From 63a48ca9fd6d6fdc716aa0715afc7cdd735b4db8 Mon Sep 17 00:00:00 2001 From: jbdurand Date: Tue, 9 Jan 2024 13:53:03 +0100 Subject: [PATCH] Adding tutorial --- sequence_analysis/tutorials/Code/__init__.py | 0 sequence_analysis/tutorials/Code/amlseq2R.py | 126 + .../tutorials/Code/matrix_plot.py | 65 + .../tutorials/Code/python_dics2R.py | 123 + sequence_analysis/tutorials/Utils/__init__.py | 2 + sequence_analysis/tutorials/Utils/dos2unix.py | 39 + sequence_analysis/tutorials/Utils/unix2dos.py | 40 + .../tutorials/seq1v_5s_LR_init.hsmc | 119 + sequence_analysis/tutorials/sequences.ipynb | 8217 +++++++++++++++++ sequence_analysis/tutorials/sim_v_5s_LR.hsmc | 172 + 10 files changed, 8903 insertions(+) create mode 100755 sequence_analysis/tutorials/Code/__init__.py create mode 100755 sequence_analysis/tutorials/Code/amlseq2R.py create mode 100755 sequence_analysis/tutorials/Code/matrix_plot.py create mode 100755 sequence_analysis/tutorials/Code/python_dics2R.py create mode 100755 sequence_analysis/tutorials/Utils/__init__.py create mode 100755 sequence_analysis/tutorials/Utils/dos2unix.py create mode 100755 sequence_analysis/tutorials/Utils/unix2dos.py create mode 100755 sequence_analysis/tutorials/seq1v_5s_LR_init.hsmc create mode 100755 sequence_analysis/tutorials/sequences.ipynb create mode 100755 sequence_analysis/tutorials/sim_v_5s_LR.hsmc diff --git a/sequence_analysis/tutorials/Code/__init__.py b/sequence_analysis/tutorials/Code/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/sequence_analysis/tutorials/Code/amlseq2R.py b/sequence_analysis/tutorials/Code/amlseq2R.py new file mode 100755 index 00000000..86139ac8 --- /dev/null +++ b/sequence_analysis/tutorials/Code/amlseq2R.py @@ -0,0 +1,126 @@ +# Read .seq file and transform to an R file. +import os + +def Setup(chdir=False, virtual=True): + """ + Default setup and paths to data + """ + + print(os.getcwd()) + + if not(virtual): + home_dir = "D:\\" + else: + home_dir = "/media/sf_transfert" + base_path = os.path.join(home_dir, "devlp_shared", "AppleCultivarsTreatments") + data_path = base_path + os.sep + "Data" + + if chdir: + os.chdir(base_path) + + output_file = base_path + os.sep + "Data" + os.sep + "multiseq_N_APPLE_R.csv" + + return base_path, data_path, output_file + +def ReadSequence(data_path="", data_file="multiseq_N_APPLE_unix.seq"): + """ + Read sequence from file and return Sequences object + python list + """ + if data_path == "": + base_path, data_path, output_file = Setup(chdir=False) + + # Python sequence + from openalea.sequence_analysis import sequences + pyseq1 = sequences.Sequences(data_path + os.sep + data_file) + pylist = [] + dim_seq = len(pyseq1[0][0]) + + for i in range(len(pyseq1)): + seq_i = [] + for l in range(len(pyseq1[i])): + seq_i += [[pyseq1[i][l][d] for d in range(dim_seq)]] + pylist += [seq_i] + + return pyseq1, pylist + +def DefaultHeader(): + """ + Return default header for .csv + """ + h = "######################################################################### \n" + h += "# \n" + h += "# N-APPLE shoot \n" + h += "# \n" + h += "# VARIABLE 1: treatment code (1: control, 2: treatment with 20 g N/tree dose, 3: treatment with 30 g N/h tree dose), \n" + h += "# VARIABLE 2: cultivar (1: Rubinola, 2: Topaz, 3: Golden Delicious), \n" + h += "# VARIABLE 3: axillary shoot type (0: no shoot, 1: short shoot, 2: medium shoot, 3: long shoot, 4: sylleptic shoot), \n" + h += "# VARIABLE 4: lateral flowering (0: no lateral flowering, 1: LF in median zone, 2: LF in distal zone, 3: LF in median and distal zone = Long LF zone), \n" + h += "# VARIABLE 5: terminal flowering (0: no flower cluster, 1: presence of a flower cluster). \n" + h += "# \n" + h += "# Data : Martin Meszaros, Evelyne Costes, Jean-Baptiste Durand \n" + h += "# \n" + h += '# read with read.csv(multiseq_N_APPLE_R.csv, header=TRUE, row.names=1, comment.char="#") \n' + h += "# \n" + h += "######################################################################### \n" + h += '"", treatment code, ' + h += "cultivar, " + h += "axillary shoot type, " + h += "lateral flowering, " + h += "terminal flowering, " + h += "sequence N. \n" + return h + +def RestoredStatesHeader(): + """ + Return header for restored states + """ + h = "######################################################################### \n" + h += "# \n" + h += "# N-APPLE shoot \n" + h += "# \n" + h += "# VARIABLE 1: restored state. \n" + h += "# VARIABLE 2: axillary shoot type (0: no shoot, 1: short shoot, 2: medium shoot, 3: long shoot, 4: sylleptic shoot), \n" + h += "# VARIABLE 3: lateral flowering (0: no lateral flowering, 1: LF in median zone, 2: LF in distal zone, 3: LF in median and distal zone = Long LF zone), \n" + h += "# VARIABLE 4: terminal flowering (0: no flower cluster, 1: presence of a flower cluster). \n" + h += "# \n" + h += "# Data : Martin Meszaros, Evelyne Costes, Jean-Baptiste Durand \n" + h += "# \n" + h += '# read with read.csv(multiseq_N_APPLE_R.csv, header=TRUE, row.names=1, comment.char="#") \n' + h += "# \n" + h += "######################################################################### \n" + h += '"", restored state, ' + h += "axillary shoot type, " + h += "lateral flowering, " + h += "terminal flowering, " + h += "sequence N. \n" + return h + +def WriteRSequence(pyseq1, output_file="", header=None): + """ + Write sequence in a .txt file, one line per sequence index + """ + if output_file == "": + base_path, data_path, output_file = Setup(chdir=False) + + f = open(output_file, "w") + + if header is None: + h = DefaultHeader() + else: + h = str(header) + f.write(h) + dim_seq = len(pyseq1[0][0]) + l = 1 # line + for i in range(len(pyseq1)): + # i: sequence + for p in range(len(pyseq1[i])): + # p: position + f.write('"' + str(l) + '", ') + for v in range(dim_seq): + # write variables + f.write(str(pyseq1[i][p][v]) + ", ") + # write sequence id + f.write(str(i) + "\n") + l += 1 + + f.close() diff --git a/sequence_analysis/tutorials/Code/matrix_plot.py b/sequence_analysis/tutorials/Code/matrix_plot.py new file mode 100755 index 00000000..bc0c121e --- /dev/null +++ b/sequence_analysis/tutorials/Code/matrix_plot.py @@ -0,0 +1,65 @@ +# Plot transition matrices +# Use with conda environment bnp-mrf + +import matplotlib.pyplot as plt +import networkx, os +import numpy as np + +import os +import numpy as np + +print(os.getcwd()) + +virtual = True +nb_states = 5 + +if not(virtual): + home_dir = "D:\\" +else: + home_dir = "/mnt/transfert" +base_path = os.path.join(home_dir, "devlp_shared", "AppleCultivarsTreatments") +data_path = base_path + os.sep + "Data" +os.chdir(base_path) + + +matrix_file = base_path + os.sep + "Models" + os.sep + "seq1v_" + \ + str(nb_states) + "s_L.mat" + +TM = np.fromfile(matrix_file) +TM = TM.reshape(nb_states, nb_states) + +G = networkx.from_numpy_matrix(TM, create_using=networkx.DiGraph) +blues = cm = plt.get_cmap('Blues') + +f = plt.figure(1, figsize=(9, 9)) +ax = f.add_subplot(1,1,1) + +#networkx.draw_circular(G, node_size=150, node_color='#1f78b4', + #with_labels=True, arrows=True, + #arrow_size=140, + #width=4, + #edge_cmap = plt.cm.Blues) + +# G = networkx.star_graph(81) +initial_nodes = np.array(list(G.nodes())) +final_nodes = initial_nodes + 1 + +networkx.relabel_nodes(G, dict(zip(initial_nodes, final_nodes)), copy=False) + +colors = [G.get_edge_data(a, b)['weight'] for (a,b) in G.edges()] + +# networkx.draw_circular(G, edge_color = range(81), edge_cmap = plt.cm.Blues) + +options = { + "node_color": "#A0CBE2", + "edge_color": colors, + "width": 3, + "edge_cmap": plt.cm.Blues, + "with_labels": True, + "node_size": 150, + "with_labels": True, +} + + +networkx.draw_circular(G, **options) +plt.show() diff --git a/sequence_analysis/tutorials/Code/python_dics2R.py b/sequence_analysis/tutorials/Code/python_dics2R.py new file mode 100755 index 00000000..dab48f11 --- /dev/null +++ b/sequence_analysis/tutorials/Code/python_dics2R.py @@ -0,0 +1,123 @@ +# Export python dictionaries of sufficients HMSC statistics for +# GLMMs to an R file. + +import os + + +def ComputeGLMStatistics(pyseq1, seg_pyseq): + """ + Compute statistics for GLM(M) estimation + """ + dwell = {} # indexed by state, cultivar, tree + transition = {} # indexed by past_state, treatment, cultivar, tree + observation = {} # indexed by state, treatment, cultivar, tree + for i in range(len(pyseq1)): + d = 0 + s_past = -1 # past state + + for l in range(len(pyseq1[i])): + va = pyseq1[i][l] + t = va[0] # treatment + c = va[1] # cultivar + v = seg_pyseq[i][l] + s = v[0] + if s != s_past: + if s_past != -1: + if dwell.has_key((s_past, t, c, i+1)): + dwell[s_past, t, c, i+1] += [[d, 1]] + transition[s_past, t, c, i+1] += [s] + else: + dwell[s_past, t, c, i+1] = [[d, 1]] + transition[s_past, t, c, i+1] = [s] + d = 1 # dwell time + else: + d += 1 + s_past = s + if observation.has_key((s, t, c, i+1)): + observation[s, t, c, i+1] += [v[1:]] + else: + observation[s, t, c, i+1] = [v[1:]] + if dwell.has_key((s_past, t, c, i+1)): + dwell[s_past, t, c, i+1] += [[d, 0]] + else: + dwell[s_past, t, c, i+1] = [[d, 0]] + + return dwell, transition, observation + +def GLMStatisticsHeader(): + + """ + Return header for GLM statistics + """ + h = "######################################################################### \n" + h += "# \n" + h += "# Statistics for GLM(M) estimation issued from HSMC restoration\n" + h += "# \n" + h += '# VARIABLE 1: type of statistics ("d"well time, "t"ransition, "o"bservation). \n' + h += '# VARIABLE 2: restored state (current state for "d" and "o", previous state for "t"). \n' + h += "# VARIABLE 3: treatment. \n" + h += "# VARIABLE 4: cultivar. \n" + h += "# VARIABLE 5: value of statistics. \n" + h += '# VARIABLE 6: for "d", 0 if last dwell time (censored), 1 otherwise; for "t", NA \n' + h += '# for "o", id of variable. \n' + h += "# \n" + h += '# read with read.csv(file_name.csv, header=TRUE, row.names=1, comment.char="#") \n' + h += "# \n" + h += "######################################################################### \n" + h += '"", type, ' + h += "restored state, " + h += "treatment, " + h += "cultivar, " + h += "sequence N., " + h += "value, " + h += "info \n" + return h + + +def WriteGLMStatistics(dwell, transition, observation, output_file): + """ + Write statistics for GLM(M) estimation + """ + f = open(output_file, "w") + f.write(GLMStatisticsHeader()) + l = 1 # line + for (k, v) in dwell.items(): + f.write(str(l) + ", ") + f.write("d, ") + for o in k: + f.write(str(o) + ", ") + s = "" + for o in v: + for i in o: + s += str(i) + ", " + s = s[0:-2] + "\n" + l += 1 + f.write(s) + + for (k, v) in transition.items(): + f.write(str(l) + ", ") + f.write("t, ") + for o in k: + f.write(str(o) + ", ") + s = "" + for o in v: + s += str(o) + ", " + s = s[0:-2] + ", NA \n" + l += 1 + f.write(s) + + for (k, v) in observation.items(): + # common part of all elements in current + # list of objects and associated string + s_base = "o, " + for o in k: + s_base += str(o) + ", " + for o in v: + for i in range(len(o)): + # Variables + s = s_base + str(o[i]) + ", " + str(i+1) + "\n" + f.write(str(l) + ", " + s) + l += 1 + + f.close() + diff --git a/sequence_analysis/tutorials/Utils/__init__.py b/sequence_analysis/tutorials/Utils/__init__.py new file mode 100755 index 00000000..f4504522 --- /dev/null +++ b/sequence_analysis/tutorials/Utils/__init__.py @@ -0,0 +1,2 @@ +from unix2dos import unix2dos +from dos2unix import dos2unix diff --git a/sequence_analysis/tutorials/Utils/dos2unix.py b/sequence_analysis/tutorials/Utils/dos2unix.py new file mode 100755 index 00000000..732da430 --- /dev/null +++ b/sequence_analysis/tutorials/Utils/dos2unix.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python +"""\ +convert dos linefeeds (crlf) to unix (lf) +usage: dos2unix.py +""" + +""" +__version__ = "1" # version is needed for packaging + +import sys + +if len(sys.argv[1:]) != 2: + sys.exit(__doc__) + +content = '' +outsize = 0 +with open(sys.argv[1], 'rb') as infile: + content = infile.read() +with open(sys.argv[2], 'wb') as output: + for line in content.splitlines(): + outsize += len(line) + 1 + output.write(line + b'\n') + +print("Done. Stripped %s bytes." % (len(content)-outsize)) +""" + +def dos2unix(infile, output): + import sys + + content = '' + outsize = 0 + ifile = open(infile) + content = ifile.read() + ofile = open(output, 'wb') + for line in content.splitlines(): + outsize += len(line) + 1 + ofile.write(line + b'\n') + + print("Done. Stripped %s bytes." % (len(content)-outsize)) \ No newline at end of file diff --git a/sequence_analysis/tutorials/Utils/unix2dos.py b/sequence_analysis/tutorials/Utils/unix2dos.py new file mode 100755 index 00000000..3da21705 --- /dev/null +++ b/sequence_analysis/tutorials/Utils/unix2dos.py @@ -0,0 +1,40 @@ +#!