Skip to content
Kai Chen edited this page Aug 25, 2018 · 3 revisions

Introduction

MMDetection is a toolkit for object detection. It consists of the following modules.

  • core: core functionality such as anchor generation, training target computing, etc.
  • datasets: coco-style dataset, voc-style dataset, self-defined pickle dataset
  • models: components and detectors
  • ops: custom operators, mostly cuda extensions.
  • tools: training/testing/evaluation/conversion.

Release Plan

v0.5.0 (before 07/09)

The first release will contain implementations of RPN, Faster R-CNN, Mask R-CNN, FPN, Cascade R-CNN. Only COCO dataset is supported.

  • refactoring and finalize the API (01/09)
  • datasets.coco (02/09)
  • models.backbones.bricks, models.backbones.resnet (02/09)
  • models.necks.fpn (03/09)
  • models.rpn_heads (03/09)
  • models.bbox_heads (03/09)
  • models.mask_heads (03/09)
  • ops.roi_pooling, ops.roi_align (03/09)
  • models.detectors.rpn, models.detectors.two_stage, models.detectors.cascade (04/09)
  • tools.train, tools.test (05/09)
  • documentation (06/09)

v0.6.0 (before 20/09)

  • Add ResNeXt backbone.
  • Add support for Fast R-CNN
  • Add support for single-stage detector
  • Add VOC-style dataset and self-defined pickle-based dataset

v0.7.0 (before 30/09)

  • Add deformable convolution
  • Add SyncBN and GN
  • Add support for R-CNN
  • Add support for R-FCN

v0.8.0 (before)

Clone this wiki locally