-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathFNSimple3D.m
368 lines (342 loc) · 19.7 KB
/
FNSimple3D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
classdef FNSimple3D < handle
properties (SetAccess = private)
R % Radius of a wheel
W % Width of the robot
L % Length of the robot
H % Height of the robot
reach_cloud % Stores reachable positions and orientations of the robot
tree % Array stores position information of states
orientation % Array stores orientation of a state of the robot
manipulator % Array stores angles of the manipulator links
parent % Array stores relations of nodes
children % Number of children of each node
free_nodes % Indices of free nodes
free_nodes_ind % Last element in free_nodes
cost % Cost between 2 connected states
cumcost % Cost from the root of the tree to the given node
XY_BOUNDARY % [min_x max_x min_y max_y]
goal_point % Goal position
delta_goal_point % Radius of goal position region
delta_near % Radius of near neighbor nodes
nodes_added % Keeps count of added nodes
max_step % The length of the maximum step while adding the node
obstacle % Obstacle information
best_path_node % The index of last node of the best path
goal_reached
%%% temporary variables
compare_table
index
list
num_rewired
end
methods
% class constructor
function this = FNSimple3D(rand_seed, max_nodes, map, conf)
rng(rand_seed);
this.R = conf.R;
this.W = conf.W;
this.L = conf.L;
this.reach_cloud = zeros(3, 6561);
this.tree = zeros(2, max_nodes);
this.orientation = zeros(1, max_nodes);
this.manipulator = zeros(5, max_nodes);
this.parent = zeros(1, max_nodes);
this.children = zeros(1, max_nodes);
this.free_nodes = zeros(1, max_nodes);
this.free_nodes_ind = 1;
this.cost = zeros(1, max_nodes);
this.cumcost = zeros(1,max_nodes);
this.XY_BOUNDARY = zeros(4,1);
this.tree(:, 1) = map.start_point; % Start position
this.orientation(:, 1) = pi / 4; % Start orientation
this.manipulator(:, 1) = zeros(5,1);
this.goal_point = map.goal_point;
this.delta_goal_point = conf.delta_goal_point;
this.delta_near = conf.delta_near;
this.nodes_added = uint32(1);
this.max_step = conf.max_step;
this.best_path_node = -1;
this.goal_reached = false;
this.load_map(map.name);
%%% temp var-s initialization
this.compare_table = zeros(1, max_nodes);
this.index = zeros(1, max_nodes);
this.list = 1:max_nodes;
this.num_rewired = 0;
this.init_reach_cloud();
end
function initialize = init_reach_cloud(this)
count = 0;
for t1 = -1:0.25:1
for t2 = -1:0.25:1
for t3 = -1:0.25:1
for t4 = -1:0.25:1
count = count + 1;
this.reach_cloud(1, count) = this.R/4*(t1 + t2 + t3 + t4);
this.reach_cloud(2, count) = this.R/4*(-t1 + t2 + t3 - t4);
this.reach_cloud(3, count) = this.R/(4*(this.L + this.W))*(-t1 +t2 - t3 + t4);
end
end
end
end
initialize = count;
end
function position = sample(this)
% generates and return random point in area defined in
% this.XY_BOUNDARY
position = [this.XY_BOUNDARY(2) - this.XY_BOUNDARY(1); this.XY_BOUNDARY(4) - this.XY_BOUNDARY(3); pi] .* rand(3,1) ...