/usr/bin/env python +"""\ +convert unix (lf) to dos linefeeds (crlf) +usage: unix2dos.py +""" + +""" +__version__ = "1" # version is needed for packaging + +import sys + +if len(sys.argv[1:]) != 2: + sys.exit(__doc__) + +content = '' +outsize = 0 +with open(sys.argv[1], 'rb') as infile: + content = infile.read() +with open(sys.argv[2], 'wb') as output: + for line in content.splitlines(): + outsize += len(line) - 1 + if len(line) > 0 and line[-1:] == "\n"]: + output.write(line[0:-1]) + +print("Done. Stripped %s bytes." % (len(content)-outsize)) +""" + +def unix2dos(infile, output): + import sys + + content = '' + outsize = 0 + ifile = open(infile) + content = ifile.read() + ofile = open(output, 'wb') + for line in content.splitlines(): + outsize += len(line) - 1 + if len(line) > 0 and line[-1:] == "\n": + ofile.write(line[0:-1]) + print("Done. Stripped %s bytes." % (len(content)-outsize)) \ No newline at end of file diff --git a/sequence_analysis/tutorials/seq1v_5s_LR_init.hsmc b/sequence_analysis/tutorials/seq1v_5s_LR_init.hsmc new file mode 100755 index 00000000..b06df421 --- /dev/null +++ b/sequence_analysis/tutorials/seq1v_5s_LR_init.hsmc @@ -0,0 +1,119 @@ +HIDDEN_SEMI-MARKOV_CHAIN + +5 STATES + +INITIAL_PROBABILITIES +0.2 0.2 0.2 0.2 0.2 + +TRANSITION_PROBABILITIES +0 0.25 0.25 0.25 0.25 +0 0 0.33 0.33 0.34 +0 0 0 0.5 0.5 +0 0 0 0 1 +0 0 0 0 1 + + +STATE 0 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.0 PROBABILITY : 0.005 + +STATE 1 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.0 PROBABILITY : 0.005 + +STATE 2 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.0 PROBABILITY : 0.005 + +STATE 3 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.0 PROBABILITY : 0.005 + +3 OUTPUT_PROCESSES + +OUTPUT_PROCESS 1 : CATEGORICAL + +STATE 0 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.4 +OUTPUT 1 : 0.1 +OUTPUT 2 : 0.1 +OUTPUT 3 : 0.1 +OUTPUT 4 : 0.3 + +STATE 1 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.1 +OUTPUT 1 : 0.6 +OUTPUT 2 : 0.1 +OUTPUT 3 : 0.1 +OUTPUT 4 : 0.1 + +STATE 2 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.6 +OUTPUT 1 : 0.1 +OUTPUT 2 : 0.1 +OUTPUT 3 : 0.1 +OUTPUT 4 : 0.1 + +STATE 3 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.23 +OUTPUT 1 : 0.23 +OUTPUT 2 : 0.23 +OUTPUT 3 : 0.23 +OUTPUT 4 : 0.08 + +STATE 4 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.1 +OUTPUT 1 : 0.1 +OUTPUT 2 : 0.1 +OUTPUT 3 : 0.6 +OUTPUT 4 : 0.1 + +OUTPUT_PROCESS 2 : CATEGORICAL + +STATE 0 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.25 +OUTPUT 1 : 0.25 +OUTPUT 2 : 0.25 +OUTPUT 3 : 0.25 + +STATE 1 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.25 +OUTPUT 1 : 0.25 +OUTPUT 2 : 0.25 +OUTPUT 3 : 0.25 + +STATE 2 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.25 +OUTPUT 1 : 0.25 +OUTPUT 2 : 0.25 +OUTPUT 3 : 0.25 + +STATE 3 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.25 +OUTPUT 1 : 0.25 +OUTPUT 2 : 0.25 +OUTPUT 3 : 0.25 + +STATE 4 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.25 +OUTPUT 1 : 0.25 +OUTPUT 2 : 0.25 +OUTPUT 3 : 0.25 + +OUTPUT_PROCESS 3 : CATEGORICAL + +STATE 0 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.5 +OUTPUT 1 : 0.5 + +STATE 1 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.5 +OUTPUT 1 : 0.5 + +STATE 2 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.5 +OUTPUT 1 : 0.5 + +STATE 3 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.5 +OUTPUT 1 : 0.5 + +STATE 4 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.5 +OUTPUT 1 : 0.5 diff --git a/sequence_analysis/tutorials/sequences.ipynb b/sequence_analysis/tutorials/sequences.ipynb new file mode 100755 index 00000000..f363529a --- /dev/null +++ b/sequence_analysis/tutorials/sequences.ipynb @@ -0,0 +1,8217 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/python2.7" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# HSMC modelling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Configuration\n", + "### It is assumed that this notebook is run from singularity, mounting the directory containing tutorials as /scratch" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from seqint import Model\n", + "import numpy as np\n", + "from openalea.sequence_analysis import Estimate\n", + "from openalea.sequence_analysis import Plot\n", + "import os\n", + "import pandas as pd\n", + "# import random\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Check pandas version" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# print pd.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.2.0'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import xlrd\n", + "xlrd.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Enabling R extensions" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext rpy2.ipython" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Place variables in markdown outputs" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Markdown\n", + "from IPython.core.magic import register_cell_magic\n", + "\n", + "\n", + "@register_cell_magic\n", + "def markdown(line, cell):\n", + " return Markdown(cell.format(**globals()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Determining if images have to be saved (not used for the moment)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and preparing data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import sys" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "sys.path.append(\"/scratch\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from Utils import *\n", + "from Code.amlseq2R import *" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/scratch\n" + ] + } + ], + "source": [ + "print(os.getcwd())" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "home_dir = \"/scratch\"\n", + "base_path = home_dir\n", + "ressource_path = base_path\n", + "os.chdir(base_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['seq1v_5s_LR_init.hsmc',\n", + " 'tmp_dir',\n", + " 'sim_v_5s_LR.hsmc',\n", + " 'Code',\n", + " 'Results',\n", + " 'Utils',\n", + " 'sequences.ipynb',\n", + " '.ipynb_checkpoints']" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.listdir(ressource_path + os.sep )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Read an existing HSMC model**" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from openalea.sequence_analysis import HiddenSemiMarkov\n", + "\n", + "model_file = \"sim_v_5s_LR.hsmc\"\n", + "#model_file = \"init_v_5s_LR.hsmc\"\n", + "hmsc = HiddenSemiMarkov(ressource_path + os.sep + model_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Simulate sequences**" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from openalea.sequence_analysis import Simulate" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "nb_seq = 10\n", + "seq_length = 100\n", + "seq = hmsc.simulation_nb_sequences(nb_seq, seq_length, True)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 0], [1, 4, 0, 0], [1, 2, 3, 1], [1, 2, 0, 0], [1, 2, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 0, 1], [1, 1, 0, 1], [1, 1, 0, 0], [1, 3, 0, 0], [1, 1, 0, 1], [1, 2, 0, 0], [1, 1, 0, 0], [1, 0, 0, 1], [2, 0, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 2, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 0, 0, 0], [2, 0, 0, 0], [2, 3, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 1], [2, 1, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 1, 0, 0], [2, 0, 0, 1], [2, 1, 0, 0], [2, 0, 0, 0], [2, 1, 0, 0], [3, 2, 0, 0], [3, 1, 0, 0], [3, 2, 0, 1], [3, 2, 0, 0], [3, 2, 0, 0], [3, 1, 0, 0], [3, 0, 0, 0], [3, 2, 0, 0], [3, 2, 0, 1], [3, 1, 0, 0], [3, 0, 0, 0], [3, 1, 0, 0], [3, 2, 0, 0], [3, 2, 0, 0], [3, 0, 0, 1], [3, 2, 0, 0], [3, 2, 0, 0], [3, 2, 0, 0], [3, 0, 0, 0], [3, 3, 0, 0], [3, 0, 0, 0]]\n" + ] + } + ], + "source": [ + "# Print first simulated sequence.\n", + "# First variable is the simulated state\n", + "print(seq[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Perform operations on sequences**" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Discard variable 1 (state)\n", + "obs = seq.select_variable([1], keep=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting marginal probabilities of data" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJOCAYAAAB1IEnpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXtc1HX2/1/DRbmKCKaCCJqKM+AoNzUvobWrrrG0JhKKfkMrV1d/bd/dtq1MwcyN9UKul3J1N9tciZRSM8N1tfwGpQmrYoKVtQiI5oUQGK4zzPn98enzYQZmhgFmGBjO8/HgwXxu78t8zrw/53POeZ+3jIgIDMMwDMMwTKdxsHUDGIZhGIZh7AVWrBiGYRiGYSwEK1YMwzAMwzAWghUrhmEYhmEYC8GKFcMwDMMwjIVgxYphGIZhGMZC9BjFKjs7G8HBwWad+/bbb2Pq1KlGj0+fPh1/+9vfLNU0u0Mmk+G7776zSFkd/a5Pnz6NoUOHWqQNXcW1a9cgk8mg0Wi6pL7O3KegoCCcPHnS4LGWvzXdc//0pz/hqaeeMlru/v37MXPmzA61iWFsCT9jGEvRYxSradOm4ZtvvrF1M7Bs2TIEBwfDwcEBb7/9tq2b02l4AGBaYuq39tJLL0nyYkiRTExMxIkTJ7qknQxjSfgZw1iKHqFYdZUFwBzGjRuHN954A+Hh4bZuCtNJupNctaQ7t41h7I3u9HvjZ0zPx2qK1Z///GfExcXp7fvtb3+LZ555BgCwd+9eyOVyeHp6YsSIEfjrX/8qnSe6gf785z9j8ODBWLJkSSvXUGpqKu6//354enpCoVDg0KFDenUREVatWgUvLy+MGTMGp06dMtrWt956C3K5HN7e3pg1axaKi4uNnrty5Uo8/PDDcHFxadf3YYjvvvsO0dHR8PLygq+vLx5//HHpmEwmwxtvvIFRo0bB09MTa9aswffff4/JkyejX79+iI+PR2Njo3T+nj17MHLkSAwYMACxsbG4ceOGdOyLL75AVFQUvLy8EBUVhS+++AIAsHr1amRnZ2PVqlXw8PDAqlWrpGtOnjyJUaNGoX///li5ciV0E/Sb+r7+/e9/Y8yYMfDy8sKqVatgKrF/Q0MDnn32Wfj5+cHPzw/PPvssGhoa9M7505/+BF9fXwQFBWH//v3S/o8//hgKhQKenp7w9/fH5s2bpWMfffQRxo8fj/79+2Py5Mm4dOmSdCwoKAh//vOfoVQq4e7u3qacVlZW4sknn8SQIUPg7++Pl19+GU1NTQCApqYmPPfcc/D19cWIESNw7Ngxo30V637ttdegUCjg7e2NJUuWoL6+HoBhmQdM31fxexgxYgR8fX3xhz/8AVqtFgDw/fff46GHHoKPjw98fX2RmJiIe/fu6V2bm5trsi2GSElJwaJFiwAADz74IACgf//+8PDwwJkzZ1q5SL7++mv8/Oc/x4ABAxAcHIwDBw7otd3YPWSYtuBnDNNtIStx7do1cnV1paqqKiIi0mg0NHjwYDpz5gwREX300Uf03XffkVarpdOnT5Orqyv95z//ISKiTz/9lBwdHen555+n+vp6qq2tpU8//ZT8/f2l8g8cOEBlZWXU1NREGRkZ5ObmRjdu3CAior1795KjoyOlpaVRY2MjZWRkUL9+/ai8vJyIiKKjo2nPnj1ERHT48GG6//77qbCwkNRqNa1fv54eeOCBNvs3ZcoU2rt3b6e+o4SEBHr11VepqamJ6urqKDs7WzoGgGJjY6myspIuX75Mffr0oYceeoi+//57unfvHsnlcnr77beJiOjUqVPk4+ND//nPf6i+vp5WrVpF06ZNIyKi8vJy6t+/P73zzjukVqspPT2d+vfvT3fv3m31XejW/cgjj1BFRQUVFxeTr68vZWVltfl93blzhzw8POjgwYPU2NhIaWlp5Ojo2Kp8kTVr1tDEiRPp1q1bdPv2bXrggQfo5ZdfJqJmGfjf//1fqq+vp9OnT5Obmxt9/fXXREQ0ePBg+uyzz4iI6Mcff5Rk5/z58zRw4EA6e/YsaTQaevvttykwMJDq6+uJiCgwMJDGjRtHJSUlVFtb26ac/upXv6Jly5aRSqWiW7duUVRUFO3atYuIiN58800KDg6mkpISKi8vp+nTpxMAUqvVBvsbGBhIISEh0vmTJ0+m1atX6/VXV+ZN3VfxPk2fPp3Ky8upuLiYRo0aJX3XV69epRMnTlB9fT3dvn2bpk2bRr/97W/Nbovuby0wMJD+/e9/ExFRcnIyJSYmEhFRUVFRq/7u3buXpkyZQkREKpWKhg4dSm+99Rap1Wo6f/48+fj4UEFBgcl7yDDmwM8YprtiNcWKSBCMf/zjH0REdOLECRoxYoTRcx999FHaunUrEQlC7+zsTHV1ddLxlkLfknHjxtHhw4eJSBD6IUOGkFarlY5HRUXRO++8Q0T6Qj979mz629/+Jp3X1NRErq6udO3atTb71lmhX7x4MT399NNUWlra6hgAysnJkbbDw8MpNTVV2v7d734nPSiXLl1Kf/jDH6Rj1dXV5OTkREVFRfTOO+9QVFSUXtmTJk2S2m5MsdJV8ubPn0+vvfYaEZn+vv7xj3/QxIkTpWNarZb8/f2NKlYjRoygY8eOSdvHjx+nwMBAImoe+FQqlV47XnnlFSIiCggIoF27dlFlZaVemcuXL5eUM5HRo0fT6dOniUhQEv7+97/rHTcmpz/88AP16dOHamtrpXPT09Np+vTpREQ0Y8YMevPNN6Vj//rXv9pUrHTPP3bsmFSXIZk3dV+JhPskKrxERDt37qSHHnrIYN2HDh2i8ePHm90WSyhWGRkZNHXqVL12LFu2jFJSUojI+D1kGHPhZwzTHbFqjNXChQvx7rvvAgDS09OxcOFC6VhWVhYmTZqEAQMGoH///vj4449x9+5d6fjAgQNNmkLfeecdyd3Tv39/XL58We96f39/yGQyaTswMLCVGwUAiouL8dvf/lYqZ8CAASAilJWVdarvJSUl8PDwkP4MsXHjRhARJkyYgJCQELz11lt6xwcNGiR9dnV1bbWtUqkAADdu3EBgYKB0zMPDAz4+PigrK2t1DBC+i7b6N3jwYOmzm5ubVJep7+vGjRsICAiQrpPJZHrbLWnZtpb3yNvbG+7u7gaPv//++/j4448RGBiI6OhonDlzRmrfli1bpPb1798fpaWleuW2bJMxOS0uLoZarcaQIUOksn7961/j9u3bUvt1y2r5PRui5fm67Wop86bua1vl3bp1CwkJCfD390e/fv2waNEivd9HW22xBMXFxfjyyy/17sX+/fvxww8/ADB+DxnGXHrzM4bpvlhVsZo/fz5Onz6N69ev49ChQ5LQNzQ0YN68eXjuuedw69Yt3Lt3D3PmzNGLx9EV2JYUFxfj6aefxo4dO1BeXo579+4hNDRU7/qysjK97ZKSEvj5+bUqKyAgAH/9619x79496a+urg6TJ0/uVN+HDRsGlUol/Rli8ODB2LNnD27cuIG//vWv+M1vftOh6fN+fn56PvuamhqUl5fD39+/1TFA+C78/f0BmP6eDWHq+xoyZAhKS0ulc4lIb7utdre8RxUVFaipqTF4PCoqCkeOHMHt27fxq1/9CvHx8VL7Vq9erde+2tpaLFiwQCqnZZ+NyWlAQAD69u2Lu3fvSmVVVVWhoKAAAFr1t6SkpM3vr+X5uv1t2S5T97Wt8l566SXIZDJ89dVXqKqqwj//+c9W8W6m2mIObclOQEAAoqOj9e6FSqXCm2++CcD4PWQYc+nNzxim+2JVxWrgwIGYPn06lixZguHDh0MulwMAGhsb0dDQgIEDB8LJyQlZWVntmqJdU1MDmUyGgQMHAhCCFC9fvqx3zu3bt7Ft2zao1WocPHgQV65cwZw5c1qVtXz5crz22mvSw7KyshIHDx40WndjYyPq6+tBRFCr1aivr5cChtvLwYMHcf36dQCCdUYmk8HBof23ZMGCBdi7dy8uXryIhoYGvPTSS5g4cSKCgoIwZ84cfPvtt0hPT4dGo8F7772HwsJCxMTEABCsYv/973/NrsvU9/XII4+goKAAH3zwATQaDbZt2yZZJ4y1+9VXX8WdO3dw9+5dvPLKK1JgtEhycjIaGxuRnZ2Njz76CPPnz0djYyP279+PyspKODs7o1+/ftL39vTTT2PXrl348ssvQUSoqanBsWPHUF1dbbQdxuR0yJAhmDlzJn7/+9+jqqoKWq0W33//Pf7v//4PABAfH49t27bh+vXrqKioQGpqapvf386dO3H9+nX8+OOP2LBhg96EBUPfj7H7KrJp0yZUVFSgtLQUf/nLX6Tyqqur4eHhAS8vL5SVlWHTpk2daoshBg4cCAcHB6PyExMTg2+//Rb79u2DWq2GWq1Gbm4urly5YvIeMoy58DOG6Y5YfSRbuHAhTp48qWei9fT0xLZt2xAfHw9vb2+kp6cjNjbW7DIVCgV+//vf44EHHsCgQYPw1VdfYcqUKXrnTJw4EVevXoWvry9Wr16NzMxM+Pj4tCpr7ty5+OMf/4iEhAT069cPoaGhyMrKMlr3zJkz4erqii+++ALLli2Dq6srPvvsM7Pbrktubi4mTpwIDw8PxMbG4i9/+QtGjBjR7nJ+9rOfYf369Zg3bx6GDBmC77//HhkZGQAAHx8ffPTRR9iyZQt8fHywceNGfPTRR/D19QUgzKLJzMyEt7e3NJvGFKa+L19fXxw8eBAvvPACfHx8cPXq1Vb3RZeXX34ZkZGRUCqVGDt2LMLDw/Hyyy9LxwcPHgxvb2/4+fkhMTERu3btwpgxYwAA+/btQ1BQEPr164ddu3ZJMwYjIyOxZ88erFq1Ct7e3hg5cqRZuWAMySkguAMaGxul2XNxcXG4efMmAEGJmzVrFsaNG4fw8HA89thjZtUzc+ZMjBgxAvfff79ef1ti6r6KPProo4iIiMD48ePxyCOP4MknnwQgKKTnz5+Hl5cXHnnkEYNta09bDOHm5obVq1djypQp6N+/P86ePat33NPTEydOnEBGRgb8/PwwePBg/PGPf5Rmfhq7hwzTHvgZw3Q3ZNTSP8AwjFUICgrC3/72N/zsZz+zdVMYhmEYK8G2d4ZhGIZhGAvBihXDMAzDMIyFYFcgwzAMwzCMhWCLFcMwDMMwjIVwslXF4vpvDMP0Hq5du9YqUWlPhMcvhul9mDt+2UyxCgoKQl5enq2qZxjGBkRGRtq6CRaBxy+G6X2YO36xK5BhGIZhGMZCsGLFMAzDMAxjIVixYhiGYRiGsRA2i7Fiei9qtRrXr19HfX29rZvCWAkXFxcMHToUzs7Otm5Kl8Fy3TvojbLNtA9WrJgu5/r16/D09ERQUJDJFeaZngkRoby8HNevX8fw4cNt3Zwug+Xa/umtss20D3YFMl1OfX09fHx8+OFjp8hkMvj4+PQ6yw3Ltf3TW2WbaR+sWDE2gR8+9k1vvb+9td+9Cb7HTFuwYsUwDMMwDGMhWLFimJ+4du0aQkNDbd2MVkyfPt0iySgtVQ4AvPbaaxg5ciSCg4Pxr3/9yyJlMtaB5dp8WK4ZS8CKFdPt2f/