Oy92ZLuz713UIXxbSTpQkkLJF0vafte\ny/Zr+402NklbSbpC0m+zbXpcbplh2XaV7ntj2HZ17XdflbRE0i0d3pekz2bxL5C0c6916+O2G1Vs\nde13PUVEIx6kG893A9sAawE3A9u1zPNh4NTs+VTgEWCt7PUiYJM25Z4GnJg9P3Fk+brjaynnIWDr\n7PVs4ISatt+ngI9kz18M/KzXsv3YfmOMbXNg5+z5FOCOXGwD33ZV73tjja3q/S4r65XAzsAtHd4/\nCLgMELAHcF0d+90YY6t8vyvyaNIVQJGuKAKYIknAeqQT7LM9yn0D8PXs+deBQwYc36uBuyNi8Sjj\nGEt82wE/B4iI24DpkjbrsWw/tt+oY4uIByPixmz6MmAh/f8P9bFsu24Guu1a5qlqvyMiribt6528\nATg7kl8DG0ranOr3u1HHVtN+11OTEkCRrijOAF4CPAD8BjguIp7L3gvgp5LmKf238ojNIuLB7PlD\nQK+Dtqr4RhwGfLNl2rHZ5edXR3upWzC+m4FDASTtRvqPxC17LNuP7TeW2FaQNB3YCbguN3nQ2w6q\n3ff6su2obr8rotM6VL3fjSW2FSrc73pqUgIoYn9gPrAFsCNwhqT1s/dmRcSOpN5M/0XSK1sXjnT9\nVuXPqrrFh9I/2L0eOD+3zBdJl8A7Ag8Cn64wvlNI33DmA8cCNwHLiy5c8fbrGpuk9YDvAcdHxOPZ\n5GHZdoPe93ptu0Hvd2NSw3Hb0aD3u6HrC6hCRbqiOAo4Jdsh7pL0O1Kb5/URcT9ARCyRdCHp8vJq\n4A8jl3TZZeeSQcSXvX8gcGNE/GFkgfxzSf8DXFxVfNkOPHJjWsDvgHuAdbos24/tN5bYkDSZdBCe\nGxEX5JYZhm1HxfvemGLLVLnfFdFpHSZ3mA79O25HG1sd+11PTboCKNIVxe9JbZlkbZwzgHskrStp\nSjZ9XeA1wMhd/4uAd2TP3wH8oO74cu8fTstleLZzj3hjLu6+xydpw+w9gKOBq7OTR7dl+7H9Rh1b\ndkL7CrAwIj7TsszAt10N+95YPtcRVe53RVwEHKFkD+CxrHmn6v1u1LHVtN/1Vsed5mF5kO7I30H6\nZcD/zaa9C3hX9nwL4Cek9vVbgLdl07chtYPeDNw6smz23guAnwF3Aj8FNq47vuy9dYE/Ahu0lHlO\nNv8C0s64eYXx7Zm9fztwAbBRt2X7uf1GGxswi3T5v4DUvDYfOGhYtl0d+94YP9c69rtvkppCniG1\nob+zJT6RBpu6O6tzZo373ahiq2u/6/XwfwKbmTVUk5qAzMwsxwnAzKyhnADMzBrKCcDMrKGcAMzM\nGsoJwMysoZwAzMwaygnAGkPScq3af/30mur9kqRX5F6HpE/nXp8gaXYdsZjlOQFYkzwVETvmHot6\nLZD9C/9Yj5M9gF/nXv8VOFTSJmMs12xMnACs0ST9m6RbssfIaFbTlUaROpvU5cZWko7Iuue9WdI5\nueXfpjTeJLKwAAABkUlEQVRK1nxJZ0qa1FL+S4A7IiLfK+qzpIHB/7X6NTTrzAnAmmSdXPPPhZJ2\nIfVyuTvpW/o/S9opm3db4AsR8VLS4DsnAftExA7AcbDi5P5m4BWRumteDry1pc4DgR+1ieXzwFsl\nbdDfVTQrrkndQZs9lZ2oAVAah/XCiHgye30BsBepA67FkUZwAtgHOD8iHgaIiJERoF4N7ALckDp3\nZB1W71Z4f7KulPMi9fR5NvA+4Kn+rJ5ZOU4AZu09WWAeAV+PiA+1fVN6PrBhRDzQYfnTgRuBr40u\nRLOxcROQNdkvgEMkPT/ra/+N2bRWPwfeJOkFAJI2zqb/DPhHSZuOTJe0dW65vYErOlWeXUl8h9SF\nsFntnACssSINyn0WaUS164AvR8RNbea7Ffg4cJWkm4HPZNN/S7o38BNJC4DLgfxgHp3a//M+DfjX\nQDYQHg/ArCKSbgR2j4hnBh2LWTtOAGZmDeUmIDOzhnICMDNrKCcAM7OGcgIwM2soJwAzs4ZyAjAz\naygnADOzhnICMDNrqP8PNV7svhleumYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEsCAYAAADKGWQqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HGWd7/HPlxAEIbJIYEAIGbxMFFG2IPAyOIIoi6jI\njCO4IFyZvHSuCDOiF73MGLmogKPDVVzIuLAILihRjKCisoiyJSFEIOwkshoiAgFRIPzuH0+dpNI5\n3V11Tld1n1Pf9+vVr9O1PfWr6qr6dT3V53kUEZiZWfOs0+8AzMysP5wAzMwaygnAzKyhnADMzBrK\nCcDMrKGcAMzMGsoJwMysoZwAzMwaygmgRpI+I+n4fscxVki6XtIr+rDeWyS9rsP0JZL2rzGkytW1\nTSNdj6RpkhZKWiHpQ1XEVmS9nY4NSWdLOqWu2HphTCWA7OB5WtKTudfW/Y6rCEmTgSOBs3LjNpM0\nR9JTkpZKemeXMl4u6VeSHpd0l6S35aZ9S9LDkp6QdIekYyrajrIxd5y/0zYB/wmc3KbcJZKWSdow\nN+4YSVeMYvMAiIhXRMQVufXUdrHvsj+QdIWkv+SO/9tz086Q9CdJ10jaJjf+nZK+UNc2VOSjwOUR\nMSki6tyWNdabPzbGgzGVADJvjoiNcq8Hyywsad2qAuviKOCSiHg6N+5LwDPAlsC7gK+0+8abxf0j\nYC6wGTAT+Jakv8tmORXYPiJeBLwFOEXS7kUCkzRL0qyC21E45m7zF9imi4F9Jf1Nm7InAMcVjHvg\nFdgfQz6YO/6nZcu+Gtgd+BvgauDEbPzGwEeAk+rZispsB9zSoPXWYiwmgLVk35qukPRYdov2lpbp\nSyT9b0mLgKckrStpW0kXSXpE0h8lnZnNu7WkH2Tj7+3h7eZBwJW5mDYE/gH494h4MiKuJp3872mz\n/MuArYH/ioiVEfEr4DdD80fEzRHx52zeyF4v7VHsI4q5wPzdtukvwHzggDYhfRY4QdImBWI/WtKP\nc8N3SrowN3yfpF2y90sk7S/pPGAK8OPs2/ZHc0XuImlR9k39u5LW77DuEyXdnVUj3Nr6rT6n4/7o\n4m+BqyPir8Avge2z8Z8CPhsRTxQoIx/zsOdBdh59v2Xe/zd0hzGa86fdeSzpV8C+wJnZ59CaEGl3\nPncqN5u2RNIJw32Ww603f0coaVdJC7LP9bvA+i0xtd0XndZbYHt6do0a8wlA0kTgx8DPgS2AY4Hz\nJU1rmfUI4E3AJqSL41xgKTAVeAnwHUnrZGXdlI17PXC8pLUuQJLmZgfUcK+5w4T6SuD23PDfAc9F\nxB25cTcBZeq8BeyUi+nLkv4M3AY8BFxSoqwiysY8km1cY5uAxcDObeadB1wBnNChvCFXAvtIWkep\n2nA9YG8ASdsDGwGL8gtExHuA37P6rvP03OR/Ag4kXXhfRbrDa+duYB9gY+CTpG/1WxWIGdbeHwCf\nkbRc0m+0uj76lmz7NiAdt7dImg5Mi4gLCq4rrbDzefAd4GBJk7J5J5D2xQVlzp9h1tn2PI6I/YBf\ns/rO546WZScwzPncrdxcEcN+lp3WK2k94IfAeaS7tQtJX3aK7MOO6+2yPSPex8OKiDHzApYATwKP\nZa8fkk6sh4F1cvN9G5jVstz/zA3vDTwCrNtS/p7A71vGfQz4Zg9ifxZ4WW54H+Dhlnn+GbiizfIT\ngXtIdZITgTeSqlZ+1jLfBGAG6ZZ/Yod45ub241+y19Dw3DbLlI254/xFton0DfYbbY6F/UkXx8eB\nycAx7WLJlrkP2A04HJgNXE/61n00cHFr2a3vW6a/Ozd8OvDVEsfCQuCtI/mMs2N0EvAC4L3ACuCl\n2bR/JV0Yvpvtj98CLwc+BFwFnA9s0uHc2j+3jrbnAamK6cjs/RuAu4ueP8Ptz/yxQpvzmJToj2kT\n+7Dnc8FyO36WrevNHXevBR4ElJv2W+CUgvuw7Xq7bE9Pr1Fj8Q7g0IjYJHsdSrplvi8ins/Ns5SU\nHfPuy73fFlgaEc+1zLMdsHX+2zzwcVL99Wj9iXTiDnkSeFHLPBuTTui1RMSzwKGku5iHgQ8D3wPu\nb5lvZaSqlm2AD7QLJiIOGdqPpOcHp+b26yFtFisVc7f5C27TJFJSarcdN5OS2Ynt5sm5Engd6eS9\nknRy/332urLtUsN7OPf+z6Q7iGFJOlLplyRDx9ROwOat8xXZHxFxXUSsiIi/RsQ5pCqig7Np/xUR\nO0fEO0jfLq8i3eXPJH1TXEyx/dTtPLiAdEcN8M5suMhynRQ9j4fT7nwuWm7hz7Kl3AciuwLnyh1S\nZF+0W2+n7enpNapfD0R76UFgW0nr5D7kKcAdLfPlP6j7gCmS1m3ZyfcB90bEDt1WKulS0reL4fw6\nIg5qGbeIVCVyQzZ8B7CupB0i4s5s3M50eOAUEYtIF6uhGH4LnNNm9nXp8TMAysfcdf4C2/Ry4Ftd\n4voEsAD4XJf5rgTeTLrl/jQpsbyL9I3rzDbLjKrDDEnbAf9NugBfExErJS0kVe2svbJyn/FQfGuU\nJWlL0kV/b9L2LoqIZyXdQLGH5t3OgwuBzyn90uht2XqKLNdJ0fO4XbzDnc+jLbeTh4CXSFIuCUwh\nVfcNxTTSfdFpe0ZT7lrG4h1Aq+tI2fOjkiZmdaJvJqsza+N60gd4qqQNJa0v6TXZ+BVKD7o2kDRB\n0k6S9mgtICIOijV/jZR/tV78IdXH/31u+aeAi4CTsxhmkH69c167oCW9Kov1hZJOALYCzpa0haTD\nJW2UxXwA6RvaLzvtuFwssyJiVoH5SsVcZP5225RNW5/0y5bLusR1F6nao9vDsCtJD/U2iIj7SfW7\nBwIvBm5ss8wfWP1AdSQ2JF2kH4H0MJq16/RX6bI/NpF0QDZ9XUnvIt3N/LSlmM+Tqjj+DNwL7CFp\nI9Ldzz0FYu54HkTEI6S7p2+SLkaLiyzXxUjO43y8w53Poy23k2uA54APZeUeBry6JaaR7otO2zOa\nctcy5hNARDxD+kAPApYDXybVT97WYZmV2TL/g/SQ737gHdn4Q4BdSCfOcuBrpGqL0TqX9PBsg9y4\nfwE2AJaRbqM/EBGrvh1LulTSx3Pzv4d0YCwjfaN8Q6RffQSpuud+UlXTfwLHR8TF7YLJyn6yzevS\nDttRNuaO83fYJkif0RVR7Ke+J5Mutm1Feoj3JOnCT6RfxtwD/Cb77IfzGeCk7Ha7yMPm1nXeSroz\nuYaUTF5JqrZpp9P+mAicQkomy0kPNA+NNR9O7keq55+Trf964Cekb477kqr7usVc5Dy4gFQXfkHJ\n5dqts/R53LLetc7n0ZZbIN7DSA9uH83Wd1FLTCPdF522p6fXKK1ZhWVVkvRpYFlEnNHvWMYCSdcB\n78vq+c2sx5wAzMwaasxXAZmZ2cg4AZiZNZQTgJlZQzkBmJk1lBOA1UI9biu9bHm9Wr+69BVQ1bJm\nVXACsFU0Djs66bUo0R586/4ss2xV1Pv+HA6XtDibfrekYf87XhX232Aj5wRgA039679hvOplfw5v\nAE4jNaY3ifRfyZ3+03hc9d8wHjgBNFD2b+QPKLVjfruk12uYtu/VpR17dW5LvVtb6W3L1vD9N3Qs\nb5htbDu/OrfT3q29+3x78J22Ybj9ucYdgUbYTv1Iqff9OXwSODkiro2I5yPigYh4oEMIhftvsJq0\naybUr/H5AqaRmgXYOhueyurmhJeQa6oXeDup1cN1SP+K/hSwVW76ElLbJFuT2kRfDLyf1Nb+UlLz\nxBOBfyQ1h31KkbKzcheSWkXcoEh5LdvYdv5sffOB/8jm2570rfWAbNntSG3HTMqGJ5CaZtirdR8V\n3D/7DzecxXUXqSXH9YD9SK2kTuu0b4fZ1nyz3q2vuS3z7gr8uWXch4Eft9mPbefP9sszpNZF7yI1\nV3AmqZ2l4cpaQmo64iJWN5ncsfluv6p/+Q6geVaS2pLfUdLEiFgSEXcPN2NEXBgRD0b6dvdd4E7W\nbPAK4AvZPI+SLgy7AHuRLnBnRMSzEfF9VreCWrTsL0TEfZG60OxaXotO8+8BTI6IkyPimYi4h9Ra\n5+FZXEtJLYsOfZvfj3QRvHaE+6dTjBuRmuF+JlLvX3NZ3czy0D5o3betMaxq1nuYV2uz3hsBrT2D\nPcGazZQXnX9LVifXfbLYdqV715P/ARyr1Ee29ZkTQMNEajnzeGAWsEzSd5R6yFqLirVjP1yb5t3a\nSi9Sdr7/hq7lteg0f5H21Nu1d7+GgvunU4xVtFPfSS/7cxjq2/qLEfFQRCwntUJ6cKcAolz/DVYx\nJ4AGiogLImIG6WIYpAd5kGv7Xqvbsf8g8OJIHcfcTJt27Fusais9N25KybLzF++O5ZVc/1B76vlv\nypMiIn/huhB4nVa3d79WAhjBNrRa1U59S4yd6tDXonKtuq7qnyE3rlB/Dq3zR8SfSNU++W0s2rDY\nJ0g9wxXp7MUq5ATQMJKmSdpP0gtI3UA+DQx9C823fV+qHfsW3dpKL1t2t/LKzN+1PfVo3959XpFt\n6NSXQE/aqY8S/VJE7/tz+CapOmcLSZuSnrkM1x92a7lF+2+wijkBNM8LSG3CLydVMWxB6lMUcm3f\nk27ly7Rjv0p0byu9VBv53corM38Ub099rfbuW9ZRZBva9iUQFbVTX0Av+3P4v6RnK3eQHlLfSOrD\nuYiu/TdY9dwctJlZQ/kOwMysoZwAzMwaygnAzKyhnADMzBrKCcDMrKEGuqXFzTffPKZOndrTMvfe\ne28Arrnmmp6Wa80yf/58dt99936HYWNQ1deg+fPnL4+IQk1tDPTPQKdPnx7z5s3raZlnn302AEcd\ndVRPy7VmkcQgnzs2uKq+BkmaHxHTi8zrKiAzs4ZyAjAzaygnADOzhnICMDNrKCcAM7OGcgIwM2so\nJwAzs4ZyAjAzaygnADOzhhropiDMxrupJ/5k1fslp76pj5FYEzkBWO180esN70cbLVcBmZk1lO8A\nrBb5b6tmNhgalwCuveePAMw68SeNv20eD1UIg7YNgxaPWSeNSwBV8wVg/PJdzPjV1PPWCcCsIk29\nqNjY4QRg1iBOSpbnBGA2DrRWT/niPjwnwDU5AfSBD0Ibr3xsjy1OACM0KAf6oMRhozeWPssqYh1L\n2z9eOAH0WS8P+l6V5RPRxoJBP04HPT5oSALIfxAHrtfHQGzM8U8/bTxrRAIwK8MXfRupsXbsOAGM\nU3Xefo6FW91uxsqJ28s4x8PnNhpl92XV+6sfn0ejE0C7HV5FXboNntF+PkPLN/HiOcj8k9jiGp0A\nrP/aXYRHctIWSdxOyv3R9LuNQTVuE4BP9N4bq9VKY/FYaPoFs5/bX/aLxFj+fMZtAhiLil6oBvmA\nq+JiO5KTbZAv+oMc2yAaLxfbQVRrApC0BFgBrASei4jpda5/tHzi9l8TP4MmbnNZg76P8vHNetnw\n4/uhH3cA+0bE8j6stzL9/hD7oYnb3BT+xt0crgJqgCIXa1/QR67p+27Qfk5Zt7H8+dedAAL4haSV\nwFkRMbvm9VtJY/ngbrJefW7j7WJta6o7AcyIiAckbQFcJum2iLgqP4OkmcBMgClTptQW2Fi60I2l\nWM36bTTny3g/12pNABHxQPZ3maQ5wKuBq1rmmQ3MBpg+fXrUGZ9ZVcb7hcTGptoSgKQNgXUiYkX2\n/o3AyXWt38zqVcWzp/GQSK+9548AzBqAbanzDmBLYI6kofVeEBE/rXH9ZtbGeLiwWnm1JYCIuAfY\nua719YpPDLPE58L4s06/AzAzs/5wAjAzaygnADOzhnICMDNrKCcAM7OGcgIwM2soJwAzs4ZyAjAz\naygnADOzhnICMDNrKCcAM7OGcgIwM2soJwAzs4ZyAjAzaygnADOzhnICMDNrKCcAM7OGcgIwM2so\nJwAzs4ZyAjAzaygnADOzhnICMDNrKCcAM7OGcgIwM2soJwAzs4YqnAAkHStp0yqDMTOz+pS5A9gS\nuEHS9yQdKElVBWVmZtUrnAAi4iRgB+DrwFHAnZI+LemlFcVmZmYVKvUMICICeDh7PQdsCnxf0ulF\ny5A0QdKNkuaWitTMzHpq3aIzSjoOOBJYDnwN+EhEPCtpHeBO4KMFizoOWAy8qGSsZmbWQ2XuADYD\nDouIAyLiwoh4FiAingcOKVKApG2AN5ESiJmZ9VGZBLB+RCzNj5B0GkBELC5YxhmkO4XnS6zXzMwq\nUCYBvGGYcQcVXVjSIcCyiJjfZb6ZkuZJmvfII4+UCM/MzMromgAkfUDS74BpkhblXvcCi0qs6zXA\nWyQtAb4D7CfpW60zRcTsiJgeEdMnT55congzMyujyEPgC4BLgc8AJ+bGr4iIR4uuKCI+BnwMQNLr\ngBMi4t3FQzUzs17qmgAi4nHgceCI6sMxM7O6dE0Akq6OiBmSVgAxNDr7GxFR+uecEXEFcEXZ5czM\nrHeK3AHMyP5Oqj4cMzOrS5nG4N4uaVL2/iRJF0natbrQzMysSmV+BvrvEbFC0gxgf1KbQF+tJiwz\nM6tamQSwMvv7JmB2RPwEWK/3IZmZWR3KJIAHJJ0FHA5cIukFJZc3M7MBUuYC/k/Az4A3RsRjpJZA\nP1JJVGZmVrnCrYGSqoDWB94uKb/cz3sbkpmZ1aFMAvgR8BiwAPhrNeGYmVldyiSAbSLiwMoiMTOz\nWpV5BvBbSa+sLBIzM6tVmTuAGcDRku4hVQGJ1BTEqyqJzMzMKlUmARRu+9/MzAZfmSqg3wP7AO/N\negYLYMtKojIzs8qVSQBfBvZmdbPQK4Av9TwiMzOrRZkqoD0jYjdJNwJExJ8kuSkIM7MxqswdwLOS\nJpD1CSBpMu7c3cxszCqTAL4AzAG2kPQp4Grg05VEZWZmlStcBRQR50uaD7ye9BPQQyNicWWRmZlZ\npco8AyAibgNuqygWMzOrUZE+gf+t0/SI+HzvwjEzs7oUuQMY6gt4GrAHcHE2/Gbg+iqCMjOz6hXp\nFP6TAJKuAnaLiBXZ8CzgJ5VGZ2ZmlSnzK6AtgWdyw8/g/wQ2MxuzyjwEPhe4XtKcbPhQ4OyeR2Rm\nZrUo8zPQT0m6lNQeEMDREXFjNWGZmVnVyv4MdAGpRzAzMxvjyjwDMDOzcaRwApB0rKRNqwzGzMzq\nU/ZXQDdI+p6kAyWpzIokrS/pekk3SbpF0ifLhWpmZr1UOAFExEnADsDXgaOAOyV9WtJLCxbxV2C/\niNgZ2AU4UNJeJeM1M7MeKfUMICICeDh7PQdsCnxf0ulFlo2IJ7PBidkryoVrZma9UuYZwHFZa6Cn\nA78BXhkRHwB2B/6hYBkTJC0ElgGXRcR1I4jZzMx6oMzPQDcDDsv6A14lIp6XdEiRAiJiJbCLpE2A\nOZJ2ioib8/NImgnMBJgyZUqJ8MzMrIwyVUDrt178JZ0GULZfgIh4DLgcOHCYabMjYnpETJ88eXKZ\nYs3MrIQyCeANw4w7qOjCkiZn3/yRtEFWnvsWMDPrkyL9AXwA+Bdge0mLcpMmkZ4FFLUVcE7Wr/A6\nwPciYm6ZYM3MrHeKPAO4ALgU+AxwYm78ioh4tOiKImIRsGu58MzMrCpF+gN4HHgcOKL6cMzMrC5d\nnwFIujr7u0LSE9nfodcT1YdoZmZVKHIHMCP7O6nbvGZmNnYUeQi8gg7/sRsRL+ppRGZmVosidwD+\n5m9mNg65PwAzs4byQ2Azs4byQ2Azs4Yq3BicpPVJ/xE8g/RQ+NfAVyPiLxXFZmZmFSrTGui5wArg\ni9nwO4HzgLf3OigzM6temQSwU0TsmBu+XNKtvQ7IzMzqUeZXQAvyXThK2hOY1/uQzMysDkX+Eex3\npDr/icBvJf0+G94ON+dsZjZmFakCKtTbl5mZjS1Ffga6tNs8ZmY29pR5CIykTYEdgPWHxkXEVb0O\nyszMqlfm/wCOAY4DtgEWAnsB1wD7VROamZlVqcyvgI4D9gCWRsS+pN69HqskKjMzq1yZBPCXof/6\nlfSCiLgNmFZNWGZmVrUyzwDul7QJ8EPgMkl/AvyA2MxsjCqcACLibdnbWZIuBzYGflpJVGZmVrnR\nNAZ3Ne5PwMxszHJjcGZmDeXG4MzMGsqNwZmZNdRIG4MDmIIbgzMzG7PcGJyZWUOVagxO0s7APtng\nryPipqoCMzOzahV+BiDpOOB8YIvs9S1Jx5ZYfltJl0u6VdItWXlmZtYnZX4F9D5gz4h4CkDSaaTG\n4L7YcanVngM+HBELJE0C5ku6LCL8SyIzsz4o8ysgAStzwyuzcYVExEMRsSB7vwJYDLykxPrNzKyH\nytwBfBO4TtKcbPhQ4OsjWamkqaTWRK8bZtpMYCbAlClTRlK8mZkVUOgOQJKAC4GjgUez19ERcUbZ\nFUraCPgBcHxEPNE6PSJmR8T0iJg+efLkssWbmVlBhe4AIiIkXRIRrwQWjHRlkiaSLv7nR8RFIy3H\nzMxGr+x/Au8x0hVldxFfBxZHxOdHWo6ZmfVGmWcAewLvlrQEeIr0ADgi4lUFl38N8B7gd5IWZuM+\nHhGXlIjBzMx6pEwCOGA0K4qIqynxqyEzM6tWmQTwB9buD+ArVQRlZmbVc38AZmYN5f4AzMwayv0B\nmJk1VJk7gN1Zuz+A24f6CyjxayAzMxsAZRLAgZVFYWZmtSucAPL9ApiZ2dhX5hmAmZmNI04AZmYN\n5QRgZtZQTgBmZg3lBGBm1lBOAGZmDeUEYGbWUE4AZmYN5QRgZtZQTgBmZg3lBGBm1lBOAGZmDeUE\nYGbWUE4AZmYN5QRgZtZQTgBmZg3lBGBm1lBOAGZmDeUEYGbWUE4AZmYNVVsCkPQNScsk3VzXOs3M\nrL067wDOBg6scX1mZtZBbQkgIq4CHq1rfWZm1pmfAZiZNdTAJQBJMyXNkzTvkUce6Xc4Zmbj1sAl\ngIiYHRHTI2L65MmT+x2Omdm4NXAJwMzM6lHnz0C/DVwDTJN0v6T31bVuMzNb27p1rSgijqhrXWZm\n1p2rgMzMGsoJwMysoZwAzMwaygnAzKyhnADMzBrKCcDMrKGcAMzMGsoJwMysoZwAzMwaygnAzKyh\nnADMzBrKCcDMrKGcAMzMGsoJwMysoZwAzMwaygnAzKyhnADMzBrKCcDMrKGcAMzMGsoJwMysoZwA\nzMwaygnAzKyhnADMzBrKCcDMrKGcAMzMGsoJwMysoZwAzMwaygnAzKyhak0Akg6UdLukuySdWOe6\nzcxsTbUlAEkTgC8BBwE7AkdI2rGu9ZuZ2ZrqvAN4NXBXRNwTEc8A3wHeWuP6zcwsp84E8BLgvtzw\n/dk4MzPrg3X7HUArSTOBmdngk5Ju72X5Z5VfZHNgeS9j6LFBjm+QY4NRxrf0tEN6GMqwBnn/DXJs\nMMDxnVUgNp02qlVsV3TGOhPAA8C2ueFtsnFriIjZwOy6gupG0ryImN7vONoZ5PgGOTZwfKMxyLHB\nYMc3SLHVWQV0A7CDpL+VtB5wOHBxjes3M7Oc2u4AIuI5SR8EfgZMAL4REbfUtX4zM1tTrc8AIuIS\n4JI619kDA1Md1cYgxzfIsYHjG41Bjg0GO76BiU0R0e8YzMysD9wUhJlZQzUqAXRrikLSxpJ+LOkm\nSbdIOjo3bYmk30laKGlebvxmki6TdGf2d9O645M0LYtr6PWEpOOzabMkPZCbdnCF8W0qaY6kRZKu\nl7RTt2V7tf9GGpukbSVdLunWbJ8el1tmUPZdpcfeKPZdXcfdNyQtk3Rzm+mS9IUs/kWSduu2bT3c\ndyOKra7jrquIaMSL9OD5bmB7YD3gJmDHlnk+DpyWvZ8MPAqslw0vATYfptzTgROz9ycOLV93fC3l\nPAxslw3PAk6oaf99FvhE9v5lwC+7LduL/TfK2LYCdsveTwLuyMXW931X9bE32tiqPu6ysl4L7Abc\n3Gb6wcClgIC9gOvqOO5GGVvlx12RV5PuAIo0RRHAJEkCNiJdYJ/rUu5bgXOy9+cAh/Y5vtcDd0fE\n0hHGMZr4dgR+BRARtwFTJW3ZZdle7L8RxxYRD0XEgmz8CmAxvf8P9dHsu076uu9a5qnquCMiriId\n6+28FTg3kmuBTSRtRfXH3Yhjq+m466pJCaBIUxRnAi8HHgR+BxwXEc9n0wL4haT5Sv+tPGTLiHgo\ne/8w0O2krSq+IYcD324Zd2x2+/mNkd7qFozvJuAwAEmvJv1H4jZdlu3F/htNbKtImgrsClyXG93v\nfQfVHns92XdUd9wV0W4bqj7uRhPbKhUed101KQEUcQCwENga2AU4U9KLsmkzImIXUmum/0vSa1sX\njnT/VuXPqjrFh9I/2L0FuDC3zFdIt8C7AA8Bn6swvlNJ33AWAscCNwIriy5c8f7rGJukjYAfAMdH\nxBPZ6EHZd/0+9rrtu34fd6NSw3nbVr+Pu4FrC6hCRZqiOBo4NTsg7pJ0L6nO8/qIeAAgIpZJmkO6\nvbwK+MPQLV1227msH/Fl0w8CFkTEH4YWyL+X9N/A3Kriyw7goQfTAu4F7gE26LBsL/bfaGJD0kTS\nSXh+RFyUW2YQ9h0VH3ujii1T5XFXRLttmNhmPPTuvB1pbHUcd1016Q6gSFMUvyfVZZLVcU4D7pG0\noaRJ2fgNgTcCQ0/9Lwbem71/L/CjuuPLTT+Cltvw7OAe8rZc3D2PT9Im2TSAY4CrsotHp2V7sf9G\nHFt2Qfs6sDgiPt+yTN/3XQ3H3mg+1yFVHndFXAwcqWQv4PGseqfq427EsdV03HVXx5PmQXmRnsjf\nQfplwP/Jxr0feH/2fmvg56T69ZuBd2fjtyfVg94E3DK0bDbtxcAvgTuBXwCb1R1fNm1D4I/Axi1l\nnpfNv4h0MG5VYXx7Z9NvBy4CNu20bC/330hjA2aQbv8XkarXFgIHD8q+q+PYG+XnWsdx921SVciz\npDr097XEJ1JnU3dn65xe43E3otjqOu66vfyfwGZmDdWkKiAzM8txAjAzaygnADOzhnICMDNrKCcA\nM7OGcgIwM2soJwAzs4ZyArDGkLRSa7ZfP7Wm9X5V0mtywyHpc7nhEyTNqiMWszwnAGuSpyNil9xr\nSbcFsn/hH+15shdwbW74r8BhkjYfZblmo+IEYI0m6d8k3Zy9hnqzmqrUi9S5pCY3tpV0ZNY8702S\nzsst/24zHcCTAAABkklEQVSlXrIWSjpL0oSW8l8O3BER+VZRnyN1DP6v1W+hWXtOANYkG+Sqf+ZI\n2p3UyuWepG/p/yxp12zeHYAvR8QrSJ3vnATsFxE7A8fBqov7O4DXRGqueSXwrpZ1HgT8dJhYvgS8\nS9LGvd1Es+Ka1By02dPZhRoApX5Y50TEU9nwRcA+pAa4lkbqwQlgP+DCiFgOEBFDPUC9HtgduCE1\n7sgGrN2s8AFkTSnnRWrp81zgQ8DTvdk8s3KcAMyG91SBeQScExEfG3ai9EJgk4h4sM3yZwALgG+O\nLESz0XEVkDXZr4FDJb0wa2v/bdm4Vr8C3i7pxQCSNsvG/xL4R0lbDI2XtF1uuX2By9utPLuT+B6p\nCWGz2jkBWGNF6pT7bFKPatcBX4uIG4eZ7xbgU8CVkm4CPp+Nv5X0bODnkhYBlwH5zjza1f/nfQ7w\nr4GsL9wfgFlFJC0A9oyIZ/sdi9lwnADMzBrKVUBmZg3lBGBm1lBOAGZmDeUEYGbWUE4AZmYN5QRg\nZtZQTgBmZg3lBGBm1lD/H++o5WW/ZBfXAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -476,9 +476,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEsCAYAAADgqZWFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4HVV9//H3xwCCEAU0IoSEi41gqhgwAj5FfyiiSYoG\nbPUHWm76a8QKSFuV1No+8VIFqqK0lDQKBSyIqKApBimiCCiXJIiBcJGIQRID4SIQQITA9/fHWicM\nO/syc87sfc4+5/N6nv3svWdmzXxnzpz93WvN7LUUEZiZmdXlBcMdgJmZjS5OLGZmVisnFjMzq5UT\ni5mZ1cqJxczMauXEYmZmtXJiMTOzWjmxmJlZrZxYaiLpC5JOGO44xjpJN0j60zbzV0p6Wy9jakXS\nckn7t5k/YmKtS6/2abDbkbSbpJskrZN0fDdiK7PddueGpLMlfa5XsQ3GmEsskraRFJIek/SEpN8N\nNSFImgAcAfxnfv9CSWdKujufKDdJmtlQ5kpJT+Y4HpN0R5v1byvpYkmP53W+byjxttjGlBzPf7dZ\n5lhJSyT9UdLZwxFDXq7d8fgi8JlBbn+lpD/kv8d9+R94q8Gsq4yI+NOIuLKw7Z4lEUmvlvRjSY9I\nWiHpkMK8tuempK9I+r2kayXtWJj+Pkmn9WofuuQTwE8iYnxE9HJfnrfd4rnRj8ZcYgGmAfdHxFYR\n8SLgw8CpxX+QQTgKWBQRf8jvNwHuAf4P8BLgU8CFknZuKHdsjmOriNitzfpPB54CtgPeD5zR7ls5\ngKR5kuZV2IfTgcUdlvkd8DngrArrraJMDAPLtToeC4G3SHrFIGN4Z0RsBewFTCf97UYVSZsA3wcu\nAbYF5gD/LelVhcWanpuS9gZeD7wCuAaYm6e/BPg4/X+8dgKWj6HtdsVYTSzFD6/r8/NmQ1jnTOCn\nA28i4vGImBcRKyPi2Yi4BPgN6R+yEklbAn8B/FNEPBYR15A+FA4fQryN2zgUeBi4ot1yEXFRRHwP\neLCubVeNodPxiIgngaXAO0ps89WSfiPpsMZ5EbEauBR4TV52rqRf5xrorcVv+A3rPFrS/xTe3ynp\n24X390iall+vlPQ2Sd8AJgP/k2sInyiscpqkZblm8S1Jm7fZn1IxArsDOwCnRsQzEfFj4GeUO6d2\nAa6JiD+S/la75un/AvxrRDxaYh3FmHeQ9F1J9+e/xfF5+omSvtOw7FcHakStypXc5qtzrexhpSan\nd+XpPwbeAvx7/ju8qknZSZIuytt9UNK/d1pvnrdS0sea/S2bbbdYg5W0p6Qb89/1W8DmDTG1PBbt\ntltifwZ9jMdiYtkTuAFA0takf4ilpA9+8vRL8snR7HFJk3W+FmjXlLUd8Co2/kbyBUkPSPqZWre1\nvwpYHxG/Kkz7JdC2xlKWpBeTmo7+ro719SCGMsfjNuB1Hba5F3AZcFxEfLPJ/EnALOAXedKvgTeR\naqCfJn3D377Jqn8KvEnSCyTtQPrC8sa8zl2BrYBlxQIRcTjwW3JtKSJOKcx+LzCD9IG+B6l23ErZ\nGJsROYlmrc7N5Xn/tgAOAJZLmg7sFhHnl9xW2qD0AuB/SH+/iXl9J0h6B3ABMEvS+LzsONKxOL9D\nuU7b3DSX/V/g5cBxwHmSdouItwJX81xt7VcNZceRanl3AzvnbV/Qab2FVTT9W7bbrqTNgO8B3yDV\nLr9N+mJV5hi23W6H/Rn0MYaxmVimAR+X9BApoQTpH3pDN88RcVBEbN3icVCTdW4NrGu2sXzCnQec\nExG3F2adSPq2NxFYQPq2+somq9gKaPwW+CgwvtTedvZZ4MyIWFXT+rodQ5njsY70N2nlTaQmsyNy\nbbLoe5IeJjXz/BT4PEBEfDsifpdroN8C7gT2blxxRNyVtz8NeDMpef1O0u6kptGrI+LZEvs54LS8\n3YdI/+jTWi1YNkbSl6C1pP+DTSW9Pcf2ojy/5bkZEbcA3wWuI9WyTgFOA45Xuuh8laTz8pe2Tt4A\nTIiIz0TEU/nYfQ04NCLuBm4EBmpdbwWeiIjr2pUrsc19SefQSbnsj0kfrhvVWpvYm1TT+3hulXgy\n15jLrrf037Ih3k2Br0TE0xHxHZ7f4lLmWLTabrv9GcoxZpMyC40Wkl4IvBrYpeYP0t/T5IM+Z/1v\nkK4HHFucFxHXF96eo9QcMwv4t4bVPAa8uGHaS2iSyHJtar/8dqCaPXBjwjWNSVGpSeZtpFpcbSRd\nSfqgauZnEbFfYdmqMZQ5HuNJzWqtHAP8tMXF0YMj4keNEyUdQapR7ZwnbQW8rMX6fwrsD/xJfv0w\n6Xi8kUKTaUn3Fl4/QfogaKpsjBHxtKSDSefaicAS4ELgj3l+23MzIk4FTs3b/AhwFelL6hzS3/FE\n0rWXuR32bSdgh5zIB4wjfXsHOJ/0wXwu8L78vky5dnYA7mlI7neTkmgnk4C7I2L9INdb+m/ZsN7V\nxS++eb0DyhyLVttttz9DOcZjK7GQqvqPd0oqki4lfatt5uqImNkwbRmpiWbDNwlJAs4kXWCeFRFP\nd4gtSM0RjX4FbCJpSkTcmae9jiYX+oqJQ/nCfUTMa7PN/UkfQr9N4bIVME7S1IjYq0O8LUXE/hUW\nrxpDmePxaqDdnWXHACdKOjUi/rZTgJJ2In1bOwC4NiKekXQTzf9ekJLHO0lND58nJZb3kxLLv7co\nM6SBkarGGBHLKCR/ST8HzmkT20bryU28c0j79U5gWU5ai4GPlgj7HuA3ETGlxfxvA19SurHmkLyd\nMuXa+R0wSdILCklgMum8KhPvZEmbNPkwHsp621kDTJSkQnKZTGr2HIhpsMei3f4MZb1jrilsT0rc\neRERM+O5O2IaH41JBWARG39DP4P0AffOeO5uMSBd25H0DkmbS9pE0vtJzSY/bBLL48BFwGckbSlp\nP+BdpJrQUC0AXkmqGk8D5gM/oMWF7xzr5qRvLuMG4u9lDJ2OR47v9cDlbba5jtTm/GZJJ5WIcUvS\nh+v9eRtH8/zrEY1+SroYu0X+EnN13t5Lee6aTaP7eO5C+GBUilHSHvnv9yJJHwO2B86ucm4CXwbm\nRcQTpGuUb1C6PXt/4K4SMd8ArFO6UL+FpHGSXiPpDQARcT9wJfBfpA+528qU6+B60rf2T+RmwP1J\nSfGCkvGuAU7K597mkv6shvW2cy2wntTUuKmkd/P85s2hHIt2+zOU9Y65xDINuKUL6z2XdKFxC9jw\n7fFDeXv36rnfA7w/L78p6bbd+4EHSBf6Dh64aCfpUkmfLKz/b4AtSO3i5wMfjogh35oYEU9ExL0D\nD1Iz05P5H7pZHJ8C/kBq4vir/HpIt5d2iqFFHO2OxzuBKyPidx22+zBwIDBT0mc7LHsr8CXSP/l9\npJs1ftZm+V/l/bg6v3+U9EH7s4h4pkWxLwCfUrpB5GPt4qkjRtIdYGtIx/AA4MBId3q1PTcHSHor\nsHVEXJy3fwPpC8E9pKTaMWHnY3EQ6f/kN3l7Xyc1bQ44n9RUen7Fcq22+RTpHJmZy/0H6Vrb7W0L\nPrfdd5KaOH8LrAL+71DXWyLed5MuuD+Ut3dRQ0yDPRbt9mfQ6wVQeGjiWkj6PLA2Ir4y3LGMZZKu\nBz6YLzKb2TBwYjEzs1qNtaYwMzPrMicWMzOrlROLmZnVyonFzMxq5cRifUc1j0dRdX11bV8dxmPp\nVtmRTqNwHJqxxonFusIfDp1FhTE3Go9nlbLdoBJjDjUpM+TxfNTjMXNscJxYbMyooZcAe07ZMYeK\n6hrPZ9SPmdPvnFhsSHKXD6vzt9Y7JB2gJuOLqMNYIWo/XkWn8Sharjuv90RJy4DHczclbdfXZB9b\nLq/2Y2F0GlOkOOZGu31odjyfV4PRIMcCGawYxJhDMYjxfNSFMXOsByLCDz8G9QB2I31r3SG/3xl4\nZX69EnhbYdn3kHpVfQGp24jHge0L81eS+ifagTTuxG2kziI3I/Xm+rek7kb+Enga+FyZdef13kTq\nyXWLMutr2MeWy+ftLQX+OS+3K6nrlnfksjuR+o8an9+PI3Wjsm/jMSp5fN7W7H2OawXwyRzHW0n9\noe3W7tg22ddLSB1mNntc0uFc2A54Eti9xHnzOeDsNvNXkrpx2YvU1chBLfZ7Eqnvv8+WOYZ+9O7h\nGosNxTPAC4GpkjaN9O31180WjHJjhTQbN6LTeBRl1n1aRNwTqTPQjutr0G75tmNWRPsxRQZzfNrF\nOOSxQKL6OERA2zGHhqJrY+ZY9zmx2KBFxArgBGAesFbSBUqjJm5E0hH5Au/D+UPhNWw8VkjjuBFb\n0Xk8ijLrvqfwuuP6GrRbfsOYFYVtf5L07X3AwJgi8PwxRZ6n5PFpF2PVsUBqueCtNmMODdExwM+j\n9Zg5W0fEThHxN/kLw1CPodXIicWGJCLOjzRw106kbttPHpg1sIyeGyvkWOClEbE1qZfpVuOZFG0Y\nj6IwbXLFdReTQtv1Vdz+wJgVxW/24yNiVmHZbwP767kxRTZKLIPYh0YbxgJpiHF1mzIbUepF+rEW\nj0ubLF8cc+gvovOYQ1UcQxor5NSSsQ/lHLOaObHYoEnaTdJblUbmfJLUjf7At+bi+CJVxzMp6jQe\nRdV1d1pfleU7jlkRrccUKSqzD+3Ga6llLJCoPg5RyzGHmlG18Xy6PWaOdZETiw3FC0njbjxAamp5\nOfAPed6G8UVIw9pWGStkg+g8HkXVsVLarq/K8lF+zIqNxhRp2EaZfWg5Xkt0aSyQdtR5zKEhj+cT\nXRwzx7rL3eabmVmtXGMxM7NaObGYmVmtnFjMzKxWTixmZlYrJxYzM6vVmOzt9WUve1nsvPPOwx1G\nT73xjW8E4Nprrx3mSEaGpUuX8vrXt+wvcUzxuWFlLV269IGImNBpuTF5u/H06dNjyZIlwx1GT519\n9tkAHHXUUcMax0ghibF47jfjc8PKkrQ0IqZ3Ws5NYWZmVisnFjMzq5UTi5mZ1cqJxczMauXEYmZm\ntXJiMTOzWjmxmJlZrZxYzMysVk4sZmZWqzHZpYuNXjvP/cGG1ytP+vNhjMRs7HKNxczMauUai40J\nrsmY9Y5rLGZmVisnFhtzBmovxVqMmdWnp01hkmYAXwXGAV+PiJMa5u8O/BewF/CPEfHFPH034FuF\nRXcF/jkiviJpHvDXwP153icjYlFXd8T6QpnE4SYys/r1LLFIGgecDhwIrAIWS1oYEbcWFnsIOB44\nuFg2Iu4AphXWsxq4uLDIqQNJyMzMhlcvm8L2BlZExF0R8RRwATC7uEBErI2IxcDTbdZzAPDriLi7\ne6Gamdlg9TKxTATuKbxfladVdSjwzYZpx0laJuksSds0KyRpjqQlkpbcf//9zRYxM7Ma9NXtxpI2\nA94F/ENh8hnAZ4HIz18CPtBYNiIWAAsgDU3c9WCtZ3wR3mxk6WViWQ1MKrzfMU+rYiZwY0TcNzCh\n+FrS14BLhhKk9QcnE7ORq5dNYYuBKZJ2yTWPQ4GFFddxGA3NYJK2L7w9BLhlSFGamdmQ9KzGEhHr\nJR0LXEa63fisiFgu6Zg8f76kVwBLgBcDz0o6AZgaEY9K2pJ0R9mHGlZ9iqRppKawlU3mW59qrJV0\n+3Zg33psVo+eXmPJvy9Z1DBtfuH1vaQmsmZlHwde2mT64TWHaWZmQ9BXF+9tbPN1FbP+4C5dzMys\nVk4sZmZWKycWMzOrla+xmDXR6nqO7xYz68w1FjMzq5UTi5mZ1cqJxczMauXEYmZmtXJiMTOzWjmx\nmJlZrZxYzMysVk4sZmZWKycWMzOrlROLmZnVyl26mFXgwcDMOnONxczMauUai40oHszLrP+5xmJm\nZrXqaWKRNEPSHZJWSJrbZP7ukq6V9EdJH2uYt1LSzZJukrSkMH1bSZdLujM/b9OLfTEzs+Z61hQm\naRxwOnAgsApYLGlhRNxaWOwh4Hjg4BareUtEPNAwbS5wRUSclJPVXODEeqM325gv5Js118say97A\nioi4KyKeAi4AZhcXiIi1EbEYeLrCemcD5+TX59A6KZmZWQ/0MrFMBO4pvF+Vp5UVwI8kLZU0pzB9\nu4hYk1/fC2w3tDDNzGwo+umusP0iYrWklwOXS7o9Iq4qLhARISmaFc7JaA7A5MmTux+tmdkY1csa\ny2pgUuH9jnlaKRGxOj+vBS4mNa0B3Cdpe4D8vLZF+QURMT0ipk+YMGEQ4ZuZWRm9TCyLgSmSdpG0\nGXAosLBMQUlbSho/8Bp4O3BLnr0QODK/PhL4fq1Rm5lZJT1rCouI9ZKOBS4DxgFnRcRyScfk+fMl\nvQJYArwYeFbSCcBU4GXAxZIGYj4/In6YV30ScKGkDwJ3A+/t1T5ZPfyjSLPRpafXWCJiEbCoYdr8\nwut7SU1kjR4FXtdinQ8CB9QYppmZDYF/eW9mZrXqp7vCbBQZbc1f/rGk2XNcYzEzs1o5sZiZWa2c\nWMzMrFZOLGZmVisnFjMzq5UTi5mZ1cqJxczMauXEYmZmtfIPJK1nRtuPIs2sudI1FknHeTx5MzPr\npEpT2HakceovlDRDuathMzOzotKJJSI+BUwBzgSOAu6U9HlJr+xSbGZm1ocqXWPJQ//eSxpbfj2w\nDfAdSZdHxCe6EaBZv3GHlDbWlU4skj4KHAE8AHwd+HhEPC3pBcCdgBOLmZlVqrFsC7w7Iu4uToyI\nZyUdVG9YZqODay82FlW5eL95Y1KRdDJARNxWa1RmZta3qiSWA5tMm1lXIGZmNjp0TCySPizpZmA3\nScsKj98Ay6psLN+mfIekFZLmNpm/u6RrJf1R0scK0ydJ+omkWyUtz9d7BubNk7Ra0k35MatKTGZm\nVq8y11jOBy4FvgAUk8G6iHio7IYkjQNOJ9V8VpF+E7MwIm4tLPYQcDxwcEPx9cDfR8SNksYDS/Od\naANlT42IL5aNxczMuqdjYomIR4BHgMOGuK29gRURcReApAuA2cCGxBIRa4G1kp53lTMi1gBr8ut1\nkm4DJhbLmpnZyFCmKeya/LxO0qP5sW7gfYVtTQTuKbxfladVImlnYE/g+sLk43Lz3FnudsbMbHiV\nqbHsl5/Hdz+c9iRtBXwXOCEiBpLaGcBngcjPXwI+0KTsHGAOwOTJk3sSr7njSbOxqEonlO/J1zeQ\n9ClJF0nas8K2VgOTCu93zNPKbn9TUlI5LyIuGpgeEfdFxDMR8SzwNVKT20YiYkFETI+I6RMmTKgQ\ntpmZVVHlduN/ytc39gPeRuozbH6F8ouBKZJ2kbQZcCiwsEzB3OHlmcBtEfHlhnnbF94eAtxSISYz\nM6tZlV/eP5Of/xxYEBE/kPS5soUjYr2kY4HLgHHAWRGxXNIxef58Sa8AlgAvBp6VdAIwFdgDOBy4\nWdJNeZWfjIhFwCmSppGawlYCH6qwT2Y941/h21hRJbGslvSfwNuBkyW9kIojUOZEsKhh2vzC63tJ\nTWSNrgGadtMfEYdXicHMzLqrSmJ4L6m28faIeJjUs/HHuxKVmZn1rapNYZsD75FULPe/9YZkZmb9\nrEpi+T7wMHAj8MfuhGNmZv2uSmLZMSJmdC0SMzMbFapcY/m5pNd2LRIzMxsVqtRY9gOOlnQXqSlM\npNGK9+hKZNa3/Gt7s7GtSmLx2CtmZtZRlaaw3wJvAo7MI0kGsF1XojIzs75VpcbyH8CzwFuBzwDr\nSH13vaELcZmNav4Vvo1mVRLLPhGxl6RfAETE73OfX2ZmZhtUaQp7Oo8CGQCSJpBqMGZmZhtUSSyn\nARcDL5f0L6T+uz7flajMzKxvlW4Ki4jzJC0FDiDdanxwRNzWtcjMzKwvVbnGQkTcDtzepVisj/m3\nK2Y2oGNikfR37eY3DrxlZmZjW5kay8BY97uRbi0eGPXxncAN3QjKzMz6V8fEEhGfBpB0FbBXRKzL\n7+cBbv8wM7PnqXJX2HbAU4X3T+Ff3puZWYMqF+/PBW6QdHF+fzBwdu0RmZlZX6tyu/G/SLqU1F8Y\nwNER8YvuhGU2drh7FxttqjSFERE3RsRX86NyUpE0Q9IdklZImttk/u6SrpX0R0kfK1NW0raSLpd0\nZ37epmpcZmZWn0qJZShydzCnk7rfnwocJmlqw2IPAccDX6xQdi5wRURMAa7I783MbJiUTiySjhti\nbWBvYEVE3BURTwEXALOLC0TE2ohYDDxdoexs4Jz8+hzStR8zMxsmVe8KWyzpwtwspYrbmgjcU3i/\nKk8batntImJNfn0vLe5UkzRH0hJJS+6///7yUZuZWSWlE0tEfAqYApwJHAXcKenzkl7Zpdgqi4gg\n977cZN6CiJgeEdMnTJjQ48jMzMaOqhfvg1QruBdYD2wDfEfSKSWKrwYmFd7vmKeV0a7sfZK2B8jP\na0uu08zMuqD07caSPgocATwAfB34eEQ8LekFwJ3AJzqsYjEwRdIupKRwKPC+kptvV3YhcCRwUn7+\nftl9MhtpfOuxjQZVfiC5LfDuPN79BhHxrKSDOhWOiPWSjgUuA8YBZ0XEcknH5PnzJb0CWAK8GHhW\n0gnA1Ih4tFnZvOqTgAslfRC4G3hvhX0yM7OaVUksmzcmFUknR8SJZcdliYhFwKKGafMLr+8lNXOV\nKpunP0gaI8bMzEaAKtdYDmwybWZdgZiZ2ehQZjyWDwN/A+wqaVlh1njgZ90KzMzM+lOZprDzgUuB\nL/D8X7Wvi4iHuhKVmZn1rTLjsTwCPAIc1v1wrJ94OGIza6bjNRZJ1+TndZIezc8Dj0e7H6KZmfWT\nMjWW/fLz+E7LmpmZlbl4v44W3aQARMSLa43IzMz6Wpkai2sqZmZWWpUfSJpZD7l7F+tXZZrCromI\n/QpNYsXu8sNNYWOL7wQzs0588d7MzGpVpXfjzUm/wN+PVHO5GpgfEU92KTYzM+tDVa6xnAusA/4t\nv38f8A3gPXUHZWZm/atKYnlNREwtvP+JpFvrDsjMzPpbld6Nb5S078AbSfuQxk4xMzPboMxdYTeT\nrqlsCvxc0m/z+52A27sbnpmZ9ZsyTWEdR4c0s+7yb1qsn5S53fjuTsuYmZkNqPTLe0nbAFOAzQem\nRcRVdQdlZmb9q/TFe0n/D7gKuAz4dH6eV2VjkmZIukPSCklzm8yXpNPy/GWS9srTd5N0U+HxqKQT\n8rx5klYX5s2qEpOZmdWryl1hHwXeANwdEW8B9gQeLltY0jjgdGAmMBU4TNLUhsVmkmpEU4A5wBkA\nEXFHREyLiGnA64EngIsL5U4dmB8Riyrsk5mZ1axKU9iTEfGkJCS9MCJul7RbhfJ7Aysi4i4ASRcA\ns4Hib2FmA+dGRADXSdpa0vYRsaawzAHAr33tp3fcP5iZVVGlxrJK0tbA94DLJX0fqPLhPhG4p7i+\nPK3qMocC32yYdlxuOjsrXwcyM7NhUjqxRMQhEfFwRMwD/gk4Ezi4W4E1I2kz4F3AtwuTzwB2BaYB\na4AvtSg7R9ISSUvuv//+rsdqZjZWDaUTymuoVuNZDUwqvN8xT6uyzEzgxoi4b2BC8bWkrwGXNNt4\nRCwAFgBMnz695YiYZmY2NL3shHIxMEXSLqRkcWheR9FC4Nh8/WUf4JGG6yuH0dAM1nAN5hDglpLx\nmPWlxmte/sGkjTQ964QyItZLOpZ0m/I44KyIWC7pmDx/PrAImAWsIN35dfRAeUlbAgcCH2pY9SmS\nppFqUSubzDczsx6qklhulLRvRFwHg+uEMt8KvKhh2vzC6wA+0qLs48BLm0w/vEoMZmbWXYPthBJg\nMu6E0szMGrgTSjMzq1WlTiglvQ54U357dUT8sluBmZlZf6pyu/FHgb8GLsqT/lvSgoj4tzbFrE/5\n1/ZmNlhVLt5/ENgnX0RH0snAtTx3+7GZmVmlHzgKeKbw/pk8zczMbIMqNZb/Aq6XNNCr8MGkbl3M\nzMw2KJVYJInUP9eVpC5dAI6OiF90KS4zM+tTpRJLRISkRRHxWuDGLsdkZmZ9rMo1lhslvaFrkZiZ\n2ahQ5RrLPsBfSVoJPE66cB8RsUc3AjOzcoq3hrtDShsJqiSWd3QtCjMzGzWqJJb72Hg8ljO6EZSZ\nmfWvXo7HYmZmY0DPxmMxM7OxoepdYfsOvBnMeCxmZjb6VamxvJ6Nx2O5Y2C8Ft8dZmZmUC2xzOha\nFGZWC996bCNB6cRSHJfFRid3lW9mdahyjWXIJM2QdIekFZLmNpkvSafl+csk7VWYt1LSzZJukrSk\nMH1bSZdLujM/b9Or/TEzs431LLFIGgecDswEpgKHSZrasNhMYEp+zGHj38m8JSKmRcT0wrS5wBUR\nMQW4Ir83M7Nh0ssay97Aioi4KyKeAi4AZjcsMxs4N5LrgK0lbd9hvbOBc/Lrc0jd+ZuZ2TDpZWKZ\nCNxTeL8qTyu7TAA/krRU0pzCMttFxJr8+l5gu/pCNjOzqqrcFTbc9ouI1ZJeDlwu6faIuKq4QO7e\nP5oVzsloDsDkyZO7H63ZMPMdYjZcelljWQ1MKrzfMU8rtUxEDDyvBS4mNa0B3DfQXJaf1zbbeEQs\niIjpETF9woQJQ9wVMzNrpZeJZTEwRdIukjYDDgUWNiyzEDgi3x22L/BIRKyRtKWk8QCStgTeDtxS\nKHNkfn0k8P1u74iZmbXWs6awiFgv6VjgMmAccFZELJd0TJ4/H1gEzAJWAE8AR+fi2wEXpxGS2QQ4\nPyJ+mOedBFwo6YPA3cB7e7RLZmbWRE+vsUTEIlLyKE6bX3gdwEealLsLeF2LdT4IHFBvpGZmNlg9\n/YGkmZmNfk4sZmZWq3663di6wP2DmVndnFjMxgD/psV6yU1hZmZWKycWMzOrlROLmZnVyonFzMxq\n5Yv3ZmOML+Rbt7nGYmZmtXJiMTOzWjmxmJlZrXyNZQzyr+3NrJucWMzGsJ3n/oAZmz0IwFHDG4qN\nIk4sY8R1d6UPj3murZhZl/kai5mZ1cqJxczMauXEYmZmtXJiMTOzWvnivZkB7urF6tPTGoukGZLu\nkLRC0twm8yXptDx/maS98vRJkn4i6VZJyyV9tFBmnqTVkm7Kj1m93CczM3u+ntVYJI0DTgcOBFYB\niyUtjIhbC4vNBKbkxz7AGfl5PfD3EXGjpPHAUkmXF8qeGhFf7NW+mJlZa72ssewNrIiIuyLiKeAC\nYHbDMrMzANDkAAAJXUlEQVSBcyO5Dtha0vYRsSYibgSIiHXAbcDEHsZuZmYl9fIay0TgnsL7VaTa\nSKdlJgJrBiZI2hnYE7i+sNxxko4AlpBqNr9v3LikOcAcgMmTJw92H/pKsc18xmbDGIiZjSl9dVeY\npK2A7wInRMSjefIZwK7ANFIC+lKzshGxICKmR8T0CRMm9CReM7OxqJeJZTUwqfB+xzyt1DKSNiUl\nlfMi4qKBBSLivoh4JiKeBb5GanIzM7Nh0sumsMXAFEm7kJLFocD7GpZZCBwr6QJSM9kjEbFGkoAz\ngdsi4svFAgPXYPLbQ4BburkTZmONb0O2qnqWWCJivaRjgcuAccBZEbFc0jF5/nxgETALWAE8ARyd\ni/8ZcDhws6Sb8rRPRsQi4BRJ04AAVgIf6tEumY1aHlrBhqKnP5DMiWBRw7T5hdcBfKRJuWsAtVjn\n4TWHaWZmQ9BXF+/NzGzkc2IxM7NaObGYmVmtnFjMzKxW7t