-
Notifications
You must be signed in to change notification settings - Fork 9.5k
Home
Kai Chen edited this page Aug 25, 2018
·
3 revisions
MMDetection
is a toolkit for object detection. It consists of the following modules.
-
core
: core functionality such as anchor generation, training target computing, etc. -
datasets
: coco-style dataset, voc-style dataset, self-defined pickle dataset -
models
: components and detectors -
ops
: custom operators, mostly cuda extensions. -
tools
: training/testing/evaluation/conversion.
The first release will contain implementations of RPN, Faster R-CNN, Mask R-CNN, FPN, Cascade R-CNN. Only COCO dataset is supported.
- refactoring and finalize the API (01/09)
-
datasets.coco
(02/09) -
models.backbones.bricks
,models.backbones.resnet
(02/09) -
models.necks.fpn
(03/09) -
models.rpn_heads
(03/09) -
models.bbox_heads
(03/09) -
models.mask_heads
(03/09) -
ops.roi_pooling
,ops.roi_align
(03/09) -
models.detectors.rpn
,models.detectors.two_stage
,models.detectors.cascade
(04/09) -
tools.train
,tools.test
(05/09) - documentation (06/09)
- Add ResNeXt backbone.
- Add support for Fast R-CNN
- Add support for single-stage detector
- Add VOC-style dataset and self-defined pickle-based dataset
- Add deformable convolution
- Add SyncBN and GN
- Add support for R-CNN
- Add support for R-FCN