VfgRtDYLDOgcEbQ3C/q/227pJZqPRaGzdBItTWFiIjIwMFBQU4Pjx4/jNb36DpqYmWzerx8Fy3b1guWYsBStWTLdm/1f7sezoMhRXFoNAKK4sxrKjyzr9EEpLS0NoaChCQ0OxdetWab9Go0FiYiLkcjni4uJQW1sLAHjhhRegUCigVCrx3HPPAQDu3LmDefPmISoqClFRUfj8888BACkpKVi8eDGmTJmCxYsXY9KkSSgoKJDqEN+wa2pqsHTpUkyYMAFhYWE4cuQIAKCurg4JCQmQy+WYO3cu6urqWrX/+PHjmD9/vrR9+vRpxMTEAABWrFiByMhIhISEIDk52WD/PTw8pM+ZmZlISkoy2Sddjhw5goSEBPTt2xfDhw/HyJEjce7cuba/dEaC5ZrlmrFjyEZERETYqmrGxhQWFpp9buDrgYQUtPoLfD2ww/Xn5eVRaGgoqVQqqq6uJoVCQefPn6eioiICQDk5OUREtGTJEtq0aRPdvXuXRo8eTVqtloiIKioqiIhowYIFlJ2dTURExcXFNGbMGCIiSk5OpvDwcKqtrSUiorS0NFq7di0REd24cYNGjx5NREQvvvgi7du3Typz1KhRpFKpaMuWLbRkyRIiIsrPzydHR0fKzc3V64NaraaAgABSqVRERLR8+XKprPLyciIi0mg0FB0dTfn5+UREFB0dLZXj7u4ulXXw4EF64oknTPZJl5UrV0p1EREtXbqUDh482Oo8Q/fZXn73hvrBct075JqoffeasR/MHb84jxVjc2Tr2j/Lpriy2OR1lExGj+Xk5GDu3Llwd3cHADz22GPIzs5GbGwsAgICMGXKFADAokWLsG3bNjz77LNwcXHBk08+iZiYGOkN+uTJkygsLJTKraqqgkqlAgDExsbC1dUVABAfH4+ZM2di3bp1OHDgAOLi4gAAJ06cwIcffojNmzcDEKbrl5SU4LPPPsMzzzwDAFAqlVAqla364OTkhNmzZ+Po0aOIi4vDsWPHsHHjRgDAgQMHsHv3bmg0Gty8eROFhYUGyzCEsT7pWgIY82C5ZrlmeiesWDE2x9TDImhrEIori1vtD/QKxLVnr1m8LS2nUstkMjg5OeHcuXM4deoUMjMzsWPHDnzyySfQarU4e/YsXFxcWpUjPtwAwN/fHz4+Prh06RLee+897Nq1C4CQbPD9999HcHBwh9qakJCAHTt2YMCAAYiMjISnpyeKioqwefNm5ObmwtvbG0lJSQZz7uj2U/e4qT7p9qe0tFTavn79Ovz9/TvUB3uG5ZrlmumdcIwV063Z8PAGuDm76e1zc3bDhoc3dLjMadOm4fDhw6itrUVNTQ0OHTqEadOmAQBKSkpw5swZAEB6ejqmTp0KlUqFyspKzJkzB6+//jry8/MBADNnzsT27dulci9evGi0zscffxwbN25EZWWl9JY9a9YsbN++HUTCA/jChQsAgAcffBDp6ekAgMuXL+PSpUsGy4yOjsb58+exZ88eJCQkABDexN3d3eHl5YVbt24hKyvL4LWDBg3ClStXoNVqcejQIWm/OX2KjY1FRkYGGhoaUFRUhKtXr2LChAlG+860huWa5ZqxX1ixYro1iWMTsfuXuxHoFQgZZAj0CsTuX+5G4tjEDpcZHh6OpKQkTJgwARMnTsRTTz2FsLAwAEBwcDB27twJuVyOiooKrFixAtXV1YiJiYFSqcTUqVORlpYGANi2bRvy8vKgVCqhUCikN3ZDxMXFISMjA/Hx8dK+NWvWQK1WQ6lUIiQkBGvWrAEgBOmqVCrI5XKsXbsWERERBst0dHRETEwMsrKyJDfOuHHjEBYWhjFjxmDhwoWS+6clqampiImJweTJkzFkyBBpvzl9CgkJQXx8PBQKBWbPno2dO3fC0dHR1FfOtIDlmuWasV9kJL5WdDGRkZEWyz3C9CyuXLkCuVxu62YwVsbQfbaX372hfrBc9x74XvdOzB2/2GLFMAzDMAxjIdpUrJYuXYr77rvPaOZeIsIzzzyDkSNHQqlU4vz58xZvJMMwTEfhMYxhmK6kTcUqKSkJx48fN3o8KysLV69exdWrV7F7926sWLHCog1kGIbpDDyGMQzTlbSpWD344IMYMGCA0eNHjhzB//zP/0Amk2HSpEm4d+8ebt68adFGMgzDdBQewxiG6Uo6HWNVVlaGgIAAaXvo0KEoKyszeO7u3bsRGRmJyMhI3Llzp7NVMwzDdBpzxzAevxiGMYcuDV5ftmwZ8vLykJeXh4EDB3Zl1QzDMJ2Cxy+GYcyh04oVZ6tl7IVr164ZDXC2JeLitt2lnPLycsyYMQMeHh5YtWpVp8uzNfY+hrFcm4e9yTVjOzqtWMXGxuKdd94BEeHs2bPw8vLSS8zGMBbh5k0gOhr44Qdbt6RdaDQaWzfB4ri4uGD9+vXSWnA9HZuOYSzX3QZ7k2vGdrSpWC1YsAAPPPAAvvnmGwwdOhR///vfsWvXLilz7Zw5czBixAiMHDkSTz/9NN544w2rN5rphaxfD+TkCP8tQFpaGkJDQxEaGoqtW7dK+zUaDRITEyGXyxEXF4fa2loAwAsvvACFQgGlUonnnnsOAHDnzh3MmzcPUVFRiIqKwueffw4ASElJweLFizFlyhQsXrwYkyZNQkFBgVSH+IZdU1ODpUuXYsKECQgLC8ORI0cAAHV1dUhISIBcLsfcuXNRV1fXqv3Hjx/H/Pnzpe3Tp09LWapXrFiByMhIhISEIDk52WD/dRefzczMRFJSksk+6eLu7o6pU6eaXHetO9GtxzCWaz1Yrhm7gGxERESErapmbExhYWH7Lrhxg8jFhQggcnUlunmzU/Xn5eVRaGgoqVQqqq6uJoVCQefPn6eioiICQDk5OUREtGTJEtq0aRPdvXuXRo8eTVqtloiIKioqiIhowYIFlJ2dTURExcXFNGbMGCIiSk5OpvDwcKqtrSUiorS0NFq7du1PXblBo0ePJiKiF198kfbt2yeVOWrUKFKpVLRlyxZasmQJERHl5+eTo6Mj5ebm6vVBrVZTQEAAqVQqIiJavny5VFZ5eTkREWk0GoqOjqb8/HwiIoqOjpbKcXd3l8o6ePAgPfHEEyb7ZIi9e/fSypUrjR43dJ/t5XdvqB8s171Drok6cK8Zu8Dc8YszrzO2RyYz/efnB4gr1dfVAUOGtH2NCXJycjB37ly4u7vDw8MDjz32GLKzswEAAQEB0jpkixYtQk5ODry8vODi4oInn3wSH3zwAdzchMVzT548iVWrVmH8+PGIjY1FVVUVVCoVAMG95OrqCgCIj49HZmYmAODAgQOIi4sDAJw4cQKpqakYP348pk+fjvr6epSUlOCzzz7DokWLAABKpVJa3FYXJycnzJ49G0ePHoVGo8GxY8fw6KOPSnWEh4cjLCwMBQUFKCwsNPtWmOoT005YrlmumV6Jk60bwDAwtVzlzZvAiBHNDyAAcHUF/vtfYPBgizdF1uLhJZPJ4OTkhHPnzuHUqVPIzMzEjh078Mknn0Cr1eLs2bMGXQfu7u7SZ39/f/j4+ODSpUt47733JBcUEeH9999HcHBwh9qakJCAHTt2YMCAAYiMjISnpyeKioqwefNm5ObmwtvbG0lJSajX/e4M9FP3uKk+Me2E5bpDbWW5Zno6bLFiujfr1wNarf6+pqZOxaRMmzYNhw8fRm1tLWpqanDo0CFMmzYNAFBSUoIzZ84AANLT0zF16lSoVCpUVlZizpw5eP3115Gfnw8AmDlzJrZv3y6Ve/HiRaN1Pv7449i4cSMqKyulN/VZs2Zh+/btoJ8ewBcuXAAgJLRMT08HAFy+fBmXLl0yWGZ0dDTOnz+PPXv2ICEhAQBQVVUFd3d3eHl54datW8jKyjJ47aBBg3DlyhVotVocOnRI2t+ePjGdgOWa5ZqxW1ixYro3Z84AjY36+xobgS++6HCR4eHhSEpKwoQJEzBx4kQ89dRTCAsLAwAEBwdj586dkMvlqKiowIoVK1BdXY2YmBgolUpMnToVaWlpAIBt27YhLy8PSqUSCoVCemM3RFxcHDIyMhAfHy/tW7NmDdRqNZRKJUJCQrBmzRoAQpCuSqWCXC7H2rVrERERYbBMR0dHxMTEICsrSwrwHTduHMLCwjBmzBgsXLhQcv+0JDU1FTExMZg8ebLeDDhz+xQUFITf/e53ePvttzF06NB2uWUYsFyzXDN2jIzIlL3aekRGRlok9wjT87hy5Qrkcrmtm8FYGUP32V5+94b6wXLde+B73Tsxd/xiixXDMAzDMIyFYMWKYRiGYRjGQrBixTAMwzAMYyFYsWIYhmEYhrEQrFgxDMMwDMNYCFasGIZhGIZhLAQrVgzzE9euXUNoaKitm9EKcXHb7lLOv//9b0RERGDs2LGIiIjAJ5980ukyGevBcm0eLNeMpeAlbZhuTUnJRnh6RsHbe4a0r6LiU1RX52LYsOdt2DLz0Gg0cHKyr5+Zr68vjh49Cj8/P1y+fBmzZs1CWVmZrZvVo2C57n6wXDOWwmYWq//c+A+CtgZh/1f7bdUEpgfg6RmFwsJ4VFR8CkB4+BQWxsPTM6pT5aalpSE0NBShoaHYunWrtF+j0SAxMRFyuRxxcXGora0FALzwwgtQKBRQKpV47rnnAAB37tzBvHnzEBUVhaioKHz++ecAgJSUFCxevBhTpkzB4sWLMWnSJBQUFEh1iG/YNTU1WLp0KSZMmICwsDAcOXIEAFBXV4eEhATI5XLMnTsXdXV1rdp//PhxzJ8/X9o+ffq0lKV6xYoViIyMREhICJKTkw3238PDQ/qcmZmJpKQkk33SJSwsDH5+fgCAkJAQ1NXVoaGhoY1v3L7o7PjFcs1ybUlSUmzdAvum3d8v2QgMASEF5LbBjf556Z+2agZjAwoLC9t1/o8/fkI5Ob703/+uoZwcX/rxx086VX9eXh6FhoaSSqWi6upqUigUdP78eSoqKiIAlJOTQ0RES5YsoU2bNtHdu3dp9OjRpNVqiYiooqKCiIgWLFhA2dnZRERUXFxMY8aMISKi5ORkCg8Pp9raWiIiSktLo7Vr1xIR0Y0bN2j06NFERPTiiy/Svn37pDJHjRpFKpWKtmzZQkuWLCEiovz8fHJ0dKTc3Fy9PqjVagoICCCVSkVERMuXL5fKKi8vJyIijUZD0dHRlJ+fT0RE0dHRUjnu7u5SWQcPHqQnnnjCZJ+McfDgQXr44YcNHjN0nyMiIkyW11MwNH6xXPcOuSZq/722NrZ7kvcOxO/X3PHL5rbcWnUtVp9ajcSxibZuCmMjTp+WtX0SgOJiYYHa/PyH2jx3+nTjKzXl5ORg7ty5cHd3BwA89thjyM7ORmxsLAICAqR1yBYtWoRt27bh2WefhYuLC5588knExMRIb9AnT57UW0usqqoKKpUKABAbGwtXV1cAQHx8PGbOnIl169bhwIEDiIuLAwCcOHECH374ITZv3gwAqK+vR0lJCT777DM888wzAAClUiktbquLk5MTZs+ejaNHjyIuLg7Hjh3Dxo0bAQAHDhzA7t27odFocPPmTRQWFhoswxDG+qRrCRCUTovEAAAgAElEQVQpKCjAH//4R5w4ccKssu0RU+MXyzXLdVdgm0Xpeg/nzrX/GpsrVgBQUlli6yYwNsTUwwJodpP4+a3AjRtvQqE4oBebYklkMlmrbScnJ5w7dw6nTp1CZmYmduzYgU8++QRarRZnz56Fi4tLq3LEhxsA+Pv7w8fHB5cuXcJ7770nLQBLRHj//fcRHBzcobYmJCRgx44dGDBgACIjI+Hp6YmioiJs3rwZubm58Pb2RlJSEurr6032U/e4qT7pcv36dcydOxfvvPMO7r///g61314wNn6xXLNcW5OUFGDduuZtsevJyewatATGvl9z6BazAod5DbN1E5huivjwUSgOYPjwV6BQHNCLTekI06ZNw+HDh1FbW4uamhocOnQI06ZNAwCUlJTgzJkzAID09HRMnToVKpUKlZWVmDNnDl5//XXk5+cDAGbOnInt27dL5V68eNFonY8//jg2btyIyspK6S171qxZ2L59O+inV84LFy4AAB588EGkp6cDAC5fvoxLly4ZLDM6Ohrnz5/Hnj17kJCQAEB4E3d3d4eXlxdu3bqFrKwsg9cOGjQIV65cgVarxaFDh6T95vTp3r17eOSRR5CamipZQXozHRm/WK5ZrjtLSopgrfrmG2FbcFixUmUpUlIA3TBAIiAiwrxrba5YuTm7YcPDG2zdDKabUl2dq/cm7+09AwrFAVRX53a4zPDwcCQlJWHChAmYOHEinnrqKYSFhQEAgoODsXPnTsjlclRUVGDFihWorq5GTEwMlEolpk6dirS0NADAtm3bkJeXB6VSCYVCIb2xGyIuLg4ZGRmIj4+X9q1ZswZqtRpKpRIhISFYs2YNACFIV6VSQS6XY+3atYgw8mt2dHRETEwMsrKyJDfOuHHjEBYWhjFjxmDhwoVGHxCpqamIiYnB5MmTMWTIEGm/OX3asWMHvvvuO7zyyisYP348xo8fj9u3b5v6yu2Wjo5fLNcs15bip3kI7BK0Ah2duyAjss3tkPnJEPh8IDY8vIHjq3oZV65cgVwut3UzGCtj6D5HRkZaJOeQrZH5yTD0D0OR+rNUafxiue49dKd7/cUXwJQpgoL1U/gbYyFu3QIGDwaefx7485/NH79sFmPl4uyCa89es1X1DMMwHcbZ0RlfPvUl/Dz9bN0Uppcjuqvq6lixsjSixeqnTCRmYzNXYJO2yVZVMwzDdAoHmQNq1bW2bgbDSK7AWhZHiyMqVhpN+66znWJFrFgxDNMzYcWK6S6wYmU9epxipSUttKS1VfUMwzAdRiaToU7dOnM4w3Q1rFhZDzFjR49RrBzgAFWjylbVMwzDdBi2WDHdBd0YK8ayiBYrtbp919lMsXJ0cERVQ5WtqmcYhukwrFgx3QW2WFmPHucKdJQ5orK+0lbVM0wrrl27htDQUFs3oxXi4rbdpZxz585JeX7GjRunl4ixt9CTFCuWa/PoqXLNipX16HGuQLZYMe2lJ2YU1rT3F9kDCA0NRV5eHi5evIjjx4/j17/+tV320xQOMgfUaSzje2G57h70VLlmxcp69DyLlYMjKhvYYsWYj+66TZ0lLS0NoaGhCA0NxdatW6X9Go0GiYmJkMvliIuLQ+1Po9ULL7wAhUIBpVKJ535KanLnzh3MmzcPUVFRiIqKwueffw4ASElJweLFizFlyhQsXrwYkyZNQkFBgVSH+IZdU1ODpUuXYsKECQgLC8ORI0cAAHV1dUhISIBcLsfcuXNRZyB44vjx45g/f760ffr0aSlL9YoVKxAZGYmQkBAkJycb7L/u4rOZmZlISkoy2Sdd3Nzc4OQkpMCrr69vtQ5db8CSFiuW62ZYrtsPx1hZj44qViAb4T3CmzK+yrBV9YwNKSws7NB1lpLWvLw8Cg0NJZVKRdXV1aRQKOj8+fNUVFREACgnJ4eIiJYsWUKbNm2iu3fv0ujRo0mr1RIRUUVFBRERLViwgLKzs4mIqLi4mMaMGUNERMnJyRQeHk61tbVERJSWlkZr164lIqIbN27Q6NGjiYjoxRdfpH379klljho1ilQqFW3ZsoWWLFlCRET5+fnk6OhIubm5en1Qq9UUEBBAKpWKiIiWL18ulVVeXk5ERBqNhqKjoyk/P5+IiKKjo6Vy3N3dpbIOHjxITzzxhMk+teTs2bOkUCjI3d2dPvjgA4PnGLrPERERBs/tadw36j7a8sUWvX0s171Drok6fq+twVNPETk6Eu3caeuW2B979wq/z88/F7bNHb9sGmPFrkAGEFYNN+evvecaIycnB3PnzoW7uzs8PDzw2GOPITs7GwAQEBAgrUO2aNEi5OTkwMvLCy4uLnjyySfxwQcfwM3NDQBw8uRJrFq1CuPHj0dsbCyqqqqgUgkzXWNjY+H6Uxrk+Ph4ZGZmAgAOHDiAuLg4AMCJEyeQmpqK8ePHY/r06aivr0dJSQk+++wzLFq0CACgVCqlxW11cXJywuzZs3H06FFoNBocO3YMjz76qFRHeHg4wsLCUFBQgMLCQrPvhak+6TJx4kQUFBQgNzcXr732GurFYIRegjkWK5ZrluuuoLYW8PFhV6A16OisQJstacOuQEbE3NUqZTLrLzTa0vwvk8ng5OSEc+fO4dSpU8jMzMSOHTvwySefQKvV4uzZs3BxcWlVjru7u/TZ398fPj4+uHTpEt577z1pAVgiwvvvv4/g4OAOtTUhIQE7duzAgAEDEBkZCU9PTxQVFWHz5s3Izc2Ft7c3kpKSDD4cdPupe9xUnwwhl8vh4eGBy5cvIzIyskP96Ik4yBzazGPFcs1y3RXU1gK+vuwKtAY9LsbKQebAFivGJkybNg2HDx9GbW0tampqcOjQIUybNg0AUFJSgjNnzgAA0tPTMXXqVKhUKlRWVmLOnDl4/fXXkZ+fDwCYOXMmtm/fLpV78eJFo3U+/vjj2LhxIyorK6U39VmzZmH79u2gn56qFy5cAAA8+OCDSE9PBwBcvnwZly5dMlhmdHQ0zp8/jz179iAhIQEAUFVVBXd3d3h5eeHWrVvIysoyeO2gQYNw5coVaLVavdlP5vSpqKhICuotLi7G119/jaCgIKN9t0e646xAluveKdd1dYJixRYry9PjFCtHB063wLQPI/Gq7SY8PBxJSUmYMGECJk6ciKeeegphYWEAgODgYOzcuRNyuRwVFRVYsWIFqqurERMTA6VSialTpyItLQ0AsG3bNuTl5UGpVEKhUEhv7IaIi4tDRkYG4uPjpX1r1qyBWq2GUqlESEgI1qxZA0AI0lWpVJDL5Vi7di0iIiIMluno6IiYmBhkZWVJAb7jxo1DWFgYxowZg4ULF0run5akpqYiJiYGkydPxpAhQ6T95vQpJycH48aNw/jx4zF37ly88cYb8PX1NfWV2x2WVKxYrvVhuW4f7Aq0Hh1NtyAjsrYR2jBBiiBM/9N0vP2rt21RPWNDrly5ArlcbutmMFbG0H2OjIy0SM4hWzM8ZDimvjoV++buk/axXPceutO9jowEftKfsWePbdtib7z8MrBhA3D4MPDoo+aPX5zHimEYpp2YE2PFMF2B6ArkGCvLY1VX4PHjxxEcHIyRI0ciNTW11fGSkhLMmDEDYWFhUCqV+Pjjj9ss01HGwesMw1gfa4xf3THGSo/GRuDrr9s/nYnpcYjB67ZyBfbEBLfmIroCLb5WYFNTE1auXImsrCwUFhbi3XffbTXN9dVXX0V8fDwuXLiAjIwM/OY3v2mzYrZYMQxjbaw1fnV7xermTUClAm7csHVLGCtj6xgrSya47W5YzWJ17tw5jBw5EiNGjECfPn2QkJAgZdIVkclkqKoSlKTKykr4+fm1WTGvFcgwjLWx1vjlAMstaWNxGhuBu3eFz+XlbLWyc2ypWH36adfX2ZVYTbEqKytDQECAtD106FCUlZXpnZOSkoJ//vOfGDp0KObMmaM3rVWX3bt3IzIyEpGRkbhXcY9dgQzDWBVrjV+V9yq7r8Xq5s3mz0RstbJjiITYKh+fro2xSkkR8q899JCwLSawtTe3YEMD4O5uo3QL7777LpKSknD9+nV8/PHHWLx4MbRabavzli1bhry8POTl5eE+3/vYFcgwjM3pyPjlM8CneypWorVKnOxNxFYrO0atBhwcAC+vrrVYpaQIoiWGLAoLv9ifYlVfbyXFyt/fH6WlpdL29evX4e/vr3fO3//+dymPyQMPPID6+nrcFU3RxiqWOUCj1aCxqbF9LWYYK3Ht2jWEhobauhmtEBe37S7liJSUlMDDwwObN2+2WJmWxmrjl0M3jbHStVb9xLWyMpbrdtAT5FqkthZwdRX+bOEKrLRzp5NosbJ48HpUVBSuXr2KoqIiNDY2IiMjA7GxsXrnDBs2DKdOnQIg5Peor6/HwIED26y8X99+bLViTDJ48GDIZLJWf4MHD7Z108xC0+5l0XsOv/vd7/CLX/zC1s0wibXGr86mW7CaXNfUtF4fhwgwYIHrDCzX3YPaWsDNTfizhWJVVQXoeNrtjoYGwMPDChYrJycn7NixA7NmzYJcLkd8fDxCQkKwdu1afPjhhwCALVu2YM+ePRg3bhwWLFiAt99+u9XaVIbw6uvFAeyMSW7dutWu/eaSlpaG0NBQhIaGYuvWrdJ+jUaDxMREyOVyxMXFofan0eqFF16AQqGAUqnEc889BwC4c+cO5s2bh6ioKERFReHzzz8HIMTsLF68GFOmTMHixYsxadIkFBQUSHWIb9g1NTVYunQpJkyYgLCwMCmouq6uDgkJCZDL5Zg7dy7qDARPHD9+HPPnz5e2T58+LWWpXrFiBSIjIxESEoJkI2m9PTw8pM+ZmZlISkoy2aeWHD58GMOHD0dISIjpL9rGWGv86uysQKvJ9fHjCE1KQugTT2BrejowfjygVELj6MhybUdyLVJX16xY2SKPVWUl0EPecTtEfX3HFCuQjYiIiKBxb46j/9z4j62awNiIwsJCs88FYPSvo+Tl5VFoaCipVCqqrq4mhUJB58+fp6KiIgJAOTk5RES0ZMkS2rRpE929e5dGjx5NWq2WiIgqKiqIiGjBggWUnZ1NRETFxcU0ZswYIiJKTk6m8PBwqq2tJSKitLQ0Wrt2LRER3bhxg0aPHk1ERC+++CLt27dPKnPUqFGkUqloy5YttGTJEiIiys/PJ0dHR8rNzdXrg1qtpoCAAFKpVEREtHz5cqms8vJyIiLSaDQUHR1N+fn5REQUHR0tlePu7i6VdfDgQXriiSdM9kmX6upqmjRpElVXV1NycjJt2rTJ4Pds6D5HREQYPLenERERQY7rHKlR0yjt61Zyffs2KYYPp/NffslybaJPupgr10Ttu9fW5NIlopAQosZGIkdHop9uZZcRG0ukVHZtnV1JeDjRz35G9Kc/Cdvmjl82y7wOAF4uXuwKZAy6RMQ/a1yXk5ODuXPnwt3dHR4eHnjssceQnZ0NAAgICJDWIVu0aBFycnLg5eUFFxcXPPnkk/jggw/g5uYGADh58iRWrVqF8ePHIzY2FlVVVVCpVACA2NhYuLq6AgDi4+ORmZkJADhw4ADi4uIAACdOnEBqairGjx+P6dOno76+HiUlJfjss8+waNEiAIBSqZQWt9XFyckJs2fPxtGjR6HRaHDs2DE8+uijUh3h4eEICwtDQUFBq7xNpjDVJ5GUlBT87//+r551oDfi6uxqMuWCTeXa3R2PzZiB7JwcACzX9irXoivQ2VmYldfVcxQqK5tTEtgjHXUFOlmnOebRr28/dgUyIBPLVZp6mJi6rqO0rE8mk8HJyQnnzp3DqVOnkJmZiR07duCTTz6BVqvF2bNn4eLi0qocd3d36bO/vz98fHxw6dIlvPfee9ICsESE999/H8HBwR1qa0JCAnbs2IEBAwYgMjISnp6eKCoqwubNm5Gbmwtvb28kJSWhXkwfbKSfusdN9Unkyy+/RGZmJp5//nncu3cPDg4OcHFxwapVqzrUj56Km7Mb6tR16Ne3n8HjNpVr3VmBBupjuW5NT5RrUbECmuOs+vTpuvorK5uzk9sjVpsVaE28+rLFiul6pk2bhsOHD6O2thY1NTU4dOgQpk2bBkCYEXTmzBkAQHp6OqZOnQqVSoXKykrMmTMHr7/+OvLz8wEAM2fO1Mt5dPHiRaN1Pv7449i4cSMqKyulN/VZs2Zh+/bt0oP0woULAIAHH3wQ6enpAIDLly/j0qVLBsuMjo7G+fPnsWfPHiQkJAAAqqqq4O7uDi8vL9y6dQtZWVkGrx00aBCuXLkCrVaLQ4cOSfvN6VN2djauXbuGa9eu4dlnn8VLL73UrR8+1sLN2a1bzQzUk2uVCodOn8a0Bx4AwHJtr3ItxlgBtomzqqqyf4uVVWYFWhOvvl6cJJQxyaBBg9q13xzCw8ORlJSECRMmYOLEiXjqqacQ9tPy8MHBwdi5cyfkcjkqKiqwYsUKVFdXIyYmBkqlElOnTkVaWhoAYNu2bcjLy4NSqYRCoZDe2A0RFxeHjIwMaVo/AKxZswZqtRpKpRIhISFYs2YNACFIV6VSQS6XY+3atYiIiDBYpqOjI2JiYpCVlSUF+I4bNw5hYWEYM2YMFi5cKLl/WpKamoqYmBhMnjwZQ4YMkfa3p0+9nc4oVlaX6xkz8NSjjyJs3DgALNf2KtdiugXANikX2BVoGBlZw59iBpGRkfh56s/h0ccDqx9cbYsmMDbiypUrkMvltm4GY2UM3efIyEiL5hyyFZGRkcAyYFfMLkT6RQLoZnJdXQ188w0QHAx4etq6NXZHd7nX77wD/PvfwL59QGgo8O67wNixXVM3EdC3L+DkZLt1Cq2Nlxfw7LPCzyktzfzxi4PXGYZhOkB3cwXq0SLGirFPbOkKrK8XxMueLVY9MsaqX99+7ApkGKZH0iMUKwsnBmW6F4aC17uKqirA21uYjWiP+WKJhBWi3Nx6mGLFweu9Fxt5oJkuojfcX1dn11aKVbfpNytWVqPb3GPYNsaqslJwlfXta58zAxsbhRmWffr0NMXKhYPXeyMuLi4oLy/vVgMUYzmICOXl5SanttsDYroFkW4l1+wKtArdTbZtabGqrAT69QNcXOzTHVhf3xxD1t5ZgTbPY8UWq97H0KFDcf36ddy5c8fWTWGshIuLC4YOHWrrZlgVNyd9V2C3kuuaGuDuXUGxun3b1q2xK7qTbNfVAT4+wueujrGqqmq2WNmjYtXQ0KxY9agEobxWYO/E2dkZw4cPt3UzGKZTtIyx6lZy/e67wMKFwBtvACtW2Lo1jJXQtVjZwhXYr599K1YuLkJW+x7lCuTgdYZheiqGYqy6DeKTwB6DXxgJ3RgrWwSv23OMla4rsEcpVpxugWGYnoqbs5vJtQJtihgUYo+mBEbC1jFWXl72G2PVGVegTRWrY98ew736e5Ctk8HpFSfI1skQtDUI+7/ab8tmMQzDtImhdAv7v9qPoK1BcFjnAN+NvvDd6AuHdQ7mj2s3bwLR0cAPP3SuceKTwB6feL2clJTmz12Rx0q3Pl1s5Qo01h5LI7oCe5Ri9WPdj1h+bLm03URNAIDiymIsO7qMlSuGYbo1LRWr/V/tx7Kjy1BcWQwCobyuHOV15SCQ+ePa+vVATo7wvzOwK9BuWbeu+XNXpFvQrU8XW7kCjbXH0uharHrMWoFlVWVG4xNq1bVYfYqXuWEYpvvi6qQfY7X61GqTMVdtjms3