SegFormer (ArXiv'2021)
@article{xie2021segformer,
title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
journal={arXiv preprint arXiv:2105.15203},
year={2021}
}
To use other repositories' pre-trained models, it is necessary to convert keys.
We provide a script mit2mmseg.py
in the tools directory to convert the key of models from the official repo to MMSegmentation style.
python tools/model_converters/mit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
This script convert model from PRETRAIN_PATH
and store the converted model in STORE_PATH
.
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
Segformer | MIT-B0 | 512x512 | 160000 | 2.1 | 51.32 | 37.41 | 38.34 | config | model | log |
Segformer | MIT-B1 | 512x512 | 160000 | 2.6 | 47.66 | 40.97 | 42.54 | config | model | log |
Segformer | MIT-B2 | 512x512 | 160000 | 3.6 | 30.88 | 45.58 | 47.03 | config | model | log |
Segformer | MIT-B3 | 512x512 | 160000 | 4.8 | 22.11 | 47.82 | 48.81 | config | model | log |
Segformer | MIT-B4 | 512x512 | 160000 | 6.1 | 15.45 | 48.46 | 49.76 | config | model | log |
Segformer | MIT-B5 | 512x512 | 160000 | 7.2 | 11.89 | 49.13 | 50.22 | config | model | log |
Segformer | MIT-B5 | 640x640 | 160000 | 11.5 | 11.30 | 49.62 | 50.36 | config | model | log |
Evaluation with AlignedResize:
Method | Backbone | Crop Size | Lr schd | mIoU | mIoU(ms+flip) |
---|---|---|---|---|---|
Segformer | MIT-B0 | 512x512 | 160000 | 38.1 | 38.57 |
Segformer | MIT-B1 | 512x512 | 160000 | 41.64 | 42.76 |
Segformer | MIT-B2 | 512x512 | 160000 | 46.53 | 47.49 |
Segformer | MIT-B3 | 512x512 | 160000 | 48.46 | 49.14 |
Segformer | MIT-B4 | 512x512 | 160000 | 49.34 | 50.29 |
Segformer | MIT-B5 | 512x512 | 160000 | 50.08 | 50.72 |
Segformer | MIT-B5 | 640x640 | 160000 | 50.58 | 50.8 |
We replace AlignedResize
in original implementatiuon to Resize + ResizeToMultiple
. If you want to test by
using AlignedResize
, you can change the dataset pipeline like this:
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
# resize image to multiple of 32, improve SegFormer by 0.5-1.0 mIoU.
dict(type='ResizeToMultiple', size_divisor=32),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]