-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathenc_head.py
196 lines (176 loc) · 6.96 KB
/
enc_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_norm_layer
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.utils import ConfigType, SampleList
from ..utils import Encoding, resize
from .decode_head import BaseDecodeHead
class EncModule(nn.Module):
"""Encoding Module used in EncNet.
Args:
in_channels (int): Input channels.
num_codes (int): Number of code words.
conv_cfg (dict|None): Config of conv layers.
norm_cfg (dict|None): Config of norm layers.
act_cfg (dict): Config of activation layers.
"""
def __init__(self, in_channels, num_codes, conv_cfg, norm_cfg, act_cfg):
super().__init__()
self.encoding_project = ConvModule(
in_channels,
in_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
# TODO: resolve this hack
# change to 1d
if norm_cfg is not None:
encoding_norm_cfg = norm_cfg.copy()
if encoding_norm_cfg['type'] in ['BN', 'IN']:
encoding_norm_cfg['type'] += '1d'
else:
encoding_norm_cfg['type'] = encoding_norm_cfg['type'].replace(
'2d', '1d')
else:
# fallback to BN1d
encoding_norm_cfg = dict(type='BN1d')
self.encoding = nn.Sequential(
Encoding(channels=in_channels, num_codes=num_codes),
build_norm_layer(encoding_norm_cfg, num_codes)[1],
nn.ReLU(inplace=True))
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels), nn.Sigmoid())
def forward(self, x):
"""Forward function."""
encoding_projection = self.encoding_project(x)
encoding_feat = self.encoding(encoding_projection).mean(dim=1)
batch_size, channels, _, _ = x.size()
gamma = self.fc(encoding_feat)
y = gamma.view(batch_size, channels, 1, 1)
output = F.relu_(x + x * y)
return encoding_feat, output
@MODELS.register_module()
class EncHead(BaseDecodeHead):
"""Context Encoding for Semantic Segmentation.
This head is the implementation of `EncNet
<https://arxiv.org/abs/1803.08904>`_.
Args:
num_codes (int): Number of code words. Default: 32.
use_se_loss (bool): Whether use Semantic Encoding Loss (SE-loss) to
regularize the training. Default: True.
add_lateral (bool): Whether use lateral connection to fuse features.
Default: False.
loss_se_decode (dict): Config of decode loss.
Default: dict(type='CrossEntropyLoss', use_sigmoid=True).
"""
def __init__(self,
num_codes=32,
use_se_loss=True,
add_lateral=False,
loss_se_decode=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=0.2),
**kwargs):
super().__init__(input_transform='multiple_select', **kwargs)
self.use_se_loss = use_se_loss
self.add_lateral = add_lateral
self.num_codes = num_codes
self.bottleneck = ConvModule(
self.in_channels[-1],
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
if add_lateral:
self.lateral_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the last one
self.lateral_convs.append(
ConvModule(
in_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.fusion = ConvModule(
len(self.in_channels) * self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.enc_module = EncModule(
self.channels,
num_codes=num_codes,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
if self.use_se_loss:
self.loss_se_decode = MODELS.build(loss_se_decode)
self.se_layer = nn.Linear(self.channels, self.num_classes)
def forward(self, inputs):
"""Forward function."""
inputs = self._transform_inputs(inputs)
feat = self.bottleneck(inputs[-1])
if self.add_lateral:
laterals = [
resize(
lateral_conv(inputs[i]),
size=feat.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
for i, lateral_conv in enumerate(self.lateral_convs)
]
feat = self.fusion(torch.cat([feat, *laterals], 1))
encode_feat, output = self.enc_module(feat)
output = self.cls_seg(output)
if self.use_se_loss:
se_output = self.se_layer(encode_feat)
return output, se_output
else:
return output
def predict(self, inputs: Tuple[Tensor], batch_img_metas: List[dict],
test_cfg: ConfigType):
"""Forward function for testing, ignore se_loss."""
if self.use_se_loss:
seg_logits = self.forward(inputs)[0]
else:
seg_logits = self.forward(inputs)
return self.predict_by_feat(seg_logits, batch_img_metas)
@staticmethod
def _convert_to_onehot_labels(seg_label, num_classes):
"""Convert segmentation label to onehot.
Args:
seg_label (Tensor): Segmentation label of shape (N, H, W).
num_classes (int): Number of classes.
Returns:
Tensor: Onehot labels of shape (N, num_classes).
"""
batch_size = seg_label.size(0)
onehot_labels = seg_label.new_zeros((batch_size, num_classes))
for i in range(batch_size):
hist = seg_label[i].float().histc(
bins=num_classes, min=0, max=num_classes - 1)
onehot_labels[i] = hist > 0
return onehot_labels
def loss_by_feat(self, seg_logit: Tuple[Tensor],
batch_data_samples: SampleList, **kwargs) -> dict:
"""Compute segmentation and semantic encoding loss."""
seg_logit, se_seg_logit = seg_logit
loss = dict()
loss.update(super().loss_by_feat(seg_logit, batch_data_samples))
seg_label = self._stack_batch_gt(batch_data_samples)
se_loss = self.loss_se_decode(
se_seg_logit,
self._convert_to_onehot_labels(seg_label, self.num_classes))
loss['loss_se'] = se_loss
return loss