bwJ79wq5p/bu7ZzVii1WdklLi5S1XYGmsnXYIt1CexWcztAjY6wamxpNHi+pLOmiljAMw7SfljFW5oxZJs9Zv745oWdTU+esVhqNMJ2JFSu7ICVFyHAuKlEymfBXVGQdxUqsz8FBvz5dN1xXplsQ29Onj/H2WBrRYtWjZgX2cexj8vgwr2Fd1BKGYZj209IVaM6YZfQc0VrV+NMLZ2Nj56xWGg3g4cGuQDshJUWwHh0/LmxrtcJ2v37WibES67t5U9hubBS2dRWZrsy8Lrbn7Flhm6h1eyxNj4yx8u/nDzdnN4PH3JzdsOHhDV3cIoZhGPNpmW5hw8MbjI5pQBvjmq61SqQzViu1Wlg9li1WdoVokaqsbN62ZoyVWJ6hcququj54vSvFuUe6Age4DsDuX+5GoFcgAMBR5ghAeKPb/cvdSBybaKumMQzDtEnLJW0SxyZi9y93o49jH8ggg4+rD5wcnCCDDIFegabHtTNnmq1VIo2NwBdfdKxxosWKFSu7QrRIlZYK/60dYyXWZ8gSZot0C6IVqavq6pFL2iSOTdQbaPq91g/5y/PR36W/DVvFMAzTNobSLSSOTcQLJ19AzpIcBPYPxC/2/wL/b8L/w5xRc0wXduGC8P+//wXuvx/49FNg+vSON45dgXaJqDiVlgJjx7ZWrCydbsGUxcoW6RYaGprjvrqirh7nCjTEQPeBuFPTDdbZYhiGaQNDipVGq8Et1S34efoBEGJJ1U3teN0VFaHKTq5IodGwK9AOERWckhLhFjc1NQd0W8Ni1ZYrsKvTLdTXd11dPTZBaEsGug3EnVpWrBiG6f60TLcAADeqb+A+9/vg7OgMQFCs2poBrYeoCFV1ckUKVqzsktpaYTZcaalgnXJ1FbaBro2xamoS1vn29Ox6V6BW235FpyOIMVY9alagIdhixTBMT8HQkjallaUI8AqQtjusWFnCYsUxVnZHXR0QGCgoVrpuQKBrY6xUKkFvd3CwTfB6V9THFiuGYZguxpArsLSqFAH9OqFYiX6OzlqsxFmBHGNlV9TWAsHBzRarlopVV8VYiYHrQNe7AnX/WxP7ibFyY4sVwzA9AxcnFzRoGqCl5jQJpZUtFCsHtlgxlqO2Fhg9Woixammx6kpXoBhfBXS9K1D3vzXRTbfQY5a0MYSvmy/u1t61dTMYhmHaRCaTwcXJRS/lQklliV4SUJu6AjnGyu6oqxMsVmVlgjtOzGEFCEqAWm3Z+CNRoWppCRNnBIr12qNiZT+uQHd2BTLWR8zWq5u1t6tWTGfsi5ZxVqVV+jFWzo7OUGvb8bpryeB1Trdgd9TWAj4+QtB4SYm+xUpc8saS7kCxrO7mCuwqxcp+XIGsWDFWRlwdXXeV9K5aMZ2xL1rGWVkkxsrLiy1WjEHETOsBAcA33+grVoDlFStTrkBbWqy6QpHrzKxAmyYIbQnPCmSszYsvCv/79tX/zzAdoeWyNhaZFXjffZxugTGIGFclKla6rkDA8nFWtbWCxcaUxcpeY6zsxxXIFivGSoiro6emCtu6a92Kn7tixXTGvtBd1qZOXYfKhkrc536fdLzDilVnLVZqNbsC7RBxJmBAAPD114YtVpZWrHx9W1vBdIPXu9Jixa7ADsAWK8ZapKQIPw5xICJq/t/UJHwuKrL+iumMfaHrCrxedR1D+w2Fg6x5WO2QK9BSFitXVyGboijgTI9HtFgNG2bcFWhJxaquTlCsDFmsdF2BXZkNHei6dAu6swLFZ4Y5dCvFyt3ZHQRqlRuGYSzBt98Cgwe33i+uPZWV1bXtYXo+uopVy/gqwIYWK41GCA7pSnMCY3V0Y6yqqromxsrHp3e6AsUYKwcHwZOh1bZ9jUi3UqxkMhl83XzZasVYhQsXgLAwIDlZ2Bb/A8Bjj7FixbQf3WVtWsZXAYCzg3P71gpsaAAGDgSqq9v3itwSjUZ41e7Kpx5jdXRdgUDXxFj5+Bh2BfaWdAtA+wPYu5ViBXCcFWM9Ll4UFCtD6RZ27wb+7//4GcS0D910CxaxWNXXC09OFxdhMbaOIipWXemnYayObvA60HUxVt0p3UJXhQ6KMVZA++Osup9ixXFWjJW4cAEYP97wMR8fQKEAcnK6tk1Mz0bPFVhpRLHSttMV6OIimAM64w7UVaz4bcFuEF2Bfn7Neat06aoYK1sFrzc0CPV2pSsQsJJidfz4cQQHB2PkyJFIFadVteDAgQNQKBQICQnBwoULzW9BC9hixVgDomZXoDF+8QvBHcjB65alpGQjKio+tVn91hq/9n+1HwcLD+LJD5+E70Zf7L24Fys/XomgrUHY/9V+ADoWq5s3geho4IcfTBcq+h+8vPQD2M29XkStZsWqB2PIqk4kPOxdXQXXlJ8f8GmLn5WbG/Dee5apDzAdY5WRIXxuy9tsaDwVxwTdsUF3u6Rko8GyGhqEd47OiLS547v4Uywp2QhHR7VlFaumpiasXLkSWVlZKCwsxLvvvovCwkK9c65evYrXXnsNn3/+OQoKCrB161bzW9CCgW4DeVkbxuKUlQGOjsCQIcbPERUrThZqWTw9o1BYGI8ff/yky+u21vj1Y92PWHZ0GVSNKgBAeV051Fo1CITiymIsO7oM+7/a36xYrV8vmEPXrzddsDiat7RYmXu9iG6MFbsCexyGkhjrBlMDgjuwZVyoqytw9Khl6gNMx1jt2SN8bssVaGg8FccEmcwJhYXxKC1N09v29IwyWJaYP7czipW547toPBbaUoE7dz43u442Fatz585h5MiRGDFiBPr06YOEhAQcOXJE75w9e/Zg5cqV8Pb2BgDcd999hooyC3YFMtZAdAPKZMbPiYgAfvyx69rUW/D2ngGF4gC++moWGhpudGnd1hq/yqrKTM5erlXXYvWp1ejj2Afud6uAt94SphXt3Wva6lRfL4zmutnXb94E/vpX864X4VmBPRa5XPjv1CJ9d8tFlw2FNbR0DZrD448brg8wnW5BxJSI/fa3hvd7e8+AXP4evv/+D1Cr7+L773+PPn2GoKTkNSgUB+DtPcPgdaIrsKPvCr/8pfnnioqst/cMuLh44fLlpWaPX20qVmVlZQgIaI4bGDp0KMrKyvTO+fbbb/Htt99iypQpmDRpEo4fP26wrN27dyMyMhKRkZG4c8ew8uTr5suuQMbitOUGTEkRLFriM4uThVoWb+8ZcHLyRmPjzS6t11rjlzkB6SWVJXB2dMb8979pziXV1GTa6mTIFbhuXfNc77auF+EYqx6HmMT466+FbVFkxNPeTBUAACAASURBVLHo1VcFi5R43q5d+sdlMmDjRv19psYvsZwDBwzXl5LSOnhdvEZ8fMtkwvHqasNlb9tmvD1eXpMACG+6Li4jUVPzFfz8VhhVqoCOuwLF9nz0kfH2GKpLjLHq06cv3NwmmD1+WSR4XaPR4OrVqzh9+jTeffddPP3007h3716r85YtW4a8vDzk5eVh4MCBBsviGCvGGrz7btuKFZEQmgIAhw8L6RgsrVgZi2WwdyoqPoVaXY4+fUz4Ym1ER8avPo592ix3mNcweJRXY2Z2WXPka2OjaatTS1fgzZvA2283H2/r+uZOsSuwh5GSAly9CgQGCtvZ2cJ/IuFv+XLBIiWOVbpJjsW/7dv197WlWGm1zVYuUY/XvbZljFVKiiBOffo0n2soeabYxpkzjbenvDwLgBaDBi1Gff33cHEZjhs33jQZj9lRV6DYFxFzvh/dWYEODrW4dy/f7PGrTcXK398fpaWl0vb169fh7++vd87QoUMRGxsLZ2dnDB8+HKNHj8bVq1fNakBL2BXIWIOvvzY+I1AX0Rz++99bJ9bKWCyDPVNR8SkKC+Ph5OSNvn39urRua41f/v384eZs3O/i5uyGDQ9vwIgd6ZBpWzx1TFmddF2BVVXCeS0zE5pjtWKLVY+ktFTIqg4054kSEXNYmaLlNW1RUSF4jAFhaUmg+R2gqUnQ47299WOsdLOuA4KYERmeNWdMp6+o+BTffvs0nJx88OOPWRg0aBEaGsowbNiLKCyMN6pcdcYVeP26+ecSCX3v00doa1NTGby8Yswev9pUrKKionD16lUUFRWhsbERGRkZiI2N1TvnV7/6FU6fPg0AuHv3Lr799luMGDHC/F7owBYrxtKIcVOjRpl3fnIyMGaM5duRni78f+UVy5fdnamuzoVCcQBAJxJedhBrjV8DXAdg9y93I9ArEDLI4OPqAx9XH8ggQ6BXIHb/cjcSxybC60Ih+jS16HdjI/DFF4YLbmmxOnOm2YxqzvUiPCuwR1JaKgSlJycLCoSuAtMyxgrQT3IMCNeMHt2x+hwcBHER3XriDER3d31rj5hqQbduY2LW0ABMnNh6f3V1LoYP3wAHh75QKA5g4MA4eHpGgEgDheIAqqtzDba3M7MCxfer2bPbPrexUfj5ODgIbXVzGwIHB/+2L/yJNhUrJycn7NixA7NmzYJcLkd8fDxCQkKwdu1afPjhhwCAWbNmwcfHBwqFAjNmzMCmTZvg4+NjdiN0GejOswIZyyD61UVRdHQ0L+5g3Trg2DFh2xKxVmI7EhOFbXFA6i1xXMOGPQ9v7xnQai241oaZWHP8ShybiGvPXoM2WYu7z9/F3efvQpusxbVnryFxrHCzr558D+PfHAekpQkX1dU15/4wRMsYqwsXgE2bgOHDgdjYZh+GsetFxOB1dgX2KERFJyWlOU+UiJjDSpeWY4eXl+Flu8ypDwAGDWoOTBfr69tXUDTEGCwxOahu3cZSLjQ0NAfj6zJs2PNwdR0FN7cx8PaeAQeHvnB09JTGimHDnjfYXksoVpMnt32ubnzVsGHPo29fD2g05q9pY2AeQGvmzJmDOXPm6O17Ree1WyaTIS0tDWni4NEJPr76Me7V34PDOgcM8xqGDQ9vkAYphmkPKSnCIPDOO4LVypwVQlJShL+iImDEiPavKiJe33LfhAlAaqoQN1FSIpj7O7NiSU+DiKDV2uYB35XjV0ukdAviK39lZXPghiEMpVsoKRGeBi3SRJiEXYE9ktJSYOxY4bOnJ6BSCZ5gBwfzXYHtWb9bVKx0r9dVrNzchJc/V1dBP3d3b+0KBIynXKivN57ntqmpEk5OQkEyWV+zxofOpFsoLRXaaU7eXd34KkBMEGq+YtWtMq/v/2o/fv3RrwGgVT4YhukIW7cCq1a1/zpxsGnvgqbGYqeysoQ8WUBzLq2WHh57RqttgEzmbOtmdDnODs5Qa9XNilVbTz1D6RZKSwXFSidWrE1YseqR6MZYOToKio1KSJVm0BXYEl2xMYeSEn3FSncyqm59uhnddbOui5hyBRoTeY2mCk5OQkEODn2h1ZqW06YmQcns6JI2JSWC9cwcxVM36zogrhVo/ptwt1KsVp9a3So3jJgPhmHay5kzwv/nn28di9AWTk6CC/G//7VMW0TFKjlZKNvTU0ha2lvQauvh4ODa9ol2hkGLlSkMpVsoLQXCw4XgF3PXK2HFqkfSUtExZEEyRXtXQtJV5Fper2sh01WsDFmsTLkCjbVHo6mEo6NQkIODC4hMy6n40+ioSJeWAqGh5lusdBUrJydAre6hilVJZUm79jOMIcSYJtGX7uEhWJLaG8s0aRLw3Xfm1ycmH20ZO3X1qjAojRvXvG/s2PYZIHo6Wm0dHB17sWIlmj7bel025AosLRXm4A8dav7UJjF4nWOsehQtXXO6FihDMVYtEfVxc8MMDNWna7ES63N11VesDFmsjLkCjYm84ArUtViZllPRmNvWEjrGKC0FQkLMs1gZcgWq1T3UFTjMa1i79jOMIcQcKiEhwrY5OUsMMWqUoBSZW59CIWx/841+fVlZwkwU3azvAQG9T7FycDARW2SntNti1TLdQn09cO+eEFXcHqFhi1WPo7paCBIfMKB5n66iY06MVZ8+wm03N4ShLUVO12Kl+27QHlegcYtV+1yBuharjrwrdNZiZfFFmLuKDQ9vaJUbRswH0y1o70KojE3prOIycqRpi5WuolZSAty+LXz+wx/0j2/b1hxfJWKvipUx5VVQrHqxxUp8/TfXFSharK5fF1bbdXBov2LFS9r0KES3nO4LWHtdgeI15lhltFohHGHoUMPXGouxaq8r0HiMlb4rsD2KVXtFurJSiNEKDDRPsWoZY9WjXYGJYxOx+5e7JQuVn6eflA+mW9DehVAZm1FVJfyQ1q7teBltWax0A9WzsoBZs4DVq4HLl4GTJ4XjdXXA998DP/+5/rX2qlgZCt4XMjxzjBWGDDHfFSiaDnRNCuYKDZEg/I6O7ArsQbS0HgHGXXOmMDeA/dYt4Vxdl5futcZirMy1WDU1NScZNTRRp6mp2WIlzAo0rS11xhUoKq2636cpDM8K7KGKFSAoV8XPFiNpfBJenPpi91Gqbt4UlpJoz0KojM0QB6nOZDg3ZbHKydHfFoPTX31VSDu0cqWwX5yR2L+//vkBAYKVy54oKDC8f906oKmpd1qsnB2doW5Sg+rqBMXK1BNPoxHMFU5OwpOssVGYPSFGF5srNKJSJZOxxaoH0TJwHei4xcocxapl4Lqh+ozFWJmTbkFUToy1R99i1XaMVWcsVuLzwNzvpqUrsEfPCtTlFyN/gazvsmzdjGbWr29Wu81dCJWxGYbe/trLsGHCW53ugCEGqk+bJmyLgeqixSolBZg3D/j2W+H4W2/pnye6yoYNsx+LlfidhIYK24YSn/bWGCsHmQMcZA5AbY2QudHU67Ku/0EmE54CBQXtt1iJ8VUAK1Y9CGMWK0MWJFOYa5Uxx0JmKMbKWPB6SzEzNMFVF41GN3i9fbMC22uEFfvq6QnU/H/23jxOjrrO/39W38dM99yZmWQmISSEBAJEiAvLoUFdQVdBV6NudlXc75fVH+4KfF1YOSQhsmA8CB6roCsqG4/segAqoGKAgCBXAkkGQkKSmU4yOWamp3tmuru6u6p+f3z6013VXX1NJuTinUceM13T9alPXZ961ev9+rzeE6VVoorDLhV4XACr0dQoD217CMcKB7NWz5qcl5XURL300qFpoyRbJa1nay2E+mYcsbB7+6s3XC6YNctqubB8uZC9SIHp734HH/+4qEPY1mZfIFX+NAva7Z6Rx6oDu9zn884Tn1MpYSuxYkVBL9La+i4WLfoje/cesW4esfA4PRgTOWBV6XW5+DU5HBZ5ZXkh14rG5YxAeDMVeAxFPUCnUtSaCqwG5OrxsbJLz9lNcDWHNRXowjA0DEMr218Jdg6FsZLeYLJsT7mwF68r5VcoiqMSWK3ZtIZrHrkGI/dv0kahUhO1bNmhaaMmWwj1zThiYUdzTybmzCnVWT38cEEzde21wtm9WJxeLdrbhfGf2ZboWC7MrGmwaZP4/cknC2BLHqf9+9eyefNSut/YGsxHRXicHpEKrAVYmYUdbzJWJ1TUk5qrFLWK1+2AlXndenys7FgkCYQqMVYyFagoStWZgfL2mKzGSu5rLcDT3m6h9u0dlcBqSoxCzZqoLVsOTRv19NOCpTJHLYVQ34wjFlORCgQhYC/WWUk91Re/WBgI7YCVNCW1MydVFDEb53hJB27fDh0dghh+KJfBP3AAHn1U/H6izgoEAaxIJOpLBYJ4Auzda30iGEb1p4KcEQhvAqtjKKoxVvWkAmthrOxY/XK+WX5//XYL1TRWZsYKqgvYDyUVKMuIQW2pUvtUYO3bOyqB1ZQYhS5fXnr0J8sybdgggFkgICiMZ5+trRDqm3HEYqqAVTFjlckIsLBpE9x6K/z+92L5ueeW6ork7+VSfD09cNttlc1Fj5XYsEGkQ7/85QKw+t//FU4BM2eeuOJ1EMBKqUW8bpcKhMITQVFqE7C/yVgdc2EY5Rmkw2W3UAtDdih2C8UTXM1hGBqalsDpDOaXVbNcmArxevE+VtuWjOMCWB2yUejgYEE1bI5D0UYNDgoL79NOO35ohuM4Dhdj9fTTojjzV79aqqWq14S0txeWLBHr3XGHWPbKK5MzMz3SsXEjLFoE55wjmKqBAfj5z4X+bNq0E1e8DjlglUhWt1soHs1DIfFEa24uLKslHWgGVm9qrI6JGB4Wp76hwbq8nOapUhyqxqqSj5WuCwlDY6N1vXpTgdlsHKezEUUpQJBqMwOl3YLLJcbIWoGOYQhdrJn4rcX1xJwKFLMCa9seHKXAys4oVEGhP9ZfXcg+OChencsdhcmyVtu2CfrieJwnf5xFube/yYRkrCTQueGG+vVU5cL8jJQsz0NH0UTYemLDBgGsnE74m7+B//ovQexedplIIeh66oQsaQPgwyXGnba2/BNvzaY1zFo9C8cKB22r2mhb1cZ531rExtFXC+ObfILs319orK0Nrr6aX6z7Np/5STNvuUuxjInR6DoGhr+dB1aP7H6MDf3P5CcB/eJP3yqd0FOr8fERMEiulQG+5pqniEbXWZZdf/1OBgZW1b2dSstqbafSugMDq7j++p2WZVu2PIfLNVHy3anysSo+jpmMOI2yILwMyeYYhrhvi+0WxschGBT3uTnKpQIVJYLH02/pTzS6jkhklSUNCAJYFc8MNPdbvndUcxEpvhaGhgA0hoZWWfbRLuT2VBX+8pfC8uOCsZJGoTPDM/PLDAQ1UFXIvnJlwQLbLiarjdq+XdAXx9M8+eM0hobEQBAMVv9utZCWC1JY/tRTpcCq3gLPMiSwisfhhRfgAx84NoGVzIqfdZb4fOmlgoFLpYR/lwBWJ24qsFF3oft9+Sfemk1ruPLBK+mP9WNgMJwcZjg5jEeDOOnC+Pbyy+LgmV8EX3sNY9s2hr7wOZ45OMoX50OzIsbE/3nxRvr6ltLoXAAuF2s2reHWp78Majo/CWj4C1djrF9vndBTq/HxETBINk/okL/bTfJYvfp8+vqW5h+o0eg6Vq06icbGxXVvp9KyWtuptG5j42JWrTrJ0tdnnrmLoaHSAatcUeRKYZcKLD6Oe/cK9kkSmzK8XgGaUil7uwW7NKBczw5YBQJBUqn7OHCgP7+vfX1L8flOxuWyNmSXCjT320zoVgJWxdfCli3PkUo589dCJUZPbi+VsnoVHhezAkGAq11X77KAKxllhezmFKDPJz7LHM0HPwhr105eG2VmrN4EVkd1TNWMQBA31MzcJXjddeLnX/2V9TuTTdtJ8vOPfxQFo3/4Q5FqnCh9cT2qY3BQ/JQz/t797sIMGr9fDFInMrAKaTlglTPRuekPN5RMzgHwZkF1ifFt9S+vF1YLUJAvDA7CSy+hAP/4gsZgBFa8AssXwL/NSeAduYMFC9bS7DwHXC5ufPRGoqTw5d60O8fgk89rKIZRmNBz991wzz3VJ/cMDgoa8g00SH79dfHzhhvEf/l7ccgH7IIFa9my5YO89tpn2bJlKQDNzUuqbueBB0qXPfZY/f398Y/L99Ecr74q+tTXt5TNmz9IX99SHA77EhFTkQqUnnrm41jpZVCub5cKtPOwAvuMcyoFwWALJ5+8lP7+P+X3dcGCtQQCp+J0ljJWZmBVzI/IVKDcnh2wkjOTFyxYy+bNl7Fjx008/fQ3gcK1UC4VKOen3XCDGJPNcdwAKxl1CdlXrizwdbpufbOqVvitWmzbJhirN4HVUR9TlQaUxpdyYPrKV8RPt3tqBObyUpKzDEMhoVFat676ukdTSLZKHpOOjoL2rLdX6BtWr15ywmqsGrNONL9X1PsLBoketB/TvBqkcgzCFb/ZU5jRIOULK1fmD6zDgJsfh42j8NQQvL0Dfr1HFw+P3KzAgdgAqksANoBbHgN3sTGirDti3o5dmMfWw2w1I++7OXPE59tvF//l71CY5KEohYdtS8sSLrwwyrx53+LCCw9avlcu1acoIl1d3OaSJVRdv7idT3zCvo/m9KCiiJcogAsuOMjChb/kggsOct11p9iuU652X6WQ68jtzZtX6Jfs249+VH7/5Pp2wCoer4+x8nqhq+sUNG0hQ0O/oqvr0zQ3L0HTYiWMlZgVmMr3e9o0ax9/+9vyjJVc54wzxOeWliVcdFGck0/+Ejfc8GNLOy+8YAWecl3Z9u23wzPPWLf95z9DNls7XDrqgVVFIbs551/NxLNa4bdqsX37m4zVUR5ycJhKYFWL2edkQ2aVf/7zQnrx0ksF0DoaxOt2+ha7v3/ta0JfJZeZj9nYmBiUr7rqFycsY9WgOdG8HvEhHGa+Z7rt93xZUJ2CWfrURqVA+6XTgom/9948uPFpcMVGWOKBi9pBM+AD0x0i/ZETr/eGe1GdArB1jsEnN0LFd+5yk3vM1jWVvjdFIa+hL31JfDZfTzLZIJcZBqxfL5aNjKzjscd8bNhwMQ8+eCog2N9y96rczvz5pW1efLF1WTVgZRgF0+AXXrBfV37vox8Vn9evb2XdOoX169u5+up+23X8fvFIU1Wr5qlSSMZJbu/Tn7b2R/5ebv/k+sUaK5kKtGOsKtktOJ0vMzQ0DMDevd8hGl1ncV2XIRkr2e//+i9rHy+80AqsiitiGAZ8+MPi8/79/8O6dQp9fR/n7//+m5Z2Lr/cyljJdX/zG/vjJK+H44qxshOyB9wBbnvHbdacfzUTz0NhrAyjAKy6uwVHWY9b2JvxhoTMj08VsDrcEQ6Lt6GxMThFvLDmgdXRYBZqp2+x+/u6dQVgVRxyQNa0E1e83ph1ovlywCoU4sYzP1sypkEhFbhivRO3UqQOTqdLvPTGzoAbFsJ9/eBUIN10ldCWqM+Ay8Vt77gNh9+PLyvYLUctFTns2KgjZJBsp4Oxe6jL7/X1LaWxcTHh8PnMnCkkIYOD66tuR/ozVdt2pTCMwsParo/miMcFmzZ7thBTz5v3X+ze/YjtdxVFtDc0JAjPYk2UXRSnAuvlASqlAu08rKC83QIMMjx8M5p2JgCzZ99OX99S4vHnbFKB1rI2xefA7C1VTmMl9/W1164EoLn5naRSIi0sNVflxOuVjpPbDZp2HAGrYiF7i6+Fe953D8vaLrYWRX7iicomnofCWA0OCiV0OCyu7GnTOCFrcxzFYZgeGlNRzqY4Kpl9HkrIfsqsz+mnl17GRzJSKfsBTB5v+dYohevmuOUWIYR1uUBVMycsYxXMKmR9Bcbqb6ddyD3vu4eQV6RCWv2tNLgb8GrgCgT5UGwGzkzRFCRdLwE36ikQvhNUpR2Ad53yDyxYsJax7BZwuVi2cBlfed838Gpw3m7wVKmPBthP7jlCBsmxGLznPYXPt9wiHopmRwr5PTCYP38tTmcQTUvgdot828GDm6tuJ5GASy4pbfPcc2vvayIhHr6yj74KWe+xsXEWL44RCIgcXSh0NoHA3/KOd9i/+IdC4hFUSxpQft/MyEQicOWVhc/VxrJKqcBK4nU7jZXDsZ8zzriJREKs5PF0smDBWpLJrTbidavdQixm3WezBUI5jVUkAj5fhunTP5dbJ8L+/dP42McGGRt7DigvXo9E4O1vL3w2H5/jTmMFBSH7Tz74E87vPZ9lC5eVFkV+29vEtKof/9jK6UruWJrzjY/X3wGpr5LxZjrwqAmZH3fkrmRFgZ/9rFR8OBXbMf+civYUBfr6xGeZy3c4YM8e67I3Mi0o+yWBnt9fGMzMGhR5vGWqYP788gapPh8kk9oJq7EKZhQyJmBFPM6yhct4z9z3cN8H7mPouiHu++B9vLV1IR95y8dpeXWXdQwz/49GIRwmk00z81R47o5vc8/f/icAqdQAzc1L6NWX5qmNj7zl4/g0hWtuf5sQj/zbv5W2+a//CqtXl46ZMjZsKOTMrryy/PemOOJxMXlRxvLl4qGezVpfpASIUAgGl6DrCXQ9kTezbG7+TNXtJBJw/vml2z7ttPr6Gg6LPobDpX00h66fxOLFYTRNoB9NS6Bp3Xzyk3Nsvx8Oi6xrrcCqoUHsk1TFDAwII2IZ1cYycyqwVvF6uVRgW9tZ9PQsJhZz5JaJa7ShYVHZVKCMeNz6LlE8K7AYyGUyIpmk624ymRYcDj+p1AADA/Af/9FFb+91+f2zE68PDBR0csXHR5S0OY40Vub4m5P/hsf7H0eN7LLXU/3xj2JKkl04HHDyyZNLB8o0oIw3gdVRE8uXi0HMk3tuZTJCu/RF+0k2R03Y6bfk/2JtyRsNrMzbNAxBWIBIWRoG/OEPwiRV/r1aX4UHjnHCMlYBzUHGk8vhmPIQkViEnpCgLMPeMNnkRCkdUxyNjTA2Rjw5CogZhDJ9oqq5MclsEOp249IMxpKj5XPktTpKyvzQGxR2D3G3Wxwi88xZ86w5AVIKwKpadw2jABiKt11POtDcV49HHH67FKPsUyIhauUBeSBYDjiFQgJY1aKvAvGoa2gQ9+v4uAAkra2174uZsSrWWE1GvB4KwdiYSG2nUuIaNdcJLPTbarcQiwnwJMnSaqnAvXvFxJmeHti1a5zGxreSSOxh3z6YbpI1VkoFlst0uFygaccpsHr49YdJZVP81wdPQs0UwdV0Ws7rLt+AXeG3WmLDBnj88YJY8xgHVkeDMHoqY2CgMIPknnvELLTp9vrgYyKqWUUMDKwqMUOMRtfVbIZoF8XXxMaNhd9lSmTVKgFYr7lGOM/XGmJQPnGBVTADGV8O6JhelyPxCD1hMZKHvCH0VLJyDglEbjUQYGxYeFwkM8l8+sQCrGStQEUh7XaSmoiVf3LUUuMDRL/LoYXDEOXSTsWpLnMtPV1PouvJfDerdTeTEY8Mc3uqKv7XUhbG3AdzXyuVlUkmxX8JrDQtWVGYHg7XlwqU68Ryp3zGjAIDXeu6o6NW8fpk7RbMwMowCteomBVobUjOCpQhj5/8WS0VKG12enqgvz9DOHw+e/akaGsr3A5y/+zOzQkJrKSpXlpLc95uMdPFEpom7pJKgsriwm+1xu9+J57esu3e3mPaff1oEEZPZUjv1iuvhC98QQyU1V78j6Yo1jr09FQGV42Ni0vMEKVwd7JRfE1s2ACf/Wzh89VXw7e/LW6BtjYxs6ZW3Zl82z1RxeuBDKS9VsZK0zUGxwaZ3ijeAMK+sABWtVy4oRATOWCVyCTQdRWXq8mesQIyboXUeAVgVUuND00T9McbyFiVE0oXE2xmxkrX62OszPXvzNstXlYtigFHJRJQMlYyFViNsao3FSjXiccnN5EnHBYpNY+n4LBeTbxeibFyu8Hj0clkpuev0Ww2XjUVKI+f/FnNIFTua08P7N7tIBw+n0hEqVhoWoauCwnGjBn2x8TlMo4vuwUZNz56Y95U7y2fhtbrYNQLs77eCz/9aeGLlaYBT4axGhyEXbsEZyzbPoYZq6nWHh0NIb1b7767MN32WIpitqinp6Bhsovm5iU5M8QP8corn8ib7tVihmgXW7daP4+MiNpld91VWHbnnfAv/1L4vdifp1IIk1DjhNVYBTKQ9pgYq1iMfeP7aA204nWJJ0XIG7LmOipFOExiyAqs/P65+TRLMbBKuxyoiTjGoTBWY2Pi5xucCizHWJUDVppm1VhNBljJ3+thrIr7WumQFqcCJRCcqlSgefuTAVZye+b+yJej0dH6UoGSYWpszKDrZ5iAlX0q0G5WYDlgVcyQmYHVnj0+gsEz2L+/ixkzrDP47c7NwYMifVruHDidOprmtv+jTRwzwKrYEHTOCGxrhYF4RMwIlANJpWnAk2GsbrqpICSRbR+DwEqKkt/1LvH5SAijD1ds3w47doj9kd4nx/L+zZgh9AJaMStriqamt+Nyhdm//8d0d39mUqBKXhOnCsuf/DG75ho488wCuJPfk6zWokX1HVuRJlBO2FSgL22Q9uRe/XNUQiRe0FeB0FihpjGkWLBShMOoI2LKfgFYzSnLWKXdDkITmhAmtbfbtlcVRZjRyxsUlRgru1SgZKx0PZnvZrVUoPx7cXvt7fUxVsV9rXRISxmrZFXGarKpwIGB+qtQyO2ZgZzDIRisAwfqTwUCNDaqZDLzUdU9GIZmmwq0E6+3txeOYzXndTkbfPr0LPv2teD1djEycjrd3dYT6fORS0ta1610nFwuDV2v4d6U+1LzN49wFBuFzh2G7S1wNt0W47yK5nVz58Krr9ZeSHRwEO67r/BZtu31Qn9/aTHTozDMrILZIeJICKMPV2zbBlddZS8GPxb3z+sVNfbMtXfBqq3q77+dVGoXTmeISOTrJZqrSmG+Ji6/HM4+W3weGRHH7MwzrfYJ5YT2tR5b8bbrOHGBVUYn5ckNtbnX5YHYQF5fBeB1efFpkJEArFKEQqjRgygoJLNCY+XznUQmcxBdTwtJNI9QhwAAIABJREFUhIWxUjg5Ctr0LnuxTS3i9VhMrPsGaax0XZBkduyIXSpQUcQECU1LommJfDdrYawUpbS9np76U4HmvpY7pLK4cUFjpaDriYoaKzsGqVpIjddUMVYgPu/bV794HaChIU0y2Y7L1Uw6vZ9sNm7DWJXaLZjPQ62pwK6uIYaGTkZRnAwNzWXatIOW7ylKKWtV7Tg5nVk07TgEVsVGoXNGoL/NxZq+U2s3r+vuFk+PWguJrlxZShtoGnznO4ITffJJazHTozDM2pmHH4aFC49cXw5XFE/aPB7Crta31FYNDKxi164v0tGxDE2LM2vWCovmqlrIa2JiAn79a/imMCbmD38QPzdsKG/4OZk44YFV2iBVzFjFrIwVQKPuIVmLi2c4jBYdpiPYkZ8V6HQG8Ximoap7reJ1IO0SL6Lprg779mpJBcbjYsrVG8RYjY+L68ZpgzPtxOsdHTAxkQW0ulOBHR2l7XV3S2Pb2vpbrLEqd0hVtTATMZuN4XZ3VE0FHqp4fTIaK7vtBQJieb3O6wChUIqJiRBebw+qGrF1XhfidStj1dNjFa/Xkgrs6NjNgQPC9/LgwV46OvbY7mOx11dlYKUdn8Cq2Cj0tJibi975T5zy2nDt5nX79xeM9mopyfDnP5eCtnRapB4NQ/xNFjN9gwqT1hPFPioPPSQsa1yu+p2Fj9bQNNi5UzhpyJhqE88jEXbZZqmt2rnzJtzuaUSjD+Nw+Onq+pQwhswZ4FUKeU2Mjxfqhp13XsHxHcSMwHLAajLH1u83UFXHCaux8mV0VHeOKco98YpTgQANhouEI2vTQlGEQmRHo3Q2dOZTgQ6HN//QKk4Fqk6FuSOQ6Cwz577WVGBn5xsGrMqlAcGesershPFx8RyoV7ze2VnaXlOTcLaoVWdVayrQ3C9Ni+PxdNYkXk+l6tNYHap43W57sqB6rc7r5lRgMJhkYqIRn6+HVCqCpsVtDEILdgvZrAC23d2Fc1PNbkHOCmxv38H+/Z0YBuzf30l7+w7bfayfsToONVZQMAr99nu+zTmJJv56yccL5nXF/+3M68ysUi0lGe69V1AhxW1fdFEppf4GlHioNexMMxUFHnwQ3vtekfp5+eUj2sUpi0hE5OHNg8CxmP4rjnIyvqamt6MoHjKZvXR3fwaf7yRUNSKMIXMGeHZRfE00NhZMAxVFgKr/+R8x4G/fXt4ccTLH1uvVSacDOBw11OM4DsOraiQ9ufEiR2VE4pESeUPAcDHhqIEiCYcxYmZglUJRvHi9vbbAKuWG+aNuxjqa7NurlbF6A4FVOeE62IvXRdfSKIonb7fg8dSmsZo2TbxoyHdoue1KlgnV+lsuFWjuVzYbw+PpRNOSFs8ou/2F+lOBhyJet9ue/Fyr87qZYWpsTDA+3oDX20MyuQ1w4HBYJ2qYU4HxuBijzAC1kt1CMilSx+3t4PHsQFEcxGIwONhCa+srtvtYD7ByuY5jYCVjbstcWvdErW7o1UIWEpWv7LUUEn3ooUJ13OJ27Jiso4S1Wr5ckHPyIkwkRKHSU08VBvRnnXXYTZPfsCg2xT9eohywOnBgLbqeYObMm9m79zs4ncGCaLlCLF8uKrZ3d4vPdpqp7m5Ys0bULZxKuwqfTyOdLvOUPAHCm9YKGitzKjBsHcmDmpOJWhircBglPkZnQ2dOY6XicPjw+coxVjB3xCDa0WjfXrFVt11I9PIGaayqMVbyYStr9HV2ilSg292WZ6za2mpjrORsMFmUQ267Vt9Uu/6WA2XmfmWzgrFS1RSKYvVaKt5fqD8VuHOnaLMcQK20rt32AgHRnp3VWrVUYENDgomJBrzeXiYmNpWkAUEAKzkr0O4cVNJYRSLCu9DhgHQ6Qnf3BNu3QzzupaFhk+0+ms9PNfG605lF149zYHWK0iYGgba22leqt5Do4CB8+cvwV39VvZ1a2nuD45FHCpjwa18T/k7y86JFVgPIYzmOR30V2FulRaPreO21K2lsPIeTTrqVBQvWMjGxiZGR8h4akmG65RbhRWUubVEcl1wiTEDrMROsJXy+LJnMiQusPGqWhByTzeL1olSgX3cwptRQKDIUwhEfo6uhqyQVmEoN2AArg65olqHWMpSIw5F3dC8bsZigA3T9DSlAX86IEqwP21RKXK8tLQJYuVzNGEaaiQmd1tbagFUgYG1TbrseYFUrY5VIiL6mUpDJxPF6u5iYyFYETZNlrDZvnlzN1IYGcUztgFUoZD8+uFzi0sia3gvMQCgYnGB8PIjP18PExOaSNCBYU4F256A4FWhmyMyMk6oOMGNGhmeega6uLJlMqedk/eJ17fhnrGbsT7KtBZLZVPUvy6i3kOhNNwlI+8QT1duppb03OCTZ9q//KnyHnnyyUGh00aI3GaujPewYq7Gx52hr+wDNze8EhOaqvf2jTEy8VLYdKVS/9VZxeX7841adlPn3Sy8VQPWl8s1NKny+DOl0w9Q2egyFO60VgFU4jBGPM5IcobOh0/I9v6YwptQAWsJh3OMJuhq78uJ1i8aqaFZg0mXgMOBAcwUaslo6UFIIgcAbwlpVSwWaXblltxKJLE5nAIfDTyKh0dpaWypQAitzm5NJBdYiXk8kIBgEr9cgkVDxeLqYmNAqgibZbr0aq61bJwesJM6201iVA7uKUpqeMwOhhoZxxsb8eL09JBJbcTrtGStzKrD4HFRKBZqBUSoVobfXyVNPQU+PE1XdjVEkODaf72xW2EhINt8unM4s2exxKF43h3PHTvZ1NrAjWipKKxtSizUwIPJhlbRYZpuF++6zpvfsNF3Dw+JKTCaPCsSiafD734sH5V13FSqbn3ee+Hn66eKmK4cPj6U4XhkrO2DV23sdmhajoaGgLG9qehter71d8G9+I35ee634uXq1GDTtCiWDqOxeraLKZMLjSZPJnLjAyqNmSbhyA3vORGeWvwunwzrlzZtViFHDy2I4jHs8adFYiVSgSWNlyiulnGLbe5oqDPfVBOwS6YjCj9X7eIhRq3jd2i0dhyOA0xkgkdBrTgX6/VYgNBnGqlbxugRygQCoagCXq4lEQq8ImiabCkynJwes5Pp2jFW5cwKl6TkrYzXGxEQAr7cHw0jbpgLNswLtzkG1VGCBsYowc6afp56C3l4nDoePTGa4ZP9ku3v3CjK2XCoWwOnMoGm1a0SPSWDFtm2M9XayfWQSdf+mTxdWCTKhbhdmm4Va0nstLcLHoJjdOkLx3HMCO37/++JN4o47xHKPR3xetQpOOgn6+o5sP6cijlfGqqsLhoZKwe/Y2AYaGgomU2KWjZXqlkL1971PfL7zTvFTzrmwE6AvXy4GTkmvT6XBqs+XJp0OHnpDx2i4Uxkm3IU35kyDn3nuzpLvebMGMaMGYBUK4Z1QhcYqkyxKBZZqrJIOnVTAw0F3hTepY4yxKgZBgQBMTOg5xqo+YGWXCjxc4nW5vUBAJ5udlutrZcaqMSeNqzcVCJMHVqFQ+VRgubADVvJFLRiMMzbmw+PpAhxlUoFWYGXHWFVKBfb2Fpz3Z84M5MFWnskt2j95fmoR+AuN1RQDq4cffph58+YxZ84c7pBPaZv4xS9+gaIoPP/88zV3oO4YHITvfAfPtG62jQgX9TWb1jBr9SwcKxzMWj2LNZvWlF/f4YDZs+H1161tSpPPYnF6raL0Sy+F//3fo8I09PrrRXcqGTsuWmRNA031TLqpaq9SO5omgNXs2VOzraMpnE4hyDWbumYyI2SzI/j9BW+J/EwwU8jzLute1WLsaXet9Pev4nOfO/Riz16vekSB1ZEev1xqmokcY7Vm0xoGjTg3rXqWS/6tm/3nzM+PE56sUTNj5UukLXYLBw/+kvs3rSaZHmb5uhv4xgvf4X9evJGBgVUYmo5DMzAGByu2aUERg4Msn2ka93IIZtSZ4V3fPZ+P/UDhku938os/fSs/1kWj67j/2Y+VjMW1js/m6zIeh7BjzHYcLU7bFVKBotC3SAUatLbC6wf2Wrb92z9dzvVnfiffpjAI3cFY9hk+/rPP4ljh4E+vPsdfhn5vAUdyH5S3r2DW6lnc/+zHLL5x8Tjo+hP5e0MCguKC6YkEOJ0HcLlGyGTac+yaURE0uVwifSgZ6FpCMksvvFD7OsXrP1fk3iJ9rMqFzwef/Pyr+eO9bf8AD++6H4BgMMZLL/mIxdbj9U7PpwLN44nQWBVSgeEwJBL3MjIyjqaJ8d7thq1b/5mRkbstIO7hhw+gKN9EVSN4vTOYOVMIwZ5+elOOyRUvn1u3/jNbt/4z4TD86U9i3Wee+T5DQ6aBltJxzuWaYsZK0zSuuuoqHnroIfr6+vjpT39Knw3VMTY2xl133cVfFYu9pzpWroQDBzhz6yjbR7bnizP3x/oxMOiP9XPlg1dWBldz51pL26xcWTD5LGcKWo21uuQSWLv2qDANfeKJ0smMxXHWWfDAA4XPU12Yearaq9ROJCJOTT1vcsdSFAvYx8dfoqHhTBSlcNt6vTNyZSKsEyoSCVH/6lBiqoo9C2B1ZE7S0TB+udQMEy49P1YFUgaL98JXfjRI24uvsvXqfwDAndWJGjWwQaEQwWSWVn8rDsWBpid5JZbCM3I7oxkINII2PYZn+D/4y1CMhYMabjXDu37yl/JtFlMsK1eyYuCKwhgWj/PHoWfZkRxkNDrIq2Pw6d79JL73OYz164l+99O8+PJl3PHsryxj8RW/voJP3f+pmsZn870ei0H46Ydtx9HyqUADp1OmAmFX+gW27N1h2fbI9x5k1cufIfrdTwMQjUYYGf0e2xN9DI2kMTBQJ3x89cWb2ZXcSDyO5RnD47fQH+vnjmd/xYsvX0Y0uo5sFlIpnf7+v8vfG7KPxffQwYOvkE6vIxBQyGbbc4yVUnUMC4WEHUqtIZmlX/+69nWK11+/3rrM74fXXiu/jkqc3//k1Pzxzmac3Pj451mzaQ2BQIzdu6fR17cUpzOEyxUqGU/MswIlE9nVdSrDw1H27XscrxdGR9dx4MDPSCQeY3x8CBDjUiTSgdf7M4aGHsTr7SEUegaAJ55YCDhIpSJEo2LdAwd+jtO5hRdfFOtu3z7A6693VxznpjwV+OyzzzJnzhxmz56Nx+Phox/9KPfff3/J926++Wauv/56fIdDpCFDsknArKdfYWjHZktxZhmJTIIbH72xfDtz5hSKMZsZqnvvFaikeNZLLaL0ri5xNRxh01D5MD3/fOvyYmNHaQAZix27ZqH11tM+1qJYZzU+bk0DAjidflyuRjIZK4rasUOke+V5r8fYU35XGpL29S1l584vTrrYs8eTQlWPDLA6GsYvVyrNuEvnxkdvJDSSoCUlBt7TD4LTgN5f/gn27cOd1oga1fVLRihEY1In5A3hd/vRtCRf3/AHlvdBkxtmXQinfQiW98GqB3/E/IOgAEvW7Sw/HplzI6ZxNj+GxWKsfuVexl06/gxsHIVvvgAnfURn5ycN+hbdz/c2enlm2DrnPqNnSGvWFKTd+FxsZhzblyD07B9tx9Fy4vVkUsHhEKnAZBIe3vPf6GrhfHaOwYf+V7yA9C26n52brmXv3kd5PKZzgCioOTSihkg59vPHPb8iFqPwjDH18Zlhla9sC9DXt5RNm27H749z2mmFe0MeTvM9tGPHzezc+QO6ui4gGHSRybTgdPpJJo2qwvRK2qap+H4t61cDf8PpIofzrJeUEeXGR28kGBwFYMGCtSST2xkf31AynphTgVK83tNzHqlUJy+//E+43Un6+pZy+um/Zu7cf2d4eFN+XAJ429vuoL9/BZnMMPH40nw3otE/cuDAT/Lrnn76rxgdFdOjn332n0il/hmg4jjncKSnFljt2bOHHlMCcsaMGezZYz2AL774IpFIhPe+970V27rnnns455xzOOecczg4mddpE5ukGAbvX/tSSXFmGeWWA1bGauXKgpBF0wT1fNFF8NvfVjccNcdttxXcF2W8gfYLUlfTkata4fVaNTLmn4oC7xQTy2hqEv/h0HU1sm05HXey7VVr53guKG0Oe2BVaome19aYQor6i89/LWH+bnPzEhyOBvr7V0662LPXmyKdPjLlbI6G8cuZVBlzaQzEBrj5ccvzGQBFN2DlSpyZLMNaBe1nLhIBNyEV3E43AXcATU8RiQ+ycRQGEtBxFgy8KMDPFb8p7Kvcjm3k8mvLl4PS3YWSEsyZkkygdHWyfOcneC2zj4QbArn3zr/7JTS8CgMfh+7fOLjwv4dqPiZyfC5nZvyX38cJ61GxsGgcDQaF3iaTKTBWBWDlzzFWCsPKVsjk0MC6W9j3NYNAVhz9Cy43mH3G19m69RJemdgP3hioOTSRCoMvRtTYRSwG/b++ApYbsCJ35pYbsNzgkf/+DKHQBWzdejfhsGG5NxoaCiVxmpuX0NHxUQYGvoTX+w6am6fj86XJZFqqMlby+Lz6qvX4VLqfly+3TkKpZ3yU2/v5z63rKgp86Uv27cl1MoPzLccHNQRPX0v/Nbv44Ae/B0BLyxLe/vYUd931jpLxxM5uIRSCsTE3mtaNyxXPr9PWdiaRyKnMnn0rF1wg7sXZsy/koovG+L//9y7e+c7C8/9tb5vg7LP/zNq1a7nrriW0tCzhuut+AsAll+zghz+cDsAFFxxk9uxbWbu29OXR6cyQzb6Bdgu6rnPttdfyta99rep3r7zySp5//nmef/552u2qrFcK+RaVY5Mc6Qwf+ss4i+iy/Xqxq7ElJGNlp6f6wQ/g+efFFKl6+3YETUOlRub668XncnoaOy3NL35ReZ16+/Czn4nPzz8/ufZkO9/9rvj8+uvWduTf/8//mZp+H61RCqw2lgVWxTqrqRL1Hzz4IKq6i4aGRezd+526ij0X+pdEVY/OOoGHffzSdRzpDOOOLGfTzRUbQU4QlHZAPg24916caoYhozqwiikqLh1IpwWw0lK0Bbs5qwlm+CH2GvScDRd74FMbQermPZpRfjzKUSzL/3kQw+dnCUKAYqBg+AMsd9xKY/uMPLDqHIMPGhA/C/z9sPe9On8HTKtghWUOOT7Le/nv/14sNwww9g7SHX+FkARWReOoohTKzZjF64mEI2+3kEw66Gx354FV5zkrSLgU/AhG8InfKjxzn0LntGc5c5obfDEBqHQF0o3gGaO9xUs8DjMvvxeWK3D6T0V/liuwXOHd//AdotE/oGnn4PPttdwb0rIgHheppX37fgw4OXBgA4qyK5ceb8HpDJBMOioCq3oLoB9K0fRy61ZqT67jm/uk5fiAAm9fzsw7Z/HssyKFMjj4GE8+2c4tt+gl44mYFSg0VhIwu1zCYPjgwTg+nyO/Tjr9As3NA2zY8C5+9KOLABgZWcfjjwf44Q+/xJNPtjMyItp+4okmnnqqh6VLl/K5z61jZGQdTzwh2Enz99avb+GxxzwsXVpad9XhyKJpNRRIl9+v9oXp06cTMY3uu3fvZvr06fnPY2NjbN68mbe//e3MmjWLZ555hve///1TL2D/938v8cx3GPCp3+y1/fp4ery8zkoyVnZ6qkxGLKt1OggcVaahk3F7ONSCu8U3rKw5V2tfyt3w1do5CpwtDmv09MBDD40Qja5D05Ikk68TDC4gGl3HNdc8lf+eAFZWhrZeG4pikS1AJPJ1+vo+jMczg0zmIPPn/7yuYs8yPJ4E6fQUWrnXEUd8/Eql0L0e0nqGNX2nohTTVTI0DUdKrYmxiqfHGPc7IR4n4A6gGyr/vviDLF8Ajx+E5E74y/3whYUwflaNLLpUhOfGsgQB6zrRKJ9/z0oyXieBDNy+G7bfBC3PgisBC1bA9hth1V7r9twONx6n1f8n4A5w2zusTrUWa5GVK4kbjYQxaRSK+i27K1OBotC302S34OTf3vUpyIr9uPlxyOoukrn96noQfPsU3Hu7+fCsUWa3JgXDkgmCK0nA5+X//vVSYjG47R23EXAHIFZgPs9t9fJvcxO0tV1GNnsq7e3TS+6NUAgikT/T17eUrq7/A2gEAh9kbGwNbvdB0ulwLm3pqsuj6miNhWbrcl0B3Ynf5+a2d9yGoggG9IknPs+CBWvzBsfmY1acCgyHBSj1+w+SSJyJ3+9hwYK1bN58OZHINWhaE+Hwefh8oor85s0foKnpYjo6lua/BzB37n+iKI78ss2bP0B7u0gVmr83a9YKDCPD/Pk/LTmXTucUpwIXL17Mtm3b2LlzJ+l0mp/97Ge8//3vz/89HA4zNDTErl272LVrF+eeey4PPPAA55xzTs2dqCl++9uSRT4N/nq3/deHk8PlRezScuGpp0r1VJomeOZ6wNBRYhoqM5bXXFPb96WWZtYskTo8cGBy2zWLTnUdHn4YFi+u3d3dTqCeTsO6dXDOOfbtZDLCLuILX5hcn4+F6O2FnTtb6Otbyr59P8TvP4VYTAzUq1cXRHQ+X29JKrBexspOqL5z580Eg2fkahA68Xg6ai72bA6vdwJVPTLA6oiPX4kEut9HWktzymvDgp2yi9z4MZKp/kIXS8VI+EUldb/Lj6GrvKWthXTrDfQnHbi8kB5u4ZR7ppGYY8Oi241HUm2dG8sSBLiYRwvrGAYfO/uTnH3yhbQrQU4NwWkrwJkEtQOaN4rPb20L4XcJlDAzPJN7L7+XH1z2A1r9ogB0d2M397zvHpYtXGbZfCRiKqTx9NPEjJAVWBX1W3bXnApMpZw4nQEUJUAq5eRTf30ZPqOZRk8j5+2GtC5Yig833YdvH+gug8ygwenzb+DDC0/FnW2HVBhnYJx73ncPf7foncTjokbtPe+7ByXeC+2bmBmeyb+/9QO85Yz7cbmaicedtLQ0ldwb4TAMDm5lwYK1OJ1iVmwm08TMmUtxuw+SyYTz7FotE3AmUwD9UArS261bqb3Te3tZ9LbdtPhbQPOiuNN87/3iXOu6SldXFL//e/k0m9SfyWPmcPhKxOtjY8/R0tLI6Og03O5MPq3a2Xkx6bSHbDZGNHom8+cP0NHxEZzOIE5nKP+9q656kI6OD5FO76Op6SI6Oj5KR8dHcDjcfPKTt1u+J2dbNzaeU3IuXa701DJWLpeLb33rW7z73e9m/vz5LF26lNNOO40vfvGLPGCeVnY4Y3CwIKz0+1m8YgbKclCWw1s+XX61siJ2abnw4x/DkiVw//0ClXz/+4Xv1JPCszMNvf9+ePe7a9NnTVEMDorN1ZDVAApMkaLAuedOrsxNceHNjRvFQPflL9e22zINWRxPPilqG37hC/btvPqqAB7/8R/19/lYCSkNOvXUtezYIQosb9mylBdesE7XsUsF1stYyUFu8+bLeP3163JCzwdJp3fT0nIpra2XMjLyUNViz3bhdieOGLA64uNXIoHh95PRMvlxovXLLQxNHBQ369/9ncidj49DIEBcrQ6s4mqcZMANsZhgUow0PT2f58NvuQ2Pq5mulja+9De30/vAPpTvDtDz9RnouoZzhQNNy9rfUFJtvWEDbN5MEj/ndOcGlH37hIMiMGfGGVw6/W2cNx0Sj+8mO6eTdDPomkrzBoNTvxFlQfsCOhs62XX1LpYtXMayhcu46aKbAPjx5T8uAVW6Dnv2iLHEMIANG4h1nELoQ+8Wg4CNzlUK2K3idRcOh59sthG3W6ehAdIpN/94xse56kvnEVsn1v/QvyxCv+sr6Bf+FYkFi5k2bRHvPPtaZvoWghpiTtc0li1cZtHzf3TBMoyxblwte9l19S4ue+tPaW5egqbFiMfdhMOU3BuiX1fQ3Lwkf3+OjydpbZ1LQ0MjqtqI0xkglXLVBKwmI3U4FHlEOVuWchEKwT9eNoPrz7+eJlcXoYAvf651PcUFF7gYHbWmR8zHzM55vbf3Opqbg4yMNOLxCNA1b97dzJ+/nHTaRTYbIxKBj3ykl3nz7iabjeXNR+fNu5tvfet9OBwe3O4W0ul9zJt3N/Pm3U0qFeETn7gRw9Dz38tmxb2nabGSc+lwpMlmpxBYAbznPe/htdde4/XXX+fGGwVQufXWWy1vfjIee+yxqWerigw7P/lgGZrKJsqK2OfMETfqc8/BxReLZc8/XzDWO9QUnqwbUzzd5TDGhg1is5Op9VZvmRspWJQUthQ0fv7zwurhrLPg5ZfL13WV63/oQ9b15Y0rS/KU69eGDWIbx2MUT0Roa1uSE2Wu5sILD/K5z50KFI7ZnXeebwFWyaRgHysVFbWLxsaz0bRxIpGv0N39GdzuFpzOIIHAHFpaBLCaTHg8E6RStZeDmOo4ouNXIoER8OdnxhmGQVyNE/KaHBwjkbz74URmAk2vUAwZiKkxUg2+fCrQMNI4HEKtPKKqGK5CSZu0lsbj9OBQHDR4GhhLlxFBmc2hIhESzhDxWG7sMrtfBgJMxIRIXdVUNIeY4qiqBZF8JB4hlrJONZaAMRIvLRi+fz80N4trWQKZeBzCqf1lJRl2jFUy6cbpDJBOh/H5Mrhcwg8umcoSU2PE94t0VDyqYRgqhqFaStpMjDlBDdPQmLVsA3L+TbqLbCJoAb/ZbJzxcbftLDrz7MVUKoLfP5fx8RSBAHi946TTjSiKm1QqgN9f+ZwfC5E/J6kYyZRuKeSu6yq9vYZtYXkZiuLGMDQMQ7eUCAqHYXi4KQ+sQGRY0mkXmha3GHxqWtzW1b14go8YLw00U+pd08TJlgDLHAJYHU/O61IYLgFKOs2nXlLqFkmWRFeXKKR31lliCsfgIPzwh4UqkocqPJ8xQ6AK8/pmI9LDEBs3Th5s2BVmrvTGIgWLkh1buFAcuu3bBSBqbhbUvtmHtbid9ethfm4iyV/+Imhm2f6PfiTacThWMT6esaQpo9F1PPHEc4esDTtao1hA2tWl8rvfNXHuuTFmzNjB3LkTQMHE85prnmJioi+fxtuw4S/MmDFMPF6fmefu3asRkmoPe/Z8iz17vkVLy6Vs3frPHDz4K8bGniObFTdePUahHs8YqnrkgNURjWQScqlAgGRhJbQ/AAAgAElEQVQ2icvhKuiOenqEWVkqheL1EnQHy4OfXMRSMTJBP8RiBN1+wEBRXBiGwVAqgeHJlgArgJA3VJ4RK7KiTjgbiCXc4qY212vx+0nFRHkQNauSdak4VPIav1Q2xWhqlIyeESydqc9+l9/2RXdgQBwGiTHTaZHq948fLOsFI7srH8B+P6iqG4cjQDodwu8XxzsQgERSbD+2TwCr2KiBrqvoumpxXk+MeyAVxhfM5LcRj4v7LBIBxZ1ESTcRiRUe0NlsjHjcY+tIbi3HMkAo9NdMTGRywCqOqgZRFIV0OoTPd/gLWx/uyJ8TNYaqGvh8BVLBMFR6epQqwEpBUTzoumrB8qEQjIw04XYX0iMCWIlUoLx+QJwPp7P0ZBTrUFV1IMduFq4v+bt5mQyhsaodLh39wGrlyhIdlAcnK5600nK1iiTz0dcnqrlL0bmdAP1QWCtFESjHTLeYjUgPQ0jGajJR3FWw1z4VL5PrtLTAV78qBqC3va18m+Z46CG4XOgGufrqQtuRiPDjOuccCIUWM3v2s6xfL1CfNG/bunXOcctYFcfChQ/w059ez913X8b8+WHe+94v5f/W2LiY7dv/FU0bo69vKZHI13n88W8za9ZoXWaeAijdTmvr3+JwuPF4utm//0doWpIDB37G0NCv8PnmEo0+WrdRqABWtb/tHVeRe3JLYBVLxQh7TW/Uvb0FxsrnI+wLV00HxtU4WmMQ4nGCbg8GLhRFIZVNEc/oGB4tX/jMDKzC3nAJk5QPMwoYGCCpeYl7WgsyDFPBOnV8FKfiFIyVJ0tgwJFnA3bHd9Pd2F0C4uJqnAXtCyygRIZkHCTGlJtTxuIwMWFLexeL1wVj5ckxViF8vgKwmpgQLGF8SCyLj4nUlK6nLLUC1QkPqCH8DYIZ8XqFaiSVEn10dLyKO9NqAYeaFmd83FuRsTIMA1XdTTh8Xr58jccTz3u7pdMN+HxqaQPHWOTPiRqHrA+PpwCsdD1Fb6+zIrACobPStJQFy4fDMDrajNtdMM/1eLKk0948YyXZ+XKMVb6OJpDNjqPrKj7fTDTNyj7KNopDAKspTgUe0Xj66ZIby5nJ8uHRGcwMz0RBsYgkZ4ZnAhBwBWxFkoAYLJ4Rzqy88IJgkOwE6IcqPDfnsYqNSA8Da3Uo6bH588WgVqmEol1Wc+NGUeT5zjshl2XJpwerpRdluu+LXyxotYaH4Ze/FL87nSIHf+65vfzxjw+wY8fN9PUtZf78tWze3HzcMlbmuPrqp7jtNrj/fiEm/MY