forked from openecloud/openecloud
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparticleManagement.pyx
262 lines (239 loc) · 12.7 KB
/
particleManagement.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#cython: boundscheck=False
#cython: nonecheck=False
#cython: wraparound=False
#cython: cdivision=True
import numpy
cimport numpy
cimport cython
cimport particles
cimport grid
cimport kdTree
cimport randomGen
from constants cimport *
cdef inline double min(double a, double b) nogil:
if a<=b:
return a
else:
return b
cdef inline double max(double a, double b) nogil:
if a>=b:
return a
else:
return b
cdef extern from "math.h":
double sqrt(double x) nogil
# Global random particle management. Sometimes called russian roulette method.
# For now only meant for same weight particles.
# If too many particles selects a particle randomly, kills it and adds its weight evenly to all other particles.
# If initial particle number less than half splits all particles in half
cpdef globalRandom(grid.Grid gridObj, particles.Particles particlesObj, unsigned int targetMacroParticleCount):
cdef:
unsigned int ii, jj
unsigned int macroParticleCount = particlesObj.getMacroParticleCount()
unsigned int nCoords = particlesObj.getNCoords()
int diffParticleCount = (<int> macroParticleCount) - (<int> targetMacroParticleCount)
double factorWeight = (<double> macroParticleCount)/(<double> targetMacroParticleCount)
unsigned int randInd = randomGen.randi(macroParticleCount)
unsigned short[:] keepParticles = numpy.ones(macroParticleCount, dtype=numpy.ushort)
double[:,:] particleData = particlesObj.getParticleData()
double[:,:] addParticleData
if diffParticleCount > 0:
for ii in range(macroParticleCount):
particleData[ii,5] *= factorWeight
for ii in range(diffParticleCount):
while keepParticles[randInd] == 0:
randInd = randomGen.randi(macroParticleCount)
keepParticles[randInd] = 0
particlesObj.addAndRemoveParticles(numpy.zeros((0,6), dtype=numpy.double), keepParticles)
elif targetMacroParticleCount > macroParticleCount:
addParticleData = numpy.empty((-diffParticleCount,nCoords), dtype=numpy.double)
for ii in range(macroParticleCount):
particleData[ii,5] *= factorWeight
for ii in range(-diffParticleCount):
randInd = randomGen.randi(macroParticleCount)
for jj in range(nCoords):
addParticleData[ii,jj] = particleData[randInd,jj]
particlesObj.addAndRemoveParticles(addParticleData, numpy.ones((macroParticleCount), dtype=numpy.ushort))
# Uses kdTree to merge nearest neighbor (full phase space) particles, thus locally
# conserving momentum, energy and velocity distribution. Splits with a slightly
# modified Lapenta-rule, which conserves linear grid moments.
# This method aims for globally similar weight particles.
cpdef localRandom(grid.Grid gridObj, particles.Particles particlesObj, particleBoundaryObj,
unsigned int targetMacroParticleCount, double[:] phaseSpaceWeights = numpy.empty(0, dtype=numpy.double),
double thresholdFactor = 2., double lambdavFactor = 1., double factorDisLimit = 1.,
unsigned int mergeScheme = 0):
cdef:
unsigned int ii, jj
unsigned int macroParticleCount = particlesObj.getMacroParticleCount()
unsigned int nCoords = particlesObj.getNCoords()
unsigned int toSplitCount, toMergeCount
double meanWeight = particlesObj.getMeanWeight()
double goalWeight = meanWeight*macroParticleCount/targetMacroParticleCount
double maxThreshold = thresholdFactor*goalWeight
double minThreshold = goalWeight/thresholdFactor
double factorLimitSplitMerge, randomTemp, foundDist
unsigned short[:] keepParticles = numpy.ones(macroParticleCount, dtype=numpy.ushort)
double newCoords0Buff[2]
double newCoords1Buff[2]
double[:] newCoords0 = newCoords0Buff, newCoords1 = newCoords1Buff
double[:,:] particleData = particlesObj.getParticleData()
double[:,:] addParticleData
double dxi = 1./gridObj.getDx(), dyi = 1./gridObj.getDy(), ds = min(gridObj.getDx(), gridObj.getDy())