+ [this.XY_BOUNDARY(1);this.XY_BOUNDARY(3); 0];
end
function node_index = nearest(this, new_node)
% find the nearest node to the given node, euclidian distance
% is used
this.compare_table(1:(this.nodes_added)) = sum((this.tree(:, 1:(this.nodes_added)) - repmat(new_node(1:2),1,this.nodes_added)).^2) + sum((this.orientation(1:this.nodes_added) - new_node(3)).^2);
[this.compare_table(1:(this.nodes_added)), this.index(1:(this.nodes_added))] = sort(this.compare_table(1:(this.nodes_added)));
node_index = this.index(1);
return;
end
function position = steer(this, nearest_node, new_node_position)
relative_position = new_node_position - [this.tree(:, nearest_node); this.orientation(nearest_node)];
[min_val, min_ind ] = min( sum( (this.reach_cloud - repmat(relative_position,1, length(this.reach_cloud)) ).^2));
position = [this.tree(:, nearest_node); this.orientation(nearest_node)] + this.reach_cloud(:, min_ind);
position(3) = mod(position(3) + 2*pi, 2*pi);
end
function load_map(this, map_name)
% function loads '.mat' file with obstacle information and the
% size of the map
map_path = 'maps/';
this.obstacle = load([map_path map_name], 'num', 'output', 'x_constraints', 'y_constraints');
this.XY_BOUNDARY = [this.obstacle.x_constraints this.obstacle.y_constraints];
end
function collision = obstacle_collision(this, new_node_position, nearest_node)
collision = false;
theta = new_node_position(3) * 360 / pi;
if (mod(theta, 90) == 0)
theta = theta - 1;
end
% omit any operations if there is no obstacles
if this.obstacle.num == 0
return;
end
for obs_ind = 1:this.obstacle.num
%if c_space_collided(this.obstacle.output{obs_ind}, new_node_position, theta) == 1
% simple stupid collision detection based on line intersection
vertex1 = [new_node_position(1) + cosd(theta)*this.L + sind(theta)*this.W new_node_position(2) + sind(theta)*this.L - cosd(theta)*this.W];
vertex2 = [new_node_position(1) + cosd(theta)*this.L - sind(theta)*this.W new_node_position(2) + sind(theta)*this.L + cosd(theta)*this.W];
vertex3 = [new_node_position(1) - cosd(theta)*this.L - sind(theta)*this.W new_node_position(2) - sind(theta)*this.L + cosd(theta)*this.W];
vertex4 = [new_node_position(1) - cosd(theta)*this.L + sind(theta)*this.W new_node_position(2) - sind(theta)*this.L - cosd(theta)*this.W];
if isintersect_3dof(this.obstacle.output{obs_ind}, [vertex1; vertex2]) == 1 ...
|| isintersect_3dof(this.obstacle.output{obs_ind}, [vertex2; vertex3]) == 1 ...
|| isintersect_3dof(this.obstacle.output{obs_ind}, [vertex3; vertex4]) == 1 ...
|| isintersect_3dof(this.obstacle.output{obs_ind}, [vertex4; vertex1]) == 1
collision = true;
return;
%end
end
end
end
function new_node_ind = insert_node(this, parent_node_ind, new_node_position)
% method insert new node in the tree
this.nodes_added = this.nodes_added + 1;
this.tree(:, this.nodes_added) = new_node_position(1:2); % adding new node position to the tree
this.orientation(this.nodes_added) = new_node_position(3);
this.parent(this.nodes_added) = parent_node_ind; % adding information about parent-children information
this.children(parent_node_ind) = this.children(parent_node_ind) + 1;
this.cost(this.nodes_added) = this.euclidian_distance([this.tree(:, parent_node_ind); this.orientation(parent_node_ind)], new_node_position); % not that important
this.cumcost(this.nodes_added) = this.cumcost(parent_node_ind) + this.cost(this.nodes_added); % cummulative cost
new_node_ind = this.nodes_added;
end
%%% RRT* specific functions
function neighbor_nodes = neighbors(this, new_node_position, nearest_node_ind)
% seeks for neighbors and returns indices of neighboring nodes
radius = this.delta_near;
this.compare_table(1:(this.nodes_added)) = sum((this.tree(:, 1:(this.nodes_added)) - repmat(new_node_position(1:2),1,this.nodes_added)).^2) + ...
((this.orientation(1:this.nodes_added) - new_node_position(3)).^2);
[this.compare_table(1:(this.nodes_added)), this.index(1:(this.nodes_added))] = sort(this.compare_table(1:(this.nodes_added)));
temp = this.index((this.compare_table(1:(this.nodes_added)) <= radius^2) & (this.compare_table(1:(this.nodes_added)) > 0 ));
% neighbor_nodes = setdiff(temp, nearest_node_ind);
neighbor_nodes = temp;
end
function min_node_ind = chooseParent(this, neighbors, nearest_node, new_node_position)
% finds the node with minimal cummulative cost node from the root of
% the tree. i.e. find the cheapest path end node.
