-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathOncoKBPlots.py
308 lines (249 loc) · 10.7 KB
/
OncoKBPlots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/python
import sys
import re
import argparse
import logging
import os
import csv
import matplotlib.pyplot as plt
from AnnotatorCore import setsampleidsfileterfile
from AnnotatorCore import readheaders
from AnnotatorCore import geIndexOfHeader
from AnnotatorCore import sampleidsfilter
from AnnotatorCore import levels
from AnnotatorCore import dxLevels
from AnnotatorCore import pxLevels
from AnnotatorCore import SAMPLE_HEADERS
logging.basicConfig(level=logging.INFO)
log = logging.getLogger('OncoKBPlots')
def plotclinicalactionability(ax, annotatedclinicalfile, outfile, parameters):
if os.path.isfile(outfile):
os.remove(outfile)
extlevels = levels + ["ONCOGENIC", "VUS"]
if "levels" in parameters:
extlevels = parameters["levels"]
with open(annotatedclinicalfile, 'rU') as clinfile:
reader = csv.reader(clinfile, delimiter='\t')
headers = readheaders(reader)
isample = geIndexOfHeader(headers, SAMPLE_HEADERS)
ilevel = headers['HIGHEST_LEVEL']
ioncogenic = headers['ONCOGENIC_MUTATIONS']
icat = headers[parameters["catogerycolumn"].upper()] # e.g. "CANCER_TYPE"
catsamplecount = {}
catactionablesamplecount = {}
oncogenicsamplecount = {}
levelcatsamplecount = {}
for row in reader:
sample = row[isample]
if sampleidsfilter and sample not in sampleidsfilter:
continue
cat = row[icat]
if cat not in catsamplecount:
catsamplecount[cat] = 0
catsamplecount[cat] += 1
if cat not in catactionablesamplecount:
catactionablesamplecount[cat] = 0
oncogenicsamplecount[cat] = 0
level = row[ilevel]
oncogenic = row[ioncogenic]
exlevel = level
if level in extlevels:
catactionablesamplecount[cat] += 1
oncogenicsamplecount[cat] += 1
elif len(oncogenic.strip()) > 0:
oncogenicsamplecount[cat] += 1
exlevel = "ONCOGENIC"
else:
exlevel = "VUS"
if exlevel not in levelcatsamplecount:
levelcatsamplecount[exlevel] = {}
if cat not in levelcatsamplecount[exlevel]:
levelcatsamplecount[exlevel][cat] = 0
levelcatsamplecount[exlevel][cat] += 1
# plot
catarray = [] # cancer types
catactionabilityarray = [] # actionabiligy percentages per cancer type
catoncogenicarray = [] # actionabiligy percentages per cancer type
for cat in catsamplecount:
if catsamplecount[cat] >= parameters["thresholdcat"]:
catarray.append(cat)
catactionabilityarray.append(catactionablesamplecount[cat] * 100.0 / catsamplecount[cat])
catoncogenicarray.append(oncogenicsamplecount[cat] * 100.0 / catsamplecount[cat])
ncat = len(catarray)
order = reversed(sorted(range(ncat), key=lambda x: (catactionabilityarray[x], catoncogenicarray[x])))
drawplot(ax, 'OncoKB Actionability', extlevels, levelcatsamplecount, catarray, catsamplecount, order,
parameters["thresholdcat"])
def plotimplications(ax, header, title, levels, annotatedclinicalfile, outfile, parameters):
if os.path.isfile(outfile):
os.remove(outfile)
extlevels = levels
if "levels" in parameters:
extlevels = parameters["levels"]
with open(annotatedclinicalfile, 'rU') as clinfile:
reader = csv.reader(clinfile, delimiter='\t')
headers = readheaders(reader)
isample = headers['SAMPLE_ID']
ilevel = headers[header]
icat = headers[parameters["catogerycolumn"].upper()]
catsamplecount = {}
catactionablesamplecount = {}
levelcatsamplecount = {}
for row in reader:
sample = row[isample]
if sampleidsfilter and sample not in sampleidsfilter:
continue
cat = row[icat]
if cat not in catsamplecount:
catsamplecount[cat] = 0
catsamplecount[cat] += 1
if cat not in catactionablesamplecount:
catactionablesamplecount[cat] = 0
level = row[ilevel]
exlevel = level
if level in extlevels:
catactionablesamplecount[cat] += 1
else:
exlevel = "Other"
if exlevel not in levelcatsamplecount:
levelcatsamplecount[exlevel] = {}
if cat not in levelcatsamplecount[exlevel]:
levelcatsamplecount[exlevel][cat] = 0
levelcatsamplecount[exlevel][cat] += 1
# plot
catarray = [] # cancer types
catactionabilityarray = [] # actionabiligy percentages per cancer type
for cat in catsamplecount:
if catsamplecount[cat] >= parameters["thresholdcat"]:
catarray.append(cat)
catactionabilityarray.append(catactionablesamplecount[cat] * 100.0 / catsamplecount[cat])
ncat = len(catarray)
order = reversed(sorted(range(ncat), key=lambda x: (catactionabilityarray[x])))
drawplot(ax, title, extlevels, levelcatsamplecount, catarray, catsamplecount, order, parameters["thresholdcat"])
def drawplot(ax, title, extlevels, levelcatsamplecount, catarray, catsamplecount, order, thresholdcat):