double lxHalf = gridObj.getLx()*0.5, lyHalf = gridObj.getLy()*0.5
unsigned int inCellCoordsNormX, inCellCoordsNormY, foundInd
double vTypical = 0., factorVScale
kdTree.KDTree tree
# Sort particles by weight.
particlesObj.sortByColumn(5)
# Number of operations determined by weight tresholds.
toMergeCount = _searchSorted(particleData[:,5], minThreshold, macroParticleCount)
toSplitCount = macroParticleCount-_searchSorted(particleData[:,5], maxThreshold, macroParticleCount)
meanInd = _searchSorted(particleData[:,5], meanWeight, macroParticleCount)
# Limit maximum number of operations.
if 2*toMergeCount+toSplitCount>=macroParticleCount:
factorLimitSplitMerge = 0.95*macroParticleCount/(2*toMergeCount+toSplitCount)
toMergeCount = <unsigned int> (toMergeCount*factorLimitSplitMerge)
toSplitCount = <unsigned int> (toSplitCount*factorLimitSplitMerge)
# Number of operations given by total particle number.
newMacroParticleCount = macroParticleCount+toSplitCount-toMergeCount
if newMacroParticleCount>targetMacroParticleCount:
toMergeCount+= newMacroParticleCount-targetMacroParticleCount
elif newMacroParticleCount<targetMacroParticleCount:
toSplitCount+= targetMacroParticleCount-newMacroParticleCount
# Limit maximum number of operations (again).
if 2*toMergeCount+toSplitCount>=macroParticleCount:
factorLimitSplitMerge = 0.95*macroParticleCount/(2*toMergeCount+toSplitCount)
toMergeCount = <unsigned int> (toMergeCount*factorLimitSplitMerge)
toSplitCount = <unsigned int> (toSplitCount*factorLimitSplitMerge)
# Calculate typical velocity for later before modifying particle data.
for ii in range(macroParticleCount):
vTypical += (particleData[ii,2]**2+particleData[ii,3]**2+particleData[ii,4]**2)*particleData[ii,5]**2
vTypical = sqrt(vTypical)/(macroParticleCount*meanWeight)
vTypical = max(vTypical,1.e-12*c) # Lower limit to prevent unrealistic weighting of velocity
# Split particles.
# Lapenta-like split, but with equal weights of splitted particles.
addParticleData = numpy.empty((toSplitCount,nCoords), dtype=numpy.double)
jj = 0
for ii in range(macroParticleCount-toSplitCount,macroParticleCount):
particleData[ii,5] *= 0.5
addParticleData[jj,2] = particleData[ii,2]
addParticleData[jj,3] = particleData[ii,3]
addParticleData[jj,4] = particleData[ii,4]
addParticleData[jj,5] = particleData[ii,5]
inCellCoordsNormX = <unsigned int> ((particleData[ii,0]+lxHalf)*dxi)
inCellCoordsNormY = <unsigned int> ((particleData[ii,1]+lyHalf)*dyi)
if inCellCoordsNormX<0.5:
randomTemp = randomGen.rand()*min(inCellCoordsNormX, 0.5-inCellCoordsNormX)
else:
randomTemp = randomGen.rand()*min(inCellCoordsNormX-0.5, 1.-inCellCoordsNormX)
newCoords0[0] = inCellCoordsNormX+randomTemp
newCoords1[0] = inCellCoordsNormX-randomTemp
if inCellCoordsNormY<0.5:
randomTemp = randomGen.rand()*min(inCellCoordsNormY, 0.5-inCellCoordsNormY)
else:
randomTemp = randomGen.rand()*min(inCellCoordsNormY-0.5, 1.-inCellCoordsNormY)
newCoords0[1] = inCellCoordsNormY+randomTemp
newCoords1[1] = inCellCoordsNormY-randomTemp
if particleBoundaryObj.isInside(newCoords0[0],newCoords0[1])==0 or \
particleBoundaryObj.isInside(newCoords1[0],newCoords1[1])==0:
addParticleData[jj,0] = particleData[ii,0]
addParticleData[jj,1] = particleData[ii,1]
else:
particleData[ii,0] = newCoords0[0]
particleData[ii,1] = newCoords0[1]
addParticleData[jj,0] = newCoords1[0]
addParticleData[jj,1] = newCoords1[1]