14lPHdPNZNvvXYynCNxczMauXEYmZm\ntXJiMTOzWvkai5kNSqvreb72Yk4so4Av2JvZSOKmMDMzq5VrLGZWK9+SbK6xmJlZrVxj6VO+rmJm\nI5UTSx9xMrF+42axscmJxcx6wklm7PA1FjMzq5VrLCOcm79sNPKPK0c311jMzKxWPa2xSJoBfBUY\nB3w9Ik5qmK88fxbwBHBURNzYrqykbYFvATsDK4H3RsTve7E/3eJaio1VrsmMDj1LLJLGAacDBwKr\ngMWSFkbErYXFZgJT8mMf4Axgnw5l5wJXRMRJkubm9yf2ar/q4ERiZqNJL2ssewMrIuIuAEkXALOB\nYmKZDZwbEQFcJ2lrSduTaiOtys4G9s/lzwGupA8Si5OJWXllajKNy7iWM3x6mVgmAvcU3q8i1Uo6\nLTOxQ9ntImJNfn0vsF1dAdfBCcSse9r9f9X1v9cqQfn26dZG1V1hERGSotk8SXOAOfntY5LuKMx+\nGfBAt+MboiHF+J81BtJB3xzLu08+aLjj6KQnx3KI50Y//L1hCHHq5HqWKaEfjuVOZRbqZWJZDUwq\nvN8xTyuzzKZtyt4nafuIWJObzdY223hELAAWNJsnaUlETC+7I8OhH2KE/oizH2KE/oizH2KE/oiz\nH2Isq5e3Gy8GpkjaRdJmwKHAwoZlFgJHKNkXeCQ3c7UruxA4Mr8+Evh+t3fEzMxa61mNJSLWSzoW\nuIx0y/BZEbFc0jF5/nxgEelW4xWk242Pblc2r/ok4EJJHwTuBt7bq30yM7ON9fQaS0QsIiWP4rT5\nhdcBfKRs2Tz9QeCAIYbWtIlshOmHGKE/4uyHGKE/4uyHGKE/4uyHGEtR+iw3MzOrh7t0MTOzWo3q\nxCLpLElrJd1SmPYtSTflx0pJN7Uou1LSzXm5JV2McZKkn0i6VdJySR/N07eVdLmkO/PzNi3Kz5B0\nh6QVueeBXsb4r5Jul7RM0sWStm5RfriP5TxJqwt/91ktyg/nsRxp5+Xmkm6Q9Msc56fz9JF0XraK\ncaSdl63iHDHnZe0iYtQ+gDcDewG3tJj/JeCfW8xbCbysBzFuD+yVX48HfgVMBU4B5ubpc4GTm5Qd\nB/wa2BXYDPglMLWHMb4d2CRPP7lZjCPkWM4DPtah7LAeyxF4XgrYKr/eFLge2HeEnZetYhxp52Wr\nOEfMeVn3Y1TXWCLiKuChZvMkiXQH2Td7GlSDiFgTuaPNiFgH3EbqaWA2qYsa8vPBTYpv6CYnIp4C\nBrq66UmMEfG/EbE+L3Yd6fdFw6bNsSxjWI/lwPwRdF5GRDyW326aH8HIOi+bxjgCz8tWx7KMnhzL\nuo3qxNLBm4D7IuLOFvMD+JGkpUq/2u86STsDe5K+0ZTpqqZVFzhd0xBj0QeAS1sUG+5jCXBcbho5\nq0XzzUg5liPmvJQ0LjfJrQUuj4gRd162iLFoRJyXbeIccedlHcZyYjmM9t8K94uIaaQelz8i6c3d\nDEbSVsB3gRMi4tHivEh14mG/fa9VjJL+EVgPnNei6HAfyzNITQnTgDWkpqZh1ebvPWLOy4h4Jm9r\nR2BvSa9pmD/s52W7GEfSedkizhF3XtZlTCYWSZsA7yaN49JURKzOz2uBi0lV0m7FsynpQ+a8iLgo\nT75PqYsa1LqrmjLd5HQzRiQdBRwEvD9/0GxkuI9lRNyX/7GfBb7WYvsj4ViOqPOysM2HgZ8AMxhh\n52WLGEfcedkszpF2XtZpTCYW4G3A7RGxqtlMSVtKGj/wmnQx8JZmyw5VblM/E7gtIr5cmFWmq5oy\n3eR0LUalwdc+AbwrIp5oUXbYj+XAB2F2SIvtD+uxzEbSeTlh4G4qSVuQxkK6nZF1XjaNcQSel63i\nHDHnZe2G446BXj1ITQprgKdJbZMfzNPPBo5pWHYHYFF+vSvp7otfAsuBf+xijPuRmhOWATflxyzg\npcAVwJ3Aj4BtG+PM72eR7iz6dbfibBPjClL778C0+SP0WH4DuDlPXwhsP9KO5Qg8L/cAfpHjvIV8\nl9oIOy9bxTjSzstWcY6Y87Luh395b2ZmtRqrTWFmZtYlTixmZlYrJxYzM6uVE4uZmdXKicXMzGrl\nxGJmZrVyYjEzs1o5sZh1gaQPSbo3j7NxV+5ipDh/vqQ/y693VmHMoIblnsnruEXStyW9qAfhmw2J\nE4tZd7wWmBep48G/ZOMOBvcldeneyR8iYlpEvAZ4Cjim3jDN6ufEYtYde5D61oLUndC4gRmSXg38\nKiKeaSwkaVdJv5D0hibrvBr4k7zc93J378t7NRSBWVmbDHcAZqPUa4HbcqeTxwOXFObNBH7YWEDS\nbqSBnI6KiF82zNukodwHIuKh3KnhYknfjYgHu7AfZpU5sZjVTNIkYCvgMlIHqDcAHyks8g7g6IZi\nE0g9Bb87Im4tTN8iDxAFqcZyZn59vKRD8utJwBTAicVGBCcWs/q9FrgiImY0zsgX37eOiN81zHoE\n+C2p9+NiYvlDvk5TXMf+pC723xgRT0i6Eti8vvDNhsaJxax+e5C6Y2/mLaSBnho9RRqT4zJJj0XE\n+W3W/xLg9zmp7E66EcBsxPDFe7P6vZY0xkYzTa+vAETE46RRD/9W0rvarP+HwCaSbgNOotzdZWY9\n4/FYzHpI0o3APhHx9HDHYtYtTixmZlYrN4WZmVmtnFjMzKxWTixmZlYrJxYzM6uVE4uZmdXKicXM\nzGrlxGJmZrVyYjEzs1r9f0Wkh+lHjhpbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEsCAYAAADgqZWFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8HVV99/HP1wCCgAISMUBCwEaQKkaMgK+iD4pokoIB\nW3lAy60+T8TKra1Kau3zStUqUJXWSklRKGBBBAVNMUoRRUG5JEFEwkUCBpMYksg1gFwCv+ePtU4Y\ndvZl5pzZ+5x9zvf9eu3X2XNZM7+ZM+f89lozey1FBGZmZnV5yXAHYGZmo4sTi5mZ1cqJxczMauXE\nYmZmtXJiMTOzWjmxmJlZrZxYzMysVk4sZmZWKyeWmkj6vKRThjuOsU7SzZL+uM3yZZLe1cuYWpG0\nRNIBbZaPmFjr0qtjGux+JO0u6VZJ6ySd1I3Yyuy33bUh6XxJn+1VbIMx5hKLpG0lhaTHJT0p6XdD\nTQiSxgNHA/+Rp18q6VxJ9+cL5VZJMxrKXCvpqRzH45LubrP97SRdIemJvM0PDCXeFvuYkuP5rzbr\nnCBpkaSnJZ0/HDHk9dqdjy8Anx7k/pdJ+kP+fazOf8BbDWZbZUTEH0fEtYV99yyJSHqdpB9JelTS\nUkmHFZa1vTYl/YukhyXdIGnnwvwPSPpyr46hSz4B/Dgito6IXh7Li/ZbvDb60ZhLLMBUYG1EbBUR\nLwM+ApxZ/AMZhGOBBRHxhzy9CbAc+F/AK4BPAZdKmtxQ7oQcx1YRsXub7Z8FPAPsAHwQOLvdp3IA\nSXMlza1wDGcBCzus8zvgs8B5FbZbRZkYBtZrdT7mA++Q9OpBxnBIRGwF7A1MI/3uRhVJmwDfBa4E\ntgNmA/8l6bWF1Zpem5L2Ad4MvBq4HpiT578C+Dj9f752AZaMof12xVhNLMV/Xjfln5sNYZszgJ8M\nTETEExExNyKWRcTzEXEl8BvSH2QlkrYE/gz4h4h4PCKuJ/1TOGoI8Tbu4wjgEeCadutFxOUR8R3g\nwbr2XTWGTucjIp4CFgPvKbHP10n6jaQjG5dFxErg+8Dr87pzJN2ba6B3FD/hN2zzOEn/XZi+R9Jl\nhenlkqbm98skvUvS14FJwH/nGsInCpucKum2XLP4pqTN2xxPqRiBPYAdgTMj4rmI+BHwM8pdU7sC\n10fE06Tf1W55/j8B/xwRj5XYRjHmHSV9W9La/Ls4Kc8/VdK3Gtb914EaUatyJff5ulwre0Spyem9\nef6PgHcAX8m/h9c2KTtR0uV5vw9K+kqn7eZlyyR9rNnvstl+izVYSW+SdEv+vX4T2Lwhppbnot1+\nSxzPoM/xWEwsbwJuBpC0DekPYjHpHz95/pX54mj2urLJNt8AtGvK2gF4LRt/Ivm8pN9L+plat7W/\nFlgfEb8uzPsl0LbGUpakl5Oajv6mju31IIYy5+NO4I0d9rk3cBVwYkR8o8nyicBM4Bd51r3A20g1\n0H8kfcKf0GTTPwHeJuklknYkfWB5a97mbsBWwG3FAhFxFPBbcm0pIs4oLD4cmE76h74XqXbcStkY\nmxE5iWatrs0l+fi2AA4ElkiaBuweEReX3FfaofQS4L9Jv7+d8vZOkfQe4BJgpqSt87rjSOfi4g7l\nOu1z01z2f4BXAScCF0naPSLeCVzHC7W1XzeUHUeq5d0PTM77vqTTdgubaPq7bLdfSZsB3wG+Tqpd\nXkb6YFXmHLbdb4fjGfQ5hrGZWKYCH5f0ECmhBOkPekM3zxFxcERs0+J1cJNtbgOsa7azfMFdBFwQ\nEXcVFp1K+rS3E3AO6dPqa5psYiug8VPgY8DWpY62s88A50bEipq21+0YypyPdaTfSStvIzWZHZ1r\nk0XfkfQIqZnnJ8DnACLisoj4Xa6BfhO4B9inccMRcV/e/1Tg7aTk9TtJe5CaRq+LiOdLHOeAL+f9\nPkT6Q5/aasWyMZI+BK0h/R1sKundObaX5eUtr82IuB34NnAjqZZ1BvBl4CSlm84/lXRR/tDWyVuA\n8RHx6Yh4Jp+7rwJHRMT9wC3AQK3rncCTEXFju3Il9rkf6Ro6LZf9Eemf60a11ib2IdX0Pp5bJZ7K\nNeay2y39u2yId1PgXyLi2Yj4Fi9ucSlzLlrtt93xDOUcs0mZlUYLSS8FXgfsWvM/0odp8o8+Z/2v\nk+4HnFBcFhE3FSYvUGqOmQn8W8NmHgde3jDvFTRJZLk2tX+eHKhmDzyYcH1jUlRqknkXqRZXG0nX\nkv5RNfOziNi/sG7VGMqcj61JzWqtHA/8pMXN0UMj4oeNMyUdTapRTc6ztgK2b7H9nwAHAH+U3z9C\nOh9vpdBkWtIDhfdPkv4RNFU2xoh4VtKhpGvtVGARcCnwdF7e9tqMiDOBM/M+Pwr8lPQhdTbp93gq\n6d7LnA7HtguwY07kA8aRPr0DXEz6x3wh8IE8XaZcOzsCyxuS+/2kJNrJROD+iFg/yO2W/l02bHdl\n8YNv3u6AMuei1X7bHc9QzvHYSiykqv4TnZKKpO+TPtU2c11EzGiYdxupiWbDJwlJAs4l3WCeGRHP\ndogtSM0RjX4NbCJpSkTck+e9kSY3+oqJQ/nGfUTMbbPPA0j/hH6bwmUrYJykPSNi7w7xthQRB1RY\nvWoMZc7H64B2T5YdD5wq6cyI+OtOAUrahfRp7UDghoh4TtKtNP99QUoeh5CaHj5HSiwfJCWWr7Qo\nM6SBkarGGBG3UUj+kn4OXNAmto22k5t4Z5OO6xDgtpy0FgInlwh7OfCbiJjSYvllwBeVHqw5LO+n\nTLl2fgdMlPSSQhKYRLquysQ7SdImTf4ZD2W77awCdpKkQnKZRGr2HIhpsOei3fEMZbtjrinsTZR4\n8iIiZsQLT8Q0vhqTCsACNv6EfjbpH9wh8cLTYkC6tyPpPZI2l7SJpA+Smk1+0CSWJ4DLgU9L2lLS\n/sB7STWhoToHeA2pajwVmAd8jxY3vnOsm5M+uYwbiL+XMXQ6Hzm+NwNXt9nnOlKb89slnVYixi1J\n/1zX5n0cx4vvRzT6Celm7Bb5Q8x1eX+v5IV7No1W88KN8MGoFKOkvfLv72WSPgZMAM6vcm0CXwLm\nRsSTpHuUb1F6PPsA4L4SMd8MrFO6Ub+FpHGSXi/pLQARsRa4FvhP0j+5O8uU6+Am0qf2T+RmwANI\nSfGSkvGuAk7L197mkv6khu22cwOwntTUuKmk9/Hi5s2hnIt2xzOU7Y65xDIVuL0L272QdKNxC9jw\n6fHDeX8P6IXvA3wwr78p6bHdtcDvSTf6Dh24aSfp+5I+Wdj+XwFbkNrFLwY+EhFDfjQxIp6MiAcG\nXqRmpqfyH3SzOD4F/IHUxPEX+f2QHi/tFEOLONqdj0OAayPidx32+whwEDBD0mc6rHsH8EXSH/lq\n0sMaP2uz/q/zcVyXpx8j/aP9WUQ816LY54FPKT0g8rF28dQRI+kJsFWkc3ggcFCkJ73aXpsDJL0T\n2CYirsj7v5n0gWA5Kal2TNj5XBxM+jv5Td7f10hNmwMuJjWVXlyxXKt9PkO6Rmbkcv9Outd2V9uC\nL+z3EFIT52+BFcD/Hup2S8T7PtIN94fy/i5viGmw56Ld8Qx6uwAKD01cC0mfA9ZExL8MdyxjmaSb\ngA/lm8xmNgycWMzMrFZjrSnMzMy6zInFzMxq5cRiZma1cmIxM7NaObFY31HN41FU3V5d+1eH8Vi6\nVXak0ygch2ascWKxrvA/h86iwpgbjeezStluUIkxh5qUGfJ4PurxmDk2OE4sNmbU0EuAvaDsmENF\ndY3nM+rHzOl3Tiw2JLnLh5X5U+vdkg5Uk/FF1GGsELUfr6LTeBQtt523e6qk24AncjclbbfX5Bhb\nrq/2Y2F0GlOkOOZGu2Nodj5fVIPRIMcCGawYxJhDMYjxfNSFMXOsByLCL78G9QJ2J31q3TFPTwZe\nk98vA95VWPf9pF5VX0LqNuIJYEJh+TJS/0Q7ksaduJPUWeRmpN5c/5rU3cifA88Cny2z7bzdW0k9\nuW5RZnsNx9hy/by/xcD/y+vtRuq65T257C6k/qO2ztPjSN2o7Nd4jkqen3c1m85xLQU+meN4J6k/\ntN3bndsmx3olqcPMZq8rO1wLOwBPAXuUuG4+C5zfZvkyUjcue5O6Gjm4xXFPJPX995ky59Cv3r1c\nY7GheA54KbCnpE0jfXq9t9mKUW6skGbjRnQaj6LMtr8cEcsjdQbacXsN2q3fdsyKaD+myGDOT7sY\nhzwWSFQfhwhoO+bQUHRtzBzrPicWG7SIWAqcAswF1ki6RGnUxI1IOjrf4H0k/1N4PRuPFdI4bsRW\ndB6Posy2lxfed9xeg3brbxizorDvT5I+vQ8YGFMEXjymyIuUPD/tYqw6FkgtN7zVZsyhIToe+Hm0\nHjNnm4jYJSL+Kn9gGOo5tBo5sdiQRMTFkQbu2oXUbfvpA4sG1tELY4WcALwyIrYh9TLdajyTog3j\nURTmTaq47WJSaLu9ivsfGLOi+Ml+64iYWVj3MuAAvTCmyEaJZRDH0GjDWCANMa5sU2YjSr1IP97i\n9f0m6xfHHPqz6DzmUBXHk8YKObNk7EO5xqxmTiw2aJJ2l/ROpZE5nyJ1oz/wqbk4vkjV8UyKOo1H\nUXXbnbZXZf2OY1ZE6zFFisocQ7vxWmoZCySqj0PUcsyhZlRtPJ9uj5ljXeTEYkPxUtK4G78nNbW8\nCvi7vGzD+CKkYW2rjBWyQXQej6LqWCltt1dl/Sg/ZsVGY4o07KPMMbQcryW6NBZIO+o85tCQx/OJ\nLo6ZY93lbvPNzKxWrrGYmVmtnFjMzKxWTixmZlYrJxYzM6uVE4uZmdVqTPb2uv3228fkyZOHO4wR\n4a1vfSsAN9xwwzBHMnIsXryYN7+5ZV+KY5KvEwNYvHjx7yNifKf1xuTjxtOmTYtFixYNdxgjwvnn\nnw/AscceO6xxjCSSGIt/F+34OjEASYsjYlqn9dwUZmZmtXJiMTOzWjmxmJlZrZxYzMysVk4sZmZW\nKycWMzOrlROLmZnVyonFzMxq5cRiZma16mlikTRd0t2Slkqa02T5HpJukPR0cZS8PATurYXXY5JO\nycvmSlpZWDazcbtmRZPnfG/Dy8zq17O+wiSNA84iDTW6AlgoaX4eUnTAQ8BJwKHFshFxN2kI1IHt\nrASuKKxyZkR8oYvhm5lZSb3shHIfYGlE3Acg6RJgFrAhsUTEGmCNpD9ts50DgXsj4v5uBmv9r2qN\npNX6xfnLTmt3aZoZ9Dax7AQsL0yvAPYdxHaOAL7RMO9ESUcDi4C/jYiHBxeijTVuDjOrX191my9p\nM+C9wN8VZp8NfAaI/POLwF82KTsbmA0wadKkrsdq/c0Jx2zwennzfiUwsTC9c55XxQzglohYPTAj\nIlZHxHMR8TzwVVKT20Yi4pyImBYR08aP7zicgJmZDVIvaywLgSmSdiUllCOAD1TcxpE0NINJmhAR\nq/LkYcDtQw3U+pdrGmbDr2eJJSLWSzoBuAoYB5wXEUskHZ+Xz5P0atJ9kpcDz+dHiveMiMckbUl6\nouzDDZs+Q9JUUlPYsibLzcysh3p6jyUiFgALGubNK7x/gNRE1qzsE8Arm8w/quYwzVryE2Jmnfmb\n92ZmVisnFjMzq5UTi5mZ1aqvvsdi1oyfBDMbWZxYzAbJN/LNmnNTmJmZ1cqJxczMauXEYmZmtXJi\nMTOzWjmxmJlZrZxYzMysVk4sZmZWK3+Pxaxm/n6LjXVOLNaX/G17s5HLicX6hpOJWX9wYjGrgZOe\n2Qt8897MzGrlxGJmZrVyYjEzs1o5sZiZWa16mlgkTZd0t6SlkuY0Wb6HpBskPS3pYw3Llkn6laRb\nJS0qzN9O0tWS7sk/t+3FsZiZWXM9SyySxgFnATOAPYEjJe3ZsNpDwEnAF1ps5h0RMTUiphXmzQGu\niYgpwDV52szMhkkvayz7AEsj4r6IeAa4BJhVXCEi1kTEQuDZCtudBVyQ318AHFpHsGZmNji9TCw7\nAcsL0yvyvLIC+KGkxZJmF+bvEBGr8vsHgB2GFqaZmQ1FP31Bcv+IWCnpVcDVku6KiJ8WV4iIkBTN\nCudkNBtg0qRJ3Y/WzGyM6mWNZSUwsTC9c55XSkSszD/XAFeQmtYAVkuaAJB/rmlR/pyImBYR08aP\nHz+I8M3MrIxeJpaFwBRJu0raDDgCmF+moKQtJW098B54N3B7XjwfOCa/Pwb4bq1Rm5lZJT1rCouI\n9ZJOAK4CxgHnRcQSScfn5fMkvRpYBLwceF7SKaQnyLYHrpA0EPPFEfGDvOnTgEslfQi4Hzi8V8dk\n3eX+t8z6U0/vsUTEAmBBw7x5hfcPkJrIGj0GvLHFNh8EDqwxTLPaeGwWG4v66ea9jQGupZj1P3fp\nYmZmtXJiMTOzWjmxmJlZrZxYzMysVr55b9YjfkLMxgrXWMzMrFZOLGZmVisnFjMzq5UTi5mZ1cqJ\nxczMauWnwsyGgZ8Qs9HMicWGnfsHMxtd3BRmZma1cmIxM7NalU4skk6UtG03gzEzs/5XpcayA7BQ\n0qWSpisP52hmZlZUOrFExKeAKcC5wLHAPZI+J+k1XYrNzMz6UKV7LBERwAP5tR7YFviWpDO6EJuZ\nmfWh0o8bSzoZOBr4PfA14OMR8ayklwD3AJ/oTohmZtZPqtRYtgPeFxHviYjLIuJZgIh4Hji4zAby\nvZm7JS2VNKfJ8j0k3SDpaUkfK8yfKOnHku6QtCQnuYFlcyWtlHRrfs2scExmZlazKl+Q3Dwi7i/O\nkHR6RJwaEXd2KixpHHAWcBCwgvQgwPyIuKOw2kPAScChDcXXA38bEbdI2hpYLOnqQtkzI+ILFY7F\nbMTwt/BttKlSYzmoybwZFcrvAyyNiPsi4hngEmBWcYWIWBMRC4FnG+aviohb8vt1wJ3AThX2bWZm\nPdIxsUj6iKRfAbtLuq3w+g1wW4V97QQsL0yvYBDJQdJk4E3ATYXZJ+aYzvN3bczMhleZGsvFwCHA\n/Pxz4PXmiPiLLsa2EUlbAd8GTomIx/Lss4HdgKnAKuCLLcrOlrRI0qK1a9f2JF4zs7Go4z2WiHgU\neBQ4coj7WglMLEzvnOeVImlTUlK5KCIuL8S3urDOV4Erm5WPiHOAcwCmTZsWlSK32rnjSbPRq0xT\n2PX55zpJj+XXuoHpCvtaCEyRtKukzYAjSLWgjvK3/M8F7oyILzUsm1CYPAy4vUJMZmZWszI1lv3z\nz62HsqOIWC/pBOAqYBxwXkQskXR8Xj5P0quBRcDLgeclnQLsCewFHAX8StKteZOfjIgFwBmSpgIB\nLAM+PJQ4zcxsaKp8QfL9wA8iYp2kTwF7A5+JiF+U3UZOBAsa5s0rvH+A1ETW6Hqgad9kEXFU2f2b\nmVn3VXnc+B9yUtkfeBepaWpehzJmZjbGVEksz+WffwqcExHfAzarPyQzM+tnVb55v1LSfwDvBk6X\n9FI8UJhV4CfBzMaGKonhcNKN93dHxCOkno0/3pWozMysb1WpsTwHbA68X1Kx3P/UG5LZ2OV+w2w0\nqJJYvgs8AtwCPN2dcMzMrN9VSSw7R8T0rkViZmajQpV7LD+X9IauRWJmZqNClRrL/sBxku4jNYWJ\nNFrxXl2JzMzM+lKVxFJl7BUzMxujqiSW3wIfBHaLiE9LmgS8Gri/fTEzGww/IWb9qkpi+XfgeeCd\nwKeBdaRu7N/ShbhslPCXIs3GniqJZd+I2FvSLwAi4uHc/b2ZmdkGVZ4Ke1bSOFL39EgaT6rBmJmZ\nbVAlsXwZuAJ4laR/InVl/7muRGVmZn2rdFNYRFwkaTFwIOlR40Mj4s6uRWZmZn2pyj0WIuIu4K4u\nxWJmZqNAx8Qi6W/aLW8cg97MzMa2MjWWgbHudyc9Wjw/Tx8C3NyNoMzMrH91TCwR8Y8Akn4K7B0R\n6/L0XMBfUjAzsxep8lTYDsAzheln8rzSJE2XdLekpZLmNFm+h6QbJD0t6WNlykraTtLVku7JP7et\nEpOZmdWrys37C4GbJV2Rpw8Fzi9bOH8H5izgIGAFsFDS/Ii4o7DaQ8BJedtly84BromI03LCmQOc\nWuG4zEY8d+9i/aR0jSUi/gk4Dng4v46LiM9X2Nc+wNKIuC8ingEuAWY17GNNRCwEnq1QdhZwQX5/\nAQ1JyczMeqvq48a3kEaQHIydgOWF6RXAvjWU3SEiVuX3D1Cxec7MzOpV5R7LiBcRQe5yppGk2ZIW\nSVq0du3aHkdmZjZ2lE4skk4c4o3xlcDEwvTOed5Qy66WNCHHOAFY02wDEXFOREyLiGnjx4+vFLiZ\nmZVX9amwhZIuzU9oqeK+FgJTJO2ae0U+ghe+EzOUsvOBY/L7Y4DvVozLzMxqVKWvsE9J+gfg3aSb\n+F+RdClwbkTcW6L8ekknAFcB44DzImKJpOPz8nmSXg0sAl4OPC/pFGDPiHisWdm86dOASyV9iDTo\n2OFlj8m6w2OwmI1tVW/eh6QHSDfJ1wPbAt+SdHVEfKJE+QXAgoZ58wrvHyA1c5Uqm+c/SOoY08zM\nRoDSiUXSycDRwO+BrwEfj4hnJb0EuAfomFjMzGz0q1Jj2Q54X0S8aIz7iHhe0sH1hmVmZv2qSmLZ\nvDGpSDo9Ik71uCxmvdN4D8vfxLeRpspTYQc1mTejrkDMzGx0KDMey0eAvwJ2k3RbYdHWwM+6FZiZ\nmfWnMk1hFwPfBz5P6uBxwLqIeKgrUZmZWd8qMx7Lo8CjwJHdD8fMzPpdx3sskq7PP9dJeiz/HHg9\n1v0Qzcysn5Spseyff27daV0zM7MyN+/X0aLHYICIeHmtEZmZWV8rU2NxTcXMzEobVeOxmJnZ8CvT\nFHZ9ROxfaBIrdpcfbgozcI/GZvYC37w3M7NaVendeHPSN/D3J9VcrgPmRcRTXYrNzMz6UJVOKC8E\n1gH/lqc/AHwdeH/dQZmZWf+qklheHxF7FqZ/LOmOugMys2qK97fc07GNBFWeCrtF0n4DE5L2JQ0j\nbGZmtkGZp8J+Rbqnsinwc0m/zdO7AHd1NzwzM+s3ZZrCPDqkmZmV1rEpLCLub/eqsjNJ0yXdLWmp\npDlNlkvSl/Py2yTtnefvLunWwusxSafkZXMlrSwsm1klJjMzq1eVm/dI2haYAmw+MC8iflqy7Djg\nLNJIlCuAhZLmR0TxAYAZeftTgH2Bs4F9I+JuYGphOyuBKwrlzoyIL1Q5FjMz644q32P5P8DJwM7A\nrcB+wA3AO0tuYh9gaUTcl7d3CTALKCaWWcCFERHAjZK2kTQhIlYV1jkQuLdqbcnq52/bm1kzVZ4K\nOxl4C3B/RLwDeBPwSIXyOwHLC9Mr8ryq6xwBfKNh3om56ey8XKsyM7NhUiWxPDXwLXtJL42Iu4Dd\nuxNWc5I2A94LXFaYfTawG6mpbBXwxRZlZ0taJGnR2rVrux6rmdlYVSWxrJC0DfAd4GpJ3wWqNEet\nBCYWpnfO86qsMwO4JSJWD8yIiNUR8VxEPA98ldTktpGIOCcipkXEtPHjx1cI28zMqih9jyUiDstv\n50r6MfAK4AcV9rUQmCJpV1KyOILULUzRfOCEfP9lX+DRhvsrR9LQDNZwD+Yw4PYKMZmNKv4Wvo0E\nQ+mE8noq1HgiYr2kE4CrgHHAeRGxRNLxefk8YAEwE1gKPAkcV9j/lqQnyj7csOkzJE3NMS1rstzM\nzHqop51QRsQCUvIozptXeB/AR1uUfQJ4ZZP5R5Xdv5mZdZ87oTQbpdwsZsPFnVCamVmtBtsJJcAk\n3AmlmZk1cCeUZmZWqzJj3m/4roqkNwJvy5PXRcQvuxWYmZn1pyqPG58M/F/g8jzrvySdExH/1qaY\njTLuH8zMOqnyVNiHSD0NPwEg6XRSJ5ROLGZmtkGVp8IEPFeYfi7PMzMz26BKjeU/gZskDYyDcihw\nbv0hmZlZPyuVWCSJ1KPwtaQuXQCOi4hfdCkuMzPrU6USS0SEpAUR8Qbgli7HZGZmfazqN+/f0rVI\nzMxsVKhyj2Vf4C8kLQOeIN24j4jYqxuBmVl93G+Y9VKVxPKerkVhZmajRpXEspqNx2M5uxtBmZlZ\n/+rpeCxmZjb6eTwWMzOrVZXEcouk/SLiRvB4LGOJ+wczsyqqJJY3s/F4LHcPjNfip8PMzAyqJZbp\nXYvCzHrGjx5bt5VOLMVxWQZL0nTgX4FxwNci4rSG5crLZwJPAsdGxC152TLSwwPPAesjYlqevx3w\nTWAysAw4PCIeHmqsZmY2OFW+eT8kksYBZwEzgD2BIyXt2bDaDGBKfs1m48eZ3xERUweSSjYHuCYi\npgDX5GkzMxsmPUsswD7A0oi4LyKeAS4BZjWsMwu4MJIbgW0kTeiw3VnABfn9BaRel83MbJj0MrHs\nBCwvTK/I88quE8APJS2WNLuwzg4RsSq/fwDYob6Qzcysqio374fb/hGxUtKrgKsl3RURPy2ukHth\njmaFczKaDTBp0qTuR2tmNkb1ssayEphYmN45zyu1TkQM/FwDXEFqWgNYPdBcln+uabbziDgnIqZF\nxLTx48cP8VDMzKyVXiaWhcAUSbtK2gw4ApjfsM584Ggl+wGPRsQqSVtK2hpA0pbAu4HbC2WOye+P\nAb7b7QMxGy0mz/nehpdZXXrWFBYR6yWdAFxFetz4vIhYIun4vHwesID0qPFS0uPGx+XiOwBXpKeR\n2QS4OCJ+kJedBlwq6UPA/cDhPTokMzNroqf3WCJiASl5FOfNK7wP4KNNyt0HvLHFNh8EDqw3UjMz\nG6xeNoWZmdkY0E9PhVkPuc3dzAbLNRYzM6uVayxmBrhzSquPayxmZlYrJxYzM6uVm8JsA9+wN7M6\nuMZiZma1cmIxM7NaObGYmVmtnFjMzKxWvnlvZhvxd1psKFxjMTOzWjmxmJlZrZxYzMysVk4sZmZW\nK9+8N7O2Js/5HtM3exCAY4c3FOsTrrGYmVmtXGMZ4268L30Snet+wsysJq6xmJlZrXqaWCRNl3S3\npKWS5jRZLklfzstvk7R3nj9R0o8l3SFpiaSTC2XmSlop6db8mtnLYzIzsxfrWVOYpHHAWcBBwApg\noaT5EXFHYbUZwJT82hc4O/9cD/xtRNwiaWtgsaSrC2XPjIgv9OpYzMystV7eY9kHWBoR9wFIugSY\nBRQTyyzA0YMHAAAJYklEQVTgwogI4EZJ20iaEBGrgFUAEbFO0p3ATg1lraRidx3TNxvGQKzvuKsX\nK6OXTWE7AcsL0yvyvErrSJoMvAm4qTD7xNx0dp6kbesK2MzMquurm/eStgK+DZwSEY/l2WcDuwFT\nSbWaL7YoO1vSIkmL1q5d25N4zczGol4mlpXAxML0znleqXUkbUpKKhdFxOUDK0TE6oh4LiKeB75K\nanLbSEScExHTImLa+PHjh3wwZmbWXC8Ty0JgiqRdJW0GHAHMb1hnPnB0fjpsP+DRiFglScC5wJ0R\n8aViAUkTCpOHAbd37xDMzKyTnt28j4j1kk4ArgLGAedFxBJJx+fl84AFwExgKfAkcFwu/ifAUcCv\nJN2a530yIhYAZ0iaCgSwDPhwjw7JbEzzjXxrpaffvM+JYEHDvHmF9wF8tEm56wG12OZRNYdpZmZD\n4C5dzGzIXHuxor56KszMzEY+JxYzM6uVm8LGiMnuvdjMesSJxcxq5fst5qYwMzOrlROLmZnVyk1h\no5jvq5jZcHBiMbOu8f2WsclNYWZmVivXWMysJ1x7GTtcYzEzs1q5xjLK+Ia99QPXXkY311jMzKxW\nrrGMAq6lWD9z7WX0cWIxsxHDSWZ0cFOYmZnVyjUWMxuRXHvpX04sfcr3VWwscZLpL04sZtZXnGRG\nvp4mFknTgX8FxgFfi4jTGpYrL58JPAkcGxG3tCsraTvgm8BkYBlweEQ83Ivj6TXXUsxezElmZOpZ\nYpE0DjgLOAhYASyUND8i7iisNgOYkl/7AmcD+3YoOwe4JiJOkzQnT5/aq+PqNicTs3Ia/1acaIZP\nL2ss+wBLI+I+AEmXALOAYmKZBVwYEQHcKGkbSRNItZFWZWcBB+TyFwDXMooSi5kNTpkPZU4+3dHL\nxLITsLwwvYJUK+m0zk4dyu4QEavy+weAHeoKuG6ufZiNLHX9TTpBvdiounkfESEpmi2TNBuYnScf\nl3R3h81tD/y+zvi6ZEhx/keNgXTQL+cTYPv7Tz+4H2Lt2Tkd4nXSL7/7Qcep02uOpLPhOqe7lFmp\nl4llJTCxML1znldmnU3blF0taUJErMrNZmua7TwizgHOKRuspEURMa3s+sPFcdavX2J1nPXqlzhh\n5Mfay2/eLwSmSNpV0mbAEcD8hnXmA0cr2Q94NDdztSs7Hzgmvz8G+G63D8TMzFrrWY0lItZLOgG4\nivTI8HkRsUTS8Xn5PGAB6VHjpaTHjY9rVzZv+jTgUkkfAu4HDu/VMZmZ2cZ6eo8lIhaQkkdx3rzC\n+wA+WrZsnv8gcGC9kQIVms2GmeOsX7/E6jjr1S9xwgiPVel/uZmZWT3cu7GZmdVqzCUWSedJWiPp\n9sK8b0q6Nb+WSbq1Rdllkn6V11vU5TgnSvqxpDskLZF0cp6/naSrJd2Tf27bovx0SXdLWpp7JOh1\nnP8s6S5Jt0m6QtI2Lcr35Jy2iXOupJWF3//MFuWH+3yOxGt0c0k3S/pljvUf8/yRdo22inOkXaOt\n4hxR12gpETGmXsDbgb2B21ss/yLw/1osWwZs36M4JwB75/dbA78G9gTOAObk+XOA05uUHQfcC+wG\nbAb8Etizx3G+G9gkzz+9WZy9PKdt4pwLfKxD2WE/nyP0GhWwVX6/KXATsN8IvEZbxTnSrtFWcY6o\na7TMa8zVWCLip8BDzZZJEumpsm/0NKgmImJV5A44I2IdcCepB4JZpK5ryD8PbVJ8Q/c5EfEMMNAF\nTs/ijIj/iYj1ebUbSd89GjZtzmcZw34+B5aPsGs0IuLxPLlpfgUj7xptGucIvEZbnc8yenY+yxhz\niaWDtwGrI+KeFssD+KGkxUrf5O8JSZOBN5E+wZTpwqZV1zhd1RBn0V8C329RrOfntEmcJ+bmkPNa\nNNuMpPM5oq5RSeNys9wa4OqIGJHXaIs4i0bENdomzhF5jbbixPJiR9L+k+D+ETGV1AvzRyW9vdsB\nSdoK+DZwSkQ8VlwWqQ48Ih7raxWnpL8H1gMXtSja03PaJM6zSc0HU4FVpGamYdfm9z6irtGIeC7v\nb2dgH0mvb1g+Iq7RdnGOpGu0RZwj8hptx4klk7QJ8D7S2C5NRcTK/HMNcAWp+tnNmDYl/XO5KCIu\nz7NXK3Vdg1p3YVOm+5xux4mkY4GDgQ/mfzAb6eU5bRZnRKzOf8zPA19tsf+Rcj5H3DVa2O8jwI+B\n6YzAa7RFnCPuGm0W50i8RjtxYnnBu4C7ImJFs4WStpS09cB70o2/25utW4fcln4ucGdEfKmwqEwX\nNmW6z+lqnEoDs30CeG9EPNmibM/OaZs4JxRWO6zF/of9fGYj7RodP/AklaQtSOMl3cXIu0abxjkC\nr9FWcY6oa7SU4XhiYDhfpGaEVcCzpHbID+X55wPHN6y7I7Agv9+N9KTFL4ElwN93Oc79SU0ItwG3\n5tdM4JXANcA9wA+B7RpjzdMzSU8U3dvNWNvEuZTU5jswb95wntM2cX4d+FWePx+YMBLP5wi9RvcC\nfpFjvZ38pNoIvEZbxTnSrtFWcY6oa7TMy9+8NzOzWrkpzMzMauXEYmZmtXJiMTOzWjmxmJlZrZxY\nzMysVk4sZmZWKycWMzOrlROLWRdI+rCkB/L4GfflrkOKy+dJ+pP8frIK4wM1rPdc3sbtki6T9LIe\nhG82JE4sZt3xBmBupA4F/5yNOw7cj9RVeyd/iIipEfF64Bng+HrDNKufE4tZd+xF6jcLUtdB4wYW\nSHod8OuIeK6xkKTdJP1C0luabPM64I/yet/J3bgv6eUQDmZlbDLcAZiNUm8A7sydSp4EXFlYNgP4\nQWMBSbuTBmg6NiJ+2bBsk4ZyfxkRD+XOChdK+nZEPNiF4zCrzInFrGaSJgJbAVeROju9GfhoYZX3\nAMc1FBtP6gX4fRFxR2H+FnphfPvrSD0fA5wk6bD8fiIwBXBisRHBicWsfm8AromI6Y0L8s33bSLi\ndw2LHgV+S+rduJhY/pDv0xS3cQCpC/23RsSTkq4FNq8vfLOhcWIxq99epG7Wm3kHaQCnRs+Qxtq4\nStLjEXFxm+2/Ang4J5U9SA8CmI0YvnlvVr83kMbOaKbp/RWAiHiCNJrhX0t6b5vt/wDYRNKdwGmU\ne7rMrGc8HotZD0m6Bdg3Ip4d7ljMusWJxczMauWmMDMzq5UTi5mZ1cqJxczMauXEYmZmtXJiMTOz\nWjmxmJlZrZxYzMysVk4sZmZWq/8PANm0iEcPuHUAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -524,7 +524,7 @@ { "data": { "text/html": [ - "P = 25.0(41) kPa with a 95% level of confidence" + "P = 25.0(41) kPa with a 95% level of confidence" ], "text/plain": [ "P = 25.0(41) kPa with a 95% level of confidence" @@ -621,36 +621,36 @@ " \n", "
\n", "
Force
\n", - "
0.934 N
\n", - "
0.055 N
\n", + "
0.934 N
\n", + "
0.055 N
\n", "
27
\n", "
0.70
\n", "
\n", "
\n", "
Side B
\n", - "
3.03 mm
\n", - "
0.17 mm
\n", + "
3.03 mm
\n", + "
0.17 mm
\n", "
8.2
\n", "
0.68
\n", "
\n", "
\n", "
Side A
\n", - "
1.234 cm
\n", + "
1.234 cm
\n", "
1.9%
\n", "
20
\n", "
0.22
\n", "
\n", "
\n", "
P
\n", - "
25.0 kPa
\n", - "
2.1 kPa
\n", + "
25.0 kPa
\n", + "
2.1 kPa
\n", "
\n", "
\n", "
\n", "
\n", "
Uc at k = 2.0
\n", "
\n", - "
4.1 kPa
\n", + "
4.1 kPa
\n", "
\n", "
\n", "
\n", @@ -834,7 +834,7 @@ { "data": { "text/html": [ - "distance = 3.46(12) m with ν = 6" + "distance = 3.46(12) m with ν = 6" ], "text/plain": [ "distance = 3.46(12) m with 6 degrees of freedom" @@ -862,7 +862,7 @@ { "data": { "text/html": [ - "velocity = 0.778(48) m/s with ν = 8.2" + "velocity = 0.778(48) m/s with ν = 8.2" ], "text/plain": [ "velocity = 0.778(48) m/s with 8.2 degrees of freedom" @@ -893,7 +893,7 @@ { "data": { "text/html": [ - "velocity = 0.778(47)(9) m/s" + "velocity = 0.778(47)(9) m/s" ], "text/plain": [ "velocity = 0.778(47)(9) m/s" @@ -1083,7 +1083,7 @@ { "data": { "text/html": [ - "6.534 cm" + "6.534 cm" ], "text/plain": [ "6.534 cm" @@ -1110,7 +1110,7 @@ { "data": { "text/html": [ - "6.4008 cm2" + "6.4008 cm2" ], "text/plain": [ "6.4008 cm²" @@ -1142,10 +1142,10 @@ { "data": { "text/html": [ - "2.572 440 944 88 in" + "2.572 440 944 881 89 in" ], "text/plain": [ - "2.572 440 944 88 in" + "2.572 440 944 881 89 in" ] }, "execution_count": 24, @@ -1167,10 +1167,10 @@ { "data": { "text/html": [ - "0.992 125 984 252 in2" + "0.992 125 984 251 968 5 in2" ], "text/plain": [ - "0.992 125 984 252 in²" + "0.992 125 984 251 968 5 in²" ] }, "execution_count": 25, @@ -1199,7 +1199,7 @@ { "data": { "text/html": [ - "8 °C" + "8 °C" ], "text/plain": [ "8 °C" @@ -1256,7 +1256,7 @@ { "data": { "text/html": [ - "8 K" + "8 K" ], "text/plain": [ "8 K" @@ -1310,7 +1310,7 @@ { "data": { "text/html": [ - "300.15 K" + "300.15 K" ], "text/plain": [ "300.15 K" @@ -1343,47 +1343,50 @@ "outputs": [ { "data": { + "text/html": [ + "
    \n", + "
  • angstrom, 1 Å = 1 × 10-10 m, alias: Å
  • \n", + "
  • astronomical unit, 1 au = 1.495 978 707 × 1011 m, aliases: au, ua
  • \n", + "
  • bohr, 1 a0 = 5.291 772 106 8(12) × 10-11 m, aliases: a0, a(0)
  • \n", + "
  • cable, 1 cb = 120 ftm, alias: cb
  • \n", + "
  • chain, 1 ch = 4 rd, alias: ch
  • \n", + "
  • fathom, 1 ftm = 2 yd, alias: ftm
  • \n", + "
  • foot, 1 ft = 12 in, alias: ft
  • \n", + "
  • furlong, 1 fur = 10 ch, alias: fur
  • \n", + "
  • hand, 1 hand = 4 in
  • \n", + "
  • inch (1 prefix), 1 in = 0.0254 m, alias: in
  • \n", + "
  • league, 1 lea = 3 mi, alias: lea
  • \n", + "
  • light hour, 1 light-hour = 1 h c, alias: light-hour
  • \n", + "
  • light minute, 1 light-minute = 1 min c, alias: light-minute
  • \n", + "
  • light second, 1 light-second = 1 c s, alias: light-second
  • \n", + "
  • light year, 1 ly = 1 a c, alias: ly
  • \n", + "
  • link, 1 li = 0.66 ft, alias: li
  • \n", + "
  • metre (20 prefixes), symbol: m, aliases: m, meter
  • \n", + "
  • mile, 1 mi = 1760 yd, alias: mi
  • \n", + "
  • nautical mile, 1 M = 1852 m, aliases: M, Nm, NM, nmi
  • \n", + "
  • parsec (3 prefixes), 1 pc = 206 264.806 247 096 36 au, alias: pc
  • \n", + "
  • pica, 1 P/ = 1/6 in, alias: P/
  • \n", + "
  • Planck length, 1 lP = 1.616 228(38) × 10-35 m, alias: l(P)
  • \n", + "
  • point, 1 p = 1/12 P/, alias: p
  • \n", + "
  • rack unit, 1 U = 1.75 in
  • \n", + "
  • reduced compton wavelength, 1 ƛC = 1 ℏ/(mec), aliases: lambda(C), ƛ(C)
  • \n", + "
  • rod, 1 rd = 25 ft, alias: rd
  • \n", + "
  • siriometer, 1 Sm = 1 000 000 au
  • \n", + "
  • survey foot, 1 ft = 1200/3937 m
  • \n", + "
  • survey mile, 1 mi = 8 fur, alias: statute mile
  • \n", + "
  • thousandth of an inch, 1 mil = 0.001 in, aliases: mil, thou, thousandth
  • \n", + "
  • yard, 1 yd = 3 ft, alias: yd
" + ], "text/plain": [ - "angstrom, 1 Å = 10.0e-11 m, alias: Å\n", - "astronomical unit, 1 au = 149 597 870 700 m, aliases: au, ua\n", - "bohr, 1 a0 = 5.291 772 106 8(12)e-11 m, aliases: a0, a(0)\n", - "cable, 1 cb = 120 ftm, alias: cb\n", - "chain, 1 ch = 4 rd, alias: ch\n", - "fathom, 1 ftm = 2 yd, alias: ftm\n", - "foot, 1 ft = 12 in, alias: ft\n", - "furlong, 1 fur = 10 ch, alias: fur\n", - "hand, 1 hand = 4 in\n", - "inch (1 prefix), 1 in = 0.0254 m, alias: in\n", - "league, 1 lea = 3 mi, alias: lea\n", - "light hour, 1 light-hour = 1 h c, alias: light-hour\n", - "light minute, 1 light-minute = 1 min c, alias: light-minute\n", - "light second, 1 light-second = 1 c s, alias: light-second\n", - "light year, 1 ly = 1 a c, alias: ly\n", - "link, 1 li = 0.66 ft, alias: li\n", - "metre (20 prefixes), symbol: m, aliases: m, meter\n", - "mile, 1 mi = 1760 yd, alias: mi\n", - "nautical mile, 1 M = 1852 m, aliases: M, NM, Nm, nmi\n", - "parsec (3 prefixes), 1 pc = 206 264.806 247 au, alias: pc\n", - "pica, 1 P/ = 0.166 666 666 667 in, alias: P/\n", - "Planck length, 1 l(P) = 1.616 228(38)e-35 m, alias: l(P)\n", - "point, 1 p = 0.083 333 333 333 3 P/, alias: p\n", - "rack unit, 1 U = 1.75 in\n", - "reduced compton wavelength, 1 ƛ(C) = 1 ℏ/(m(e) c), aliases: lambda(C), ƛ(C)\n", - "rod, 1 rd = 25 ft, alias: rd\n", - "siriometer, 1 Sm = 1 000 000 au\n", - "survey foot, 1 ft = 0.304 800 609 601 m\n", - "survey mile, 1 mi = 8 fur, alias: statute mile\n", - "thousandth of an inch, 1 mil = 10.0e-4 in, aliases: mil, thou, thousandth\n", - "yard, 1 yd = 3 ft, alias: yd" + "" ] }, - "execution_count": 31, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "uc.search_units('length')\n", + "uc.search_units('length',fmt='html')\n", "# uc.search_units() with no argument displays all loaded units" ] }, @@ -1436,7 +1439,7 @@ { "data": { "text/html": [ - "1 wm" + "1 wm" ], "text/plain": [ "1 wm" @@ -1462,7 +1465,7 @@ { "data": { "text/html": [ - "0.9144 m" + "0.9144 m" ], "text/plain": [ "0.9144 m" @@ -1549,7 +1552,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The `apply` static method can also be used to apply a arbitrary numerical function to a gummy or several gummys. The apply method takes as its first parameter the function, which must take one or more float parameters and return a float or list or numpy.ndarray of floats. The second parameter is another function which gives the derivative of the first function. The remaining parameters are the gummy(s) or float(s) to which the function will be applied:" + "The `apply` static method can also be used to apply a arbitrary numerical function to a gummy or several gummys. The apply method takes as its first parameter the function, which must take one or more float parameters and return a float or list or numpy.ndarray of floats. The second parameter is another function which gives the derivative of the first function. The remaining parameters are the gummy(s) or float(s) to which the function will be applied. We also demonstrate here that gummy can be used with the mpmath package to work with extended precision floating point types:" ] }, { @@ -1562,10 +1565,10 @@ { "data": { "text/html": [ - "0.9435(73)" + "0.327 194 696 796 152 244 173 344 085 267 620 606 064 301 406 89(21)" ], "text/plain": [ - "0.9435(73)" + "0.327 194 696 796 152 244 173 344 085 267 620 606 064 301 406 89(21)" ] }, "execution_count": 37, @@ -1574,7 +1577,18 @@ } ], "source": [ - "from math import sin, cos\n", + "from mpmath import sin, cos, mpf, mp\n", + "\n", + "mp.dps = 50\n", + "# set mpmath to a precision of 50 digits\n", + "\n", + "uc.gummy.max_digits = 50\n", + "# by default gummy doesn't display more than 15 digits;\n", + "# this option does not affect the working precision only \n", + "# the display\n", + "\n", + "a = uc.gummy(mpf('1/3'),mpf('2.2e-45'))\n", + "\n", "uc.gummy.apply(sin,cos,a)" ] }, @@ -1595,10 +1609,10 @@ { "data": { "text/html": [ - "0.9435(73)" + "0.327 194 696 796 152 244 173 344 085 267 620 606 064 301 406 89(21)" ], "text/plain": [ - "0.9435(73)" + "0.327 194 696 796 152 244 173 344 085 267 620 606 064 301 406 89(21)" ] }, "execution_count": 38, @@ -1634,7 +1648,7 @@ { "data": { "text/html": [ - "y = p1 + p2 x + p3 x2

