-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathperf_sigmoid_fitter.py
119 lines (109 loc) · 4.17 KB
/
perf_sigmoid_fitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
import sys
import glob
import nnue_dataset
import torch
import sys
import random
def sigmoid(x, k):
y = 1 / (1 + np.exp(-k*x))
return (y)
def fit_data(x, y, sigma):
# 1/361 is the initial guess. It's good enough to find the solution
p0 = [1/361]
popt, pcov = curve_fit(sigmoid, x, y, p0, sigma, method='dogbox')
return popt[0]
def do_plot(data, filename):
# plot of the eval distribution
fig, axs = plt.subplots(2)
fig.tight_layout(pad=2.0)
fig.suptitle(filename)
x = list(data.keys())
y = [data[k][1] for k in x]
x, y = zip(*list(sorted(zip(x, y), key=lambda x:x[0])))
axs[0].plot(x, y)
axs[0].set_ylabel('density')
axs[0].set_xlabel('eval')
axs[0].set_xscale('symlog')
# plot of the perf% by eval and the fitted sigmoid
x = list(data.keys())
y = [data[k][0] / data[k][1] for k in x]
# sigma is uncertainties, we con't care how correct it is.
# The inverted counts are good enough.
sigma = [1 / data[k][1] for k in x]
k = fit_data(x, y, sigma)
print('k: ', k)
print('inv k: ', 1/k)
axs[1].scatter(x, y, label='perf')
y = [sigmoid(xx, k) for xx in x]
axs[1].scatter(x, y, label='sigmoid(x/{})'.format(1.0/k))
axs[1].legend(loc="upper left")
axs[1].set_ylabel('perf')
axs[1].set_xlabel('eval')
# save to a .png file
plot_filename = '.'.join(filename.split('.')[:-1]) + '.png'
plt.savefig(plot_filename)
print('plot saved at {}'.format(plot_filename))
def gather_statistics_from_batches(batches, bucket_size):
'''
This function takes an iterable of training batches and a bucket_size.
It goes through all batches and collects evals and the outcomes.
The evals are bucketed by bucket_size. Perf% is computed based on the
evals and corresponding game outcomes.
The result is a dictionary of the form { eval : (perf%, count) }
'''
data = dict()
i = 0
for batch in batches:
us, them, white_indices, white_values, black_indices, black_values, outcome, score, psqt_indices, layer_stack_indices = batch
batch_size = len(us)
bucket = torch.round(score / bucket_size) * bucket_size
perf = outcome
for b, p in zip(bucket, perf):
bucket_id = int(b)
pp = float(p)
if bucket_id in data:
t = data[bucket_id]
data[bucket_id] = (t[0] + pp, t[1] + 1)
else:
data[bucket_id] = (pp, 1)
i += batch_size
print('Loaded {} positions...'.format(i))
return data
def gather_statistics_from_data(filename, count, bucket_size):
'''
Takes a .bin or .binpack file and produces perf% statistics
The result is a dictionary of the form { eval : (perf%, count) }
'''
batch_size = 8192
cyclic = True
smart_fen_skipping = True
# we pass whatever feature set because we have to pass something
# it doesn't actually matter, all we care about are the scores and outcomes
# this is just the easiest way to do it
dataset = nnue_dataset.SparseBatchDataset('HalfKP', filename, batch_size, cyclic, smart_fen_skipping)
batches = iter(dataset)
num_batches = (count + batch_size - 1) // batch_size
data = gather_statistics_from_batches((next(batches) for i in range(num_batches)), bucket_size)
return data
def show_help():
print('Usage: python perf_sigmoid_fitter.py filename [count] [bucket_size]')
print('count is the number of positions. Default: 1000000')
print('bucket_size determines how the evals are bucketed. Default: 16')
print('')
print('This file can be used as a module')
print('The function `gather_statistics_from_batches` can be used to determine')
print('the sigmoid scaling factor for each batch during training')
def main():
filename = sys.argv[1]
count = 1000000 if len(sys.argv) < 3 else int(sys.argv[2])
bucket_size = 16 if len(sys.argv) < 4 else int(sys.argv[3])
data = gather_statistics_from_data(filename, count, bucket_size)
do_plot(data, filename)
if __name__ == '__main__':
if len(sys.argv) <= 1:
show_help()
else:
main()