jj += 1
# Merge particles.
if phaseSpaceWeights.shape[0]==0:
phaseSpaceWeights = numpy.ones(nCoords-1, dtype=numpy.double)
lambdav = lambdavFactor*ds/vTypical
phaseSpaceWeights[2] *= lambdav
phaseSpaceWeights[3] *= lambdav
phaseSpaceWeights[4] *= lambdav
tree = kdTree.KDTree(particleData[:macroParticleCount-toSplitCount,:5], weights=phaseSpaceWeights)
ii = 0
jj = 0
# All merge schemes take the position of the merged particle from one of the particles
# at random for now.
# Randomly take velocity of one of the particles.
if mergeScheme == 0:
while jj<toMergeCount and ii<(macroParticleCount-toSplitCount-1):
if keepParticles[ii] == 0:
ii += 1
else:
if tree.remove(ii) == 1:
tree.query(particleData[ii,:5], &foundInd, &foundDist)
if foundDist < factorDisLimit*ds:
if randomGen.rand() < (particleData[ii,5]/(particleData[foundInd,5]+particleData[ii,5])):
particleData[ii,5] += particleData[foundInd,5]
keepParticles[foundInd] = 0
else:
particleData[foundInd,5] += particleData[ii,5]
keepParticles[ii] = 0
tree.remove(foundInd)
ii += 1
jj += 1
else:
ii += 1
else:
ii += 1
# Randomly take velocity of one of the particles but scale to conserve energy.
elif mergeScheme == 1:
while jj < toMergeCount and ii < (macroParticleCount-toSplitCount-1):
if keepParticles[ii] == 0:
ii += 1
else:
if tree.remove(ii) == 1:
tree.query(particleData[ii,:5], &foundInd, &foundDist)
if foundDist < factorDisLimit*ds:
if randomGen.rand() < (particleData[ii,5]/(particleData[foundInd,5]+particleData[ii,5])):
factorVScale = particleData[ii,5]/(particleData[foundInd,5]+particleData[ii,5]) + \
(particleData[foundInd,2]**2 + particleData[foundInd,3]**2 +
particleData[foundInd,4]**2)/(particleData[ii,2]**2 +
particleData[ii,3]**2 + particleData[ii,4]**2) * \
particleData[foundInd,5]/(particleData[foundInd,5]+particleData[ii,5])
particleData[ii,2] *= factorVScale
particleData[ii,3] *= factorVScale
particleData[ii,4] *= factorVScale
particleData[ii,5] += particleData[foundInd,5]
keepParticles[foundInd] = 0
else:
factorVScale = particleData[foundInd,5]/(particleData[foundInd,5]+particleData[ii,5]) + \
(particleData[ii,2]**2 + particleData[ii,3]**2 +
particleData[ii,4]**2)/(particleData[foundInd,2]**2 +
particleData[foundInd,3]**2 + particleData[foundInd,4]**2) * \
particleData[ii,5]/(particleData[foundInd,5]+particleData[ii,5])
particleData[foundInd,2] *= factorVScale
particleData[foundInd,3] *= factorVScale
particleData[foundInd,4] *= factorVScale
particleData[foundInd,5] += particleData[ii,5]
keepParticles[ii] = 0
tree.remove(foundInd)
ii += 1
jj += 1
else:
ii += 1
else:
ii += 1
# Finally concatenate.
particlesObj.addAndRemoveParticles(addParticleData, keepParticles)
# Returns first index which is larger than value.
cdef unsigned int _searchSorted(double[:] array, double value, unsigned int arrayLen) nogil:
cdef:
unsigned int ind0, ind1, ind2
if array[arrayLen-1]<=value:
return arrayLen
elif array[0]>=value:
return 0
else:
ind0 = 0
ind2 = arrayLen-1
ind1 = <unsigned int> ((ind2+ind0)*0.5)
while ind1 != ind0:
if array[ind1]>value:
ind2 = ind1
else:
ind0 = ind1
ind1 = <unsigned int> ((ind2+ind0)*0.5)
return ind1+1