min_node_ind = nearest_node;
min_cumcost = this.cumcost(nearest_node) + this.euclidian_distance([this.tree(:, nearest_node); this.orientation(nearest_node)], new_node_position);
for ind=1:numel(neighbors)
temp_cumcost = this.cumcost(neighbors(ind)) + this.euclidian_distance([this.tree(:, neighbors(ind)); this.orientation(neighbors(ind))], new_node_position);
if temp_cumcost < min_cumcost
min_cumcost = temp_cumcost;
min_node_ind = neighbors(ind);
end
end
end
function rewire(this, new_node_ind, neighbors, min_node_ind)
% method looks thru all neighbors(except min_node_ind) and
% seeks and reconnects neighbors to the new node if it is
% cheaper
for ind = 1:numel(neighbors)
% omit
if (min_node_ind == neighbors(ind))
continue;
end
temp_cost = this.cumcost(new_node_ind) + this.euclidian_distance([this.tree(:, neighbors(ind)); this.orientation(neighbors(ind))], [this.tree(:, new_node_ind); this.orientation(new_node_ind)]);
if (temp_cost < this.cumcost(neighbors(ind)))
this.cumcost(neighbors(ind)) = temp_cost;
this.children(this.parent(neighbors(ind))) = this.children(this.parent(neighbors(ind))) - 1;
this.parent(neighbors(ind)) = new_node_ind;
this.children(new_node_ind) = this.children(new_node_ind) + 1;
this.num_rewired = this.num_rewired + 1;
end
end
end
%%% RRT*FN specific functions
function best_path_evaluate(this)
%%% Find the optimal path to the goal
% finding all the point which are in the desired region
distances = zeros(this.nodes_added, 2);
distances(:, 1) = sum((this.tree(:,1:(this.nodes_added)) - repmat(this.goal_point', 1, this.nodes_added)).^2);
distances(:, 2) = 1:this.nodes_added;
distances = sortrows(distances, 1);
distances(:, 1) = distances(:, 1) <= (this.delta_goal_point ^ 2);
dist_index = numel(find(distances(:, 1) == 1));
% find the cheapest path
if(dist_index ~= 0)
distances(:, 1) = this.cumcost(int32(distances(:, 2)));
distances = distances(1:dist_index, :);
distances = sortrows(distances, 1);
nearest_node_index = distances(1,2);
this.goal_reached = true;
else
nearest_node_index = distances(1,2);
if this.goal_reached
disp('VERYBAD THING HAS HAPPENED');
end
this.goal_reached = false;
end
%
this.best_path_node = nearest_node_index;
end
function forced_removal(this)
% removal function
% we keep count of removed nodes
candidate = this.list(this.children(1:(this.nodes_added)) == 0);
node_to_remove = candidate(randi(numel(candidate)));
while node_to_remove == this.best_path_node
node_to_remove = candidate(randi(numel(candidate)));
end
this.children(this.parent(node_to_remove)) = this.children(this.parent(node_to_remove)) - 1;
this.parent(node_to_remove) = -1;
this.tree(:, node_to_remove) = [intmax; intmax];
this.free_nodes(this.free_nodes_ind) = node_to_remove;
this.free_nodes_ind = this.free_nodes_ind + 1;
end
function reused_node_ind = reuse_node(this, nearest_node, new_node_position)
% method inserts new node instead of the removed one.
if(this.free_nodes_ind == 1)
disp('ERROR: Cannot find any free node!!!');
return;
end
this.free_nodes_ind = this.free_nodes_ind - 1;
reused_node_ind = this.free_nodes(this.free_nodes_ind);
this.tree(:, reused_node_ind) = new_node_position(1:2);
this.orientation(reused_node_ind) = new_node_position(3);
this.parent(reused_node_ind) = nearest_node;
this.children(nearest_node) = this.children(nearest_node) + 1;
this.cost(reused_node_ind) = this.euclidian_distance([this.tree(:, nearest_node); this.orientation(nearest_node)], new_node_position);
this.cumcost(reused_node_ind) = this.cumcost(nearest_node) + this.cost(reused_node_ind);
end
%%%%%%%%%%%%%%%%%%%%%%%%%
function plot(this)
%%% Find the optimal path to the goal
% finding all the point which are in the desired region
distances = zeros(this.nodes_added, 2);
distances(:, 1) = sum((this.tree(:,1:(this.nodes_added)) - repmat(this.goal_point', 1, this.nodes_added)).^2);
distances(:, 2) = 1:this.nodes_added;
distances = sortrows(distances, 1);
distances(:, 1) = distances(:, 1) <= this.delta_goal_point ^ 2;
dist_index = numel(find(distances(:, 1) == 1));
% find the cheapest path
if(dist_index ~= 0)
distances(:, 1) = this.cumcost(int32(distances(:, 2)));
distances = distances(1:dist_index, :);
distances = sortrows(distances, 1);
nearest_node_index = distances(1,2);
else
disp('NOTICE! Robot cannot reach the goal');
nearest_node_index = distances(1,2);
end
% backtracing the path
current_index = nearest_node_index;
path_iter = 1;
backtrace_path = zeros(1,1);
while(current_index ~= 1)
backtrace_path(path_iter) = current_index;
path_iter = path_iter + 1;
current_index = this.parent(current_index);
end
backtrace_path(path_iter) = current_index;
close all;
figure;
set(gcf(), 'Renderer', 'opengl');
hold on;
% obstacle drawing
for k = 1:this.obstacle.num
p2 = fill(this.obstacle.output{k}(1:end, 1), this.obstacle.output{k}(1:end, 2), 'r');
set(p2,'HandleVisibility','off','EdgeAlpha',0);
end
drawn_nodes = zeros(1, this.nodes_added);
for ind = this.nodes_added:-1:1;
if(sum(this.free_nodes(1:this.free_nodes_ind) == ind)>0)
continue;
end
current_index = ind;
while(current_index ~= 1 && current_index ~= -1)
% avoid drawing same nodes twice or more times
if(drawn_nodes(current_index) == false || drawn_nodes(this.parent(current_index)) == false)
plot([this.tree(1,current_index);this.tree(1, this.parent(current_index))], ...
