forked from NeuroJSON/jsonlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstruct2jdata.m
96 lines (95 loc) · 3.45 KB
/
struct2jdata.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function newdata=struct2jdata(data,varargin)
%
% newdata=struct2jdata(data,opt,...)
%
% convert a JData object (in the form of a struct array) into an array
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
%
% input:
% data: a struct array. If data contains JData keywords in the first
% level children, these fields are parsed and regrouped into a
% data object (arrays, trees, graphs etc) based on JData
% specification. The JData keywords are
% "_ArrayType_", "_ArraySize_", "_ArrayData_"
% "_ArrayIsSparse_", "_ArrayIsComplex_"
% opt: (optional) a list of 'Param',value pairs for additional options
% The supported options include
% 'Recursive', if set to 1, will apply the conversion to
% every child; 0 to disable
%
% output:
% newdata: the covnerted data if the input data does contain a JData
% structure; otherwise, the same as the input.
%
% examples:
% obj=struct('_ArrayType_','double','_ArraySize_',[2 3],
% '_ArrayIsSparse_',1 ,'_ArrayData_',null);
% ubjdata=struct2jdata(obj);
%
% license:
% BSD or GPL version 3, see LICENSE_{BSD,GPLv3}.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
fn=fieldnames(data);
newdata=data;
len=length(data);
if(jsonopt('Recursive',0,varargin{:})==1)
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end