-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathREADME.rmd
200 lines (152 loc) · 6.03 KB
/
README.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(knitr)
library(memoise)
library(dplyr)
# listGenes = memoise(listGenes)
# genes = listGenes()
# saveRDS(listGenes,'listGenes.rds')
devtools::load_all()
listGenes = readRDS('listGenes.rds')
dir.create('README_files',showWarnings = FALSE)
```
Table of Contents
=================
* [allenBrain](#allenbrain)
* [Example usage](#example-usage)
* [Image acquisition](#image-acquisition)
* [Region expression data](#region-expression-data)
* [Incomplete stuff](#incomplete-stuff)
# allenBrain
This R package acquires pictures from Allen Brain Atlas.
Install allenBrain to R
``` r
devtools::install_github('oganm/allenBrain')
```
## Example usage
### Image acquisition
You can use `downloadImage` and `downloadAtlas` functions to get images. Output of these functions are `magick-image` objects
``` {r}
library(dplyr)
# get a list of structure names and ids
IDs = getStructureIDs()
IDs %>% head
```
```{r, results = FALSE}
# get the id of the desired region
granuleID = IDs['Dentate gyrus, granule cell layer' == IDs$name,]$id
# get the dataset for the desired gene (the first saggital experiment that did not fail)
datasetID = getGeneDatasets(gene = 'Prox1',
planeOfSection = 'sagittal',
probeOrientation = 'antisense')[1]
# get the slide that has the desired brain region and coordinates of the center of the region
imageID = structureToImage(datasetID = datasetID, regionIDs = granuleID)
# get the closest atlas image.
atlasID = imageToAtlas(imageID$section.image.id,imageID$x,imageID$y,planeOfSection ='sagittal')
# decide how much to you wish to downsample
downsample = 2
# download the slide
downloadImage(imageID = imageID$section.image.id,
view = 'projection',
outputFile = 'README_files/image.jpg',
downsample = downsample)
```
![](README_files/image.jpg)
```{r, results = FALSE}
# download the atlas
downloadAtlas(imageID = atlasID$section.image.id,
outputFile = 'README_files/atlas.jpg',
downsample = downsample)
```
![](README_files/atlas.jpg)
Images can be centered by providing center coordinates of a brain region. Input is either a file path or a `magick-image` object
```{r,results=FALSE}
# crop the slide so that the desired brain region is in the center
centerImage(image = 'README_files/image.jpg',
x = imageID$x,
y= imageID$y,
xProportions = c(.1,.1),
yProportions =c(.1,.1),
outputFile = 'README_files/cropped.jpg',
downsample = downsample)
```
![](README_files/cropped.jpg)
```{r,results = FALSE}
centerImage(image = 'README_files/atlas.jpg',
x = atlasID['x'],
y= atlasID['y'],
xProportions = c(.1,.1),
yProportions =c(.1,.1),
outputFile = 'README_files/croppedAtlas.jpg',
downsample = downsample)
```
![](README_files/croppedAtlas.jpg)
### Adding a scale to the image
`getSectionImage` function returns all available information about an image. We can
use this to access the resolution information which lists micron/pixel ratio
in a given image.
```{r}
(image_res = getSectionImage(imageID$section.image.id)$resolution)
```
We can then use the `add_scale` function to add a scale
```{r}
downloadImage(imageID = imageID$section.image.id,
view = 'projection',
downsample = downsample) %>%
centerImage(x = imageID$x,
y= imageID$y,
xProportions = c(.1,.1),
yProportions =c(.1,.1),
outputFile = 'README_files/cropped.jpg',
downsample = downsample) %>%
add_scale(image_res,downsample)
```
### Image syncronization
You can get closest points of other slides from the same dataset to get other slides depicting the region
```{r, results=FALSE}
# gel all images for Prox1 experiment
allImages = listImages(datasetID) %>% arrange(as.numeric(`section.number`))
# get coordinates that are closest to the center of the brain region
closeSections = imageToImage2D(imageID$section.image.id,imageID$x,imageID$y,allImages$id)
# download and crop them all
croppedImage = closeSections %>% apply(1,function(x){
# download and crop the images
image = downloadImage(imageID = x['section.image.id'],
view = 'projection',
# outputFile = file.path('README_files/allProx1',x['section.image.id']),
downsample = downsample)
centerImage(image = image,
x = x['x'],
y= x['y'],
xProportions = c(.1,.1),
yProportions =c(.1,.1),
# outputFile = file.path('README_files/allProx1',x['section.image.id']),
downsample = downsample)
}) %>% do.call(c,.)
# some magick
animation = magick::image_animate(croppedImage, fps = 1)
magick::image_write(animation, "README_files/Prox1.gif")
```
![](README_files/Prox1.gif)
### Region expression data
Region expression can be acquired by datasetID. Data displayed in ABA web portals is expression.energy.
```{r}
head(getStructureExpressions(datasetID))
```
If you want to get all genes, use `listGenes` to get all available genes for the species. Then do `getGeneDatasets`.
```{r}
genes = listGenes()
geneDatasets = genes$acronym[1:10] %>% lapply(getGeneDatasets)
```
You may want to limit your search space as getting the data for all genes is a slow process.
### Incomplete stuff
Grid data of a dataset can be downloaded by `gridData` function
```{r,eval= FALSE}
gridData(datasetID = datasetID,
outputFile ='README_files/Prox1_data.zip',
include = c('energy','density','intensity'))
unzip(zipfile = 'README_files/Prox1_data.zip',exdir = "README_files")
```