best fit parameters:
p1 = 1.7(19) m
p2 = -1.9(20) m/s
p3 = 1.37(43) m/s2
" + "y = p1 + p2 x + p3 x2

best fit parameters:
p1 = 1.7(19) m
p2 = -1.9(20) m/s
p3 = 1.37(43) m/s2
" ], "text/plain": [ "y = p(1) + p(2)*x + p(3)*x**2\n", @@ -1679,7 +1693,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAENCAYAAADgwHn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WdUVNfXgPHnghQBo6jYC/bescUuKth7j71Eo0ZjTNSY\nRBNjNMX4tyb2BhasoNgLWLAg9gbBAjYsNEGKwJz3A8qrGVRQGFD3by0Wztxzz90zIbPn3NM0pRRC\nCCEEgFFGByCEECLzkKQghBAiiSQFIYQQSSQpCCGESCJJQQghRBJJCkIIIZJIUhBCCJHEIElB07TC\nmqYd1DTtsqZplzRNG/3s+Zyapu3VNO3fZ7+tDRGPEEKI5GmGmLymaVp+IL9S6rSmadkAH6AD0B8I\nUUrN0DRtAmCtlBqf7gEJIYRIlkGSgt5FNc0VmPfsp7FS6t6zxOGhlCrzunNz586tbG1tDRClEEJ8\nOHx8fB4ppWzeVC6LIYJ5kaZptkA14ASQVyl179mhICDvm863tbXl1KlT6RafEEJ8iDRNC0hJOYN2\nNGuaZgVsAsYopR6/eEwlNlmSbbZomjZU07RTmqadevjwoQEiFUKIj5PBkoKmaSYkJgRnpdTmZ0/f\nf3bb6Hm/w4PkzlVKLVJK2Sml7Gxs3tj6EUII8ZYMNfpIA5YCV5RSf71wyA3o9+zf/QBXQ8QjhBAi\neYbqU6gH9AEuaJp29tlz3wEzABdN0wYBAUA3A8UjhBAiGQZJCkqpI4D2isP2hohBCCHEm8mMZiGE\nEEkkKQghhEgiSUEIITK56Lhovtz5JQ+eJDtAM01JUhBCiExu4v6JzD05l3NB59L9WpIUhBAiE9t/\nfT+zT8xmZM2RNC/RPN2vJ0lBCCEyqbCYMPq79qd0rtL81vw3g1zT4GsfCSGESJkvd37JvYh7eA3y\nwsLEwiDXlJaCEEJkQhsvb2T1+dVMajCJWgVrGey6khSEECKTufP4DkO3DaVmgZp83/B7g15bkoIQ\nQmQiOqWjv2t/YhNicerkhImxiUGvL30KQgiRicw5MYd91/exsM1CSucqbfDrS0tBCCEyiQv3LzBh\n3wTalm7LkOpDMiQGSQpCCJEJRMdF02tzL7KbZ2dJuyUk7jhgeHL7SAghMoFv937LxQcX2dl7J3ks\n82RYHNJSEEKIDLbdbzvzvOcxpvYYHEs6ZmgskhSEECIDBUUGMcB1AFXyVmFGsxnJlomOjmbMmDEE\nBwenezySFIQQIoPolI4+W/oQ+TSSNZ3XYJbFTK+MUooRI0Ywe/ZsvL290z0m6VMQQogM8sfRP5KG\nn5a3KZ9smSVLlrB8+XJ++OEHHB3T/9aStBSEECIDnLh9gu8Pfk/X8l1fOfzU29ubkSNH4uDgwOTJ\nkw0Sl7QUhBDCgBo3bky8cTx32t2hYLaCLGq7KNnhp48ePaJLly7kz58fZ2dnjI2NDRKfJAUhhDAg\nhcKvjB8h4SEcHnCYHOY59MrEx8fTo0cP7t+/z5EjR8iVK5fB4pOkIIQQBnSvwD0e5n3Ir01+pW7h\nusmW+f7779m/fz/Lli3Dzs7OoPFJn4IQQhjIuaBz+Jf0xzrYmvH1xydbZuPGjfz2228MGzaMAQMG\nGDhCSQpCCGEQEbERdNvYDZN4E8peKYuRpv/xe/nyZfr370+dOnWYPXt2BkQpSUEIIdKdUoph7sPw\nD/Gn3OVymMaZ6pUJCwujQ4cOWFlZsXHjRkxN9csYgiQFIYRIZ4t8FrHmwhp+avwTOcL0O5YTEhLo\n3bs3N27cYOPGjRQsWDADokwkSUEIIdLR6Xun+XLXlziUcOC7Bt8lW2by5Mns2LGDOXPmUL9+fQNH\n+DIZfSSEEOkkPCacrhu6YmNhg1MnJ9auWcvx48eJjY3F1taWadOmkTVrVqZNm8bAgQMZNmxYRoeM\nppTK6BhSxc7OTp06dSqjwxBCiNdSStHZpTPb/Lbh2d+TG4duMHToUKKiopLKmJubo9PpqFq1Kp6e\nnpibmydbV3RcNJMOTOLHRj8mO68hJTRN81FKvXF8q9w+EkKIdPCn159subqF35r9xqeFP2XSpEkv\nJQSAmJgY4uPj2bJlyysTQoIugV6be/G/4//D65ZXusctt4+EECKNedz0YML+CXQp34Wv6nwFQGBg\nYLJllVIUKFDglcdG7hjJ1qtbmeM4h1alWqVbzM9JS0EIIdLQ3Yi79NjYg1I5S7Gs3bKkdY2KFCmS\nbPlXPQ8w7fA0/vH5h/H1xjOq9qh0ife/JCkIIUQaeZrwlG4buhH5NJLN3TeTzSxb0rFp06ZhYWHx\nUnkLCwumTZuWbF3Lzizjh4M/0KdyH6bbT0/XuF8kSUEIIdLI2N1jOXrrKEvbLdXbH6F3796MGzcu\n6XGRIkVYtGgRvXv31qtnu992hm4bSosSLVjSbkmyq6imF+lTEEKINLDy7Erme8/n67pf071id73j\ngYGB/PPPP2TNmpVq1apx9OjRZOs5fvs43TZ0o1r+amzqtglTY8PObJaWghBCvKPT904zzH0YTWyb\nJLvPcmRkJO3atSMmJoYKFSpgYmKSbD1XH12l9ZrWFMhWAPde7liZWqV36HokKQghxDt4+OQhHdd3\nxMbChvVd1pPF6OUbMDqdjj59+nDhwgXWr1+PpaVlsvXceXwHBycHshhlYfdnu8ljmccQ4euRpCCE\nEG8pLiGOrhu68uDJAzZ334yNpY1emR9++IGtW7cyc+bMV+6xHBodiqOzI6HRoezqvYsSOUukd+iv\nZJCkoGnaMk3THmiadvGF56ZomnZH07Szz37SfwCuEEKkobG7x+IZ4MmStkuwK6A/WdjZ2Zlff/2V\nIUOGMHr06GTriI6Lpt26dvgF+7G1x1aq5a+W3mG/lqFaCiuA5FLkLKVU1Wc/OwwUixBCvLNlZ5Yx\nz3seX9f9mt6V9UcQeXl5MXDgQBo1asS8efOSHUEUr4unx6YeHA08ilNHJ5oWa2qI0F/LIElBKXUI\nCDHEtYQQIr0dDTzKsO3DaF68ebIdyzdu3KBDhw4UKVKETZs2Jbs3glKKz7d9jpuvG/NazaNrha6G\nCP2NMnpI6ihN0/oCp4CvlVKhyRXSNG0oMBReP/tPCCHSW0BYAJ1cOmGbwzbZjuXw8HDatGlDXFwc\n27dvJ1euXC8d9/DwAGDivoksO7uMHxv+yBc1vzBU+G+UkR3NfwPFgarAPWDmqwoqpRYppeyUUnY2\nNvodOUIIYQiRTyNpv649sfGxuPV0wzqr9UvH4+Pj6dGjB35+fmzatIkyZcokW8+sY7OYcXQGn9f4\nnCmNpxgg8pTLsJaCUur+839rmrYY2J5RsQghxJvolI6+W/py4cEF3Hu5UzZ32ZeOK6UYNWoUu3bt\nYvHixTRtmnz/wKpzqxi7Zyydy3Vmfqv5Bp2tnBIZ1lLQNC3/Cw87AhdfVVYIITLa9we+Z8vVLfzZ\n/E8cS+qPm5k1axb//PMP48ePZ/DgwcnW4e7nzkDXgTQt1hTnTs4YGxmnd9ipZpCWgqZpa4HGQG5N\n024Dk4HGmqZVBRRwE/jcELEIIURqrTy7kulHpjO0+lDG1Bmjd3zr1q2MGzeOLl268OuvvyZbx9HA\no3Td0JWq+aqytftWzLKYpXfYb0V2XhNCiNc4HHAY+1X2NCzakJ29d2Ji/PISFd7e3jRq1IhKlSrh\n4eFB1qxZ9eo4f/88jVY0Io9lHo4MOJLsJLf0JjuvCSHEO/IP8afj+o4Uty7Ohq4b9BLCjRs3aNOm\nDfny5cPNzS3ZhHAt5BoOTg5YmVqx57M9GZIQUiOjh6QKIUSmFBwVTCvnxIUWtvfarjfSKDQ0lNat\nWxMXF8eOHTvImzevXh33Iu7RwqkFcQlxHOh7gKI5ihok9nchSUEIIf4jJj6GDus7EBgeyIF+ByiZ\ns+RLx2NjY+nYsSPXrl1j7969lC1bVq+O0OhQHJwcuB95nwP9DlDOppyhwn8nkhSEEOIFOqVjgOsA\njgQeYX2X9Xxa+NOXj+t09O/fH09PT5ydnWnYsKFeHU+ePqH1mtb4Bvvi3sudWgVrGSr8dyZJQQgh\nXvDd/u9Yd3Ed0+2n061CN73jEydOZN26dcyYMYNevXrpHX+a8JROLp04cecEG7puoFnxZoYIO81I\nUhBCiGfmn5zPb0d/Y7jdcMbXG69/fP58fv/9d7744gu+/fZbveMJugT6bOnDnmt7WNpuKZ3KdTJE\n2GlKRh8JIQSw5coWRu0cRbsy7Zjbcq7eTOMtW7YwatQo2rVrx5w5c/SOK6UY7j4cl0su/NH8DwZW\nG2jI8NOMJAUhxEfP65YXvTb3olbBWqztvFZvpvGRI0fo2bMnderUYe3atRgb689EnrBvAotPL+a7\n+t8x7tNxhgo9zUlSEEJ81C49uESbNW0o/ElhtvXchoWJxUvHL1++TNu2bbG1tWXbtm1YWFjo1THj\nyAx+9/qdL+y+4Jemvxgq9HQhSUEI8dG6FX4LR2dHzLKYsfuz3XoTy27fvo2joyPm5ubs2rVLbxls\ngL+9/2bi/on0qtSLua30bzu9b6SjWQjxUQqJDsHR2ZHHsY851P8QxayLvXw8JAQHBwfCwsI4dOgQ\ntra2enU4n3dmxI4RtC3dlhXtV2Ckvf/fsyUpCCE+Os/nEVwLucauz3ZRJV+Vl45HRUXRtm1b/P39\n2bVrF1WrVtWrY5vvNvpt7Udj28a4dHXRWwLjfSVJQQjxUYmNj6WTSydO3jnJpm6baGzb+KXjzzfK\nOXbsGBs2bKBJkyZ6dey/vp+uG7pSPX91XHu4Yp7F3EDRpz9JCkKIj8aL8wiWtVtGh7IdXjqu0+kY\nPHgw27ZtY8GCBXTu3FmvjuO3j9N+XXtK5SrFzt47yWaWzVDhG8T7fwNMCCFSQCnFsO3D2HB5A382\n/5MB1QboHR83bhwrV67k559/Zvjw4Xp1nAs6R0vnluTPlp89n+0hl4V+x/P7TpKCEOKDp5Ri7O6x\nLDmzhO/qf8fXn36tV2bGjBnMmjWLL7/8ku+//17vuO8jX1o4tcDK1Ip9ffaRP1t+vTIfAkkKQogP\n3k+eP/G/E//jy1pfJjuPYOHChXz33Xf07t2bWbNm6Q0rvRl2k2arE9cw2tdn33uxBPbbkj4FIcQH\n7U+vP/nJ8ycGVB3ALEf9D/y1a9cyfPhw2rRpw/LlyzEyevm78t2Iu9ivsifyaSQe/Twok7uMIcM3\nOEkKQogP1twTc/lm7zd0q9CNxW0X680jcHd3p2/fvjRs2BAXFxdMTF4eVvrwyUOar27OgycP2Ndn\nn97Q1Q+RJAUhxAdpkc8ivtz1JR3KdsCpo5Peekaenp506dKFqlWrJruVZlhMGA5ODlwPvc7O3jup\nXai2IcPPMJIUhBAfnJVnVzJs+zBalmzJus7r9CaWnThxgjZt2lC8eHF27tzJJ5988tLxiNgIWjq3\n5OKDi7j1dNOby/Ahk6QghPigrD63mgGuA2harCmbum3CLIvZS8fPnTuHo6MjefPmZe/eveTOnful\n49Fx0bRb1w7vO95s6LoBx5KOhgw/w0lSEEJ8MJzPO9PftT9NijXBracbWU1eviXk6+tLixYtsLKy\nYt++fRQoUOCl47HxsXRc3xHPm56s7riajuU6GjL8TEGSghDig7D2wlr6bu1Lo6KNkl0C+9q1azRt\n2hSAffv26S1wF5cQR/eN3dl9bTdL2i6hd+Xehgo9U5GkIIR47zmdd6Lf1n40KNIg2YQQGBiIvb09\nMTExeHh4UKbMy8NKny9/4errytyWcxlUfZAhw89UZPKaEOK9tvLsSvpu6Utj28a493LH0tTypeN3\n797F3t6esLAw9u7dS6VKlV46rlM6BroNZP2l9fzW7DdG1hppyPAzHWkpCCHeW0tPL2XItiHYF7fH\ntYerXgshKCgIe3t7goKC2Lt3L9WrV3/p+PP1kFadW8VPjX/i23rfGjL8TElaCkKI99L8k/MZvG0w\nLUq0wK2Hm15CePDgAfb29gQGBrJjxw7q1Knz0nGlFKN3jU7aV/mHhj8YMvxMK8UtBU3T7IBJQNFn\n52mAUkpVTqfYhBAiWTO9ZjJu7zjalWmHSxcXvWGnjx49olmzZty4cYMdO3bQoEGDl44rpfh277fM\nPTmXsXXG8kvTX977bTTTSmpuHzkD3wAXAF36hCOEEK+mlGLa4Wn8cPAHupbvinMnZ72JacHBwTRr\n1gw/Pz+2b99O48aN9eqYdGASfx77kxE1R/Bniz8lIbwgNUnhoVLKLd0iEUKI11BKMX7feP7w+oM+\nlfuwrP0yshi9/BEWHByMvb09V69exc3NjWbNmunV87Pnz0w/Mp2h1Ycyp+UcSQj/kZqkMFnTtCXA\nfiD2+ZNKqc1pHpUQQrwgQZfAiB0jWOizkC/svmBuq7l6i9s9byFcvXoVV1dXWrRooVfPr4d/ZYrn\nFPpX7c/fbf7Wq0OkLikMAMoCJvz/7SMFSFIQQqSbuIQ4+rv2Z82FNUyoN4Ff7X/V+3b/vA/h6tWr\nbN26FQcHB716fjvyG5MOTKJ3pd4sabtEEsIrpCYp1FRKfdgLiQshMpWouCi6uHRhp/9OpttPZ0L9\nCXplHj58iL29PX5+fri6uiabEGZ6zWTC/gn0qNiDFR1W6K2YKv5fapKCl6Zp5ZVSl9MtGiGEeCY0\nOpQ2a9tw7NYxFrZZyNAaQ/XKPB926u/vz/bt25PtQ5h9fDbj9o6ja/murO64Wq8fQrwsNe9OHeCs\npmk3SOxTkCGpQoh0cTfiLo5Ojlx9dBWXri50Kd9Fv8yzmcoBAQG4u7snrWv0orkn5jJm9xg6leuE\ncydnSQgpkJp36ONaP1YIkSF8H/ni4ORAcHQwO3rvoFlx/W//t27domnTpgQFBbFz504aNWqkV2b+\nyfl8uetLOpbtmOyeCiJ5KU4KSqmAt72IpmnLgDbAA6VUxWfP5QTWA7bATaCbUir0ba8hhHj/nbh9\ngtZrWmNsZIxHPw9qFKihV+bGjRs0bdqUkJAQ9uzZQ926dfXKLPBewMidI+lQtgPrukhCSI03dr9r\nmlZXe/eBvCvQb2lMAPYrpUqROMxVvwdJCPHR2O63nSYrm5DdPDtHBx5NNiH4+vrSsGFDwsPD2b9/\nf7IJYf7J+YzYMYL2Zdqzvst6TI1NDRH+ByMlY7L6Aj6apq3TNK2/pmn5UnsRpdQhIOQ/T7cHVj77\n90qgQ2rrFUJ8GBb5LKL9uvaUtynP0YFHKZmzpF6Z8+fP07BhQ2JjYzl48CB2dnZ6ZeadnMfInSNp\nX6Y9Ll1dJCG8hTfePlJKDQfQNK0s0BJYoWladuAgsAs4qpRKeItr51VK3Xv27yAg71vUIYR4jyml\n+PHgj/xy+BdalmyJS1cXrEyt9Mp5e3vj4OCAhYUF+/bto2zZsnpl5p6Yy5e7vpSE8I5SPHtDKXVV\nKTVLKeUINAWOAF2BE+8ahFJKkTgRLlmapg3VNO2UpmmnHj58+K6XE0JkArHxsfTd2pdfDv/CoGqD\ncO3hmmxC8PT0xN7enhw5cnD48OFkE8KsY7P4cteXdCjbQRLCO3qrKX1KqWil1A6l1CillH4bLmXu\na5qWH+DZ7wevud4ipZSdUsrOxsbmLS8nhMgsQqNDcXBywOm8E780+YXFbRcn2xns7u6Oo6MjhQsX\n5vDhwxQrVkyvzJ9efzJ2z1g6l+uMSxdJCO8qxUlBS/SZpmk/PntcRNO0Wu9wbTeg37N/9wNc36Eu\nIcR74lrINT5d9inHbh/DuZMzkxpOSnZRunXr1tGhQwcqVqyIp6cnBQsW1Cvz25Hf+GbvN3Sr0I21\nndfKKKM0kJqWwgKgLtDz2eMIYH5KTtQ0bS1wDCijadptTdMGATOA5pqm/Qs0e/ZYCPEBOxJ4hNpL\navPgyQP29tlLr0q9ki23YMECevXqxaeffsr+/fvJnTu3XpmpnlOZsH8CPSv2THYJbfF2UjN5rbZS\nqrqmaWcAlFKhmqalqJ2mlOr5ikP2qbi+EOI95nTeiUFug7DNYcv2ntsplauUXhmlFFOnTmXy5Mm0\nbduW9evXkzVrVr0yzzun+1bpy7J2y2QtozSUmpZCnKZpxjzrENY0zQbZbEcI8QY6pWPS/kn02dKH\nTwt/yrFBx5JNCDqdjtGjRzN58mT69evH5s2bk00IE/ZN4JfDvzC42mCWt18uCSGNpaalMAfYAuTR\nNG0a0AX4Pl2iEkJ8ECKfRtJnSx+2Xt3K4GqDmd96frIdwbGxsfTr14/169fz1Vdf8eeff2Jk9PJ3\nVp3SMXrnaOZ5z2O43XDmtZony1+ng9Qsc+GsaZoPibd8NKCDUupKukUmhHivBYQF0H5dey48uMBs\nx9mMqjUq2Q7lx48f06lTJ/bv38/vv//OuHHj9Mol6BIYtn0YS84sYWydsbKFZjpK1ZKBSqmrwNV0\nikUI8YE4FHCIzi6diUuIw72XO44lk19PMygoiFatWnH+/HlWrlxJ37599crE6+Lpv7U/zhec+b7B\n9/zc5GdJCOkoNUNSV2qaluOFx9bPFroTQogk/5z6B/tV9uTKmouTQ06+MiH4+vpSt25dfH192bZt\nW7IJITY+lm4buuF8wZlpTacxtelUSQjpLDUthcpKqbDnD56NPqqWDjEJId5DsfGxjNo5isWnF9O6\nVGucOzmT3Tx7smWPHTtGmzZtyJIlC56ensmuYxQVF0Wn9Z3YfW03sx1n82XtL9P7JQhSN/rISNM0\n6+cPni19LTtWCCG48/gOjVY0YvHpxUysPxHXHq6vTAhbtmyhadOm5MyZEy8vr2QTwuPYx7R0bsme\na3tY2m6pJAQDSs2H+kzguKZpLiR2NHcBfk2XqIQQ743DAYfpuqErkU8j2dh1I53Ld35l2f/973+M\nHTuW2rVr4+bmRnLL1jyKeoSjkyPn7p9jTec19KjYIz3DF/+RmtFHqzRNO0XiYngK6CT7NQvx8VJK\nMfvEbMbtGUdx6+Ls77ufCnkqJFs2ISGBr7/+mtmzZ9OxY0ecnZ315iBAYouj+erm3Ai7wdbuW2ld\nunV6vwzxHylOCpqmmQFVgU+enddF0zSUUj+nV3BCiMwp8mkkg90Gs/7SetqXac/KDitfebsoMjKS\n3r174+bmxujRo5k5cybGxvoTzv4N/pcWTi0IjgpmV+9dNLLV32JTpL/U3D5yBcIBHyA2fcIRQmR2\nVx5eobNLZ3yDfZluP51v6337yklkd+7coW3btpw7d465c+cycuTIZMudDTqLg5MDOqXjQL8D2BV4\n28WXxbtKTVIo9GwvBSHER2rthbUM2TYES1NL9ny2B/vir16+7MyZM7Rt25bw8HC2bdtGq1atki13\nOOAwbda2IbtZdvb02UPZ3Pr7JQjDSc3oIy9N0yqlWyRCiEwrJj6GL9y/oNfmXlTLX43TQ0+/NiFs\n2bKF+vXrY2RkxJEjR16ZELb5bqOFUwvyW+XnyMAjkhAygdQkhfok7tXsq2naeU3TLmiadj69AhNC\nZA7+If7UXVqXv0/9zbi64zjQ9wAFP9Hf2wASO59nzJhBp06dqFSpEidPnqRKlSrJll1+Zjkd13ek\nYp6KHB5wmCLZi6TnyxAplJrbRy3TLQohRKa0/uJ6hmwbgomxCdt6bqNN6TavLBsTE8OQIUNwcnKi\nZ8+eLF26NNkRRkop/vD6g/H7xtO8eHM2d9+c7DacImOkZkhqwLPJa6UA8xcOBaR5VEKIDBUVF8WY\nXWNYfHoxdQvVZV2Xda/9Jn/37l06duzIyZMn+fnnn/n+++/RNI3GjRsD4OHhASSudDp291hmn5hN\n9wrdWdVxlWyfmcmkZkjqYGA0UAg4C9QhcTe1pukTmhAiI1x6cInuG7tz+eFlJtafyE+Nf3rtrmbe\n3t506NCB8PBwNm/eTMeOHZMtFxsfS9+tfXG55MKY2mOY6TBTlr7OhFLzX2Q0UBMIUEo1AaoBYa8/\nRQjxvlBKscB7AXaL7XgY9ZDdn+3mV/tfX5sQVq5cSYMGDTA1NcXLy+uVCSEsJoyWzi1xueTCH83/\n4C+HvyQhZFKp6VOIUUrFaJqGpmlmSqmrmqaVSbfIhBAG8yjqEYPcBuHm64ZjSUdWtF9BXqu8rywf\nFxfHuHHjmDNnDk2bNmX9+vXJ7qMMEGMWQ/1l9fEL9sOpoxO9K/dOr5ch0kBqksLtZ0tnbwX2apoW\nivQnCPHe2+2/m/6u/QmJDmGWwyy+rP3la7/F379/n+7du+Pp6cmYMWP4448/yJIl+Y+SSMtILlS5\ngPljc3Z9toumxeRuc2aXmo7m5+3CKZqmHQSyAzvTJSohRLqLiY9h/N7xzDk5h/I25dnZeydV81V9\n7TknTpygc+fOBAcHs2rVKvr06fPKsnuu7eFs9bNkic/CkQFHqJRXpjm9D1Kzyc5vz/+tlPJUSrkB\nv6RLVEKIdHU26Cx2i+yYc3IOo2qN4tSQU69NCEopFi5cSMOGDTExMeHYsWOvTQiLfRbTyrkV5jHm\nVDtdTRLCeyQ1PT3Nk3lO5i4I8R6J18Xz6+FfqbW4FiHRIezotYM5LeeQ1UR/PsFzUVFR9O/fn2HD\nhtGkSRN8fHyoWjX5BKJTOibum8jQ7UNpXqI5VU9XxSzWLL1ejkgHb0wKmqYN1zTtAlD22Uzm57OZ\nbwIX0j1CIUSa+Df4Xxoub8ikA5PoULYDF4ZfoGWp13+v8/f3p27duqxevZopU6bg7u5Ozpw5ky0b\nFRdF943dmXF0Bp/X+JxtPbeRJUH24XrfpOS/2BoS+w6mAxNeeD5CKRWSLlEJIdKMTumYf3I+4/eN\nxyyLGU4dnehVqdcb9zreuHEjAwcOxMTEhB07duDo+Or1MIMig2i3th2n7p7ij+Z/8HXdr2Uv5ffU\nG5OCUiocCNc0bTMQopSK0DTte6C6pmlTlVJn0j1KIcRbuR56ncFugzl48yCtSrVicdvFFMhW4LXn\nxMbG8s033zB37lzq1KnD+vXrKVLk1bOZzwWdo+3atgRHB7Ol+xbal22f1i9DGFBq+hR+eJYQ6gPN\ngKXAP+kTlhDiXeiUjrkn5lLp70qcunuKJW2XsL3n9jcmhGvXrlG/fn3mzp3LV199haen52sTwtar\nW6m3rB5B6S0ZAAAgAElEQVQ6pePIgCOSED4Aqbnhl/Dsd2tgkVLKXdM0GX0kRCbzb/C/DN42mEMB\nh3As6ciiNosonL3wG89bv349Q4cOxcjI6LXLVUDiaKTpR6Yz6cAkahWsxdbuW8mfLX9avgyRQVKT\nFO5omraQxFFIvz3bnlPmqQuRScTr4vnr2F9M9piMmbEZy9oto3/V/m+8tx8VFcVXX33FokWLqFOn\nDuvWraNo0aKvLh8XxWC3way9uJZelXqxpO2S145eEu+X1CSFboAj8KdSKkzTtPzAN+kTlhAiNc7c\nO8OQbUPwuedDh7IdmN9q/htvFQGcO3eOnj17cuXKFcaPH8/UqVMxMXn1WkeB4YF0XN+RM/fOMK3p\nNCbWnygdyh+Y1MxojgI2v/D4HnAvPYISQqRMVFwUUzym8Nexv8htkRuXLi50Kd/ljR/USinmzZvH\nN998g7W1NXv37qVZs2avPedwwGG6bOhCdFw0bj3dXru3gnh/vTEpaJp2RClVX9O0CEAB2ou/lVKf\npHOMQohk7PLfxRfuX3Aj7AaDqw3m9+a/Y53V+o3nBQUFMWDAAHbt2kXr1q1Zvnw5NjY2ryz/fPXU\nMbvHUCxHMTz6eVDOplxavhSRiaRkSGr9Z7+zpX84Qog3uRdxjzG7x+ByyYXSuUpzsN9BGts2TtG5\nbm5uDBo0iMjISObPn8/w4cNf26qIjotmuPtwVp5bSZvSbXDq6ER28+xp9EpEZpSSlsLY1x1XSv2V\nduEIIV4lQZfA36f+ZtKBScTGx/JT458YXy9xQtqbREREMGbMGJYtW0bVqlVZs2YN5cq9/tv+zbCb\ndHbpzOl7p5ncaDI/NvpR9kD4CKSkT+F5C6EMiZvsuD173BY4mR5BCSFeduL2CYa7D+dM0BmaF2/O\n/FbzKZWrVIrOPXz4MH379iUwMJCJEycyefJkzMxen0h2+e+i9+beJOgScO3hSrsy7VIds7OzM8eP\nHyc2NhZbW1umTZtG796yl0Kmp5RK0Q9wCMj2wuNswKGUnp9WPzVq1FBCfCweRD5Qg10HK22KpgrM\nLKBcLroonU6XonOjoqLU2LFjlaZpqnjx4urIkSNvPCc+IV5NPjhZaVM0Vfnvyurf4H/fKm4nJydl\nYWGhSOx/VICysLBQTk5Ob1WfeHfAKZWSz/qUFEqsD1/A7IXHZoBvSs9Pqx9JCuJjEJcQp+aemKty\nzMihsvycRX29+2v1OOZxis8/fvy4KlOmjALU8OHDVURExBvPuR95XzVb1UwxBdVncx/15OmTt46/\naNGiLyWE5z9FixZ96zrFu0lpUkjNPIVVwElN07Y8e9wBWPH2bRQhRHIO3DjA6F2jufjgIs2KN2OO\n45wUj/aJjo5m8uTJzJw5k0KFCqVoqCkkDjftsakHIdEhLGm7hIHVBr7T/IPAwMBUPS8yj9TMU5im\nadpOoMGzpwaoNFgM79kS3BEkLqMRr5Sye9c6hXgf3Qi9wbi949h8ZTO2OWzZ2HUjncp1SvGH89Gj\nRxk4cCB+fn4MHTqU33//nezZXz9SSKd0zDgygx8P/kgx62Ls6LWDKvmqvPNrKVKkCAEB+rv1vm4d\nJZFJpKQ5kZ4/wE0gd0rLy+0j8aEJjwlX3+75VplONVUW0yzUVM+pKuppVIrPf/z4sRoxYoTSNE3Z\n2tqqffv2pei8oIgg1XxVc8UUVI+NPVR4TPjbvgQ90qeQ+ZDWfQrp9SNJQXys4hLi1N/efyub320U\nU1D9tvRTt8Nvp6qO7du3q0KFCilN09To0aNT1HeglFK7/XervH/kVea/mKvFPotT3HmdGk5OTsrM\nzCypL0ESQsZKaVLIDNsiKWCfpmkJwEKl1KKMDkiI9KSUYrvfdr7d9y1XH12lQZEG7HTYSY0CNVJc\nx927dxkzZgwbNmygQoUKbNiwgTp16rzxvKcJT/lu/3fMPDaTCjYV2Ntnb7rtn9y7d28WL14MgIeH\nR7pcQ6S9zJAU6iul7mialgfYq2naVaXUoRcLaJo2FBgKck9SvN+O3z7OhH0T8AzwpHSu0mztvpV2\nZdqluN8gISGBhQsXMnHiRGJjY5k6dSrffvstpqambzz36qOr9N7cm9P3TjPcbjgzW8yU1U2FngxP\nCkqpO89+P3g2sqkWiXMiXiyzCFgEYGdnpwwepBDv6Oqjq0w6MInNVzaTxzIP81vNZ0j1IZgYv3pF\n0v/y8fFh+PDheHt7Y29vzz///EPJkiXfeJ5SioU+Cxm7eywWJhZs6b6FDmU7vMvLER+wDE0KmqZZ\nAkYqcUc3S6AF8HNGxiREWgoIC+Anz59YeW4lFiYW/Nz4Z76q+xVWplYpriM0NJQffviBBQsWkDdv\nXpydnenZs2eKWhdBkUEM2TaE7X7baVGiBcvbL0/Rktri45XRLYW8wJZnf9xZgDVKqV0ZG5IQ7+5e\nxD2mH5nOQp+FaGiMqT2GCfUnYGP56tVI/0un07F8+XImTJhASEgIo0aN4ueff37jMNPnNl7eyLDt\nw3gS94TZjrMZWWukrF0k3ihDk4JS6jrw7oOiU8DzpieXHl7i8xqfY2xkbIhLio/QwycP+e3ob8z3\nnk9cQhwDqg7gx0Y/pmg7zBedOHGCUaNG4e3tTb169Zg3bx5Vq1ZN0bkh0SGM2jmKNRfWYFfAjtUd\nV1M2d9m3eTniI/TRfG1Yd3EdI3aMwG6xHUcCj2R0OOID8+DJA77Z8w22s22ZdXwW3St0x3ekL4vb\nLU5VQrhz5w59+vShTp063Lp1i9WrV3P48OEUJwQ3XzcqLKiAyyUXfmr8E14DvSQhiFT5aJLCgtYL\ncOniwqOoRzRY3oDPNn/Gncd3Mjos8Z67F3GPcXvGkf+3/Pzp9Scdy3bk8heXWdFhBSVylkhxPVFR\nUUydOpXSpUuzYcMGJk6ciJ+fH5999lmK+g6Co4Lps6UP7de1J69lXryHePNjox9T1ZEtBJDxk9dS\n+/Ouk9ciYyPVd/u+U2ZTzZTFNAv1k8dP77Twl/g43Qy9qb7Y/oUym2qmjH4yUnmH5VU1HWumup6E\nhAS1cuVKVbBgQQWozp07q2vXrqX4fJ1Op1wuuqg8f+RRWX7Oon488KOKjY9NdRzppVGjRqpRo0YZ\nHYZQKZ+89tG0FJ6zNLVkmv00roy4QutSrZnsMZky88qw8uxKEnQJGR2eyOQuPrhI3y19KTm3JItP\nL6Zvlb74jfSj7JWyWERbpKquvXv3YmdnR79+/ShQoACHDx9m48aNFC9ePEXn33l8h04unei2sRuF\nPymMz1AffmryE6bGb56zIMSrfHRJ4bli1sVw6erCof6HyG+Vn/6u/am+qDq7/Xc/X35DCCCxNX04\n4DDt1raj0t+V2HRlEyNrjuT66OssarsoVbeJAM6cOUOLFi1o0aIFoaGhSZvR1K9fP0XnJ+gSmHdy\nHuXml2OX/y5+b/Y7xwcfp3Leym/z8oR4yUebFJ5rULQBJwafYH2X9UQ+jcTR2ZGmq5ridcsro0MT\nGSxeF8+GSxuos7QODVc0xOuWF1MaTSFwTCCzHGdR6JNCqarP19eXbt26Ub16dU6fPs2sWbO4evUq\nvXr1wsgoZf8rng06S71l9Ri1cxR1CtXh4vCLfFPvG7IYZfTocvGh+OiTAoCmaXSr0I0rI64wt+Vc\nrjy8Qr1l9Wizpg0+d30yOjxhYGExYcz0mknJOSXptrEbIdEhLGi1gMCvApnceDK5LHKlqr6bN28y\naNAgKlSowI4dO/jhhx+4du0aY8aMeeO2mM89jn3MmF1jqLGoBtdDr+PU0Yndn+1OdStFiDeRrxcv\nMDU2ZWStkQyoOoC5J+fy+9HfsVtsR7sy7ZjcaDLV81fP6BBFOrr88DLzTs5j1blVPIl7QqOijZjl\nMIt2Zdq91dyWW7duMW3aNJYuXYqxsTEjR47ku+++I0+ePCmuQynF2otrGbdnHEGRQQyzG8a0ptOw\nzmqd6niESAlJCsmwNLVkQv0JDLcbztyTc/nr2F/UWFSDVqVaMbH+ROoXSdm9X5H5xSXE4ebrxoJT\nCzhw4wBmxmb0qNiD0bVHUy1/tbeqMyAggBkzZrBs2TKUUgwdOpSJEydSqFDqbjedCzrHqJ2jOBx4\nmBr5a+Daw5WaBWu+VUxCpJQkhdfIbp6d7xt+z6hao5h3ch7/O/E/GixvQIMiDRhfbzwtS7WUZQPe\nU4HhgSw9vZTFpxdzL/IeRbIXYbr9dAZVG5SqpSheFB0dzZAhQ1i5ciUAAwcOZOLEiRQtWjRV9TyK\nesSPB39koc9CcmbNyeK2ixlYbaD8rQnDSMm41cz0k5Gb7Dx5+kTNPj5bFfqrkGIKqty8cmqxz2IV\nHRedYTFlhPd17PnT+Kdq0+VNytHJUWlTNKVN0VQr51Zqm+82FZ8Q/9b1Tp8+XRkZGSXtMNasWTMV\nGBiY6npi42PVX15/qezTsyvjn4zVSPeRKiQq5K3jygze17+VDxEpnKegqfds+KWdnZ06depUhsYQ\nlxCHyyUX/jz2J2eDzpLbIjdDqw9leM3hqR6R8j5q3Lgx8P5snHL+/nmWn1mO8wVnHkY9pGC2ggys\nNpCB1QZim8P2repUSuHp6cno0aM5f/78S8csLCxYtGgRvXv3TnFdm69sZsL+CfiH+ONQwoG/HP6i\nvE35t4pNiORomuajlLJ7YzlJCm9PKYXHTQ/mnJyDm68bGhodynbg8xqfY1/c/oNt7r8PSeFuxF3W\nXliL0wUnzgadxcTIhPZl29O/Sn8cSzq+9aKIcXFxbNq0ib/++gtvb2+MjIzQ6XR65YoWLcrNmzff\nWN+xW8cYt3ccXre8qGBTgT+a/0HLUi3fKjYhXielSUH6FN6Bpmk0KdaEJsWacDPsJgu8F7DszDI2\nXdlECesSDK4+mL5V+sr69QYSEh3C5iubWXdxHQdvHkSndNQqWIs5jnPoValXqoeSvig0NJQlS5Yw\nd+5cbt26RalSpfj777/54osvki0fGBj42vouPbjEdwe+w83XjbyWeVnUZhEDqg2Q+QYiw0lLIY3F\nxsey6comFvos5FDAIYw0IxxKONCvSj/almmLhUnqlkLIjDJTSyEkOgTXq65svLKRvdf2EqeLo2TO\nkvSs2JPPKn9G6Vyl36n+S5cuMXfuXFavXk1UVBSNGzdm7NixtG7dGiMjI2xtbQkICNA771Utheuh\n1/nZ82dWn1+NlakV3376LWPqjMHS1PKd4hTiTaSlkEHMspjRq1IvelXqxb/B/7Li7ApWnltJj009\nsDK1onO5zvSs2JOmxZrKCpZvKTA8EDdfN1x9XfG46UG8Lh7bHLaMrj2aHhV7UD1/9RTveZycp0+f\nsmXLFhYsWMChQ4cwNzend+/ejBo1iipVXt7+Y9q0aQwdOpSoqKik5ywsLJg2bdpL5W6F32La4Wks\nPbOULEZZ+KrOV0ysP/GdWi9CpAdpKRhAgi4BzwBPnM87s/HKRh7HPsba3JoOZTvQqVwn7IvZv1cb\nqBu6pZCgS+DknZO4/+uO+7/unA06C0CZXGXoULYDXct3fedEAODv78+SJUtYsWIF9+/fp1ixYgwb\nNoxBgwaRK9erP7ydnZ0ZNGgQsbGxFC1alGnTpiV1MgeGBzL98HSWnX02Z6HGUL5r8J3cUhQGJx3N\nmVRMfAx7ru1h4+WNuPq68jj2MRYmFrQo0YK2pdviWNIx039gGCIpBIQFsPf6XvZe38u+6/sIiQ7B\nWDPm08Kf0qZ0G9qXaU+Z3GXe+TpRUVFs2bKFZcuWceDAAYyNjWndujXDhw+nRYsWKV6T6L/vybWQ\na/x29DdWnF0BwKBqg5hQfwJFc6RuzoIQaUVuH2VS5lnMaVemHe3KtCM2PhaPmx64+brh5ufG1qtb\nAaictzItiregSbEmNCjSgGxm2TI46vSllOJG2A2OBh7F46YHB28e5EbYDQAKZCtAuzLtcCjhgEMJ\nhzRZ3kEphZeXF6tWrWLdunU8fvyYYsWK8csvvzBgwAAKFHj7pHzh/gVmHJ3BuovrMDEyYUj1IUyo\nPyHV23EKkVGkpZBJKKW48OACu/x3sct/F0cCjxCni8NYM6ZGgRrUK1yPeoXr8WnhT8mfLX+Gxfm6\nWyUpFfk0Ep+7Ppy8c5ITd07gdcuLe5H3ALA2t6axbWMa2zamWfFmlMtd7p1vCz3n6+vLmjVrcHJy\n4vr161hYWNClSxcGDBhAw4YNU9wq+C+lFFU7VuV2kduE5ArBytSK4XbD+arOVxn630qIF8nto/+4\ndu0aSilKliyZqvMyaqRNVFwUx24d4+DNg3gGeHLq7ili4mOAxG/PdgXsqJG/BpXzVqZSnkoUsy6W\n7vMinJ2dk+1UfdVELZ3SERAWwKWHl7j44CJng85yNugsfsF+KBL/7mxz2PJp4U+pX7g+9YrUo2Ke\nimn6OgICAnBxcWHt2rWcOXMGTdOwt7enT58+dOzYkWzZ3r4V9jThKRsubWDW8Vn43PPB5KkJkx0m\nM7zmcHJmzZlmr0GItCBJ4T8GDx7M0qVLqVKlCl26dKFz586UK1fujedlluGXTxOecubeGY7dPobP\nPR9O3T2F7yPfpA9XCxMLSucqTelcpSmVsxTFchSjaI6iFM1elALZCqTJkMdXDb/MXyg/Sw4sITA8\nkJthN/EP8effkH/xD/EnKu7/E4htDluq5qtK1bxVqVmwJjUL1HzrdYZex9/fn82bN7Nx40a8vb0B\nqFWrFj179qRr164ULFjwnep/8OQBi30Ws+DUAu5G3KVMrjLovHTkC8rHoQOH0uIlCJHmJCn8R2Bg\nIJs2bWLjxo14eSVuoFO6dGk6dOhA+/btqV27NsbG+rNcM0tSSM6Tp0+49PASF+5f4OKDi/iF+OEX\n7MeN0BskqJe3FrUytSKvZV5yWeTC2twa66zWZDPNhoWJBRYmFpgam2KsGZPFKAsKRbwunnhdPLHx\nsUTFRfEk7gnLOy6HV/25TEn8ZWJkQnHr4pTMWZJSOUtR3qY8FfJUoLxNeXKY50iX90Gn03H69Glc\nXV3ZunUrFy9eBKBmzZpJXwBKlHi3fQeUUnjf9WbeyXmsv7SepwlPaV68OV/V+QqHkg40bdIUyJx/\nJ0KAJIXXunPnDlu3bsXV1ZWDBw8SHx9P7ty5admyJa1bt6Z58+bkzJnY/M/MSeFV4hLiuBNxh4Cw\nAALDA7kXeY+gyCDuRd4jJDqE0OhQQmNCiXwamfiB//SJXhJ5zszYDEtTSyxMLAiaGkR8aLxemdz5\nc+N2wo0i2YuQzyrfWy8hkRrh4eHs378fd3d3duzYQVBQEEZGRjRs2DAp0dva2r7zdSJiI3C+4MxC\nn4WcDTqLlakV/av054uaX1DO5v9bmu/j34n4uMjoo9coWLAgI0aMYMSIEYSFhbFz507c3d1xd3dn\n9erVGBkZUatWLRwcHAgLC+OTTz7J6JBTxcTYBNsctqla7E0pRYJKIF4Xj5FmhLFmjJFm9FInr3Oe\n5PsU/vfH/6hbuG5avgQ98fHxnDp1in379rFnzx68vLxISEgge/bsODo60qZNGxwdHcmdO/c7X0sp\nhdctL5adWcb6S+t5EveEKnmrsKDVAnpX7s0nZu/X34MQqfFRthReJSEhgRMnTrB79252797NyZMn\nUUphZGREixYtaNy4MY0aNaJGjRqYmHycs5HTYvRRSiQkJHD27Fk8PT3x8PDA09OTx48fA1CtWjVa\ntmyJo6MjderUSbP/FoHhgTifd2bluZX4BvtiZWpFt/LdGFpjKLUK1kqzUVBCZAS5fZQGQkJCaNCg\nQVJr4erVqwBYWlpSu3Zt6tWrx6effkrt2rWxtv54tkdMj1sljx8/xtvbm6NHj3L06FGOHz+elARK\nlSpF48aNadasGU2aNMHGJu06p0OjQ9l8ZTPOF5zxuOmBQtGgSAMGVB1A1wpdsTK1SrNrCZGR5PZR\nGsiZMyc2NjbY2Njg4eHB/fv3OXToEIcOHeLo0aNMmzYtadnk0qVLU7t2bezs7KhevTpVq1bFyko+\nUJITFRXFuXPn8PHxwcfHh5MnT3LlypXEDT40jYoVK9KrVy8aNmxIo0aN3mkyWXIiYiPY5rcNl0su\n7Ph3R9IielMaT+Gzyp9R3Lp4ml5PiPeJJIVUyJs3L127dqVr164AREREcPLkSU6cOMHJkyfZu3cv\nq1evBhKX1S5VqhSVK1emcuXKVKxYkfLly1OiRAmyZPk43vaEhASuX7/O5cuXuXTpEufOneP8+fP4\n+fklJVMbGxtq1apFjx49qFWrFrVr1yZHjrQfpRQSHYK7nzubrmxil/8uYhNiKZCtAKNqjaJnpZ7U\nyF9Dbg8JgSSFd5ItWzbs7e2xt7dPeu7evXucPn0aHx8fzp8/z7lz59i0aRPPb9OZmJhQsmRJSpcu\nTalSpShZsiTFixenWLFiFClSBFNT04x6OW8lLi6O27dvc/36dW7cuMG1a9fw8/PD19cXf39/YmNj\nk8oWK1aMypUr07VrV6pXr06NGjUoVKhQun0YXw+9zna/7bj6uuJ505MElUDBbAUZZjeMruW7Urdw\n3Q92IyQh3pYkhTSWP39+WrduTevWrZOee/LkCVevXk36xuzn54efnx+7du166UNT0zTy5ctH4cKF\nKVSoEAUKFCB//vzky5cPGxsbcufOTe7cubG2tiZHjhzp1uJISEggPDyckJAQgoODefjwIQ8ePOD+\n/fvcu3ePS5cuERsbS6FChbh79y4v9kuZmJhQokQJSpcuTcuWLSlfvjwVKlSgbNmy6T6KKzY+liOB\nR9jlvwv3f9258ugKAGVzl+Xbet/SsWxH7ArYSYtAiNeQpGAAlpaW1KhRgxo1arz0fEJCAnfv3k36\nln3z5k1u3bpFYGAgV65c4cCBA4SFhb2yXisrK7Jly4aVlRVWVlZkzZoVc3NzzM3NMTExIUuWLGTJ\nkiXpQ1ApRUJCAnFxccTFxREbG0tMTAzR0dE8efKEiIiIpJ9X+eSTT4iPj8fU1JTmzZtTuHBhihQp\nQokSJShevDgFCxY02O0xpRSXHl5i3/V97Lu+j4M3DxIVF4WpsSkNijTg8xqf07p0a0rmTN3SJkJ8\nzCQpZCBjY2MKFy5M4cKFadSoUbJloqOjuX//Po8ePeLhw4c8evSI0NBQQkNDCQsLIzIykoiICCIj\nI4mJiSEmJobw8HDi4+OJj48nLi7upfqeJ4osWbJgbm5O1qxZyZEjR1JiyZYtG9mzZ8fa2hpra2ty\n5cqV1NmeJ08eLC0tk0YfLV++PL3fopcopbj66CqeAZ4cvHkQj5sePHjyAIBSOUvRv0p/WpZqSWPb\nxjJqSIi3JEkhk8uaNSu2trZpMjs3rRhq1m50XDQ+93w4dusYR28d5UjgEYKjgwEomK0gLUq0oHHR\nxNVUZZ8CIdKGJAWRKSToEvAN9sX7jjfed705eeckZ4POEqdLbOmUsC5B2zJtaVCkAQ2KNKBkzpLS\nNyBEOpCkIAwuJj6GSw8ucTboLOfun+P0vdOcDTrLk7gnQOLifXYF7Bhbdyx1C9WlTqE65LXKm8FR\nC/FxkKQg0k1cQhz+If5cfng5aU+FCw8u8G/wv0kL8FmaWFI1X1UGVRtEtfzVqFWwFmVylTHIonpC\nCH2SFF7D2dmZ48ePExsbi62tbbqt8/M+U0rxMOohfsF+/Bv8L37BflwNvsrVR1e5FnIt6faPhkZx\n6+JUzFORLuW6UCVfFarmq0px6+IyV0CITCTDk4KmaY7AbMAYWKKUmpHBIQH/v8vY83kEAQEBDB06\nFOCjSwyx8bHcenyLG6E3uB56nRthN7gWeo1rIdfwD/En4un/D2E1MTKhZM6SlMtdjg5lOlAhTwXK\n5S5H2dxl02SjHyFE+srQBfE0TTMG/IDmwG3AG+iplLr8qnMMtSDeq3YZK1q0KDdv3kz36xuKTul4\nFPWI249vcyv8Frcf3yYwPJDAx4EEhgcSEBbA3Yi7STu8AZgam2Kbw5aSOUtSwroEJaxLJO36VjRH\nUbIYZfh3DSHEf7wvC+LVAvyVUtcBNE1bB7QHXpkUDCUwMDBVz2c2CboEgqODuR95n6DIoKRNdu5G\n3E36uRNxh7sRd3ma8PSlc02NTSmSvQhFsheheYnm2Ga3Tdqfobh1cQpkKyD3/IX4QGV0UigI3Hrh\n8W2g9n8LaZo2FBgKUKRIEYMEVqRIkWRbCoa6/ot0Skd4TDihMaGERocSEh1CcHQwIdEhPIp6xMMn\nD3kUnfj7wZMHPHjygIdRD9EpnV5d2UyzUSBbAfJny0+9wvUomK0gBT8pSOFPClM4e2EKfVKIPJZ5\n5D6/EB+pjE4KKaKUWgQsgsTbR29Txzd7vmHV+VXkMM9BDvMcZDfLzidmn/CJ2SdJexVbmlpiaWJJ\nVpOsOAx1YMXUFTyN+f9v0WZZzej7VV+O3TqWtCuZkWaEUgqFQimFTulIUAkk6BJ3MXua8JQ4XRxP\nE54SGx9LTHwMMfExRMdHExUXlbQd5pO4J0Q+jeRx7GMinkbwOPYx4THhhMeGExEb8dLtm//KYZ6D\n3Ba5sbGwobh1cWoXrE1eq7zktcxLXqu85LPKR36r/OSzykc2s2xv8/YJIT4SGZ0U7gCFX3hc6Nlz\naa5mwZpEPI0gPDacsJgwwmLCuBtxN+lD+MnTJ0kjZZK0AvYD4UB2iLWPZWrYVKYum5pmcZkam2Jp\nYomVqRWWppZJSSqvZV6ym2cnu1nij3VWa3KY58Da3JqcWXOSyyJX4u+suTAx/jh3gRNCpL2M7mjO\nQmJHsz2JycAb6KWUuvSqc9Kzo/lpwlOi4qKIjosmOj6amPgY+g7oi07TMXve7KQ9jON18UmtAp3S\noWkaGlpSy8FYM8bYyJgsRlkwNTbFxMgEU2NTzLKYYWZshnkWcyxMLMhqklU6ZYUQBvFedDQrpeI1\nTRsJ7CZxSOqy1yWE9GZqbIqpsSk5zP9/kxeryMSF1RoUbZBRYQkhhMFk+NdUpdQOYEdGxyGEEAJk\niC2m9vcAAAU/SURBVIkQQogkkhSEEEIkkaQghBAiiSQFIYQQSSQpCCGESCJJQQghRBJJCkIIIZJI\nUhBCCJFEkoIQQogkkhSEEEIkkaQghBAiiSQFIYQQSSQpCCGESCJJQQghRJIMXzo7s/Pw8MjoEIQQ\nwmCkpSCEECKJJAUhhBBJJCkIIYRIIklBCCFEEkkKQgghkkhSEEIIkUSSghBCiCSSFIQQQiSRpCCE\nECKJppTK6BhSRdO0h0CAgS+bG3hk4GtmdvKe6JP3JHnyvujLiPekqFLK5k2F3rukkBE0TTullLLL\n6DgyE3lP9Ml7kjx5X/Rl5vdEbh8JIYRIIklBCCFEEkkKKbMoowPIhOQ90SfvSfLkfdGXad8T6VMQ\nQgiRRFoKQgghkkhSeA1N0xw1TfPVNM1f07QJGR1PZqD9X3v3FyJVHUBx/Hsyo7+wBAXlSvaPaik0\nBRO2HtIktaiXwP7YU09lYNAfMnopeiik6CUoqDBQiqgewsiSTQgqSlJrXZXtP5mBUFRKYOqeHu71\nNu46Wuuuv4k9HxiYOzP33jPDzD1z7525V3pZ0i5JW0pn6RSSpkpaL2mrpAFJy0pnKk3SyZI+k/RF\n/Zo8VjpTp5A0SdImSWtKZzmclEIbkiYBzwELgR7gNkk9ZVN1hJXAgtIhOsx+4H7bPcAcYGneK+wF\n5tqeDswAFkiaUzhTp1gGbCsdop2UQnuzga9tf2v7L+A14ObCmYqz/SHwa+kcncT2z7Y31td3U33g\np5RNVZYre+rByfVlwu/AlNQN3AC8WDpLOymF9qYAP7YM72CCf9Dj6CRNA64EPi2bpLx6M8lmYBew\nzvaEf02AZ4GHgKHSQdpJKUSMEUmnA28C99n+o3Se0mwfsD0D6AZmS7q8dKaSJN0I7LL9eeksR5JS\naO8nYGrLcHd9W8QIkiZTFcJq22+VztNJbP8GrCf7onqBmyR9T7U5eq6kVWUjjZRSaG8DcLGk8yWd\nBNwKvF04U3QgSQJeArbZfqZ0nk4g6SxJXfX1U4D5wPayqcqyvdx2t+1pVMuTD2wvKRxrhJRCG7b3\nA/cC71HtOHzd9kDZVOVJehX4BLhE0g5Jd5XO1AF6gTupvvltri+LSocq7BxgvaQvqb5grbPdkT/B\njEPlH80REdHImkJERDRSChER0UgpREREI6UQERGNlEJERDRSChER0UgpREREI6UQAUjqknRPy/DH\n4zSf5yX1jse0I8ZC/rwWQXN00zW2x/WgbfVRQ2fZPjCe84kYrawpRFSeBC6sD1GxQtIeqMpC0nZJ\nKyUNSlot6TpJH0n6StLsgxOQtKQ+29hmSS/UJ2qi5f7LgMGDhSDpNEnv1Gcn2yJp8fF8whGHk1KI\nqDwMfGN7hu0Hh913EfA0cGl9uR24GngAeASaBf5ioLc+XPQB4I5h01kIrG0ZXgDstD29XkNZS0Rh\nKYWIo/vOdr/tIWAA6HO13bUfmFY/Zh4wC9hQbyKaB1wwbDrXc+iCvx+YL+kpSdfY/n08n0TEv3Fi\n6QAR/wN7W64PtQwP8c9nSMArtpcfbgKSTgW6bO88eJvtQUkzgUXAE5L6bD8+5ukj/oOsKURUdgNn\nHMP4fcAtks4GkHSmpPNa7r+W6kQzDUnnAn/aXgWsAGYew/wjxkTWFCIA27/UO4+3AO+OYvytkh4F\n3pd0ArAPWAr8UD9kIfDGsNGuAFZIGqoff/eon0DEGMlPUiOOA0kbgats7yudJeJIUgoREdHIPoWI\niGikFCIiopFSiIiIRkohIiIaKYWIiGikFCIiopFSiIiIRkohIiIafwNEyJk8SLa8qgAAAABJRU5E\nrkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1838,7 +1852,7 @@ { "data": { "text/html": [ - "1.37(43) m/s2" + "1.37(43) m/s2" ], "text/plain": [ "1.37(43) m/s²" @@ -1969,7 +1983,7 @@ { "data": { "text/plain": [ - "'1.37(43) m/s2'" + "'1.37(43) m/s2'" ] }, "execution_count": 50, @@ -2091,7 +2105,7 @@ { "data": { "text/html": [ - "1.37(43) m/s2" + "1.37(43) m/s2" ], "text/plain": [ "1.37(43) m/s²" @@ -2294,7 +2308,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The `rounding_u` option simply adds and an uncertainty proportional to the machine epsilon whenever a gummy is created with a floating point data type and then propagates this uncertainty like any other uncertainty. So this can give some idea of the magnitude of the floating point errors, but is not a substitute for a full numerical error analysis.\n", + "The `rounding_u` option simply adds and an uncertainty proportional to the machine epsilon whenever a gummy is created with a floating point data type and then propagates this uncertainty like any other uncertainty. This feature is experimental and perhaps can give some idea of the magnitude of the floating point errors, but is not a substitute for a full numerical error analysis.\n", "\n", "The gummy object recognizes that integer and Faction values do not need an uncertainty component to account for rounding:" ] @@ -2350,6 +2364,31 @@ "uc.gummy(Fraction(1,3))" ] }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "3/7" + ], + "text/plain": [ + "3/7" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "uc.gummy(3)/uc.gummy(7)" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/docs/_build/html/_sources/hand_made_doc.rst.txt b/docs/_build/html/_sources/hand_made_doc.rst.txt index 332336f..fca3d2a 100644 --- a/docs/_build/html/_sources/hand_made_doc.rst.txt +++ b/docs/_build/html/_sources/hand_made_doc.rst.txt @@ -25,7 +25,7 @@ gummy parameters ---------------- (all parameters except *x* are optional) -- **x**: (float or Distribution_ ) Either a +- **x**: (real number or Distribution_ ) Either a number representing the value of the gummy or a Distribution_ instance that represents the probability distribution of the gummy. If *x* is a @@ -37,12 +37,14 @@ gummy parameters >>> g = gummy(UniformDist(center = 2.25, half_width = 0.12)) - Note that if *x* is a float value, the uncertainty distribution is + Note that if *x* is a number, the uncertainty distribution is assumed to be either a :ref:`Normal distribution` or a :ref:`shifted and scaled Students's t distribution` depending on - the value of the *dof* parameter. + the value of the *dof* parameter. In addition to a float or + Distribution, *x* can be int, numpy.floating, numpy.integer, + fraction.Fraction, or mpmath.mpf. -- **u**: (float >= 0) A number representing the uncertainty in *x*. +- **u**: (real number >= 0) A number representing the uncertainty in *x*. By default *u* is taken to be the standard ("1-sigma") uncertainty, however if *k* or *p* are specified then *u* is taken to be the corresponding expanded uncertainty. Also by default, when the *uunit* @@ -65,7 +67,7 @@ gummy parameters - **dof**: (float or int > 0) The number of degrees of freedom upon which the uncertainty is based. The default is ``float('inf')``. -- **k**: (float > 0) The coverage factor for *u*. The value of the +- **k**: (float or int > 0) The coverage factor for *u*. The value of the *u* parameter is divided by the coverage factor to get the standard uncertainty for the new gummy. If the paramter *p* is specified then the coverage factor is calculated using *p* and the value of the *k* @@ -245,7 +247,7 @@ basic gummy properties taken to be the standard deviation of the mean (*s*/sqrt(*n*), where *s* is the sample standard deviation and *n* is the number of measurements). However there is some "extra uncertainty" because the sample standard - deviation does not exactly equal to the population standard deviation. + deviation does not exactly equal the population standard deviation. This is taken into account by using a Student's *t* distribution to calculate the expanded uncertainty. However it has been pointed out, by those who advocate a Bayesian point of view, that the probability @@ -285,11 +287,18 @@ basic gummy methods matrix of a list or array of gummys. The return value is a numpy.ndarray. -- **copy(formatting=True)**: Returns a copy of the gummy. The copy will +- **copy(formatting=True, tofloat=False)**: Returns a copy of the gummy. + The copy will be have a correlation coefficient of 1 with the original gummy. If the *formatting* parameter is ``True`` the display formatting information will be copied and if ``False`` the display formatting - will be set to the default for a new gummy. + will be set to the default for a new gummy. If *tofloat* is ``True`` + then the *x* and *u* values in the new gummy will be converted to + floats. + +- **tofloat()**: Returns a copy with the *x* and *u* values converted + to float values. Equivalent to + ``copy(formatting=Flase,tofloat=True)``. - **ufrom(x)**: Gets the standard uncertainty contributed from particular gummys or utype_ if all other @@ -540,8 +549,18 @@ but a conversion must exist between the units, see also the c_ property). Exponents must be dimensionless (that is a conversion from the exponent unit to the unit *one* must exist) and if the exponent has an uncertainty, the base must be dimensionless. -Nonlinear units such as the decibel and the degree Celsius affect the -behavior of gummys under certain operations. +Dividing gummys with int values results in a gummy with a +fractions.Fraction value. Nonlinear units such as the decibel and +the degree Celsius affect the +behavior of gummys under certain operations. + +Most functions and +operations respect the numpy boadcasting rules when passed numpy arrays. +Operation and functions are first tried with no type conversions and +if that fails all *x* and *u* values are converted to floats and the +operation of function is tried again. Set +``metrolopy.dfunc.try_fconvert = False`` to disable this automatic +conversion to float values. The gummy module installs a number of common mathematical functions_ that can be applied directly to dimensionless @@ -550,7 +569,7 @@ gummys, e.g:: >>> import gummy as uc >>> g = uc.gummy(0.123,0.022) >>> uc.sin(g) - 0.851(12) + 0.123(22) For numpy version 1.13 or later, many numpy functions can be applied directly to dimensionless gummys, e.g:: @@ -559,7 +578,7 @@ directly to dimensionless gummys, e.g:: >>> import gummy as uc >>> g = uc.gummy(0.123,0.022) >>> np.cos(g) - -0.525(19) + 0.9924(27) The two class methods immediately below may also be used to apply an @@ -923,7 +942,7 @@ gummy methods related to Monte-Carlo simulation the mean value (as given by gummy.xsim). The default is True. - **mean_marker_options**: (dict) A dictionary containing keywords to - be passed to the pylab.axvline method which draws the mean marker. + be passed to the pyplot.axvline method which draws the mean marker. For example setting this to {'color'='r','linewidth'=4} makes the mean marker red and with thickness of four points. @@ -932,16 +951,16 @@ gummy methods related to Monte-Carlo simulation True. - **ci_marker_options**: (dict) A dictionary containing keywords to be - passed to the pylab.axvline method which draws the confidence + passed to the pyplot.axvline method which draws the confidence interval markers. - - **hold**: (bool) If this is False pylab.show() is called before this - method exits. If it is True pylab.show() is not called. The + - **hold**: (bool) If this is False pyplot.show() is called before this + method exits. If it is True pyplot.show() is not called. The default is False. - **plot_options**: These are optional keyword arguments that are - passed to the pylab.hist method. For example bins=50 overrides the - default number of bins (100). For other options see the pylab.hist + passed to the pyplot.hist method. For example bins=50 overrides the + default number of bins (100). For other options see the pyplot.hist documentation. .. _covplot: @@ -973,15 +992,15 @@ gummy methods related to Monte-Carlo simulation the mean values of *x* and *y*. The default is False. - **mean_marker_options**: (dict) A dictionary of options to be - passed to the pylab.axvline and pylab.axhline methods that draw + passed to the pyplot.axvline and pyplot.axhline methods that draw the mean\_marker. - - **hold**: (bool) If this is False pylab.show() is called before - this method exits. If it is True pylab.show() is not called. The + - **hold**: (bool) If this is False pyplot.show() is called before + this method exits. If it is True pyplot.show() is not called. The default is False. - **plot_options**: These are optional keyword arguments that are - passed to the pylab.plot method. For example ms=0.1 decreases the + passed to the pyplot.plot method. For example ms=0.1 decreases the size of the dots in the plot. gummy properties and methods related to display and formatting @@ -1098,6 +1117,11 @@ instance level. console or Jupyter notebook and unicode otherwise. 'latex' and 'html' are only available when running under IPython. If these printers are not available the display will default to 'unicode'. + +.. _max_digits: + +- **max_digits**: (int) Gets or sets the maximum number of digits to display + for the x value. gummy display methods ~~~~~~~~~~~~~~~~~~~~~ @@ -2035,12 +2059,12 @@ Fit methods **plot parameters** (all parameters are optional): - - **data\_format**: (str) The format string passed to pylab.plot - or pylab.errorbar when plotting the data points. The default is + - **data\_format**: (str) The format string passed to pyplot.plot + or pyplot.errorbar when plotting the data points. The default is 'ko'. - **data\_options**: (dict) A dictionary containg key words that - are passed to pylab.plot or pylab.errorbar when plotting the data + are passed to pyplot.plot or pyplot.errorbar when plotting the data points. - **show\_data**: (bool) Whether or not to plot the data points. @@ -2055,12 +2079,12 @@ Fit methods multiplying the standard uncertainty for each data point by this quantity. The default value is 1. - - **fit\_format**: (str) The format string passed to pylab.plot - or pylab.errorbar when plotting the fitted curve. The default is + - **fit\_format**: (str) The format string passed to pyplot.plot + or pyplot.errorbar when plotting the fitted curve. The default is 'k-'. - **fit\_options**: (dict) A dictionary containg key words that - are passed to pylab.plot or pylab.errorbar when plotting the + are passed to pyplot.plot or pyplot.errorbar when plotting the fitted curve. - **show\_fit**: (bool) Whether or not to plot the fitted curve. @@ -2085,7 +2109,7 @@ Fit methods Fit.plot\_points attribute will be used, which has a default value of 100. - - **hold**: (bool) If hold is ``False`` then ``pylab.show()`` is + - **hold**: (bool) If hold is ``False`` then ``pyplot.show()`` is executed just before this function returns. - **cik**: (float or None) Coverage factor for the @@ -2099,9 +2123,9 @@ Fit methods not specify both *cik* and *cip*. - **ciformat**: (str, default is 'g-') Format string passes - to the pylab.plot command that plots the uncertainty bands. + to the pyplot.plot command that plots the uncertainty bands. - - **cioptions**: (dict) Keywork options passed to the pylab.plot + - **cioptions**: (dict) Keywork options passed to the pyplot.plot command that plots the uncertainty bands. - **clk**,\ **clp**,\ **clformat**, and **cloptions**: Control limit diff --git a/docs/_build/html/_sources/index.rst.txt b/docs/_build/html/_sources/index.rst.txt index c15aff8..0c9cc45 100644 --- a/docs/_build/html/_sources/index.rst.txt +++ b/docs/_build/html/_sources/index.rst.txt @@ -26,7 +26,8 @@ Install MetroloPy with pip:: $ pip install metrolopy -Physical quantities can then be represented in Python as `gummy`_ objects: +Physical quantities can then be represented in Python as `gummy`_ objects +with an uncertainty and (or) a unit: .. _gummy: hand_made_doc.html#class-gummy @@ -116,7 +117,8 @@ and the version history =============== -Version 0.5, built 26 March 2019, is the first public release. +* Version 0.5.0, built 26 March 2019, is the first public release. +* Version 0.5.1, built 2 April 2019, fixed a major bug that generated negative uncertainties in some cases and fixed some other minor bugs. Improved support for fraction.Fraction and mpmath.mpf values. author @@ -134,4 +136,4 @@ In practice, this license imposes no restriction on using MetroloPy. However, if you want to further convey verbatim or modified versions of the code you must do so under the same license terms. Please contact NRC if you wish to license MetroloPy under different -terms. \ No newline at end of file +terms. diff --git a/docs/_build/html/_static/tutorial.html b/docs/_build/html/_static/tutorial.html index 5714fb6..fc711c6 100644 --- a/docs/_build/html/_static/tutorial.html +++ b/docs/_build/html/_static/tutorial.html @@ -11836,7 +11836,7 @@