[this.tree(2, current_index);this.tree(2, this.parent(current_index))],'g-','LineWidth', 0.5);
% plot([this.tree(1,current_index);this.tree(1, this.parent(current_index))], ...
% [this.tree(2, current_index);this.tree(2, this.parent(current_index))],'+k');
drawn_nodes(current_index) = true;
end
current_index = this.parent(current_index);
end
end
plot(this.tree(1,backtrace_path), this.tree(2,backtrace_path),'*b-','LineWidth', 2);
plot([this.tree(1,backtrace_path) + cosd(this.orientation(backtrace_path)*360/pi)*this.L + sind(this.orientation(backtrace_path)*360/pi)*this.W; this.tree(1,backtrace_path) + cosd(this.orientation(backtrace_path)*360/pi)*this.L - sind(this.orientation(backtrace_path)*360/pi)*this.W; ...
this.tree(1,backtrace_path) - cosd(this.orientation(backtrace_path)*360/pi)*this.L - sind(this.orientation(backtrace_path)*360/pi)*this.W; this.tree(1,backtrace_path) - cosd(this.orientation(backtrace_path)*360/pi)*this.L + sind(this.orientation(backtrace_path)*360/pi)*this.W; ...
this.tree(1,backtrace_path) + cosd(this.orientation(backtrace_path)*360/pi)*this.L + sind(this.orientation(backtrace_path)*360/pi)*this.W], ...
[this.tree(2,backtrace_path) + sind(this.orientation(backtrace_path)*360/pi)*this.L - cosd(this.orientation(backtrace_path)*360/pi)*this.W; this.tree(2, backtrace_path) + sind(this.orientation(backtrace_path)*360/pi)*this.L + cosd(this.orientation(backtrace_path)*360/pi)*this.W; ...
this.tree(2, backtrace_path) - sind(this.orientation(backtrace_path)*360/pi)*this.L + cosd(this.orientation(backtrace_path)*360/pi)*this.W; this.tree(2, backtrace_path) - sind(this.orientation(backtrace_path)*360/pi)*this.L - cosd(this.orientation(backtrace_path)*360/pi)*this.W; ...
this.tree(2,backtrace_path) + sind(this.orientation(backtrace_path)*360/pi)*this.L - cosd(this.orientation(backtrace_path)*360/pi)*this.W], 'm', 'LineWidth', 2);
this.plot_circle(this.goal_point(1), this.goal_point(2), this.delta_goal_point);
axis(this.XY_BOUNDARY);
grid on;
axis equal;
disp(num2str(this.cumcost(backtrace_path(1))));
end
function newObj = copyobj(thisObj)
% Construct a new object based on a deep copy of the current
% object of this class by copying properties over.
props = properties(thisObj);
for i = 1:length(props)
% Use Dynamic Expressions to copy the required property.
% For more info on usage of Dynamic Expressions, refer to
% the section "Creating Field Names Dynamically" in:
% web([docroot '/techdoc/matlab_prog/br04bw6-38.html#br1v5a9-1'])
newObj.(props{i}) = thisObj.(props{i});
end
end
end
methods(Static)
function dist = euclidian_distance(src_pos, dest_pos)
dist = norm(src_pos - dest_pos);
end
function plot_circle(x, y, r)
t = 0:0.001:2*pi;
cir_x = r*cos(t) + x;
cir_y = r*sin(t) + y;
plot(cir_x, cir_y, 'r-', 'LineWidth', 1.5);
end
end
end