-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpval_adjust.m
199 lines (146 loc) · 4.53 KB
/
pval_adjust.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
function pc = pval_adjust(p, method)
% PVAL_ADJUST Adjust p-values for multiple comparisons. Given a set of
% p-values, returns p-values adjusted using one of several methods. This is
% an implementation of the p.adjust R function, the documentation of which
% can be found at http://www.inside-r.org/r-doc/stats/p.adjust.
%
% pc = PVAL_ADJUST(p, method)
%
% Parameters:
% p - Numeric vector or matrix of p-values. Contrary to the R
% function, this function does not handle missing values.
% method - Correction method, one of: 'holm', 'hochberg', 'hommel',
% 'bonferroni', 'BH', 'BY', 'fdr', 'sidak' or 'none'.
%
% Outputs:
% pc - A numeric vector or matrix of corrected p-values, with the
% same shape/dimensions of p.
%
% Notes:
%
% This function has two main differences regarding the R implementation:
%
% 1. Contrary to the R function, this function does not handle missing
% values.
% 2. It adds one additional correction method, 'sidak', as described
% here: https://en.wikipedia.org/wiki/%C5%A0id%C3%A1k_correction
%
%
% Copyright (c) 2016 Nuno Fachada
% Distributed under the MIT License (See accompanying file LICENSE or copy
% at http://opensource.org/licenses/MIT)
%
% Number of p-values
np = numel(p);
% Reshape input into a row vector, keeping original shape for later
% converting results into original shape
pdims = size(p);
p = reshape(p, 1, np);
% Method 'hommel' is equivalent to 'hochberg' of np == 2
if (np == 2) && strcmp(method, 'hommel')
method = 'hochberg';
end;
% Just one p-value? Return it as given.
if np <= 1
pc = p;
% What method to use?
elseif strcmp(method, 'holm')
% Sort p-values from smallest to largest
[pc, pidx] = sort(p);
% Get indexes of p-value indexes
[~, ipidx] = sort(pidx);
% Adjust p-values
pc = min(1, cmax((np - (1:np) + 1) .* pc));
% Reorder p-values to original order
pc = pc(ipidx);
elseif strcmp(method, 'hochberg')
% Descendent vector
vdec = np:-1:1;
% Sort p-values in descending order
[pc, pidx] = sort(p, 'descend');
% Get indexes of p-value indexes
[~, ipidx] = sort(pidx);
% Hochberg-specific transformation
pc = ((np + 1) - vdec) .* pc;
% Cumulative minimum
pc = cmin(pc);
% Reorder p-values to original order
pc = pc(ipidx);
elseif strcmp(method, 'hommel')
% Sort p-values from smallest to largest
[pc, pidx] = sort(p);
% Get indexes of p-value indexes
[~, ipidx] = sort(pidx);
% Generate vectors for cycle
pa = repmat(min(np * pc ./ (1:np)), size(p));
q = pa;
% Begin cycle
for i = (np - 1):-1:2
i1 = 1:(np - i + 1);
i2 = (np - i + 2):np;
q1 = min(i * pc(i2) ./ (2:i));
q(i1) = min(i * pc(i1), q1);
q(i2) = q(np - i + 1);
pa = max(pa, q);
end;
% Finalize result
pa = max(pa, pc);
pc = pa(ipidx);
elseif strcmp(method, 'bonferroni')
% Simple conservative Bonferroni
pc = p * numel(p);
elseif strcmp(method, 'BH') || strcmp(method, 'fdr')
% Descendent vector
vdec = np:-1:1;
% Sort p-values in descending order
[pc, pidx] = sort(p, 'descend');
% Get indexes of p-value indexes
[~, ipidx] = sort(pidx);
% BH-specific transformation
pc = (np ./ vdec) .* pc;
% Cumulative minimum
pc = cmin(pc);
% Reorder p-values to original order
pc = pc(ipidx);
elseif strcmp(method, 'BY')
% Descendent vector
vdec = np:-1:1;
% Sort p-values in descending order
[pc, pidx] = sort(p, 'descend');
% Get indexes of p-value indexes
[~, ipidx] = sort(pidx);
% BY-specific transformation
q = sum(1 ./ (1:np));
pc = (q * np ./ vdec) .* pc;
% Cumulative minimum
pc = cmin(pc);
% Reorder p-values to original order
pc = pc(ipidx);
elseif strcmp(method, 'sidak')
% Sidak correction
pc = 1 - (1 - p) .^ np;
elseif strcmp(method, 'none')
% No correction
pc = p;
else
% Unknown method
error('Unknown p-value adjustment method');
end;
% Can't have p-values larger than one
pc(pc > 1) = 1;
% Reshape result vector to original form
pc = reshape(pc, pdims);
% Helper function to determine the cumulative maximum
function p = cmax(p)
for i = 2:numel(p)
if p(i) < p(i - 1)
p(i) = p(i - 1);
end;
end;
% Helper function to determine the cumulative minimum
function p = cmin(p)
for i = 2:numel(p)
if p(i) > p(i - 1)
p(i) = p(i - 1);
end;
end;