tutorial

Out[2]:
-1.234(23) cm +1.234(23) cm
@@ -11875,7 +11875,7 @@

tutorial

Out[3]:
-(1.234 ± 0.023) cm +(1.234 ± 0.023) cm
@@ -11915,7 +11915,7 @@

tutorial

Out[4]:
-1.234 cm ± 234 μm +1.234 cm ± 234 μm
@@ -11954,7 +11954,7 @@

tutorial

Out[5]:
-1.234 cm ± 1.9% +1.234 cm ± 1.9%
@@ -11993,7 +11993,7 @@

propagating uncertainty
Out[6]:
-3.03(17) mm +3.03(17) mm
@@ -12089,7 +12089,7 @@

propagating uncertainty
Out[9]:
-0.375(23) cm2 +0.375(23) cm2
@@ -12167,7 +12167,7 @@

propagating uncertainty
Out[11]:
-0.934(55) N +0.934(55) N
@@ -12206,7 +12206,7 @@

propagating uncertainty
Out[12]:
-2.50(21) N/cm2 +2.50(21) N/cm2
@@ -12235,7 +12235,7 @@

propagating uncertainty
Out[13]:
-25.0(21) kPa +25.0(21) kPa
@@ -12298,198 +12298,193 @@

Monte-Carlo uncertainty propagation
-
@@ -12501,161 +12496,158 @@

Monte-Carlo uncertainty propagation
@@ -12666,194 +12658,193 @@

Monte-Carlo uncertainty propagation
-
@@ -12895,7 +12886,7 @@

expanded uncertainty
Out[15]:
-P = 25.0(41) kPa with a 95% level of confidence +P = 25.0(41) kPa with a 95% level of confidence
@@ -12997,36 +12988,36 @@

an uncertainty budget
Force
-
0.934 N
-
0.055 N
+
0.934 N
+
0.055 N
27
0.70
Side B
-
3.03 mm
-
0.17 mm
+
3.03 mm
+
0.17 mm
8.2
0.68
Side A
-
1.234 cm
+
1.234 cm
1.9%
20
0.22
P
-
25.0 kPa
-
2.1 kPa
+
25.0 kPa
+
2.1 kPa
Uc at k = 2.0
-
4.1 kPa
+
4.1 kPa
@@ -13211,7 +13202,7 @@

degrees of freedom and uncerta
Out[18]:
-distance = 3.46(12) m with ν = 6 +distance = 3.46(12) m with ν = 6
@@ -13245,7 +13236,7 @@

degrees of freedom and uncerta
Out[19]:
-velocity = 0.778(48) m/s with ν = 8.2 +velocity = 0.778(48) m/s with ν = 8.2
@@ -13275,7 +13266,7 @@

degrees of freedom and uncerta
Out[20]:
-velocity = 0.778(47)(9) m/s +velocity = 0.778(47)(9) m/s
@@ -13466,7 +13457,7 @@

units and mathematical operations
Out[22]:
-6.534 cm +6.534 cm
@@ -13494,7 +13485,7 @@

units and mathematical operations
Out[23]:
-6.4008 cm2 +6.4008 cm2
@@ -13532,7 +13523,7 @@

units and mathematical operations
Out[24]:
-2.572 440 944 88 in +2.572 440 944 881 89 in
@@ -13560,7 +13551,7 @@

units and mathematical operations
Out[25]:
-0.992 125 984 252 in2 +0.992 125 984 251 968 5 in2
@@ -13602,7 +13593,7 @@

units and mathematical operations
Out[26]:
-8 °C +8 °C
@@ -13669,7 +13660,7 @@

units and mathematical operations
Out[28]:
-8 K +8 K
@@ -13736,7 +13727,7 @@

units and mathematical operations
Out[30]:
-300.15 K +300.15 K
@@ -13760,7 +13751,7 @@

built-in and user defined unitsIn [31]:
-
uc.search_units('length')  
+
uc.search_units('length',fmt='html')  
 # uc.search_units() with no argument displays all loaded units
 
@@ -13772,41 +13763,41 @@

built-in and user defined units -
Out[31]:
- +
-
-
angstrom, 1 Å = 10.0e-11 m, alias: Å
-astronomical unit, 1 au = 149 597 870 700 m, aliases: au, ua
-bohr, 1 a0 = 5.291 772 106 8(12)e-11 m, aliases: a0, a(0)
-cable, 1 cb = 120 ftm, alias: cb
-chain, 1 ch = 4 rd, alias: ch
-fathom, 1 ftm = 2 yd, alias: ftm
-foot, 1 ft = 12 in, alias: ft
-furlong, 1 fur = 10 ch, alias: fur
-hand, 1 hand = 4 in
-inch (1 prefix), 1 in = 0.0254 m, alias: in
-league, 1 lea = 3 mi, alias: lea
-light hour, 1 light-hour = 1 h c, alias: light-hour
-light minute, 1 light-minute = 1 min c, alias: light-minute
-light second, 1 light-second = 1 c s, alias: light-second
-light year, 1 ly = 1 a c, alias: ly
-link, 1 li = 0.66 ft, alias: li
-metre (20 prefixes), symbol: m, aliases: m, meter
-mile, 1 mi = 1760 yd, alias: mi
-nautical mile, 1 M = 1852 m, aliases: M, Nm, NM, nmi
-parsec (3 prefixes), 1 pc = 206 264.806 247 au, alias: pc
-pica, 1 P/ = 0.166 666 666 667 in, alias: P/
-Planck length, 1 l(P) = 1.616 228(38)e-35 m, alias: l(P)
-point, 1 p = 0.083 333 333 333 3 P/, alias: p
-rack unit, 1 U = 1.75 in
-reduced compton wavelength, 1 ƛ(C) = 1 ℏ/(m(e) c), aliases: lambda(C), ƛ(C)
-rod, 1 rd = 25 ft, alias: rd
-siriometer, 1 Sm = 1 000 000 au
-survey foot, 1 ft = 0.304 800 609 601 m
-survey mile, 1 mi = 8 fur, alias: statute mile
-thousandth of an inch, 1 mil = 10.0e-4 in, aliases: mil, thou, thousandth
-yard, 1 yd = 3 ft, alias: yd
+
+
    +
  • angstrom, 1 Å = 1 × 10-10 m, alias: Å
  • +
  • astronomical unit, 1 au = 1.495 978 707 × 1011 m, aliases: au, ua
  • +
  • bohr, 1 a0 = 5.291 772 106 8(12) × 10-11 m, aliases: a0, a(0)
  • +
  • cable, 1 cb = 120 ftm, alias: cb
  • +
  • chain, 1 ch = 4 rd, alias: ch
  • +
  • fathom, 1 ftm = 2 yd, alias: ftm
  • +
  • foot, 1 ft = 12 in, alias: ft
  • +
  • furlong, 1 fur = 10 ch, alias: fur
  • +
  • hand, 1 hand = 4 in
  • +
  • inch (1 prefix), 1 in = 0.0254 m, alias: in
  • +
  • league, 1 lea = 3 mi, alias: lea
  • +
  • light hour, 1 light-hour = 1 h c, alias: light-hour
  • +
  • light minute, 1 light-minute = 1 min c, alias: light-minute
  • +
  • light second, 1 light-second = 1 c s, alias: light-second
  • +
  • light year, 1 ly = 1 a c, alias: ly
  • +
  • link, 1 li = 0.66 ft, alias: li
  • +
  • metre (20 prefixes), symbol: m, aliases: m, meter
  • +
  • mile, 1 mi = 1760 yd, alias: mi
  • +
  • nautical mile, 1 M = 1852 m, aliases: M, Nm, NM, nmi
  • +
  • parsec (3 prefixes), 1 pc = 206 264.806 247 096 36 au, alias: pc
  • +
  • pica, 1 P/ = 1/6 in, alias: P/
  • +
  • Planck length, 1 lP = 1.616 228(38) × 10-35 m, alias: l(P)
  • +
  • point, 1 p = 1/12 P/, alias: p
  • +
  • rack unit, 1 U = 1.75 in
  • +
  • reduced compton wavelength, 1 ƛC = 1 ℏ/(mec), aliases: lambda(C), ƛ(C)
  • +
  • rod, 1 rd = 25 ft, alias: rd
  • +
  • siriometer, 1 Sm = 1 000 000 au
  • +
  • survey foot, 1 ft = 1200/3937 m
  • +
  • survey mile, 1 mi = 8 fur, alias: statute mile
  • +
  • thousandth of an inch, 1 mil = 0.001 in, aliases: mil, thou, thousandth
  • +
  • yard, 1 yd = 3 ft, alias: yd
@@ -13883,7 +13874,7 @@

built-in and user defined units
Out[33]:
-1 wm +1 wm

@@ -13911,7 +13902,7 @@

built-in and user defined units
Out[34]:
-0.9144 m +0.9144 m

@@ -14003,7 +13994,7 @@

applying numerical functions to

-

The apply static method can also be used to apply a arbitrary numerical function to a gummy or several gummys. The apply method takes as its first parameter the function, which must take one or more float parameters and return a float or list or numpy.ndarray of floats. The second parameter is another function which gives the derivative of the first function. The remaining parameters are the gummy(s) or float(s) to which the function will be applied:

+

The apply static method can also be used to apply a arbitrary numerical function to a gummy or several gummys. The apply method takes as its first parameter the function, which must take one or more float parameters and return a float or list or numpy.ndarray of floats. The second parameter is another function which gives the derivative of the first function. The remaining parameters are the gummy(s) or float(s) to which the function will be applied. We also demonstrate here that gummy can be used with the mpmath package to work with extended precision floating point types:

@@ -14013,7 +14004,18 @@

applying numerical functions to
In [37]:
-
from math import sin, cos
+
from mpmath import sin, cos, mpf, mp
+
+mp.dps = 50
+# set mpmath to a precision of 50 digits
+
+uc.gummy.max_digits = 50
+# by default gummy doesn't display more than 15 digits;
+# this option does not affect the working precision only 
+# the display
+
+a = uc.gummy(mpf('1/3'),mpf('2.2e-45'))
+
 uc.gummy.apply(sin,cos,a)
 
@@ -14028,7 +14030,7 @@

applying numerical functions to
Out[37]:
-0.9435(73) +0.327 194 696 796 152 244 173 344 085 267 620 606 064 301 406 89(21)
@@ -14066,7 +14068,7 @@

applying numerical functions to
Out[38]:
-0.9435(73) +0.327 194 696 796 152 244 173 344 085 267 620 606 064 301 406 89(21)
@@ -14120,7 +14122,7 @@

curve fitting
Out[39]:
-y = p1 + p2 x + p3 x2

best fit parameters:
p1 = 1.7(19) m
p2 = -1.9(20) m/s
p3 = 1.37(43) m/s2
+y = p1 + p2 x + p3 x2

best fit parameters:
p1 = 1.7(19) m
p2 = -1.9(20) m/s
p3 = 1.37(43) m/s2

@@ -14696,7 +14698,7 @@

formatting
Out[45]:
-1.37(43) m/s2 +1.37(43) m/s2

@@ -14868,7 +14870,7 @@

formatting -
'<span>1.37(43) m/s<sup>2</sup></span>'
+
'<span>1.37(43)&nbsp;m/s<sup>2</sup></span>'

@@ -15027,7 +15029,7 @@

formatting
Out[54]:
-1.37(43) m/s2 +1.37(43) m/s2

@@ -15255,7 +15257,7 @@

floating point rounding errors
-

The rounding_u option simply adds and an uncertainty proportional to the machine epsilon whenever a gummy is created with a floating point data type and then propagates this uncertainty like any other uncertainty. So this can give some idea of the magnitude of the floating point errors, but is not a substitute for a full numerical error analysis.

+

The rounding_u option simply adds and an uncertainty proportional to the machine epsilon whenever a gummy is created with a floating point data type and then propagates this uncertainty like any other uncertainty. This feature is experimental and perhaps can give some idea of the magnitude of the floating point errors, but is not a substitute for a full numerical error analysis.

The gummy object recognizes that integer and Faction values do not need an uncertainty component to account for rounding:

@@ -15317,6 +15319,34 @@

floating point rounding errors +
+
In [63]:
+
+
+
uc.gummy(3)/uc.gummy(7)
+
+ +
+
+
+ +
+
+ + +
Out[63]:
+ +
+3/7 +
+ +
+ +
+
+
diff --git a/docs/_build/html/_static/units.html b/docs/_build/html/_static/units.html index f5965c8..36d0a71 100644 --- a/docs/_build/html/_static/units.html +++ b/docs/_build/html/_static/units.html @@ -11753,7 +11753,7 @@

back to the MetroloPy documentation home page


-

MetroloPy built-in units

Units can be referenced by both name and alias. If a unit name or alias contains a space, '*' or '/' character then the name must be enclosed in square brackets, e.g: '[light year]'. Units can be combined into derived units: spaces or the character '*' represent multiplication, the character '/' represents division and the string '**' represents the power operator. An example of a derived unit reference is 'kg m**2/s' which is equivalent to 'kilogram*metre*metre*second**-1' and to '(kg/s)*m**2'.

+

MetroloPy built-in units

Units can be referenced by both name and alias. If a unit name or alias contains a space, '*', or '/' character then the name must be enclosed in square brackets, e.g: '[light year]'. If a unit name or alias contains parentheses and the text inside the parentheses can be interpreted as a Unit then the name must also be enclosed in square brackets. Units can be combined into derived units: spaces or the character '*' represent multiplication, the character '/' represents division and the string '**' represents the power operator. An example of a derived unit reference is 'kg m**2/s' which is equivalent to 'kilogram*metre*metre*second**-1' and to '(kg/s)*m**2'.

Users can also define custom units by creating instances of the Unit class or a sub-class.

The search_units function can list all available units:

@@ -11780,211 +11780,212 @@

MetroloPy built-in units
-1
-acre, 1 acre = 10 ch2
-acre-foot, 1 acre ft = 43560 ft3, aliases: acre-ft, acre ft
-ampere (20 prefixes), symbol: A, alias: A
-ampere 90 (20 prefixes), 1 A90 = 1 V9090, alias: A(90)
-angstrom, 1 Å = 1.0 × 10-10 m, alias: Å
-arcminute, 1' = 0.016 666 666 666 7°, aliases: arcmin, '
-arcsecond, 1" = 0.016 666 666 666 7', aliases: arcsec, "
-astronomical unit, 1 au = 1.495 978 707 × 1011 m, aliases: au, ua
-bar (20 prefixes), 1 bar = 100 000 Pa
-barn, 1 b = 1.0 × 10-28 m2, alias: b
-barrel, 1 bbl = 31.5 gal, aliases: bbl, liquid barrel, liquid bbl
-becquerel (20 prefixes), 1 Bq = 1 1/s, alias: Bq
-bel (log base 10), 0 B = 1.0
-bit (16 prefixes), symbol: bit, alias: shannon
-board-foot, 1 board-foot = 1 ft2 in, alias: board-ft
-bohr, 1 a0 = 5.291 772 106 8(12) × 10-11 m, aliases: a0, a(0)
-bushel, 1 bu = 4 pk, alias: bu
-byte (16 prefixes), 1 B = 8 bit, alias: B
-cable, 1 cb = 120 ftm, alias: cb
-calorie, 1 cal = 4.184 J, aliases: cal, calth, thermochemical calorie
-candela (20 prefixes), symbol: cd, alias: cd
-chain, 1 ch = 4 rd, alias: ch
-coulomb (20 prefixes), 1 C = 1 s A, alias: C
-coulomb 90 (20 prefixes), 1 C90 = 1 V90 s/Ω90, alias: C(90)
-cubic foot, 1 cu ft = 1 ft3, aliases: cu-ft, cu ft
-cubic inch, 1 cu in = 1 in3, aliases: cu-in, cu in
-cubic yard, 1 cu yd = 1 yd3, aliases: cu-yd, cu yd
-cup, 1 cp = 0.5 pt, alias: cp
-dalton (20 prefixes), 1 Da = 1.660 539 040(20) × 10-27 kg, alias: Da
-day, 1 d = 24 h, aliases: d, D
-decibel (log base 10), 0 dB = 1.0, aliases: dB, dB power, dB-p
-decibel femtowatt (log base 10), 0 dBf = 1.0 fW, aliases: dBf, dB(fW)
-decibel field (log base 10), 0 dB = 1.0, aliases: dB-f, dB field, dB root-power
-decibel hertz (log base 10), 0 dB-Hz = 1.0 Hz, aliases: dB-Hz, dB(Hz)
-decibel joule (log base 10), 0 dBJ = 1.0 J, aliases: dBJ, dB(J)
-decibel kelvin (log base 10), 0 dBK = 1.0 K, aliases: dBK, dB(K)
-decibel kilowatt (log base 10), 0 dBk = 1.0 kW, aliases: dBk, dB(kW)
-decibel microvolt (log base 10), 0 dBμV = 1.0 μV, aliases: dBuV, dB(uV), dBμV
-decibel microvolt per metre (log base 10), 0 dBμ = 1.0 μV/m, aliases: dBμ, dB(uV/m), decibel microvolt per meter
-decibel millivolt (log base 10), 0 dBmV = 1.0 mV, aliases: dBmV, dB(mV)
-decibel milliwatt (log base 10), 0 dBm = 1.0 mW, aliases: dBm, dB(mW)
-decibel reciprocal kelvin (log base 10), 0 dB(K-1) = 1.0 1/K, aliases: dB(K**-1), dB(K⁻¹)
-decibel reciprocal metre (log base 10), 0 dB(m-1) = 1.0 1/m, aliases: dB(m**-1), dB(m⁻¹), decibel reciprocal meter
-decibel sound intensity level (log base 10), 0 dB = 1.0 × 10-12 W/m2, alias: dB(SIL)
-decibel sound power level (log base 10), 0 dB = 1.0 × 10-12 W, aliases: dB(SWL), dB(pW)
-decibel sound pressure level (log base 10), 0 dB = 20.0 μPa, aliases: dB(SPL), dB(20uPa)
-decibel square metre (log base 10), 0 dBsm = 1.0 m2, aliases: dBsm, dB(m**2), decibel square meter
-decibel u (log base 10), 0 dBu = 0.774 596 669 241 V, alias: dBu
-decibel volt (log base 10), 0 dBV = 1.0 V, aliases: dBV, dB(V)
-decibel watt (log base 10), 0 dBW = 1.0 W, aliases: dBW, dB(W)
-decibel Z (log base 10), 0 dBZ = 1.0 mm6/m3, aliases: dBZ, dB(Z)
-decibel μPa (log base 10), 0 dB = 1.0 μPa, alias: dB(uPa)
-degree, 1° = 0.017 453 292 519 9 rad, aliases: deg, °
-degree Celsius, 0 °C = 273.15 K, aliases: degC, deg C, degree C, °C
-degree Fahrenheit, 0 °F = 459.67 °R, aliases: degF, deg F, degree F, °F
-degree Rankine, 1 °R = 0.555 555 555 556 K, aliases: degR, deg R, degree R, °R
-dram, 1 dr = 0.0625 oz, alias: dr
-dry barrel, 1 bu = 7056 in3, alias: dry-bbl
-dry gallon, 1 gal = 268.8025 in3, alias: dry-gal
-dry pint, 1 pt = 0.5 qt, alias: dry-pt
-dry quart, 1 qt = 0.25 gal, alias: dry-qt
-dyne (20 prefixes), 1 dyn = 1.0 × 10-5 N, alias: dyn
-Earth mass, 1 M = 5.972 37(28) × 1024 kg, aliases: M(E), M⊕
-electon mass, 1 me = 9.109 383 56(11) × 10-31 kg, alias: m(e)
-electronvolt (20 prefixes), 1 eV = 1.602 176 634 × 10-19 J, alias: eV
-elementary charge, 1 e = 1.602 176 634 × 10-19 C, alias: e
-erg (20 prefixes), 1 erg = 1.0 × 10-7 J
-farad (20 prefixes), 1 F = 1 C/V, alias: F
-farad 90 (20 prefixes), 1 F90 = 1 s/Ω90, alias: F(90)
-fathom, 1 ftm = 2 yd, alias: ftm
-fluid dram, 1 fl dr = 60 min, aliases: fl-dr, fl dr
-fluid ounce, 1 fl oz = 0.25 gi, aliases: fl-oz, fl oz
-foot, 1 ft = 12 in, alias: ft
-foot-pound, 1 ft·lb = 1 ft lbf, aliases: ft-lb, ft-lbf, ft·lb, ft·lbf
-furlong, 1 fur = 10 ch, alias: fur
-galileo (20 prefixes), 1 Gal = 1 cm/s2, alias: Gal
-gallon, 1 gal = 231 in3, aliases: gal, liquid gal, liquid gallon
-gasoline gallon equivalent, 1 gasoline-gallon-equivalent = 33.7 kW h, alias: gasoline-gallon-equivalent
-gauss (20 prefixes), 1 G = 1.0 × 10-4 T, alias: G
-gill, 1 gi = 0.5 cp, alias: gi
-grain, 1 gr = 1.428 571 428 57 × 10-4 lb, alias: gr
-gray (20 prefixes), 1 Gy = 1 J/kg, alias: Gy
-hand, 1 hand = 4 in
-hartley, 1 Hart = 3.321 928 094 89 bit, aliases: Hart, ban, dit
-hartree, 1 Eh = 1 ℏ2/(a02me), aliases: E_h, Ha
-hectare, 1 ha = 1 hm2, alias: ha
-henry (20 prefixes), 1 H = 1 Wb/A, alias: H
-henry 90 (20 prefixes), 1 H90 = 1 Ω90 s, alias: H(90)
-hertz (20 prefixes), 1 Hz = 1 1/s, alias: Hz
-hogshead, 1 hogshead = 65 gal
-horsepower, 1 hp = 550 ft lbf/s, alias: hp
-hour, 1 h = 60 min, alias: h
-hundredweight, 1 cwt = 100 lb, alias: cwt
-inch (1 prefix), 1 in = 0.0254 m, alias: in
-international prototype kilogram, 1 m(𝒦) = 1.000 000 000(12) kg, aliases: m(K), IPK
-IT British thermal unit, 1 BTU = 1055.055 852 62 J, aliases: BTU, Btu
-jansky, 1 Jy = 1.0 × 10-26 W/(Hz m2), alias: Jy
-joule (20 prefixes), 1 J = 1 N m, alias: J
-Julian year (4 prefixes), 1 a = 365.25 d, aliases: a, annum, year, yr
-Jupiter mass, 1 MJ = 1.898 580(88) × 1027 kg, aliases: M(J), M(Jup)
-katal (20 prefixes), 1 kat = 1 mol/s, alias: kat
-kelvin (20 prefixes), symbol: K, alias: K
-kelvin 54 (20 prefixes), 1 K54 = 1.000 000 00(37) K, alias: K(54)
-kilogram (20 prefixes), symbol: kg, alias: kg
-knot, 1 kn = 1 M/h, alias: kn
-large calorie, 1 Cal = 1000 cal, aliases: Cal, Calorie, dietary calorie, kcal, kilocalorie
-league, 1 lea = 3 mi, alias: lea
-light hour, 1 light-hour = 1 h c, alias: light-hour
-light minute, 1 light-minute = 1 min c, alias: light-minute
-light second, 1 light-second = 1 c s, alias: light-second
-light year, 1 ly = 1 a c, alias: ly
-link, 1 li = 0.66 ft, alias: li
-litre (20 prefixes), 1 L = 1 dm3, aliases: L, liter
-long hundredweight, 1 long cwt = 112 lb, alias: long cwt
-long ton, 1 long ton = 2240 lb
-lumen (20 prefixes), 1 lm = 1 sr cd, alias: lm
-lux (20 prefixes), 1 lx = 1 lm/m2, alias: lx
-maxwell (20 prefixes), 1 Mx = 1.0 × 10-8 Wb, alias: Mx
-metre (20 prefixes), symbol: m, aliases: m, meter
-mile, 1 mi = 1760 yd, alias: mi
-millibel milliwatt (log base 10), 0 mBm = 1.0 mW, aliases: mBm, mB(mW)
-millimetre of mercury, 1 mmHg = 133.322 387 415 Pa, alias: mmHg
-minim, 1 min = 0.0125 tsp
-minute, 1 min = 60 s, alias: min
-mole (20 prefixes), symbol: mol, alias: mol
-moment magnitude (log base 10), 0 MW = 1.122 018 454 3 × 1016 dyn cm, aliases: M(W), MMS
-monochromatic AB magnitude (log base 10), 0 mAB = 3631.0 Jy, alias: m(AB)
-natural unit of action, 1 ℏ = 1.054 571 817 65 × 10-34 J s, aliases: h-bar, ℏ
-natural unit of information, 1 nat = 1.442 695 040 89 bit, aliases: nat, nepit, nit
-nautical mile, 1 M = 1852 m, aliases: M, NM, Nm, nmi
-neper (log base e), 0 Np = 1.0, alias: Np
-newton (20 prefixes), 1 N = 1 kg m/s2, alias: N
-nibble, 1 nibble = 4 bit, aliases: nybble, nyble
-oersted (20 prefixes), 1 Oe = 79.577 471 545 9 A/m, alias: Oe
-ohm (20 prefixes), 1 Ω = 1 V/A, alias: Ω
-ohm 90 (20 prefixes), 1 Ω90 = 1.000 000 017 79 Ω, aliases: ohm(90), Ω(90)
-oil barrel, 1 bbl = 42 gal
-ounce, 1 oz = 0.0625 lb, aliases: oz, avdp oz, avoirdupois ounce
-parsec (3 prefixes), 1 pc = 206 264.806 247 au, alias: pc
-part per billion, 1 ppb = 1.0 × 10-9, alias: ppb
-part per million, 1 ppm = 1.0 × 10-6, alias: ppm
-part per quadrillion, 1 ppq = 1.0 × 10-15, alias: ppq
-part per trillion, 1 ppt = 1.0 × 10-12, alias: ppt
-pascal (20 prefixes), 1 Pa = 1 N/m2, alias: Pa
-peck, 1 pk = 2 gal, alias: pk
-pennyweight, 1 dwt = 24 gr, alias: dwt
-percent, 1% = 0.01, alias: %
-phot (20 prefixes), 1 ph = 1 sr cd/cm2, alias: ph
-pica, 1 P/ = 0.166 666 666 667 in, alias: P/
-pint, 1 pt = 0.5 qt, aliases: pt, liquid pint, liquid pt
-Planck charge, 1 qP = 1.875 546 038 15(22) × 10-18 C, alias: q(P)
-Planck length, 1 lP = 1.616 228(38) × 10-35 m, alias: l(P)
-Planck mass, 1 mP = 2.176 470(51) × 10-8 kg, alias: m(P)
-Planck temperature, 1 TP = 1.416 808(33) × 1032 K, alias: T(P)
-Planck time, 1 tP = 5.391 16(13) × 10-44 s, alias: t(P)
-point, 1 p = 0.083 333 333 333 3 P/, alias: p
-poise (20 prefixes), 1 P = 1 dyn s/cm2, alias: P
-pound (1 prefix), 1 lb = 0.453 592 37 kg, aliases: lb, avdp lb, avoirdupois pound, lbm, pound mass
-pound force, 1 lbf = 9.806 65 lb m/s2, alias: lbf
-pound per square inch, 1 psi = 1 lbf/in2, alias: psi
-pound-foot, 1 lb·ft = 1 ft lbf, aliases: lb-ft, lbf-lft, lbf·ft, lb·ft
-proton mass, 1 mp = 1.672 621 898(21) × 10-27 kg, alias: m(p)
-quart, 1 qt = 0.25 gal, aliases: qt, liquid qt, liquid quart
-rack unit, 1 U = 1.75 in
-radian (20 prefixes), 1 rad = 1 m/m, alias: rad
-reduced compton wavelength, 1 ƛC = 1 ℏ/(mec), aliases: lambda(C), ƛ(C)
-rod, 1 rd = 25 ft, alias: rd
-root hertz, 1 √Hz = 1 Hz1/2, aliases: sqrtHz, √Hz
-second (20 prefixes), symbol: s, alias: s
-section, 1 section = 640 acre
-short ton, 1 tn = 2000 lb, alias: tn
-shot, 1 jig = 3 Tbsp, alias: jig
-siemens (20 prefixes), 1 S = 1 A/V, aliases: S, mho
-sievert (20 prefixes), 1 Sv = 1 J/kg, alias: Sv
-siriometer, 1 Sm = 1 000 000 au
-slug, 1 slug = 1 lbf s2/ft
-solar mass, 1 M = 1.988 475(92) × 1030 kg, aliases: M(solar), M(Sun), M☉
-speed of light, 1 c = 2.997 924 58 × 108 m/s, alias: c
-square, 1 square = 100 ft2
-standard atmosphere, 1 atm = 101 325 Pa, alias: atm
-steradian (20 prefixes), 1 sr = 1 m2/m2, alias: sr
-stilb (20 prefixes), 1 sb = 1 cd/cm2, alias: sb
-stokes (20 prefixes), 1 St = 1 cm2/s, alias: St
-survey foot, 1 ft = 0.304 800 609 601 m
-survey mile, 1 mi = 8 fur, alias: statute mile
-survey township, 1 twp = 36 section, alias: twp
-tablespoon, 1 Tbsp = 0.5 fl oz, alias: Tbsp
-teaspoon, 1 tsp = 0.333 333 333 333 Tbsp, alias: tsp
-tesla (20 prefixes), 1 T = 1 Wb/m2, alias: T
-thousandth of an inch, 1 mil = 0.001 in, aliases: mil, thou, thousandth
-tonne (12 prefixes), 1 t = 1000 kg, aliases: t, metric ton
-tons of TNT equivalent (3 prefixes), 1 t(TNT) = 4.184 GJ, aliases: t(TNT), tons of tnt, tons of TNT
-torr (1 prefix), 1 Torr = 133.322 368 421 Pa, alias: Torr
-troy ounce, 1 oz t = 20 dwt, aliases: oz-t, oz t
-troy pound, 1 lb t = 12 oz t, aliases: lb-t, lb t
-volt (20 prefixes), 1 V = 1 W/A, alias: V
-volt 90 (20 prefixes), 1 V90 = 1.000 000 106 67 V, alias: V(90)
-volt ampere (20 prefixes), 1 VA = 1 V A, alias: VA
-volt ampere reactive (20 prefixes), 1 var = 1 V A, alias: var
-watt (20 prefixes), 1 W = 1 J/s, alias: W
-watt 90 (20 prefixes), 1 W90 = 1 A90 V90, alias: W(90)
-wavenumber, alias for: 1/cm
-weber (20 prefixes), 1 Wb = 1 V s, alias: Wb
-yard, 1 yd = 3 ft, alias: yd +
    +
  • 1
  • +
  • acre, 1 acre = 10 ch2
  • +
  • acre-foot, 1 acre ft = 43560 ft3, aliases: acre-ft, acre ft
  • +
  • ampere (20 prefixes), symbol: A, alias: A
  • +
  • ampere 90 (20 prefixes), 1 A90 = 1 V9090, alias: A(90)
  • +
  • angstrom, 1 Å = 1 × 10-10 m, alias: Å
  • +
  • arcminute, 1' = 1/60°, aliases: arcmin, '
  • +
  • arcsecond, 1" = 1/60', aliases: arcsec, "
  • +
  • astronomical unit, 1 au = 1.495 978 707 × 1011 m, aliases: au, ua
  • +
  • bar (20 prefixes), 1 bar = 100 000 Pa
  • +
  • barn, 1 b = 1 × 10-28 m2, alias: b
  • +
  • barrel, 1 bbl = 31.5 gal, aliases: bbl, liquid barrel, liquid bbl
  • +
  • becquerel (20 prefixes), 1 Bq = 1 1/s, alias: Bq
  • +
  • bel (log base 10, multiplier = 1), 0 B = 1
  • +
  • bit (16 prefixes), symbol: bit, alias: shannon
  • +
  • board-foot, 1 board-foot = 1 ft2 in, alias: board-ft
  • +
  • bohr, 1 a0 = 5.291 772 106 8(12) × 10-11 m, aliases: a0, a(0)
  • +
  • bushel, 1 bu = 4 pk, alias: bu
  • +
  • byte (16 prefixes), 1 B = 8 bit, alias: B
  • +
  • cable, 1 cb = 120 ftm, alias: cb
  • +
  • calorie, 1 cal = 4.184 J, aliases: cal, calth, thermochemical calorie
  • +
  • candela (20 prefixes), symbol: cd, alias: cd
  • +
  • chain, 1 ch = 4 rd, alias: ch
  • +
  • coulomb (20 prefixes), 1 C = 1 s A, alias: C
  • +
  • coulomb 90 (20 prefixes), 1 C90 = 1 V90 s/Ω90, alias: C(90)
  • +
  • cubic foot, 1 cu ft = 1 ft3, aliases: cu-ft, cu ft
  • +
  • cubic inch, 1 cu in = 1 in3, aliases: cu-in, cu in
  • +
  • cubic yard, 1 cu yd = 1 yd3, aliases: cu-yd, cu yd
  • +
  • cup, 1 cp = 0.5 pt, alias: cp
  • +
  • dalton (20 prefixes), 1 Da = 1.660 539 040(20) × 10-27 kg, alias: Da
  • +
  • day, 1 d = 24 h, aliases: d, D
  • +
  • decibel (log base 10, multiplier = 10), 0 dB = 1, aliases: dB, dB power, dB-p
  • +
  • decibel femtowatt (log base 10, multiplier = 10), 0 dBf = 1 fW, aliases: dBf, dB(fW)
  • +
  • decibel field (log base 10, multiplier = 20), 0 dB = 1, aliases: dB-f, dB field, dB root-power
  • +
  • decibel hertz (log base 10, multiplier = 10), 0 dB-Hz = 1 Hz, aliases: dB-Hz, dB(Hz)
  • +
  • decibel joule (log base 10, multiplier = 10), 0 dBJ = 1 J, aliases: dBJ, dB(J)
  • +
  • decibel kelvin (log base 10, multiplier = 10), 0 dBK = 1 K, aliases: dBK, dB(K)
  • +
  • decibel kilowatt (log base 10, multiplier = 10), 0 dBk = 1 kW, aliases: dBk, dB(kW)
  • +
  • decibel microvolt (log base 10, multiplier = 20), 0 dBμV = 1 μV, aliases: dBuV, dB(uV), dBμV
  • +
  • decibel microvolt per metre (log base 10, multiplier = 20), 0 dBμ = 1 μV/m, aliases: dBμ, dB(uV/m), decibel microvolt per meter
  • +
  • decibel millivolt (log base 10, multiplier = 20), 0 dBmV = 1 mV, aliases: dBmV, dB(mV)
  • +
  • decibel milliwatt (log base 10, multiplier = 10), 0 dBm = 1 mW, aliases: dBm, dB(mW)
  • +
  • decibel reciprocal kelvin (log base 10, multiplier = 20), 0 dB(K-1) = 1 1/K, aliases: dB(K**-1), dB(K⁻¹)
  • +
  • decibel reciprocal metre (log base 10, multiplier = 10), 0 dB(m-1) = 1 1/m, aliases: dB(m**-1), dB(m⁻¹), decibel reciprocal meter
  • +
  • decibel sound intensity level (log base 10, multiplier = 10), 0 dB = 1.0 × 10-12 W/m2, alias: dB(SIL)
  • +
  • decibel sound power level (log base 10, multiplier = 10), 0 dB = 1.0 × 10-12 W, aliases: dB(SWL), dB(pW)
  • +
  • decibel sound pressure level (log base 10, multiplier = 20), 0 dB = 20 μPa, aliases: dB(SPL), dB(20uPa)
  • +
  • decibel square metre (log base 10, multiplier = 10), 0 dBsm = 1 m2, aliases: dBsm, dB(m**2), decibel square meter
  • +
  • decibel u (log base 10, multiplier = 20), 0 dBu = 0.774 596 669 241 V, alias: dBu
  • +
  • decibel volt (log base 10, multiplier = 20), 0 dBV = 1 V, aliases: dBV, dB(V)
  • +
  • decibel watt (log base 10, multiplier = 10), 0 dBW = 1 W, aliases: dBW, dB(W)
  • +
  • decibel Z (log base 10, multiplier = 10), 0 dBZ = 1 mm6/m3, aliases: dBZ, dB(Z)
  • +
  • decibel μPa (log base 10, multiplier = 20), 0 dB = 1 μPa, alias: dB(uPa)
  • +
  • degree, 1° = 0.017 453 292 519 943 295 rad, aliases: deg, °
  • +
  • degree Celsius (non-linear unit), 0 °C = 273.15 K, aliases: degC, deg C, degree C, °C
  • +
  • degree Fahrenheit (non-linear unit), 0 °F = 459.67 °R, aliases: degF, deg F, degree F, °F
  • +
  • degree Rankine, 1 °R = 5/9 K, aliases: degR, deg R, degree R, °R
  • +
  • dram, 1 dr = 1/16 oz, alias: dr
  • +
  • dry barrel, 1 bu = 7056 in3, alias: dry-bbl
  • +
  • dry gallon, 1 gal = 107521/400 in3, alias: dry-gal
  • +
  • dry pint, 1 pt = 0.5 qt, alias: dry-pt
  • +
  • dry quart, 1 qt = 0.25 gal, alias: dry-qt
  • +
  • dyne (20 prefixes), 1 dyn = 1 × 10-5 N, alias: dyn
  • +
  • Earth mass, 1 M = 5.972 37(28) × 1024 kg, aliases: M(E), M⊕
  • +
  • electon mass, 1 me = 9.109 383 56(11) × 10-31 kg, alias: m(e)
  • +
  • electronvolt (20 prefixes), 1 eV = 1.602 176 634 × 10-19 J, alias: eV
  • +
  • elementary charge, 1 e = 1.602 176 634 × 10-19 C, alias: e
  • +
  • erg (20 prefixes), 1 erg = 1 × 10-7 J
  • +
  • farad (20 prefixes), 1 F = 1 C/V, alias: F
  • +
  • farad 90 (20 prefixes), 1 F90 = 1 s/Ω90, alias: F(90)
  • +
  • fathom, 1 ftm = 2 yd, alias: ftm
  • +
  • fluid dram, 1 fl dr = 60 min, aliases: fl-dr, fl dr
  • +
  • fluid ounce, 1 fl oz = 0.25 gi, aliases: fl-oz, fl oz
  • +
  • foot, 1 ft = 12 in, alias: ft
  • +
  • foot-pound, 1 ft·lb = 1 ft lbf, aliases: ft-lb, ft-lbf, ft·lb, ft·lbf
  • +
  • furlong, 1 fur = 10 ch, alias: fur
  • +
  • galileo (20 prefixes), 1 Gal = 1 cm/s2, alias: Gal
  • +
  • gallon, 1 gal = 231 in3, aliases: gal, liquid gal, liquid gallon
  • +
  • gasoline gallon equivalent, 1 gasoline-gallon-equivalent = 33.7 kW h, alias: gasoline-gallon-equivalent
  • +
  • gauss (20 prefixes), 1 G = 1 × 10-4 T, alias: G
  • +
  • gill, 1 gi = 0.5 cp, alias: gi
  • +
  • grain, 1 gr = 1/7000 lb, alias: gr
  • +
  • gray (20 prefixes), 1 Gy = 1 J/kg, alias: Gy
  • +
  • hand, 1 hand = 4 in
  • +
  • hartley, 1 Hart = 3.321 928 094 89 bit, aliases: Hart, ban, dit
  • +
  • hartree, 1 Eh = 1 ℏ2/(a02me), aliases: E_h, Ha
  • +
  • hectare, 1 ha = 1 hm2, alias: ha
  • +
  • henry (20 prefixes), 1 H = 1 Wb/A, alias: H
  • +
  • henry 90 (20 prefixes), 1 H90 = 1 Ω90 s, alias: H(90)
  • +
  • hertz (20 prefixes), 1 Hz = 1 1/s, alias: Hz
  • +
  • hogshead, 1 hogshead = 65 gal
  • +
  • horsepower, 1 hp = 550 ft lbf/s, alias: hp
  • +
  • hour, 1 h = 60 min, alias: h
  • +
  • hundredweight, 1 cwt = 100 lb, alias: cwt
  • +
  • inch (1 prefix), 1 in = 0.0254 m, alias: in
  • +
  • international prototype kilogram, 1 m(𝒦) = 1.000 000 000(12) kg, aliases: m(K), IPK
  • +
  • IT British thermal unit, 1 BTU = 1055.055 852 62 J, aliases: BTU, Btu
  • +
  • jansky, 1 Jy = 1 × 10-26 W/(Hz m2), alias: Jy
  • +
  • joule (20 prefixes), 1 J = 1 N m, alias: J
  • +
  • Julian year (4 prefixes), 1 a = 365.25 d, aliases: a, annum, year, yr
  • +
  • Jupiter mass, 1 MJ = 1.898 580(88) × 1027 kg, aliases: M(J), M(Jup)
  • +
  • katal (20 prefixes), 1 kat = 1 mol/s, alias: kat
  • +
  • kelvin (20 prefixes), symbol: K, alias: K
  • +
  • kelvin 54 (20 prefixes), 1 K54 = 1.000 000 00(37) K, alias: K(54)
  • +
  • kilogram (20 prefixes), symbol: kg, alias: kg
  • +
  • knot, 1 kn = 1 M/h, alias: kn
  • +
  • large calorie, 1 Cal = 1000 cal, aliases: Cal, Calorie, dietary calorie, kcal, kilocalorie
  • +
  • league, 1 lea = 3 mi, alias: lea
  • +
  • light hour, 1 light-hour = 1 h c, alias: light-hour
  • +
  • light minute, 1 light-minute = 1 min c, alias: light-minute
  • +
  • light second, 1 light-second = 1 c s, alias: light-second
  • +
  • light year, 1 ly = 1 a c, alias: ly
  • +
  • link, 1 li = 0.66 ft, alias: li
  • +
  • litre (20 prefixes), 1 L = 1 dm3, aliases: L, liter
  • +
  • long hundredweight, 1 long cwt = 112 lb, alias: long cwt
  • +
  • long ton, 1 long ton = 2240 lb
  • +
  • lumen (20 prefixes), 1 lm = 1 sr cd, alias: lm
  • +
  • lux (20 prefixes), 1 lx = 1 lm/m2, alias: lx
  • +
  • maxwell (20 prefixes), 1 Mx = 1 × 10-8 Wb, alias: Mx
  • +
  • metre (20 prefixes), symbol: m, aliases: m, meter
  • +
  • mile, 1 mi = 1760 yd, alias: mi
  • +
  • millibel milliwatt (log base 10, multiplier = 1000), 0 mBm = 1 mW, aliases: mBm, mB(mW)
  • +
  • millimetre of mercury, 1 mmHg = 133.322 387 415 Pa, alias: mmHg
  • +
  • minim, 1 min = 0.125 tsp
  • +
  • minute, 1 min = 60 s, alias: min
  • +
  • mole (20 prefixes), symbol: mol, alias: mol
  • +
  • moment magnitude (log base 10, multiplier = 2/3), -10.7 MW = 1.0 dyn cm, aliases: M(W), MMS
  • +
  • monochromatic AB magnitude (log base 10, multiplier = -2.5), 0 mAB = 3631.0 Jy, alias: m(AB)
  • +
  • natural unit of action, 1 ℏ = 1.054 571 817 646 156 5 × 10-34 J s, aliases: h-bar, ℏ
  • +
  • natural unit of information, 1 nat = 1.442 695 040 89 bit, aliases: nat, nepit, nit
  • +
  • nautical mile, 1 M = 1852 m, aliases: M, Nm, NM, nmi
  • +
  • neper (log base e, multiplier = 1), 0 Np = 1.0, alias: Np
  • +
  • newton (20 prefixes), 1 N = 1 kg m/s2, alias: N
  • +
  • nibble, 1 nibble = 4 bit, aliases: nybble, nyble
  • +
  • oersted (20 prefixes), 1 Oe = 79.577 471 545 947 67 A/m, alias: Oe
  • +
  • ohm (20 prefixes), 1 Ω = 1 V/A, alias: Ω
  • +
  • ohm 90 (20 prefixes), 1 Ω90 = 1.000 000 017 793 668... Ω, aliases: ohm(90), Ω(90)
  • +
  • oil barrel, 1 bbl = 42 gal
  • +
  • ounce, 1 oz = 1/16 lb, aliases: oz, avdp oz, avoirdupois ounce
  • +
  • parsec (3 prefixes), 1 pc = 206 264.806 247 096 36 au, alias: pc
  • +
  • part per billion, 1 ppb = 1 × 10-9, alias: ppb
  • +
  • part per million, 1 ppm = 1 × 10-6, alias: ppm
  • +
  • part per quadrillion, 1 ppq = 1 × 10-15, alias: ppq
  • +
  • part per trillion, 1 ppt = 1 × 10-12, alias: ppt
  • +
  • pascal (20 prefixes), 1 Pa = 1 N/m2, alias: Pa
  • +
  • peck, 1 pk = 2 gal, alias: pk
  • +
  • pennyweight, 1 dwt = 24 gr, alias: dwt
  • +
  • percent, 1% = 0.01, alias: %
  • +
  • phot (20 prefixes), 1 ph = 1 sr cd/cm2, alias: ph
  • +
  • pica, 1 P/ = 1/6 in, alias: P/
  • +
  • pint, 1 pt = 0.5 qt, aliases: pt, liquid pint, liquid pt
  • +
  • Planck charge, 1 qP = 1.875 546 038 15(22) × 10-18 C, alias: q(P)
  • +
  • Planck length, 1 lP = 1.616 228(38) × 10-35 m, alias: l(P)
  • +
  • Planck mass, 1 mP = 2.176 470(51) × 10-8 kg, alias: m(P)
  • +
  • Planck temperature, 1 TP = 1.416 808(33) × 1032 K, alias: T(P)
  • +
  • Planck time, 1 tP = 5.391 16(13) × 10-44 s, alias: t(P)
  • +
  • point, 1 p = 1/12 P/, alias: p
  • +
  • poise (20 prefixes), 1 P = 1 dyn s/cm2, alias: P
  • +
  • pound (1 prefix), 1 lb = 0.453 592 37 kg, aliases: lb, avdp lb, avoirdupois pound, lbm, pound mass
  • +
  • pound force, 1 lbf = 9.806 65 lb m/s2, alias: lbf
  • +
  • pound per square inch, 1 psi = 1 lbf/in2, alias: psi
  • +
  • pound-foot, 1 lb·ft = 1 ft lbf, aliases: lb-ft, lbf-lft, lbf·ft, lb·ft
  • +
  • proton mass, 1 mp = 1.672 621 898(21) × 10-27 kg, alias: m(p)
  • +
  • quart, 1 qt = 0.25 gal, aliases: qt, liquid qt, liquid quart
  • +
  • rack unit, 1 U = 1.75 in
  • +
  • radian (20 prefixes), 1 rad = 1 m/m, alias: rad
  • +
  • reduced compton wavelength, 1 ƛC = 1 ℏ/(mec), aliases: lambda(C), ƛ(C)
  • +
  • rod, 1 rd = 25 ft, alias: rd
  • +
  • root hertz, 1 √Hz = 1 Hz1/2, aliases: sqrtHz, √Hz
  • +
  • second (20 prefixes), symbol: s, alias: s
  • +
  • section, 1 section = 640 acre
  • +
  • short ton, 1 tn = 2000 lb, alias: tn
  • +
  • shot, 1 jig = 3 Tbsp, alias: jig
  • +
  • siemens (20 prefixes), 1 S = 1 A/V, aliases: S, mho
  • +
  • sievert (20 prefixes), 1 Sv = 1 J/kg, alias: Sv
  • +
  • siriometer, 1 Sm = 1 000 000 au
  • +
  • slug, 1 slug = 1 lbf s2/ft
  • +
  • solar mass, 1 M = 1.988 475(92) × 1030 kg, aliases: M(solar), M(Sun), M☉
  • +
  • speed of light, 1 c = 2.997 924 58 × 108 m/s, alias: c
  • +
  • square, 1 square = 100 ft2
  • +
  • standard atmosphere, 1 atm = 101 325 Pa, alias: atm
  • +
  • steradian (20 prefixes), 1 sr = 1 m2/m2, alias: sr
  • +
  • stilb (20 prefixes), 1 sb = 1 cd/cm2, alias: sb
  • +
  • stokes (20 prefixes), 1 St = 1 cm2/s, alias: St
  • +
  • survey foot, 1 ft = 1200/3937 m
  • +
  • survey mile, 1 mi = 8 fur, alias: statute mile
  • +
  • survey township, 1 twp = 36 section, alias: twp
  • +
  • tablespoon, 1 Tbsp = 0.5 fl oz, alias: Tbsp
  • +
  • teaspoon, 1 tsp = 1/3 Tbsp, alias: tsp
  • +
  • tesla (20 prefixes), 1 T = 1 Wb/m2, alias: T
  • +
  • thousandth of an inch, 1 mil = 0.001 in, aliases: mil, thou, thousandth
  • +
  • tonne (12 prefixes), 1 t = 1000 kg, aliases: t, metric ton
  • +
  • tons of TNT equivalent (3 prefixes), 1 t(TNT) = 4.184 GJ, aliases: t(TNT), tons of tnt, tons of TNT
  • +
  • torr (1 prefix), 1 Torr = 20265/152 Pa, alias: Torr
  • +
  • troy ounce, 1 oz t = 20 dwt, aliases: oz-t, oz t
  • +
  • troy pound, 1 lb t = 12 oz t, aliases: lb-t, lb t
  • +
  • volt (20 prefixes), 1 V = 1 W/A, alias: V
  • +
  • volt 90 (20 prefixes), 1 V90 = 71207857995393/71207850400000 V, alias: V(90)
  • +
  • volt ampere (20 prefixes), 1 VA = 1 V A, alias: VA
  • +
  • volt ampere reactive (20 prefixes), 1 var = 1 V A, alias: var
  • +
  • watt (20 prefixes), 1 W = 1 J/s, alias: W
  • +
  • watt 90 (20 prefixes), 1 W90 = 1 A90 V90, alias: W(90)
  • +
  • wavenumber, alias for: 1/cm
  • +
  • weber (20 prefixes), 1 Wb = 1 V s, alias: Wb
  • +
  • yard, 1 yd = 3 ft, alias: yd

diff --git a/docs/_build/html/genindex.html b/docs/_build/html/genindex.html index 5f7c038..4be876a 100644 --- a/docs/_build/html/genindex.html +++ b/docs/_build/html/genindex.html @@ -7,7 +7,7 @@ - Index — metrolopy 0.5 documentation + Index — metrolopy 0.5.1rc1 documentation @@ -15,7 +15,7 @@