# level colors
levelcolors = {
'LEVEL_1': '#33A02C',
'LEVEL_2': '#1F78B4',
'LEVEL_3A': '#984EA3',
'LEVEL_3B': '#BE98CE',
'LEVEL_4': '#a8a8a8',
'LEVEL_R1': '#EE3424',
'LEVEL_R2': '#F79A92',
'LEVEL_Dx1': '#33A02C',
'LEVEL_Dx2': '#1F78B4',
'LEVEL_Dx3': '#984EA3',
'LEVEL_Px1': '#33A02C',
'LEVEL_Px2': '#1F78B4',
'LEVEL_Px3': '#984EA3',
'ONCOGENIC': '#ffdab9',
'VUS': '#d1d1d1',
'Other': 'grey'
}
# level legend
levellegend = {
'LEVEL_1': 'Level 1',
'LEVEL_2': 'Level 2',
'LEVEL_3A': 'Level 3A',
'LEVEL_3B': 'Level 3B',
'LEVEL_4': 'Level 4',
'LEVEL_R1': 'Level R1',
'LEVEL_R2': 'Level R2',
'LEVEL_Dx1': 'Level Dx1',
'LEVEL_Dx2': 'Level Dx2',
'LEVEL_Dx3': 'Level Dx3',
'LEVEL_Px1': 'Level Px1',
'LEVEL_Px2': 'Level Px2',
'LEVEL_Px3': 'Level Px3',
'ONCOGENIC': 'Oncogenic, no level',
'VUS': 'VUS',
'Other': 'Other'
}
ncat = len(catarray)
if ncat > 0:
catarray = [catarray[i] for i in order]
ind = range(ncat)
legends = []
plts = []
accumlevelcancerperc = [0] * ncat
for level in extlevels:
if level not in levelcatsamplecount:
continue
levelcancerperc = [0] * ncat
for k in ind:
cat = catarray[k]
if catsamplecount[cat] < thresholdcat:
continue
if cat in levelcatsamplecount[level]:
levelcancerperc[k] = levelcatsamplecount[level][cat] * 100.0 / catsamplecount[cat]
width = 0.75
plts = [ax.bar(ind, levelcancerperc, width, color=levelcolors[level], bottom=accumlevelcancerperc)] + plts
legends = [levellegend[level]] + legends
accumlevelcancerperc = list(map(sum, zip(accumlevelcancerperc, levelcancerperc)))
ax = plt.gca()
ax.set_axisbelow(True)
ax.set_aspect(0.1)
ax.tick_params(axis='y', which='major', labelsize=6)
ax.set_ylabel('% of samples', fontsize=6)
ax.set_title(title, fontsize=8)
ax.set_xticks([i + 0.5 for i in ind])
ax.set_xticklabels(catarray, rotation=60, ha="right", fontsize=4)
# plt.yticks(np.arange(0, 81, 10))
ax.legend(plts, legends, fontsize=6, bbox_to_anchor=(1.01, 1), loc="upper left")
def main(argv):
params = {
"catogerycolumn": argv.catogery_column, # -c
"thresholdcat": argv.threshold_cat, # -n
}
if argv.help:
log.info(
'\n'
'OncoKBPlots.py -i <annotated clinical file> -o <output PDF file> [-c <categorization column, '
'e.g. CANCER_TYPE>] [-s sample list filter] [-n threshold of # samples in a category] [-l comma separated levels to include]\n'
' Essential clinical columns:\n'
' SAMPLE_ID: sample ID\n'
' HIGHEST_LEVEL: Highest OncoKB levels\n'
' Supported levels (-l): \n'
' LEVEL_1,LEVEL_2,LEVEL_3A,LEVEL_3B,LEVEL_4,ONCOGENIC,VUS'
)
sys.exit()
if argv.input_file == '' or argv.output_file == '':
required_params = []
if argv.input_file == '':
required_params.append('-i')
if argv.output_file == '':
required_params.append('-o')
log.error('The parameter(s) ' + ', '.join(required_params) + ' can not be empty')
log.info('for help: python OncoKBPlots.py -h')
sys.exit(2)
if argv.sample_ids_filter:
setsampleidsfileterfile(argv.sample_ids_filter)
if argv.levels:
params["levels"] = re.split(',', argv.levels)
log.info('annotating %s ...' % argv.input_file)
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
plotclinicalactionability(ax1, argv.input_file, argv.output_file, params)
# ax.yaxis.grid(linestyle="dotted", color="lightgray") # horizontal lines
# plt.margins(0.01)
plotclinicalactionability(ax1, args.input_file, args.output_file, params)
plotimplications(ax2, 'HIGHEST_DX_LEVEL', 'OncoKB Diagnostic Implications', dxLevels, args.input_file,
argv.output_file, params)
plotimplications(ax3, 'HIGHEST_PX_LEVEL', 'OncoKB Prognostic Implications', pxLevels, args.input_file,
argv.output_file, params)
plt.subplots_adjust(left=0.2, bottom=0.3)
plt.gcf().text(0.90, 0.1, "Generated by OncoKB\n[Chakravarty et al., JCO PO 2017]", fontsize=6,
horizontalalignment='right', verticalalignment='bottom')
fig.tight_layout()
fig.savefig(argv.output_file, bbox_inches='tight')
log.info('done!')
if __name__ == "__main__":
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('-h', dest='help', action="store_true", default=False)
parser.add_argument('-i', dest='input_file', default='', type=str)
parser.add_argument('-o', dest='output_file', default='', type=str)
parser.add_argument('-c', dest='catogery_column', default='CANCER_TYPE', type=str)
parser.add_argument('-s', dest='sample_ids_filter', default='', type=str)
parser.add_argument('-n', dest='threshold_cat', default=0, type=int)
parser.add_argument('-l', dest='levels', default='', type=str)
parser.set_defaults(func=main)
args = parser.parse_args()
args.func(args)