-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·144 lines (124 loc) · 5.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
#!/usr/bin/env python3
import math
import time
import torch
from config import PARAMS_CONFIG
from data import get_train_val_test_data
from models import TransformerSeq
from trainer import train_iteration, full_eval
from utils import (
get_params,
set_up_env,
get_optimizer_and_scheduler,
load_checkpoint,
save_checkpoint,
Logger)
def launch(env_params,
model_params,
adapt_span_params,
optim_params,
data_params,
trainer_params):
# ENVIRONMENT (device, distributed, etc.)
set_up_env(env_params)
device = env_params['device']
distributed = env_params['distributed']
if distributed == False or env_params['rank'] == 0:
print('model_params:\t', model_params)
print('optim_params:\t', optim_params)
print('data_params:\t', data_params)
print('trainer_params:\t', trainer_params)
print('adapt_span_params:\t', adapt_span_params)
# DATA
train_data, val_data, test_data = get_train_val_test_data(
data_params=data_params,
env_params=env_params,
batch_size=trainer_params['batch_size'],
device=device)
# MODEL
model = TransformerSeq(
vocab_size=data_params['vocab_size'], **model_params,
adapt_span_params=adapt_span_params)
if distributed:
local_rank = env_params['local_rank']
model = model.to(device)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model)
model = model.to(device)
# OPTIMIZER AND SCHEDULER
optimizer, scheduler = get_optimizer_and_scheduler(
model=model, optim_params=optim_params)
# create logger
logger = Logger()
# resume training from last checkpoint if exists
iter_init = load_checkpoint(
trainer_params['checkpoint_path'], model, optimizer, scheduler,
logger, distributed)
if trainer_params['full_eval_mode']:
# evaluate the model on test data
with torch.no_grad():
loss_val = full_eval(model, optimizer, scheduler, val_data,
model_params['block_size'],
model_params['hidden_size'])
loss_test = full_eval(model, optimizer, scheduler, test_data,
model_params['block_size'],
model_params['hidden_size'])
if distributed:
# collect results into rank0
stats = torch.tensor(
[loss_val, loss_test]).to(device)
torch.distributed.reduce(stats, 0)
if env_params['rank'] == 0:
loss_val = stats[0] / env_params['world_size']
loss_test = stats[1] / env_params['world_size']
else:
return
print('val: {:.3f}bpc'.format(loss_val / math.log(2)))
print('test: {:.3f}bpc'.format(loss_test / math.log(2)))
return
# position of current batch
data_pos = [0] * 2
# initialize caches for train and valid
hid_cache = [[
torch.zeros(
train_data.size(0),
model.module.layers[layer_i].attn.attn.get_cache_size(),
model_params['hidden_size']).to(device)
for layer_i in range(model.module.attn_layer_count) ] for _ in range(2)]
nb_batches_per_iter = trainer_params['nb_batches_per_iter']
for iter_no in range(iter_init, trainer_params['nb_iter']):
t_sta = time.time()
loss_train, data_pos[0], hid_cache[0] = train_iteration(
model, optimizer, scheduler, train_data, nb_batches_per_iter,
model_params['block_size'], False, data_pos[0], hid_cache[0],
trainer_params['batch_split'])
elapsed = 1000 * (time.time() - t_sta) / nb_batches_per_iter
with torch.no_grad():
loss_val, data_pos[1], hid_cache[1] = train_iteration(
model, optimizer, scheduler, val_data, nb_batches_per_iter,
model_params['block_size'], True, data_pos[1], hid_cache[1],
trainer_params['batch_split'])
if distributed:
# collect results into rank0
stats = torch.tensor(
[loss_train, loss_val]).to(device)
torch.distributed.reduce(stats, 0)
if env_params['rank'] == 0:
loss_train = stats[0] / env_params['world_size']
loss_val = stats[1] / env_params['world_size']
else:
continue
logger.log_iter(iter_no, nb_batches_per_iter, loss_train,
loss_val, elapsed, model)
save_checkpoint(trainer_params['checkpoint_path'],
iter_no, model, optimizer, scheduler, logger)
if __name__ == '__main__':
launch(**get_params(params_config=PARAMS_CONFIG))