3WnnXuz5MZ6dgNaQ2CqCx8Vxef/3zjIy8m9bWP9Rl5hmPP4vT2cDs2V/m9NN/QSLxCoZhcODAT/Kmesnka/T3r6zbKNTtHiOVOpGBVTAPrCxpQChJBVYEP7mIqTH0xgaIxWh0CWAll09ogFezMFZuhwBZFUGbKRWo9e9G1VzE3O2ib1LwAhAIkB0f46Tmk0hlU2R9WYKv66jJfgAisQg9oR5C3hAxtbAfMTXG6R2n26YC5YNRYsz8Q9WcF7TprjkV6HaDYTjQtACq2oDXK4CK3y8Yq7H0GNEDOWF03GHLWKUTflDDeAIpy3ZEaRoDvf1ljFTIsg/ZbIzxcX9FxiqTGcbh8BEILCCREGagbnecVEoMlKraeNwAK8lYkfXi9hSICpEKdFkqSdiFw+FlYkLF5RK1bWW70WirBVi5XHEyGS+ZTIzdu62MlV0dQnMqUJS96cHpDFvYqUIqsPT+UxS1Lo3V0T/aPfccTJsmBDumadItwC6bry9buIx94/uY/+35fOS0j9i3aWaMjJxp3uEQmC9aBL/6lfj9+usL6EEyYd/+9pRtKhYTWoVTTpnc+m43LFgAn/ucsPKSYafXkstuuEGk+i67DN7yltK/f/SjEI3ab2/fPti5E/7wB+vpyM8MMrVz+eU9JJPnMzDwTmbOvJl4fAmBQEGDdDxHOHw+i03EkEidvgW3W1xGEnwGAvMYGfkN4OTVV8dZvHh6XWaera3vZXDwuwQC8wgGT6WjYykHDvyMnp7/l2+ns/MT7N37n/T0XFdX2yc6sFL8JsZKjRH2md6oi4BVyBusibEyck/8oNuLLoFVKsZEFgyvDoZ9KtAMdiwh8ziGQbJf5N1jjmaIbBXpzBx9kHQp+NIaXQ1dqFkV/AbB3U5S4zsAoaHqCfcIhsi0HzE1xuLuxTy3t3RGqWSskknxez4NNBgXtJGwMC/prpmxUhRhRKuqDahqAz6fGGsDAUglxUAyPKziJUVsrACspMbK4wFDd+BMduFqSVi2E4vBjl1ZXNO2kX3Zz8CoFViNjQVsGSsJNOSD3OvtIZGI5bYXJZUSujgzEDyWQ56TjBoHzYvbqwEuDEPHMLL09rprYKy8xGIZC1BtbDSIRtvo7t5p+mYcXW/iwAEPwaA4h4ahoWkTOJ2NJe16vT3EYsKiRp4PRXFa9FTZbBxF8doCKzEr8HhKBT77rNArmUBVtehs6OSkppN4OvJ06R8lcyTZqcNp4ilzYYOD8JOfFJYfhm2+9JLQOTlrB9UlcdZZcPbZ0N8v3I3BOtHxtlxW9WBuQtPllwsg96Uv2RvIrVpVXr//8MPC/f3WW+3XNf/+//7fs/T1iYrCe/Z8k/XrN50wacDly2H79uvYuVOk/+QxmTmzULcrGl1HJnOQadP+EdDZs2cujY0/rstvamTkIVpaLkVRFKLRdUSjf2TmzJvzhnzR6DoOHlxLMHgGe/Z8s662HQ5BgxY7m5wQkUyiBINkdLHzcTVuTQVOmybePmIxwVj5wuXBTy5iqRiOcFNOY+VGyw3jcTVeAFY2GquKbJjMe6kqiYjQUMWNxiIKCYaVBK0E8Lq8pCdGQAH/eBNqYhcgGKveUK8AcaZtxdU4p3eczkBsAKNoQDCnAksYq56esoxVNCoyhY2556jPlyKTCZJOB4uAlTg+0WiGHiLEE04MQyWTyZLNClClKOD0jRNMzcPpH7dsJx6HXQNZgh37cXs0dh4QTt+GYaBpcSYm7IGVBBoFYDWdVMqF36/h8YzkZ8qm0wF8vhpqRB7lYRavk/XhcotMk66rKIqHtjYFVa2cFXE4fIyOZi3HMxzWGR3twOWayC/T9RgeT5r+/k6TcH0cp7PBUktVhnnmtKpG8Pl6cLlCeZYKBEj2+XpsU4GKkkbXjxdgNTgIH/sYXHhh3av2hHr425/+LcoKBdetLpQVCrNWz+K1q/9RTDk2hZbNHB7d07x5sHcvnH765Ao71xEbNhz6g0um7t77XvjsZ8WypOl+l+L23/++sM1KAEfq9z//+cIyKU7/yleqF4oGcuaYl3HgQC8/+tG9uFyt/OlPjxCNjub/Xo9A+1iM8fGNNDZa854Ss0u9U2/vF/jKV07n5JO/ytatZ3P22RdWNfM0m4JKYBWJfJ1Nm95nMfGTpnoLFqyltfV9GAZs2fIhi+dVpXOg60l8Pr3EmuOEiEQCR7DBorGypAKdTujuFtSvz1cCSOwipsZwhJuF3YLLhWY488uTGuA1MFxiaM/omdrE6yCQwOgoyb1RGhoMYtlAEYUE+/Uxmg0vPpcPbXQProSCT20ilRYztSVjVQwQY6kYveFeFJQS4FgsXo/FINSgicFj2jRbAXsoBLt3ixdAWQ7H602QSvlR1QA+n2CdZKkbgOioQY9zL7GEG11PkUop+P2m0ln+OO6x2eCLW7YTi4l+hTpiNIR0du0XNLywBnAwMRGmocH6TIEC0EilBvD5enA43KTTDbhcB3C7h/MzZVOp4HEBrCSQjKkxfEoTTo84Jrqu4nB4UZTSahLF4XB4GR3NWhirhoYMExNh3O7CpI5sNobHk2HPnlnMmKHnl9mlAQF8vh5SqdwEi9QAXm+vbSrQ6+2xZawgg8tV+8zNoxtYrVwp7rrdtdsrgKhG/sjrj+QHEc0QB6Q/1k/iiUdxZqw3gTOTZeTRUgPSQw6nU7xOjYyU/m2KjUM3bhRysUOJRYuE/dbmzXDTTWJM27Sp8PcNG+Ctby04om/cWCqWNxvIKYr4+9e/Xli2YoWYaNTXB5dcUn5d+fvY2HMsXPjfzJr1Cj/84SdJpXbR3/8Onn66qW4R9bEYhmHkawSaj48EwWNjz7FgwVoMI8u9915HW9u1JBJh2tq2VTXzlKagQ0O/ZWzsORTFyc6dN3PSSbdaTPykqV5z8xKam9+Boih4vTMYG3uupnMggVXy2H921B+JBI6cxsowjNJUIAhx0bZteY1VLalAd0ursFtwudGMAmPldnpBVdDcYowrYawqsWHhMOzYQcLbzLRpCmOqB6PfpCYH9ulxwpobr9OLMXYAp+rEq7WiaoNADliFekr2Q+53T7inRMBu1ljlxev+jNim2QaiqKuRiLVYsNebQFUDpFJ+PB5xsfn9oCadeJ1exsYVegPDxJPuXBrQQyBgmrnmiaHHpou6gabtxGKwd4+T5mnjNIVh94GCyNnlCpNIhGlsLH1rkF0XjJVQV6tqA4oygNs9SjLpyi3z4/VWL759tIc8VnE1TrO7E6dLXIOGoebtQOQEhXKhKF5iMd1yXkMh8VLichWormw2jseTZc+e05gxQ80vczrtq097PJ1ks1F0Xc0ziC5XuCQV6PX22jJWhpHB6SxTXcUmjl5gZa6w/vvf15U2u/HRG1E1+5z1ok+TNxc1/69kNDrpGBwUamwQd/jgoBAjPfbYlBuHTkVTZ5wBQ7k6qg0NglGS7cbjhYzmI48IDb7dLMRiiwbJaF11lfgP8IlPiJ/d3eXXlb/39l5HMHgqc+e+AsAPfvAczz8vJijUK6I+FkP4Ayl4PF2W4yPtMYSB3hIeeUSY2V15pfh7S8viqmaeUvj+yit/j9vdzquvfoKFC39DT8+1lu9JUz25zmmn/YKJic0kEq/UdA50PYXfb5yYwCqZRAkEcDlcZPWsEK97it6qe3qET4kUr1dLBaoxPM1tOed1FxlDUC6xVIyOYAdKCrIuMf7VbLcA4sm4eTOJjlmEQuD1GEz0D1nE63uzURo0J16XF8YP4kq7cbtb0Q0VTZtgIDZAT7jHNhUY8oboCfVYxN/ptBhzuroEw71njyiKEfalCsDKhrGSwMrMbEjGKpXy4/WKtFEgAOmUk45gB7EJNz1NcWIpUTolnfZbgJXuiZIcbkP3RC3bOXgQxkZdtHVotDS52DecxDCMPEMyPt5EMFh6cUu2Sz7IgZxgvQ+/XyeRUPLLPJ7jBVgZYuarcxpOj0ihSMYKamGsfCXAqrFRAqsEei6lrmkxPJ4se/eewvTpifyycoyVojjxeLpQ1T1VU4F2jJWuZ3C5jgdgtXJlwVOqzrRZWVPQKV6naqxcWeCp5T5cemmB8pmCkGaSL70kPtdTyby4ncbGgr5JUYSt1/dEUXJefllkNE8+WQjMn31WsFlnnlm5X1/9qvj8n/8p/kNBblZ7pfbp/OY3YnbnffctYmysBRDVyFtalhx3xZfNIQsvK0WzCGQq8JZbxDGUgOq//1v87Or6eE3XQVPTRTgcflKpnSXV5stFa+slNDUtYd++H9a0jmCsTlBglZt25nF6SGtp8dApZqwksMqlAmthrHyt0yAex+90kpU+nmqM9mA7SlIh6xQMSlpL43YWZgVWTDOGQrBlC8n23vxMuVgkbmGsItlhAhnwOr2QHMaV8aCEwni1FlKpSH5WoJmx0nSNRCZBg6dBACsTY7V3L3R2CnLf7xdj0OuvQ8idEv0x+2sVdTUaLWasxlFVH6rqw+cT7EYgAGrKSXuwnbGkl54OlZjqy6UCA/j94uBltAy6N0ZqLEDWPWLZTl8fNLUnafI30tzkxJNtYygxlPNMCjMxEaKxcYLiMIvXfT4BrFTVi66/TCDgyN8PqurD661eI/Joj2BQzM9SdDd+pQmHSwKrVB3ASjBW1lSguJZ9PgNNE+lAwS5p7Nkzm66ueG5ZzNZqQYbPJ3RWqZR5VmDhXtO0eNlUoGEcD8BKslWTNOssawpaZZ01m9Ywa/UsHCsczFo9q3wR51pC7oMUPsl9eOtb4YEHqhqF1tqX5cvhxRfhtNPE53oqmRe3Uywcf/zxghG9WU916aXwjW+ImYR2os1y7Zl/r7Wvy5fDnj3f55VXrgAKFcyhUJn8eANWZu2TTAMW65i6usS5icfhggsKAFge2y1bPlb22Jrb37Hj38lmh+no+Acika/XJEqPRtcxPv4iTme4pEK9XWhaEr+/tPzRCRHFwEot8rEC8bSRqcBq4AfBTAXauiAWw+t0kMmN93E1TkewA0cCNBOwMqcC4+kaGKvWHuHt1OQQ7usHD+Zv9P7MEL6Mgc/lw5Eaxan7IRzGq4YZHd9KRs/Q4m+xzEAcS4/R4GnAoThEKtDEWJlds+Wh2LwZwq6JqqlA809dz+L1TpBMukmlfHg8BWCVSbnoCHYwrvro6daJZ/y5lFAAv1/PHztPQDAfGfdQ8SGhqWOMkDdEKAStjtlE4hE0LY7TGWJiooFgsBRYSc2RfJAXHgUvEwy6SORIqlTKi9dbo+P1URyKAo0hg0am4zKCKK4CY6UotQMrs4cVkE+zer1WE0+v1yASmUlX12huWflUoFhf6KxUdSCXCgyVGIR6vfbidQGsaq+icnQCq0M068xXI68xAu4A75n7Hq588Er6Y/0YGPTH+ssXca4lyu3DQw+JV7L168vuz5pNa+rqy+Eq73LWWYKV0jRr2u/SS+HnPxeU/RsRyeR2/H5R+K6vbyknnSQKBBZXRz9ewlwQeXx8A4rittUxLVoEq1cLn9srrrC2kUxur9r+rl3/QSTydaZP/xei0Yc56aRbqx5PqalasOB/cbkamT37K1XX0XUBrE50xiqjZ0p9rEA8bcbHc3YLFSwRchFTYwRbBbDyOR2ouWEmlooxLTgNJQFZhzjYaS2Nx2GyW6iBsUo0deUYK4VY28mCsslRCDtSg3jULF6nFyUTx6ULd01vIsi+2Mv0hHpQFMUCEM2mqL3hXkt2wOyaLQ/Fli0QcoxXZazMPwUrmiaZVEilPHg8Aqj4/ZBRXUwLTmMsE6Cz10NGd5LJZFFVf76UjABWIn2ach2wbGfLFmjoiBL2hgXWUwTrls3GyGbbcbk0XK7SVJ5MjaXTe/F6p5NIgM+nMzGxxQZYHfuMFUCwQaPB6MapB1Dc4niKVKDQWEmvsnIhGCuliLES17LP58gDISE0N0gkAnR2DuWXlUsFggBW4+Mv4XB4cbkacbnC+VSgpqUAA4+nowJjdawDq0M065TVyKVZqFMp70GgoHDP++7hd9t+RyJjvTnKFnGuJcrtw/r1AqkYRlkW7sZHb6yrLxL0HEolc3PIdkIhwYy89ppVqH7hhQUT0HraM/9eT1+TyW34/XO5+uqnWLBgLdOnX8UVV9xBIDC/qkD7WAypfRKA5U/s3fttWx2TBNN33ilSKfKY3nRTgkRiW8m09uL2+/tvwec7if3772PBgrX09Fxb9XhKsXxLy8W0tFxKNjtSdR2hsXKcmMAqmQS/38pY2YnXQTivVxGvZ/UsalYVjFU8jtfhIK2L8xxTY7QH2nGYgFVGK8wKrGrlEA7D/v0kGjvzqcB422xhkBcOYxgGO9V9uFJpvC4vjuw4TqUBwmF8cR/Rsa30hAVKMrNj5n0u1liZXbPlodi/H8JKvE7GKoHPlyGREA7skgEKBCCjumkPtDOWbSTcEyLknCAet9boi6kx/A1ivE459xcfEgKtw4S8IcJhCGrdROIRstk4yWQnDQ0T6HopsJKY0OVqxeHw5jC2QSazn2DQYwJWHtzu6sW3j4UINGbwa504tSA4JbCypgIridcdDh/xuGJhrBoaxIHy+Rx5NkmkAkFRdNrb9+eXVU4F9hKP/zmvdzOnAuVEhOL0oAzDyOJ0HuvASswjFwpqCULqFHsvW7iMXVfvwrjFIPvFLAr2lYkNDJYtXFZWYzVp7ZU0cCr+f9FFhfm9ZVi4evsiQc9UpcTM7Zx1ltBTvfqq0FgJzZPwj4HadVLFv9fTV8lY3Xnn+TQ3L8HhcHPttc8zMvJwVYH2sRrNzUvo7PwUmhaju/v/s4AqqV+74w7x+eKLrUaut97qR1EUMpnhsu2HwxdiGAqp1OsWnVS14ynF8kC+MHO1dQRjpZyYwCrHWLkdbtJaujxjBTX5WMX/f/bOPMyOqlz3vxr2rl177N1zd9KdhCRCQoIJAuKAEEEFRxAENCqOIOq54lG8asQkYJADDqh4RERUjhFEGRQUECSAzEMSMkHmdO9Oz917Hmu6f6w9du/OQIJX5HzPkyfd1TWsWlW16q33e9f75RMEtABSMAjJJG4Z8lYlndXqa0VJO6I4Mi9DvA5k/S14vUVg0FBEPcEgY9kxbN2DlMmIVKCVRpUDIhUYdZPO7aEr2FU+Vomxqj7nibMC66UCAUJObJ/idZerUooGRLpZMFaiZqDbLbbxesHMayIVaPsJzQwTUlIkk+5isWYhN4nn4viKxZfTcv/ELsEdHiTkCREMgsdqozfei2XFyWZb8PmyWNZkYKVpFF/Ggm0XZqTilev3a2Sz4hVgGEqNlcCrOTy+ArrVjmzpoIp7UMwKrE0FTvHNhyRpJBJKDbDyeLIoionHo9akAj0eiebmJLIcKy+rVyewFJrWRTL5fBlYVacCS3q5aharOoR4/dUOrECghWOOqYi/DzGm0l1JSNiOPeXfX45ea8o4QO3YwbTFtoVw/ZUyzFy8WIjNZ80Sg9RU2qlXSufkOE5NKrAUTU3vZnz88E0C+FeLaHQNAwM34HK1MjDw85pU2/6ugSRJ6PpcstntU+5/ePj3gFVjAnqwEQ6fSiLxFKa57zSGAFbK/2qsSuL1iRqrxkaBEoqpwH2Bn7LBqKqCx4NmFshZFcaqpLEyJfGiP2CDUCijlIzehK4XMY1fGPMSChGJR2hp6oJCAU1yIUs5wRAEg2ijMlZhoDxGVZfPqT7n6cHp9CX6ymzqVMAqaEX3mQosNbeasdJ1wVhlMiouVwLHcfB4bOyChyZPEwmCBGc1EZSSJBIahtGErpvlfvUHLBTFIWnXpgIBlIb+cirQbTYVGas42WwzgUAO267/1RAIFDAMUQ5D3AoKkuTC5/MU2wq6btRlvF6N4fbm0MwWZFvHUSanAgMBYchaz4EIRCowmVQmlAjK4/Nl8HjUMmMlhOYSnZ2JqnTevsXrmtaF4xSqgFWoZn+qGiyDrYls/79HKhAOraJwnainu/K6vIT1MLuiu1h16qpJKcOpiji/bJF7Pd2VaQoLhipwNZVGrCfeM+l4O3eKag+NjQfWhIONxYtF2ZlqR/fS+QP7PP+D7adqUXUpRkb+CEg1ufPe3qtRlADR6APYthgY/52MQks6pmnT/oNQ6K0vS0um63Om1FlFo2vYvv0L+HyvL5uAHuz+e3uvJpl8nkDgOGKxqY1CbdvEcWy83tcoYxWNwre/TUdKmjoVKEnQ0UHq5hv5zA3vZe3AWpqvbqb56mbklXL5Z2mlxOwfzy6PAxmPSvMvfoMnkYeTT0YdHhWMVQqsOsDqwV0PcoJ/F8f+SKp5HrduvYh7nnw7Vz4qtIvfe+wGBmK3YlkPkpBEW29/7mb+809LmK9tJKvC9r4NyORR3A30tvydwdx20tndrHxkJTOvnUn/nq/yroZNANz0w25CnhDR6BoeWPdpLmjK88gZMsdf3sU/Ho8RCgk/tA0b3k1Dw1oAbtgm2KpoaBe9C8V+qseT5qubiRrbuefKezn+8i7+su12PB67mAqU0PUC9mkn4S5EkS0fvqwPNwVcTUH89jh7x7LsjRk8MXgftz90HScsvZQ2tYDLBYlClY+VIfQ7PmlHORU4MJrlyWfuYM/PlrP6sXsZHdexrEzN+FX62edL8IOfnMLMa2dy5Z0nEMuvxZAa0LQAigI9PU+gadkaYNa76VtEL3g9DA6W91P9bO1vrKtuR6nPjv2RxKdv9pXvqanG43pj8NatF7F160UTbutKG0rb9PZejcczgGo0oRk5GtRtRKNrGB6+tcxYrd64moz3JZrfdX25DdVZjO3RPazr6eH8Vb8tG3t/5I8fQvGMcdOdzXzjb/+H1RtXFxkrhbG4xE+fuhp5pczvN/6KZwc2T9knuZyoZ1maoZlKbSKd7WXmtTM55abjeHZgC7ds/iO2A6/7ce17y3EMXK7/BVaTolp3VSrcfMP7buCk7pNYP7iejyz4CH63n1avKEDXHequW8T5YIXlNVFPd2UYgsmqSgmW2upRPZN2MfF49Uw6D2csWiTYkJJRaPX5c/KKKc//5fRTtWgbxMO7detn8XhmTlpv+/bPo6qNJJNP/9sZhZZ0TLLsQdfnlDVR9XRMU2nV9sVYJZPP0t5+AcHgCQD73P9UUbpWuv46xsfvnfIaCH2FjsfzGgVW27bBpk1cfN/o1KlAIJ2K4h0Y47N/EXqRsewYY9kxHJzyzwC2Iz7MeuI95NNxlMG9vHlzFh57jKV37aLV14qadjARufqS3cLqjav56t++yotJh2/Pg7Aknsc/rF1G38D/QHoNx1sxHGDRUAFNfgmHpxkc2o0DpH95CV86Is5LSUirDvdtvANLyqBqjWwfNxk5NUKrJl48YakHv/EsiwIxotE13HH9QuboKdZu+ABXPXMnb3oE1M/B57f0ERtvYDx+Dps2nUk4fBqplDC5W/2PDxBtH2CLdDmBbfKk8WQsO0Z7LsYzuTP4xN19fO/xVThqgmy2KGuTM9jPP4H3b3ehmH7c4x4CUoLbe+7Fa42RSwdIZr0Y0hhj37iElrVbOXXtDnI5SdRiLDIWwdU/A+DsR9cQ8oR4IfoomyK9fO2hAu02TNusMjQwjScja2rGr0DgeDZtOgtN6+XuOz5GWOphoe4l7E0RSYyyZWwPum7w3HPfRNftmlRi4A8b2XLWBqLXf668n02bziQQOP6AxrpSO/6wdhkX3n0hYamHb8+DtdFM+V/JAJ8AACAASURBVJ6aajyuNwYPD9/K8PDva5ZVt6G0jSSphLW1tJtpAoUdoOTZsuVcNK0bSdLK19Dw7YLnP1duw8qV4tgrV8J9Ox8il/bCxo+Wjb3zZhK3nmDHsx8ib4xz4d0XMpLaQ9Qcom/PdEwrgYMDdpqfPv/ruu+YQOB4tm37LJLkQtO6iEbXsPHFT2DZeXriPXgVGM/n+eRdnyReMBhL99b0U29s17+BxgoEYjjM+a2S7spebrPnkj0sXbiURe2LWDewjheGXqDF18LQpUPMbZzLXefdNQlUwcELy2tiou7qsccqf5uQEvzIgo8QcAeYFphcI7H6eK/UjMBSdHTUFjuuOf8lKye1p+56ddpdL0ov+E2bzmTbts+zZcu5dHZ+lkDguLrrFQr97Nz5tX87o9CSjqkk2oeptU9TpWD3xViJ/Uh4vXPLyw5Wq1a6BiMjf2Bo6JYpr4FtZ1EU/bU5K3BgQCifHYf3PzEOA4P1U4EDA2gjUWTgk+uh7QDkNu1JCOXAdkFj3AHb5qynYrSlHNQUmI5Iz5YYq2V/X0bGzLA+BitfhJXz4cuzM2jjV3HNjiA/fBb0i2DzSvDN9fL0SIYN8Sx7pqXYeCUcca7Nj5+H9THIuMCVN7HlPKrezA/WPoTvWnDLcNERsHweXLYZvr0Zvv/9WwB4q/53rtnuZc+ePB/+Ixy9ErrOEjNgAoFebDvH0NBqGht3Isvihbpl+k3Mb/4J4bXOpPGkPQmzM4JZ+uR6aEjnSdgDIr0WzaHbcSyXQ/Dxv6NnfSgxDZ+cYMXTVxN24uQyIVJZL345yyees5AdeOMLgu3wqB7SRhoGBgj96WYAznlyM01xg1t33ICa8vOZtWB5YXqPuJb3bruz/Exs3nwOO3deim1n8PlEG5fPgxu36/QaGaZ5HXqG/oLLNUZDw7X4fEolFTgwQPi79zJ/JWx+w5/Y+dKXsO0Mtp1jbOwvBzTWldoRiH6X86ZlWD5PXPP1E2Zx1xuPK2PwWWzbdjFbtpzLggV3sWDBnWze/EFefPETk9pQ2mbPnuV4fGkaciPkzQY6PTuZP/82dH0OsqxVrmGoqBW++3oyd4iyHBcVCbEHbryO5NDratrkksCtFzVzqmh3LNPPSzHBZPqKlkACHBXqvmNKbXQcm2j0QbZsOZdrtnuRivv3qZA2RQmolCmOU91PW0e3lK2HDiT+NYFVLicM8xYseMUPtbh9MesG13Hv9ns5Y44oXnfGnDO4d0d9/c5hFbmvXj2lkL0/2V/z/1THO8zEXk2sWCEkbsNFyYEkQc+X98CayTTJxPN/uf0UDi9Bktz09/+Mjo7PAUoNAKher739kyQST9DW9vF/G1BVHfW0ZQca+9NYHcq+SxEOL6Gz8wtYVmzKa2DbWWRZf236WF1xRVkIJ9sO7df+gqyZxef2TVrPKg4DsgOXPbL/XV/2CJgyOC6QiyS4ZEPLD67HlQbDFuisVCuw+rlbH4NtSTitDe7aa/O3vcOcfQeEnofRt4G81cuxm7McvW4Aa1cD42+Ctrvh7DvE9hkX6AaoGii+VraagzSthZgB53fBnwdg/Z3LWXuJzapVNwBw+tsz3P/ZQY793XJWWctpXO/wjvMFmHjXaQ6nnJLnM5/5PqedlsG2he7graclaFzwUVYMXFQ7bqxZzuD3HdZwGgA+0+GBrztseeGtAli9FEEni+0B3Ukzc8iNE3PhVeJsy0QI23Hy2SDZnM6ieIZV9nIkHE41HxbntyxNQPMjdXbQnRfPkNe0Oe4N72H46VPoGA1xpb2cBZc7XPriTQD84qPjSBL86Eei7NN1172XU04psG7dqQCc9S6HXTfcS3JkJn8dgIXBHD6fm3x+EbpuV1KBV1wBhkF4PYQ2SaTyGwmH34Gi+Ojr+/4Bm/g2NLwNj+Lw8RnF6zGFNU698TgcXoLb3UF///Xl44XDS9D1Ixka+k3dNohJRV4afIMkMq3Y+QKjUoBweEmRtfbQc9cnYYUDzxfLnDx/kfgH3CBuE7Y9fBGFdFHXssKBFQ4PfN4h8tLbALjxArHsvNMNxp46H4DvnCeWrbltOWlz6neMeGd8nKGh/6Gz82L+tneEtCVAlE+FVLEUYNoC3wQjAcPK/hsAq4cfFm/0aHS/qx5K9PZezej4g9y/836++dA3+f2m33PPk2/nDe6HufyRy8u5/JN/FuLDNwldQqNeX8x00CL3gQHMm26k9zyH6CKgUGBP/HqiO28nGl3Dpu3fYnHHYt45rZXzuyZsu2Z5+Xj/+McrC6wmiqRn/HBmmamqjlJ7Sjl9h/q06f76aWjoFkxzFEUJs3fvj4jHn0DX50zSFUSjaxgZuQ23u4u9e3/C1q0XTSoK/GrXXWUy2+uCyv1Fb+/VFAqDNZYLE/uimg17uSEE9tejaTMYGPhlTb+XwrazOI5NofD4a4uxqi7JBbgth/Y/3MfsvA9ZkietpxWllx5r/6xVe1Ks47bBdoNSqGzrvvl3uFNQcIQot8RYVT93ixpgYQj6MnDmNJlzG5r4oAOxN4Iag2iHlzdJGU5R4owGg2DA8PvgbEe0K+sCrwGyDqqvlWDLdOQjwa/C34fg/R2w6KyVLPqhVHZAf2CNn/OubeGPIyu5nJWML5L4wRUCGP31bzKPPtrAnXc+xKOPhlizRvTPY2saGB/+GyuMZXQHK4Ng+3EryagSTnGmt4NEzzsl3vDGP5MZy5AZTOAlg62Bz0zQENOwenN4lAQdjd0E5QSpVAgj42VeOsNKVuJQ2d9bVs1h28ZHcTx6zTEsj85bFt2MOxNkBSt5/jqJT4VFqnDZr4M4DnzpS2sYH7+PL3zhDh59NMTZ514DwJ33S3Qv/Rjhmc9zSgv8aTCEqg4SiWxF1xGpwKp7JroIooscAlsl4rF/YJpJWls/csATTUZHRe3b2/uK16Oh/nr1xuNodA253A78/jeUj1fy1PN4ZtdtQzS6BsMYo+BRyac1CoaXbm+EaHRNeVbgjDN/BSsk8Q9qfi69Y869UeLim2v/fuYNEpf8Viz75q1i2QMPSRxxrbBT+vFdYtl5H1tJ2pr6HRONrmFs7O7yhJ13TmslbQoQ5VUgU5xTljbFvVwdPpf2bwCsrrpKzOc/iDI2LyeeHo3TnL6OY0JiVOt0D0N6DY3OBuYF8jg4dGljfHl2gpeSQteQyCdQ5doenkrkvq/YdsnHME2DwEuwZbl4kPQXbTbsOF+kwlISp3Y0cuncDHsyWu3Gj6xg1amrGBwU3dQ1EXi9grHq1FXoaq2JVen8a/RXdWJ//RSNrmHbtgvx+RYDNqCQSDxBIvF0TU6/YlJ5G3PnXofjmAwO3symTWcRifygnO9/NeuuTDOJZSVxuzsOetuSnsBxTExzfJImwrZNcrkePJ4jXnb7qq9BS8sHaW09t6bfSwNvLPYPCoVBgsH21xawqjdRxbb41iPOftfbH2t12SMgFXdju0EyKn+TLAt/DMxi6Y8SsCpNiFnUINJSW1MQN2XyjV/n4qOibF8B7X8VIM2zVid2bob4BQnsXUFwwbwrYMe34Lt9grFqsF1IHlCDHSx7x0fo+zo8Ow4b4iLtdMXR8PUZDeRyfgDG/P/B518XJ3GMGOu2LIfCg2Lg8toK4KCqDVBlizM/8D22bFtK9FiJq966ojyhp/r8S+FocHRBJvv8i2Tx4CWDpYGXDFnHi/HA87jUGKtOuxLdHSeZDuKPevG4Js/Gu+SBJIGrr510XSTb5hcPpUgg0n+mD/bmxDl8IBYuPxNtbReg67MBiY52UZx65YvwvmadE9oy/Nc2jeOO/ikNDdPZuvUO3O6ESAUW74VS/7Q8DN4IkBOz67zeIw9ooonQpgrH4L+Pelj5orjmE8FVvfG4dA6KEkTTOsrSjE2bzkLXZ6Mo+qQ2lLaRZR9tgQix3EKMgspuI8iWLeeSTm9BlrUpJ5DV9LHkwjUBlbhkKBSvt0+FsKajSC4uf7uYbFFil3wq2JJe9x1TPV6VJuxcOjeDU9zOpwqmyiW7yNoS3irGyuvyMjs881UOrAYGKtqjgyhj83Li0kdXs2KLuOk+ObOiDbhss/j5U8Vl1flpwzZwy25csqi/VRLB19Nj7SuMxx/FY0F4PcxfKR6kxIngWCbgkE09wXHqXzj2mD/xxZN/WTY7LWmuTmlcykMPiX1NKCP3ikRJJL104VL+71v+b3mmUbPeXD7/erqqUrT52vbbT8nks/h8x9Dd/RUWLLizqDuw6O//eU1OvyTuDoeX0NLyfjo7v4jjmGjadHbu/Crh8Dvo7f3uq1p3JVJ1s5Gkg39EK3qCPDt3XjpJE5HP9+J2t6EokydHHGhUXwO/fzGWlSwe0ywPvLt3f5tduy5F1+fS2Dj7tQWs6kxUUQ2L43vM/a7nseBtexWa9CYkJJr0Jpr0JkCYHb+pT6wDQmMlV29eKOBOgWXXAqvShJjXN2isfBGCLjevC3fyoWNX0f58iNY14I4KsGDGvLRvy9D1UpxURoCIwHahi5oXBFv38JE5Z+F4QWmYxvEdTcy7UmZHDNo8EHVmgG8Jz/QcCUDHjJfQ/G9k4U3d5F8HyaPEmDcY62bxrEc55sYZLFhwF9HogyxYcCcezyy++JYrCTedJiZVHOPm/K4zuOF9N9CgNdSc/3JWiH5xQUsuQWYkRcbRBWPlKQIrvCQjSVRXgnPmnUPQWyCVCiGnvXhdtTflclawaFcG73MvlK9L6RhSoUD3YA8JxOQD0wf9hS6WzrieUCpdfiZK7t0LFtzJiSd8ko6ufnZmAmwe8zJOgS+e/EuWLlxKMBhElj+K2x0XjFXxXij1jysJhs9hwS+6aGg4mUzmxQOaaJJMPssRR/wXACvfdinb0z5WvgjHhr3lcXuq91Yy+Szz5q3GNKPkcr2Ew0tobT2f1tbzMM1EeVl1G0rnDQZb7AZyhddhGDqoGebPv41cbjey7Cnfg7qqw8krym2oNo0+b8HHBLA6eUV5ln6DW8dBpe1dK2jSNH56xtW4XWGWLlzK2Rc9hd8lXoB+Fa5510/rvmOqxysQY+Sxx/yJFm8TPhX8CnhcjfzqzF+xuPMthLXa93uLN4zLNWWXT4qDwGD/pKj+givpjn7601fkUL3xXnqAhAkfnwE391QAVH8OPjZhWSkyZoYrllzBT575CXsu2fOyjr3wsyYOQhcRuwoeysBJHxJ0pNfKcYJvK/5mYQy5NAzbb1/KypWwt7j99OmVfZWA1fLlr5yfVPV+ZzfO5ux5Z3NS90k82fdk+Ubel37qG2/9xn7B5/TpX6KnZxXh8Ltwu5vp7LyIvXt/QlfXV2oA0kSR9Zw532ds7G4ymc2AyvDwLcyYcdmrFlTBoWugwuEleL3zGRz81aS+OBz6qupr4PcvoqdnFfPnLylqKgqYZpyenitoa/sY+XwEXYdYrJ9C4ZX7UPqXinXr4NZb4Y474LbbOO+P59HqbWXd4Doem7henVgIjNb9C/Dtyo/2S59h2TN38ouH8iz5djePf2ULNEs1wKr0Ebh04VLGMmP4x7YxN3QbctEj8MhvihmHl93Rwam+QdKnvo85X/gA3d2QfEbIMfbufJI33XwWA18ZgPe/n4aGoxnzgNrQSXfz17B7voeVT/LVN5/NDfNFJfAf3n4hup7E7xPlYMJ/2EF40ybsN53IoJojcuppnH+CQ/hrYpJF6R51uVr4jnElhIr6nkc6IZFg6cKlbBzayP1/aGDxW7+Orbk54q3Xwd8drJ6r0B9pIjN4MpnNoL/+SKw1u4l+/Ax23BcmceJ7cD+3iXg+TmPAIJ1uYMircOIH3gYv/IoXXhckdv+fWTHzZM65bRPnHX0eHzr6Q/C737Fi6VK++R4PV96TxetAQbWJuzSMkEVf8Bh+d88WLOW95WdifPyvNDaeTji8hHnzoLUR3njEqfz14TCnTXsbSxceAwjrslSqi3A4JDRW67bB5s10L1gAv/0tw8c9THPgBMLf+CxDL32GYPCN5X7a19jW3f01YjFxl719xomcPud0zl9wPufMPwf3PRezsG0hnz/+81Num83uRlF85PPCyPXII3+ObRsMDt6EJLkwzURNG0rn7Tg2ESeHktFRbQ+bcy7C4SVEow+WawUuXbiU/3nhf+AzT3HfR/dUbnbEO6Z375tYu+fXOA+vgCKg3b372zzW+zjTvtrDsaGjOHruO9i48ccA3PKTI1nzmAuXVMCluFl6zITaXlXnNTHC4SXo3vn4lH9wfMfRnDJ/GW1tH2b79qdZ0DxCY8uJ/PrMXwPw3HM/RFUPnMH412KsSjnmUsL1IIsvH2x0h7o5dzpM0yFnwVmdgi59ZxvMCwiQUy8/7ZJdnD7ndNKF9H4r0e/r2ACODOtPgRNb4blxcCQJSVLoyUjkYreV6dYVK2DZ37/FWd+6TWz3TzTpnBjbx7Yzp3EOZ8w9g/t33l+eAj5VbrtRb2Td4P5d8+Pxx/B6j8Ltbi5O873lgAws4/HHsO0UbW0fAyxk2f+yTS//VeJQNVBCJ7EbXT9qUl8IYHVo+qrq8HqPIp+PlI1C9+4V6VmA4eHbsKw0tr2FoaF/oCi+fe3q3yuq3C/dipuRzEhdq4VDiZJ+Je/z0G6JFL2WAtuunRVYiq5gF3vjuzGM0Uk10Uq/J1NG2Xk9kRCgrD+xveyqjteLnowh50FSxb7tgB8npZVfxgBKYhrzFmwmOtpZOe9IBI47nuakRX+/zowZk2tjKbIX28xU3Dmr3NfLsypzOeSCgZQQAFLMwJPLpps+uYCtgX+0D7vgIREHly7G66A/TzoVQLbCOLawt2gey5X9xUJalft98bhHpEQ/SBIEXVlemDOTjKGRy0FLS9WsvmI/lowqS07jkXiETs8cclLFGdPrhbEx8PmUit1CvHLc6v0oindKE9J6UTLNNM14TeHvAynync9H8PmOwbazWFbRtqPQj8vVhsczo+Yal8JxbBynQFoZJpd2YxheZEUcRxiEVuQsWTM7ZXUB05HwKLXKcdvO41YDRPMFLKu2X1Q1iEoBvwqSfPBjS8aS8KkgOZmqfYZQyJI1K/0tDEIPfL//WsDqEIsvH0hUi2uvOenDXHgE3D8IgzkYLwhtwKWvg7v6Rc71hXhtftqresGBha0LmdM4hx3jUxe7nWiQ+adnPlw+9qpTV+GSXZwzDYz/BCsHfx8WTuNpI0eT22HVizJrN3ygLAo+vtHFs480A5QFhaWI7vwjvd884rCC0ElmcQMDRC94PY3jtzO3cS6PRx5nPDuOerlK89XNjGYmf2N7XV4ueeMlrB9cv99jjI3dS2PjGUQiP2DjxvfV5MOn0hWUcufd3d9gfPxeZs26EttO0dX19Vd1geZDYZVKfXLUUb/GMAaZN+93NX0hQNuhMVbVIcsufL75pNMbiUbXsHv3t2hr+yizZl2J4+RJJp9nePhqNG0JihI4bMf9l4+qCsNu2c1oZnSyOeghRmnGVUZXaTd1sCyRGnRsbDtfnhVYiu5QN6nsbjRtOpaVxCl+FOXNPCpi2mY6Y5RrBSaTYtvhxK5yHUC8XtyJEeSq97zp9yGnPDUvXSvWzusWRoiNd+BThdaKSAR59mzGfDID/SFmzZqsqpZxYwXdFVfiKvf1eD4uQFqxfqA/a5IqpLCsDF6vWvax8kp5rM5GQiMR7IKHeELC7c0Tz8XR/RkymRCOEQRnCLq6aI4VCLpEG2vc7xMJCtM66E5U2IqQnGTbkbMZ6etm+nQJRfHW+FCZZqJcWqW5WQC93tEx2rVZpJ2R8nrVwKoMzCYAq9J+ZNlbt2zOVFFdqiWei5eB7YEU+c7nI3g83WhaF7mcuJ65XASPp6tmWXWUZv9m5CHSSRemoYMs+lCA/4rsIGNkpgR3BdupC6w0l4/xQg7TTNT0ryQpGI5MqybDywBWScPGr0rITra8T0UJoji5GlmLMAh9tTJWh1h8+UCi2gDtKPdWbLmVt7bI3DcA073gcTUjyR62Z1sJqmA4Gj/cGeSogPja+/pJX2de6zw0VWNO4xy2j9Wf0l7PIPOqZ+4sA6WlC5fy3u5pfGoWvLgB1AI0uIW+a9lmKNjQkxjmWxsLPLr9BgKB4wnFf8zw+gVceGGkbBr3ta/tFi/S7R8jcP+ewwpCJ5nFXf85tpy1gRl397EzupML774Q0zbLhn1pI12zfZPexA3vu4GvvvmrbBvbRt7M7/MY4+P34na3snv3Zcyadfkkn5R6uoJS7ryk7Zkx4+vIchDLir2qCzQfCqtU6pOWlg8WPWTcNX2Rze54WbMN9xV+/yJSqXUkk8/idrfR2XkxM2Z8g8bG9wA2DQ3TsazW/e7n3yqqKgyXGKtJHlaHGLadR1Y8JD0SLZYGpomlSCD7Mc3EZMYq1EUhvxeP5whk2VNmJPYm99KoiZdfOuPg9RYLGBsKpqkymo7UMFauxChUASsj4EVLecjn95bBWma8jcbOOP7AOOkRq9InXV2MNHoYGm5n9uzJ94RiqtjhKlFzVSHmRD4hwGkRgLRYHiLxCLadxedTyrjEY9nYMztoGI5g5TXiKQV3ME88H0fzJcmkG7AMP9gj0NpKXJdoiInxqYbVicdJvm4G0+IVtXzIjtE/YzZjkS66u0tsUuUlXF1aRZJgepdNbChAg9JJ0qkUePZ6YXRUlLkps1GJCqArFQYGUBT9oMreVBcXLvcZ7LfINwgQpWkCRJWAcj4/eVl1WFYGWdZJSn2kkjIFw4uqlhirXA1jlTEyU7ahYIOm1MIS287hUYOMZrNYVmJS6Zq0CQub2nCkydVK9hexgkGXvxGF3ATGKj8JWL16U4Hr1sFTT8Fxx9UaaR5E8eX9RcXE7UNEo39DVwqc9IYHufUzDrNnrUJ1Rmlv+QDL5tkcNedKzp57Ao9cHGfc/U6uPf1a2n3tLGoXjpxzG+dOyVjVE3I/NZbnmu1eNm8+mxc2ns0FnXu4dlcLO1TwPw+3RoSea30M/jYEJzSKbb70xJNCu2LdS0tonE995oNYVgbbznLBBcvYsukc5l9mEF7rHNbUacUs7v3sfOELbFn8Z+avhHetjvPnR26YUqheCr/bz9KFS9FdOkeEj2DzyORyA9WmerncbvbsWc7ChffQ1fWfk9arlycvmWlWFwf2eo+gqekDr+oCzYfCKk0slDw2VlsoOZM5vIwVgN+/mFRqHa2tH8Y0EwSDJxCNriGZfJoZMy7DcV4kmXxl7VP+5aIqFehSXIxmRg97KtC286iyTkxzaDZcAljJEo6sY5rxScCqxdtCQMmgujtQ1VCZ2eiN99LgFukuUb9OgAKfL0s6HSSW6asAK11Hyozj5CsvGsPnoTHnRlVDFAoCPMRH2tFaUoSaIgz3FT+qiixe/7RuJMmhqWky0JRNBTtUNbGiHmNV/L2poNIb78W2M3i9LkZHRdvlrI3V1UJwcABshfGUGy1ok8gncPmS5DJBLMOHyihOKERv0CE4LPZZw+rE44zPmUb7ePGD33EIGmNE27oZ2zudrk4LWdZr0nQTiwG3tOdoNF6PywoSMwfKy3W9BKxUbDsvAOmkVODLY6wmpgIPjrHqrQJRvcVl+wZWwgjYS0YeJJmQMA0PqlpK0+YnAaup2pC3HDSlFsA4Th6PK0g0n0SSXOTzA+X+zRgZUqbNnFAQSzr4yTijuQzT/CFc5Mt9rShB3JJR834TRZhfrcAKJlflfAWiJLyz7TTTpv1H+SU0Y8Y3aGu7gJGR39PZeTHTp3+JVGodhhETpqHb72X94HoWtwvjqDmNc9g+Xp+xmkrI/be9w8KXaewOtmSm8UD/KN3d0PUYeKqmTT8zDm9srN3XE0+cwFFvWEM2/RxNTe8iEDie4eFb6FzbRfi54hfhYU6dBgLHY1kZItH/pvNuifB6UGz49D0D+922ug8WdyyeMh0YDi+hoWEJtp09YAO8fYWmddd9+F8tYZopTDOOpnUe8r4aG8+oKVbtOBa53B48ntmHvO/qEMBqPePj99HY+E5isUdrpjcfeeQyotHtWNYB2Ir/u8QEjdVoZvQVYKxyqIrOmMuk0VDBNLEVGUfyYlmTgZUkScwOBsk5wZoitJF4hIBLJmW5yedkvMWPf78/TaEwm2R+qKKh9HqRMmNYVYaveb9OgyHXvHijI+2YwRF8TRH6erOVPunuZm/bkbQ299U9J8VQsIJVFjMTGSut+HtbG6GCRCQRwbIy+HwuUinBBClZG7vBi+1WUbU8g+kAetghnouj+KJkMiHMvI4ijWIFfPSHZNR+MabVsDqJBKPTGwmlDJE9iccJSQkswgyOzKArFK+bCqxmVIKtcUK5Bcimn3Gzcs5eL6RS4PNJFXBWPC8SpZTXy9NYmWYCl6utwlhVaaz2x1iVUoEeTyXtV7ts8rvNsjIgefDrblRVIpkM4lJFaSDbzpfF6wBZIyvSt7Y1aT8F20GTawGMbefxukW7FSVIPh8p929fog/D0Why21gcPLAayqRo1QO4JKPc16oawi0ZZI1ajdWrNxUI/xRgJYzC7iEcfkeNsDcWe5jx8b+UBdM7dnwZXT+KaPRBTNvkV+t/xRM7/pvNOy5j9cbVzG2amrGaSsh9UmuAeOJZYgU4LrCXU9v9HBWCsV3wyJPwmVb4bCv84H6YocMnZsA7p7USja7hRz8Z4p1vvpPHR2Fg+B4Gxp/EsGHvzBeEySiIh/9nP4MNGyoHHRiAk0/eJ5NVr/hmNLqGzZvPBmyanpTpf58wM3Xb8Kn18MSN+zYyrO4D27a55L5LkFZKTL9U4ZGZEsdf3sXqjauLacC/Egq97bCIzqu/tP7ZUW1MerCGpaV1qq0WDsXktLf3av62488Mxjfxmd9InPyzEGf9MkSikGf2T47iD2uXHRYD1d7eqzGMKOn0FsbG7qax8QyGh2+lufmDZZDc1nYskjSvnHr6t49cTrwki/Wg3IqbglV4ZRgr1cuImqchL5dTgTaecirQpdTOwOPSIAAAIABJREFUE+/2eUhYHhQlWGasIokIXsUhY/vIZdUysPL5UhjGXLL50RqNlZOP1ag2cl434XwFWFmWzdhoByPuPXjC/fT2Flcuju/D/tm0BvdSL+SChB2sgMEaxioXr6QCu7rwZ61yKtDvd5eah5wysT2QagvjVvMM5kLozaIOIN4omayffE7HLUUp+HSGmzyCTaOYCqxirKJeiUSDDv39EIkQ9Fk4eZ3BsW66tBFkeepUIIDWOIKWmYNZcIG7oi8q9bHXC7IsCjmXzot4vGY/E4+xvxBFirsoGFHyZr7sFxXS9i9er5cKzOVKLFb9j1bbzuBIGiFPiFAIotEQQd0gb+XLOsBSZIwMsiSTLEx+eeQsa5KPVQlYxXOiP6qBVSQewZG9NKgFTMc9aX/7i/50nEbNhUsyUVWh/1TVEB7ZmpAKNP+XsdpXVAzQ/MyZ8+OyMLpkLFktmB4evpVMZhPPb7+C5Q8vZ2HIYvk8eG4sxYV3X8iGoQ1TMlarTl2FptQaex4XVvjqnARJA/5rKygSXDonSX8OnCPA+A948yPin3ohOH2gKSpfm5vg4X98mNHhNpSZj/L6EFgIobvZB513VExGAZE+/chHKge+4grhDbYPJqte8c1Nm84kFnsY2VAJbpXKflvRReAx4cS+qY0Mq83nVm9cze0v3l5+kL75sM1be+ETd/dx3SOfZu2GD+DzLaSr6z8PyABvf1H9pfXPjuqCpNX31YEYlpa2HR29C12fe8jFpZ8ejeMev4rtSRtVgkvnJrhoVpqBnCiU6x67kqdH9z3IHkgEAsezdesFqGoTY2N/RVF8jI7eQWvr+eV1PB4oFAK43e2HfLxXRfT1QWenqCABZdbocIvXHSePS/YyKGdpyAOGga3ImJKnbioQoM0jMZJnEmPllkxyTohC3oVenKzn98fJ52dhGNEajZVlxslXAaus10WoIOHxdJPLRejrG8XnS9CX70VrGiYSkcS41NcHXV2Myd20ees/o3Lewaq2vq6eFVgtXu/qQk8XyoyV1yvGW10HOW1geSQSrSE8Sp5Bowlfi5t4Pk5Oy+J2FYjHvHiUGFmfm/Emr3j3MFm8HtMcEq0Nxel9EUIhByvrYXC8iy6pb5/idQAp2IcU7yaTkWgNBYgkIuV2FruzwkgVgZWTiGFZmfIs2jLwOsCwrLgQmhfGCGpBpKInz4GK1yeCqAPRWNmoBLUgwSBYlkKDbpM1snVTga2+1roAL2fauCfgF9vO4XOHhTm3KhirUv9GEhEUJUBQyVFwDsJoCjBtk/50HL+Sx3BkpKJvlqIE0BW7jnj9wOHSvx6wqppJ80pEMvkss2b9F4rix+s9sqzxiUYfnGQgtmDBXTQ1vR+tsGFSMcuMkeGaJ66Z0nJh6cKlLJm5pEzBtvvbOaZB44FheGIMnhqH2yLgViAoSyS/LEzhPvxHykVKA21wzvQmVEnluWdPBmBOOM+aEfjmJrhsCwSGodAqtk0eVdWALVsEQ1WysLDtfeqvSv1QMnbcsuVcWlrOQ1XDtD/VQK7RKpuZJo8S/sgS8KkXJNqTlE0MJaRJ5nPL/r6MvCU0FqVyHIoj/l+gCN1ZPh/B7190QAZ4+4upHv5/RpTa39NzJaHQSQdlWFraNhK5hkJh8JCLS5cMcI8KwFuaxfWSAQcx03XFFrHOoUap3YYxjMvVyrZtn5vU7tdcEebe3rJwHaqA1SsgXnepPsbdFoGcU04FWmhYVgLDMiYBqwa1wN6MUaOxiiR6UciRNTtQXWYJD6LrMXL5LiQnS7u/vbQQy22SKVQE3Rmvi2DWKbPFu3aN0tI6SCQeQWscZ+9erSQoAq+XsVw7nVJ9VlnJOti+qpdkMRXoOA7JfLKisersRC2Y7I32YNsZVNWLrheBStLAdjvEWoPoco68oxHs8BLPxUkqefzeJPm8SkjPM6LmibUGy8CqhtWJxxlTDTLtjeKa9vYSalQopD0MxbroNnbWaKwcx8ayUmX2A6AQ2EEh2k4mA+3hIJG4OE6JsdL1Kg1VIgHd3ZiFGIoSKBsETxTI7y9MM4GmdVMwYjVgfn+pQGGNksHlaq5J+5WAlcfTRT7fVy6VVQrbzmKhEtIEYwUQ9grWp2QJAmBYBpIkTG/rtSNnW6jyxH3n8WvhYiowRC5Xy1i51DA+OUPePjhbzoHkAC61AdkaJWtVZiLaki5K3EwSr7+agVXVTJpXIrq7v4ZpjtHYeEYZxYfDSzjmmL/WLSw5f/6tZCzqFrOMxCPMbpw9ZTpwT3wPD378QT56zEf5zpLv8KvdWabp8HTRyuQXu2FPGlq9DtPukQmvF47CWtGRveM+md/+5nOcfHKCK7/zewDOfKfDD5Y6rL9zOetjcFU/DJ8IjWfCPTugbLbhcgmG6oorwCy6Pe9Hf+XxzMI0E/T0XEFn58V0dX0ZWXbTePFN5N/QBd//Pl+87CNkrLeXXUl1ycVA9vOMfm2U0a+NYi+32XPJnhoz0Gqt1WWPgKuYWpcdWHQTPDs8hG3n0LTucr8fiuj8/yewAvB4urGsFKOjdwKK0MEdoHZMFDudQyLx5CHrzXrjvayPwd0D0CVcQjAcODJQuZdfVvHwKdrd2Hg6hjFQt92vuSLME5j3Erg5/KnAHG7VT0IDX9YUwEpVMBz3lIyVLiXZlUjVpAIHEj1IkophtuLWKhfK5xtnPBmm2aOjyMWXj9eL5YOMJb76AdIehUDOKT97u3cnaGmP0pfow9OUor8/WPPRPBxrYVZ+d91zkjM2ll71aiqmAtNGGk3VREmxRAIaGrADfqJDPcVZad7ybEY5nsNy20SbffiK0xdDnX4S+QQpJYdfFynpkGYSceKk2sI1jFWZ1UkkGHEVyHW0lhmrYLNGPuVmJDaNrsTmGmG5ZSVRFG+Z/QBIeraQGmkgk4HOxobyM1edCiwDpyJjZRmxspgaSsDrYDRWIhVomrGaey6oBfeZChRpwOlIklSV1s1imgnc7lYUxYcsezCMsZrtbDuD6VQYK4Cw1yRjZIqMlUgFZowMXpe3Nt1aFRnTQJ1Qr8hxxMeDW3GD7CWf7yv3TW+8F93dhC6lyDnKpP3tK3rjvYT0DhxzmKxVockKtgufSo2PlW2/2hmrf4LGanxc+CUdSMRiD6PJ8I+RyWah3aFu5jbOrWu5sCe2h/HsOMd2HMvi9sWsG1zH7IbpLAzCc8XJUcc0QKMK034L/e+1K6k8RLpt+O02y92ruPq/zqZz2jZAFPNcdK1ULoR8/FrIACcAn1ovVUBUoQA33ST+VS/bB2v10kufBGzc7un09/+MvXt/QmPjGWjadPLWIJxxBuM7NzP3z48dlIlrSWvVnoRPrgO1uGmp4OwZgWb8/sVloHuo4fH8/xWvv/jiJ5AkpWxYCu4D1o5Fo2tIpzfT3v7pQ9abdYe6WdQA72oTFQRKdbFv7qncywddPHwf7U4kHp/S0PU1x1hNGMdK7ueH38cqj6b6iXvAWwRWjiJTmAJYmWYCWYIdicGaVOB4RqRXbKsFl1a5UF7vGMNxH41alazB68X0Q9aWyxYqSV3Gn7PKafje3jztHWksx0JvNxgcbK75aB4aCTMnHSGXmlDWAlAyFrZeNRYUU4HVImzicQgGkUIhEiN9ZR+lErBS4nls1WKsyYvfTiFjEe4MC1sYtUBQT6PrFroLdjlj5DpaKoxVNasTjzOs5rGmdVRSgZ1ehgbCSLJBYGgHsqzhOAUcx6oRnJdizLWesUEvmQx0NzeXU4F1NVbFFKdp1QrgD5axsqwEmtaFZSVrWNKSMH8i41QKwUyJa6SqQSRJJZ3eWARbAi7U07BaVoaCLZU1VqIfS8CqYrdQBlZT2D5kTBNVqvWyLG0f8oSwJR2wyn0cSUQI6O3IkkPWOjg4E0lEaPR1AxbpKh19zpbRFSiYubL59aubsSoUBF3ccfCFZ/cXJWGwaSZJJp8lHH77foXBJY1L3nMywwW1ppil1+Xl3XPfzQO7HuCuZ87n9BvbWb1xddkU9KzfzOL05ii3bLqFxfpW4rGH+e5bz+e6G1eQtuCcaXDlAoj/WuaIm1Xmr4SvHLm8WNVc/Dx/Jfz3ny/juutWcfHF3wDgfx6DH86CJW4BVD48HfricFkbpBeJwSi6CHrPh+i8HL1n1XpH9Z6VZ/DDczj+8i4+fJPE6Te284e1y9iw4f3E4o+wPqYykurjL9tz9Pf+jB39e7nix6eQaTOY9sujed9tL2CaE7zGcjn4xjcqv1eL5QcGePq3OrNyOt99sFLjqxSyA++LjHLrtmdZvXH/aamJpqv1tnG7OykUhrBts84eDk9Ui9NLP0eja9iw4X0kEk/Q2vpRRkbuYPbs7wEWLS3n12jH6k0WEMao70WSFObOve6Q9WbXvG0pK+aL9PW6GCIX6IifV74IK+aLdQ416hU4ndhuj+e1DaxeOcaqCKw08KTzRWClUHBULGuyj1U+H0F1dRCJ95UZq1QhhUoet6sBx2rFrZXYlxxeb4KRmErQXcUG6DqmF9KOSs4U7FbCI+PLWmWWIxKBadPFw+5vVkgkGsju7in3yeBgIw1OP0MvPT/pnORUAdtTBayEBXxFuA4CWIVCyKEGWgw3ppVCUUQqUNdBjmWwFJORZp1APklQShLSQ7w4+iKKVyPgSeHx2LhkiW3GIHZ7G4yMgGFUUoGOA/E4Q0oWp7urwlhNC7Jzezv+cB9EIkiSVGaUql3BS9FfeAlVlRgYgO6mlkkaK12foLGaPh3TSdUAtIPVWIlZxV3YdrIGzLsUF27FPaVVTinlVwpN6yIef7xmWb0PV9vOCmBVTAVqmkXAJZE1szWzAkvAairmLG0YKFgT9i0Yr5AWwnTEfsqpwESEBq+on5uZPMlwnxGJR2jxixq8SaMCNLNmjpwtE9Y8ZI1s0ZfNfhXPCuzvh/b2iuPuYYySMLiv71qCwRNJJJ7ZrzC4ZLT4piMv5T0zjyLqzODyF+HElgYueP0F/OaF35DIJ3gpCZ/rHuLaNRfwqT99irDUw/J5sCFucOHdF9KX93NOy2aO1LZz7++Xc3yji0/NhDsHw7xnXReKYRJeD7/6/QqSRwkN069+v4Lwevje0LeZlRzg83mTLx29glW/UFm4Ar4QU/j+w26aN8MRnRAOK7y0zCZyjhCYSyZs+TYEXprQD1tsdn4pzee39PFSEr44cwh9/Er6Rx9gzbDEbG8OtwJLmlLIJhjP/YV3L0yABN96yuFNfSJVWROOA3ffXfm9Wix/xRW0rdvGvbvfzFlbJSbemh4Lpofh+bEkF9594T7BVT3T1XrbyLILl6uFQmH/lhAvN6rF/oHA8WXD1kTiCdraljI8/Ftmzbqcrq7/pKXlHDKZLTXasXqTBXbvvozOzovwel+HongOWW/2xuYQmYZLeSEmcVQArtke5Jodwux21J5OoembvLH50BmUegVOJ7bb7a4Qp6+JmAJYvRJ2Cx5XgIQGWjongJWqkLfVMmNVYstApHq8+kwiiQiqGsQ0E0TiEWYGW1GUILLVgttdAlYJgsE8w1EJf/WMqFIqUFLL2smE5qBnDNzuTgxjhL4+lRnd4pwbvA00NQ2ze7dwObcsm+HhNrzuKOPbXph0TkrSwNKqGJUiY1Xtx0QiIQBXMMgcpQXTTNekApXxDLZsMBzWCOXiBOUUIU+IbWPbcPt0/O4UXq+NKju8ZAzg9zYIm4O9e/G6vBSsAkY6CarKuJVC7p5RYaxmNNDb04ba0ItTZLmEgWe2aOpZAc/JfBLDNujukshkYFZr2ySNlWCsqlKBzc1YQQVVqjiJH7zdQlywTHaaoFZb7WBfAnZhq1ANogSwql5Wz33dsjLkbMqpQLfbxqs6ValAAYiyZhZd1WvLBlVFxjCQ6wArSdIIasGyQL3Ux5F4hEavaFvqIMeXSCJCe3B2cdsKS5Y1s+RthWaPh6yZxXEMJEk9KGD1r1WE+RVMA5YG+40b300odNIBCYNLOp98vh+/M8DuL42U01Uzr51ZRv3riwzAd462eHDI4uSWisgdMlz25O0c5W1j5u3C7XrVQjfHvf5+zggvgSJh0NcHdMFl7sqAcoF0Mzjwk/glNK7axLX2n8UfBuHsFxzABBsWfEdhy3csPJ4j2PmFXQSDb6b3i1uYf0mM8HrEJ9GuXZBO0zBnDvNXgrMcvghosiAyokaOYxuEIL4xA99+A7jGoHkuzF8O278M5w7A0UthqPicHsc0nl01DIYhXAUHBwXIKonlr79erGjbHPmHNeVUFLrO+Z8I8N1bhjniS3Dz62HHZvE1s+zvy6Ys1lzPdHWqbUp0dfWAcDijYmx6blFTlUGSHNzuDsbH72XhwnvK91Zn5+fYtevSmsKl1ear7e2fZnh4NQsX3kMutwvDGK05zsvVWXV3f42Nub/wthnPcMsnHi4vP+lXJ/GbM1fy9llvf/kdMOE4E2NiuyWp8oX+moh/EmMlzBNDxD2gprJgGDiKStaSp2SsfPosJJ6j4LixrDiRRIQZgSbBAlitaJrQH5lmnEDAYDQi4ZGrXnZeL6YPUgl3ORUY10DPFJBlFbe7jb17NebOdsNzAky2t4+zezDL/DceTX//GD6fhN3sJb1rwpcfICfy2K6qdFBRvD4pFRgKQSjEDDmHbYvZeV4veDULOedgk2OoQcVHmpArIxgP28Tj9RJ0J9F1B0lxGHfbYr/Fwn7SzJkEtSDJ4T4ag4JZ0WbOgZ4eyGQIHdGEaarIjXthTx6SyTIwEuagFfAcSQjH+q4uic2bYU5rZ91UoG1XiddDIcxmHdWuPDAHY7fgOA6WJTRRDhJhzV/z91KqszMw2Scvl4sQDJ5Q/l3Tuhkbu5v29k9ULZusYbXtDDnLIaSFMELg8TjCvsPI4KmyW6hmrOqlAtNmHlm1cRy7nHqsTgXmbAUVUBTBKtqOTVAXGa6UWT+9OVVEEhFOnnEy8qiPhJHGcRwkSSJjCCF8WNPIGBnCmo4kuV7FtQInzKQ53BEOL8HlaiEafeCghMFudweSpJDPV8zdJop++zLgluED0yaL3Hvu+iT3XzTIz38u0o7vXJKisXEJK1aIwsmSVBmDb75Z/AO42fkYAMc4LyDZFitYXtmpbZd1To1PQ2vPXHK5XXg8s0gknqBj02zCm4tfqiXR+ve/jyUJYXzTwzC7QRiRPj0OLVql3efcLiwc8h3Q8WcIrQfPMBgttfYKn7xnb1nEjmFUxPKGMamNNTUgLYuTnh3GZcHCODRr0Jup36/VMdXf6i3/Z1guCMH2aaRSa2lqOoPGxneTz0cm3Vuh0FvIZLZTKAzXbO92t2JZafbu/VF5m1RqPX7/oomHetlx7457OWNOrZ5wcfti1g0cvmoGBxqvKWBVZ1agpmhoqraPjQ4uROFbC2+RsVKTKcFYuVSytlxXYyU+NrrpCnURzecxzTi98V6m+RtQ1RCS1TwBWFmMx2VUqtL/RWCVUbVyKjDqsvCkxc+a1sXQUAdHze1AkRSCWpBp05LsGlegu5sdO0Zobx/BmNaBuWfXpPOS4zkstQrIFcXr1TXvqhmrboKAgSx7BLBS8iiuAJaVIS2buDWToCtX3lbzeQm4Uni9Dsg2Ca0IeLu7awTs6bEBCAlmxds5Q3w8BgIEWwVI8DQNlbVXJcuFiYxVb7yX7lA33d1iqJzdOl14LznOJI1VORUYDGI2eVDMyr1yMKlA284BMrKsYaHV6uPYt4BduK5X7ltN66JQGJi0bCKwsqwMGdMsM1aaBh7ZnjQrsEa8XqcNGSOLjXCir5yPSAUGtSBZW0AWVQ2W+7aUFkwaB5cLrGwfJGcr5Xs5Y2QwHBdhzV1k3IxXBljdd999HHnkkcyZM4errrpq0t9/8IMfMH/+fI455hhOPfVUenp6DrwF1fFP8LDK5/cybdoXD0oYLElSsRba+rI25qK5obKQfVEDfP/1gvnJWUIYfOKG5eW/h11NNDXt5YQTRbrsTw8o3Pb8sjKwchx4e5E8cBxwig7ATjFx5iDhILGClbUNK4KW5AKLaMN22oLnkMvtQUanv/t5okcXAU6hQObn/03uFz9DdYQGa/Q0cA/CoiC8vqEiaP6gBedZMHw6zLgZBt8PiUWgjYDdJMTmbUmh7/rUeqlS29E04Ze/FCyVZdW0sff8osdWleD9lFNg/f+FC8ZA74GjB2DNk/CVLjEoVWupmq9upvnqZhzqf5HUE2AfLvf11RtXc/Hvwhz7I6ms6Vq9cTWn39jOV34n0Tf4e3LqfGKxh4nFHqkr3u7r+yE+30K2b/8/5eXj4w/x5HMnYToOKQM27lzFH9YuI5lch9+/+IC0ZNVtnHntTKSVEurlKtLK/8fdecfJVdb7/32ml52yvWU3IQ3SSAKEIqJGvEJQBC5IMSKCCioIeL2ilNxkCREBC9wrCpGiXqI0DaHcULNCqClkSdn0ZHvfnZ2ZnXJm5pzn98czc3ZmS3Y3FH/6zSuv3T3znKfNOc/5nO/383y+ijFn92++n/veuy/n/IVlC6nrHFkF/+OyNTvW0J9qZ+vetk+0XfgE168Mt/Ctt6SkdjxOWVkZiqJw6bxLUZepKIqCoiiUlUnpgr17r2Hv3mtyqhnvsb6+lxEo/ODF6wnaIdDVxKuttxCdlSSmSWCV1JNEw2+zffs5BAK1xOPNbOtu5VDgEL944z/Z0byO69dfz5rffZZn9r3MjrZ27GmO1UsH/kZ7sp7m3VUIPcy69y6V1284zAMvLUdJWhkIvckPf/gWvfYUXWcP8JP5v8MU9tPbW0Zd01punqyx6OWbGNDf438blhCw7mTv3h0MRKy8HqhjUv1r/PgRP3/d8Bv47Gf5a+39NO7fTvjQDhbdXiUT16c2QyTCpy+/laqoVXJjFx2kyfZXdpbuZU/DOyQ0QfE9JTQEnudvtVtpV8OEY40UmpqhIkkrLja+9xQL/BB07CeVbKClI4UwaQTt8J+v/Cf/2/wC+1+/mnW1N3C6r5kfr/sCWyL78dPAPS+eRNsZdrbf1Af9MpNBqOkkEoV+Ard9iXCknaUPfJb6H1/K89v/z1gn/uMPl3Hrsld4/sA9mEw6z+xdS1JPYrrdxIKHjgXgksen8ugHf+b6Z79FIqXyVP1Kek+IY0lKQLxmxxrm/u4EIqpMeJ/hxmbf04FALes2XcaUe6dQcpeLYCLJXzf8BmeXSkU0kSNQfLxXI958mL33lLN32+Xs3XsNz7/zeabcO4Xdba9w92sXs37D6ey9pxyHKtfjdzoOcPZDZfz8rwrLXr2e5r6tOW3va32Cd9vquPGlG7lz808JhHTsphS0taOHA5i6pachmozitDpHJK83Nd2NRz8AwoJ+zhfggw8IXDEfLRWkre1BZrqiRFIACk/Ur+Px109mSf5uLnz6GwAEE9q4BJUz6+VMy/vc+sI5RDSFhLASTUbZu/caUl13k8KOzyaP9ffXktTi/Pq9u8e9fo0JrDRN49prr2X9+vXU19fzl7/8hfr6+pwyCxcuZMuWLWzfvp2LLrqIm246yq3yHyOwyhBsQWHatF9MmBicyYWW4cacNf0cVsyWJPRVc6DKCXFdAqvfHoR3/7aClXPg1EI7gVevY8HCDVx82R0ALN+lY+v9GU+9fysA4TBs2pTV2ARS0gQWSE5V1eMm+rqfl2RpLYF3p5IjGmrTwKINlq94FhwtaTJ5FqH5ByfDrpVSr+qYRzFEQYUJ1FJJNl/2OtRsNGNVhnDhVHUQPGWZZ0+ugGlgAfR+FtwLYXExlO2CP+wFy3fh8p1Th3GpemO99MZ6h9ULuUKk2fZRSC5k+vFudz//NUuKal75zJXc9/dvct3kThaXQDApeHDPfpJ6EhD4/YuHXVsezyIikTqi0X2GaGjd9iWY9ABxDcwmuGuPvCb6Q5tY37RvXFyy7D42BiUY0IQEtdlz1j7QnnP+grIFn6jHKtNHzTwAAx8+Tc9E7BNdvzLcwiuukB7aO+6gs7NzxKKdnZ0EArV0dT1OV9cTOVy78R6r2/lV4ppOd7SbkB08MZ0ntrxO65Vd2EUXKS3EXG+KfXu+Rn7+F+S11/13frHpTxyXF2dpNSR1nVgqxsEXVtAZjfDE9ldwOiKs2bGGBzf9koSlF/pmktLhl1vTSeTX/hcPr13Bl9r6ibTexL33nk7AnMS3Q+Pu7d+j65UmhDATf+RGPlcC5kVwUvIQmw+eyfbg9ezY+R4tzdM52Ryj8yaY/XKQ3ptvRN/4Bj0330Bpl4bDLAWEf75pLe/vuIDAiSbK6g5wwaY0N7Ze44NgkvZ/20ZZSZy4DlX2XsrzBmg+cAY90zWiiQhfzNtI4sQeGsLT0f/4E5bPgkgC3EqAvi4Pull6rACmNA9QuCmCO/LfJDSdy0+H4Llyw1JvLMjB60L4N+m093wLgJ66swkVtlD/jQaSnUHOe7ebYxIwbV+EK5+5kqvWXcV1L/Xz6Sb4/KGdaJqJq9ZdZew009O59G44rhO7ouIV0LYIbH13koyBRbUY986B/masJtCFZnB6f/P6t4zMFe9vP4+fb1pLY7ARlwVCSZ3em2/EEUhxyoubcoSLLyrehXfDcrpmddDZ+zgt7X+ASC2L8hopdUDLQBib+jZdszpIrpcyP49t+2++W93J1gCcWxogGt2X0/bWzn2EE/JFvk8/RCTkwILK7Af/im7WMP38V4BMZ2OQ14dwrDyeRZzufA2zmkRsfYfAivOpv2A7IpXA6z2Zz7lfJ5VoQVec/OaN73BafpzFJWDT5I70VHzfmLzp7PVyTxi+P6WH9nA70ZRCb+A1uroexxLfiNUEPquFSOgtttd/g4Fkgv5k97jXrzGB1aZNm5g+fTpTp07FZrNx6aWXsm7dupwyixcvxpX2a5566qm0tIycA2pM+xiBVTi8mRkzfovVWojJZJ8wMdjjkcAqc15R4iVsrhP5fjrlmqrDsl1S/NObjsCt3XkMl1tlvPryq27mf7WlpVyFAAAgAElEQVQtYIlQ11DFinrYsOe3AGzYAKecAsszkb533mE5KwCMn6OO6zgJfkBn9kOVVFX9B9UvFROtFjmioRakzEGmvDkuRaG9v5C8quM80NEMZbVQUivDhYAhCqo5QC2WQOxz7VYuCk7CnBwfWzBTR/1yOHyl/DlvGUz/TSHhL0KiGGI3SFHU4x/Yw71rfzpmgmeASk9ljhBptkkhuw8HrDKcrgyHbvks+EZ1kluOTVHbDfelVTYcpiR37/cyd+4z6R2nuddWfv5iZs58mEikDp/v0xw8+J+k9IRxzdT1S67bbw5ALJXilto7R+WSjdbHsSz7/DklczgUOJSTC+vjNKOPlk9+W+Antn5lC/EePCiPPfroEU+pr7+YuXOfYe7ctdTXX8yhQ7eNcOyWYccOHryZ+vqL+e0hB7G0czhpgZQJ2g4n4XcKC2zvEo83snw2zJ79pJHVwKI1ssivsnyWvN5QgISM0UY0GIhacDvktWIhAfag8dmuYILf19mpP/UlAMInFdPVLb3oyT1OAnXHAPCukIvO1It15t4Gc5dB4WnyXmxvqaKhQX7u+bZcFy59Cr6xVcMk4BubNXxh0O3SO364QeX3dXZ23arR8E2B6YuHmF32APnvJbh1y7N88FeY92WwKPL+3BWT90LsO+AwA7qGI+2Bm3qxzn9vhVACvCbpLRE2GEjvsD65DQrqYO4KuLwa2tvAdIl86by8CmbVQPXTcOLdg4Dg4He6mF0DJS2wpAl0J8xvgIJgkoL+hCGGfFmTHH9CywqpWmW/fn4wxqcK4eRCaPqpFO4NDEQxx0zGvSOAhC7pJpn16CfHqmzZ9X3q6y/mnv0u3u2V4TO3RQYSLn9fwxKBqvd3kK/OMoSL+6JFBE/bh38bkEiRTCV5PwDfmwYpAZdUwpxl8ntrnPY2AFdOTlKzG55uhZX14LeS03Z/QkfNsD3scm6tisaxL7yNsILy8B+ho+OIOlb5+YvZ2DIfYdNovExQf0UDs2pAKDr5ieOp5yJKtdeIp2L8ZKbKsnq5fn4/nU9+aUXzmLzp7PUyM4/lDsFsT4yOQ99l7txn6HL9gDJrHyd6e0l1LuPBzH1mGj87fsyoYWtrK1VZYGfSpEm89957o5Z/+OGHWbJkZI2o1atXs3r1agC6u7uHF/gYgVV19U0Eg+/mbBudCDE4L28Bhw79FACv9zSE0HCmtqKY7LgUlf9tRIp2vr7COOeRHx7ikfTv3/xaerEu2Q4HllDnX80H/UF+B6xfD0uWwI9+lC68bVsaTq0wfo46LuDsx87m2kXXcu6x5wIw6Wf7aH6ngkkXDsgtqENOf+Nt2Pxp+Dvw3GeAfnmR/ellOHZHOqRphocXwnVflucsyofV550Jd73KnJE68v3vw+rVMgxos8G3vw3332987BcC/U0/jd8IMXnyMvK33Y73B9+hIfUQfadC9Z/SYM6m8c3nWtjy5VGHbFjN52pGJbqPtHNlopbN3arrhx1B+Ppk+HOTFHf990rY3AePN4NC1zByeva1VVp6MQ0Ny+jpeQZFsWMzqfypUdY7xQUnF0iu27Z+MSEu2UQEPjNlbWYbxxYdy86unSyqPLp0OROxxmeuhNeXj13wY7BPbP26/fbhCqjZIfERLJuL53BMo6lplbw30sfy8k6iqenOnGN+/2Kam3/O5MnLeHvjSi7OUqYJ2qEgBupenXp1KgtNe3ix08r5xrmfQxdwfqUM/b/x9HJe3rDCOP/Rb0pvc8PMzTSv+yaNfx/87MKz5GdPpP8DXPLdQX7UszVrSG+tYfnPngbgjAuyvNfpF7XLvj14Tubz/2KFQXNw6NLxrTkGveMKPSg/hcZvQNVjCvkvvwYDA9THQzR0wNQP4Nm9y/njHwf7+/mvDPecZ9rLjlGccb48dkL5ChQh++CvA1svTJ8GIgmLS6D7Fck1XcFyajYPtvPpdJ3fzV/B7dYaUnlgaYdlO+U6emdqOStZARnQsWJ4vz74D50lwBVXrGCep4a6Ioi5UliiSs79reryBUzV5brRq8J5ZSEqKpbx8qt3GOXcZijtkWnHLBHQnAJWriT//vsBQWVeG4oKvWeAOQzWhOAzxaBqYDdD/xtQ9L58Ea943kTTZTrr2gZ5w1v6ZXQmu+1Fs2D3s8vh/wbn5szPy7Fe8fAKPqfdCStXEr3yeFyW0cnrp/2xHcv10HqhpKL4dwACTHfcifj6AhojO5lu2cbTLYP9ea5Nrsvr2uC8MZ7nQ9fLun7YFYLTCsHqv4j8/MUE2INFL2KGs5O482JeXDOLp17LjOukI9afsY+UvP7YY4+xZcsWfvzjH4/4+dVXX82WLVvYsmULxcXFwwt8zOlsMhm6j8aczhkkkz0kkwH2778OXY9SWno5QiR4q8/NueWw4IIaXDUmjj3uXQCu+lMBtbUyXGYIe376LjhwNiC5QUIMAqujtQVlC9jWMRjasVg8eDwn88WKEeYYqCuDSRboypK4KgvDZenFAAbFOzNJls3WitE9QJm39cyDZATR0K6uJ9C0EFZrseQgHXyafXmPoFvlDdT+lXSoMJHgqg+UIyZ3BplCZ/2B9aN+/lEkYs7mbp2cL9PCdKsSUC3wD4KhoWVHMqmh1pdzzWREOt/rk3XNyIPupG/UukY6PhGBz+yyQ6+Zj9Mmn/8orFDk//+P7ajXr/Z2+MMfhp+QSAw/lmUZLl4gUMvAwLacJOSBQC3B4Bs4nTNzjvX2/h9Wawltbb9jcXkhiaw9ISE7FEbBNMfMcfZDgJVzSlNG+LCn5xnMyiCf8vjzanjxVQU88qXvSw8o8MUfMWvuGxz376u5/BGFKx+S7vffrjVz+kqFjhMV1vx2JgBvrlXoWSQ/j1lNBif0zbWDP/sWyP+ZY288p/DGc7mf11BjrDsKYFFBt6XXoG1woYBkPhRvgI4vCwJbHwKHg0n5k3FNA/8C+OIlNYNrLPDqcwrXPajw+nMKr68fbK/9RIV7H1Go+4o8VvuyQtmPFJ7ursGWnsvYPHAUQ/d+wAK6gPJFMDAfVlBDz0kKtRtyx/CD02vQ7ZBygWNA9vvKbXA7NQZHFqD0R8rgvZC+Hxbcq/D8KwrnnFdD4t/kmmDyWDAP6Dn3rKqlvXCkxX1d8EHQQVvb7/hiZYlRrjIJkzrkXJqjoNtlOrO+g0+RSvVRtAGEFUpfkhNu0+GNZrCa4I0WOdbwfLkety/RqXwMzi8jh1NsM8Fr3XlG23YTVCypyRnXW08ohKcqfOuSmpxnQoZjNYy83t7OKaEWUm4oewHavgJ9J4IpATz6KFUD+5lk2s26Dp+xdi7ww5fL09d0BWNSe4aulwv88sV2TZMJNfAUgUAtJnU7flMvbckirNH1nHv5b/jjCxNbv8YEVpWVlTQ3Dz5QW1paqKysHFbu1VdfZdWqVTz77LPY7Uex8+XgQQgExnzL+zA2VPxsvNbUdDf9/a/jdh9Pc/Mv6eh4hKKiiwwByFMLTTzVauVnc8D/zFNEU/Lq/3pV0EhEe9c+O8tnwdwTXoLDi7H8/U5WnbmK3buhvx9mzTr6cUUSEX7+5s8NovO6TZfhdM7g27PmGVnNF/jh0vTQt5VBvhP6EhZsZhtlYdjxW+myzrbMG6PL6uIHp9+OqjaPqNjb9OS/E5iX6yYNzE3S9OS/y98Dtezbdw02WyU2WzklJV9nx8Gv0flFnUmPgzlGToJnRRejJncG2Z8vz/wyf9v9txHJ3U1NdxOJ1JNM9tHb+5LRh2wC55EsQ248zdto3Lw1c2BbQL7hmICa2TDfB1sDkkd336dOG7W+DL+vuvpm+vrWG9fMk60WfjYHTi+UGixfKIG9YZ0rjp3P5ZOHJxRtDDYOG+uqM1fhsDiGlR1pzrK5aJqu8aOXfzQucvxoNl6C/aozV8k0JP8A+0TWr5Urj2rdknIb57Nz5wXY7ZPweE7MOVZQcBZms3vIsS8iRJLZs5/k21NiZEvrBB0ws9yE5WrBut4F2BzH8OeWPIPXt3fvVaTMJTzR6qJmN9x8HFhMQEISlKMaWDUfZnuc751wBT6bhZgi7+v27nJuCCrsvw2Ux+VCMrsGdt8iP1d0YXAoZ9cM/ty5Uv7PHMsZf82Q5PFpM8VBT1/S0Xlw4DZQktJ7MbsG6m9OEjhe557PLGXxOZDcCB+kwzorZ8vzmtbAybUmCWfEYHsHboOZGhhZe6yw7A3IZFHJcFBNcSgug0MvSoBS/qQ83nwR7L4NzAO5Y0i6ZZ81t/QS2TTIVozI2IqNwx+5y2fBw4chlYCBh6Rwr6fUhSWss+rMVcYaHk97rBb45TntcYUp5ecxe/aT/HhGlFML5XV7yUGwpNkBlghoeXI9rj9wOaakmf4TYNrvoOd0EGbQzfKl8XcH4VN+qPhz7vc29U8W+v9oYvksySlePgva4grzpv3YaLvErgyGAhlsO+kHU3oPFZrGiQ+vN0KBQz1WgQe+y75bBe5DULJBtr3nFkCT/S9NPcz64CJOmnM/d+2zs3I2rJwjv/fHW5z8cr97TN509nxm5vGufXbeDh+HVnQbO3eez7TUo7SJBQT1Yjpd3+VbU2LYJuiCGrP4okWL2L9/P4cPHyaRSPD444/zla98JafMtm3buOaaa3j22WcpKSkZpaYx7LbbJPH5jjvGLnuUdrTAKkP8s1qLaWn5JT7fZ+ntfcYQgDzh+HVcPOdCnmyspG3bhXzhipu5/IqfYbdVEgi8zE03Hea6zz7MA02lzC3vxVbaQOrvP2XpvKWsXy93Dh9tNpc1O9bw0LaHpJBZmuj8801rae14DL++kzs//zNO8CvyZlC9FDoL+aAMbD5Y8YX7eeS8R7j7nTwKY4Peqoxl+FSrz13N147/FiaTfViOKADPm93U35LKIafX35LCs1HKC4TDmykqugC//zOoahMdHX/AGgJHq9x16NlDToJnhwafyqK5uK3unATPV8y/gqfqn0Kk/w0ld3s8i9i9+1LMZi+7d19Gc/OvDOLmRMmNy2fBl8ok9+D5DjitAFDkW2xfAk4u9nPHPBufmXH1qHVmBDSFSBl8lxOOX8fZ0/6NRxvgqmPgcARKHKCmwpxgeZZjSs/GNMLtOXSsS+ctZem8pbitUkzQnN5QcKSk2Gt2rOHJXU8ykBgYkxw/nnkaq47L5l6Gx+ahPK8c8j7ZXYGfyPr1zjuDEiNDrHSUUwoLJc+zpORSSkouIZUKkEoFc46ZzV5UtTnnGEAqFcDrPZljp/+CIlc+k32TUVBQ3Q5OmTmV6nWz2B/Lw2wtJ6LbjSTzkyb9iLL8k1l97mpD7FhNmkD1MvnYt3DbSzh7yoVY7Conl8/h7KlnoOEATwt9vTOYUehkTg109lUxs/gD8uskL/LGebdj1+S9e1OpFDZejvxZksXZvHHOCuamuTs3zlmRc89nW0YySzdD9DiYtRKEHeLFWevEtCSnFPmwBr6GWzXTpUKzWsjGXgsX/NsKIj1eFhV7mbtMesS/df4Ko79uJzhVha+fV4uSVPhMt8XICBE+DmbdIblSVXfC3joFJQKKQ7YbOBGm/wZswcExzq6RgEqzQyoNrDKc1mxbzgouDlYx2SfVvs2KmTlfWcGvD3r5IJSHzw1qu5tE4S1Y3GDpT7J03lJWnyvDz6oGLrOJ4zxwf0Mh5Z5y5hVNJT9/MSccv46fnnwBDouDaXGwpYGfZUB60cLTUhzzbBGWiMKcGqh6Wn4vpa9C2atQtNnNyz1efL8Gizn3ezMnU3z5/Sru2mfnxHx4oKmUYs8svjDlU0bbkz1+ksJsrDc3Fd6LJQKJbGCVSFCxo2FU8np4YDNzasDZIcFgfh3M/LV8NoanpZj2YDG7BxwsnbeU6z7zMLXdUNsFATGZX5/1a+oH7GPypjPzmWfN4ziPHMt1n32YY/KPIWqeSUnJpbTrs1DNk3GadPpENcfN+BVFTj951rzxr19iHPbCCy+IGTNmiKlTp4o77rhDCCHEsmXLxLp164QQQpx55pmipKREzJ8/X8yfP1+ce+65Y9Z54oknDv7R1iaEzSYECOF0CtHePp5uTdh27LhQdHY+flTn9vVtEG+8kSdef90lNm4sFH19G4aVWblSDmHjRr+orUVs3Ogfsdzy5bLc0qVCTJkifz9am/zryYIVDPt/1u9LRG2tSazd+Bnxf6/Zc/qRHOgUb7yA0CMROfdW67jmftOmeSIUen/Ez+T8eMXu3d8Sb75ZNGzc27efJzo7nxB9fRvE3//uEK+/7hYbNxaKs35favTZ9xNE0IZw3Jo7lsm/njyuMWeXk+1YxZtvlovaWsSmTceP2K+x5nPBvYiXXkPcuxax9iX598n3IV7bgLjvGbN4cYNzzDpHs7W71wrnHU6x4F7Ec68g1r862EbpPaVi/u/mj2us175wrfjV278ad7vjqfOjrGNj40Yx97dzhRBD7vtPyD729UsIIe6/X4hrrhm1fE1NjTCbzULXdbFxY77YsuVk47NkMixqaxE7dlyYc86OHeeL2lpEKhU1jm3ZcpKorUUMDOwWgcAbYuvWTw2ecMEFQlx8sej60mJx+sOni00fXCKu+t8i4+Pm5v8Re/d+L6eNl1+eJ0CIs856SfT3vy2uv16Iy675iXit/hdi585LxO0vfFaccOZB8ctf3i/a2h4WQgjxwx9uEN/7Xq248pkrxUNbHxJCCFH2izLRFmobc96G2lXPXCVWb1lt/H3fu/cJViBe2WATyWRQCCFEItEramsRr/7KJt5tfleIt94S4tRT5Qlbt4r6u/JFW5vsx5rta8Sz5x4rxF13CSGEmHbfNLGz6QmxZcspRhvbti4WvadahXj+efHGixaRSAQGO/S5z4noq4+Jt9+uEuLb3xZi9Wrx7rvTRSSyxygSDG4WmzefIH7x1i/ED1/8oRBCiPXvnS/uWYmoXWMTweAmIYQQu1/6s1xXzzhjzHl4o6FWvPYqQrvuu0IIId55uVhEbrhICCGEmlKFucYstm49TfT3vyk+8+hnxIZDG8Rbb5WLvXu/n1PPaQ+dJr7zJ7s49OcvCAHij7daxI7dskxX19Ni+/bzxBM7nxB/Pe9Y2bdt24xzv/63rwtWINbuXivEcccJMXlyTt1nP3a2MNWYRFJLih07LhBdXU8bn214c4b42p9Pyin/8ivHiuYLEe88aTOO/fDFH4pfvv1LEU/GhfV2q9B1Peec73+zWGz/nwrR1vaIEIGAiE53i3femSLnpPkdcfLv5X3TOdApCu4qMM6LJqLCcYdjzHnO2JLHlojn9j5n/P3VJ78qHt8hscEN628Qj7x5pfjLa9PFXW/eJYLBd8WWLYvEV5/86rjXr3E5uM455xz27dvHwYMHufVWubPo9ttvN978Xn31VTo7O6mrq6Ouro5nn332SNUNt2xXekbM8mOw7ASTE7X8/MVUVPwAXY9SWfn9HGJyRuRz2TL59xlnBFi8WPDUU38bsVxN2i2+Zg00NMjfFUX+X7FiYv0ajbz8cms3eXkL8KfeIOE6O6cfcdGFPWhH2bVLdjrztj3G3B9JwiA/fzFms4eOjodHFF+VwpcLyc9fzKRJ16PrESorv8/LrYOimUEnfFAGn2048hjHQ+7Oz19MWdk3SSbbcTqPJRLZjt9/5pibFYbWvSv9UjXfPyiguikgiZLH+zRe63YftTL6/t79xFIx6vphbavkT2Ta6Ix0smT6knGNdVvHNhaWLxx3uxMhx3+YOjKhwjMePYPmYPNRhRs/CvvY1y8Yc+NNKBRC0zSi0SipVCjnPsr8nkmInLFUKpTzOUA83oTLNQtVbTaEEw3z+aCvD5PFKsUOzcUUZ6WGkeKPuX2Mx+X28fb2IiwWL7EYWGwaMbUHTQvSFgkyudpEV1eF0Z+WFjPV1SYcFoeR0iajTzRRq/JV5VwzTcEmZhXNIiFMhiBmpl2rOyXz3mVU19NjVvNixrh8dh/mgagUDwXiqTgOa0HO3OokMEWTEAhg0sxpQc1Mh6pQu3bI+tJinWazz+gDkBYB9eWEs4KJONZCLyZLyhCsDO7fQVNFnuQOj2F+RyGpqIlEifQ4a+Y4lvQuv5AawufwpfMRRqnyyjlLpULDrpmQGsKMiugeQMyahasvhRlZTzwu09X47D4sA5H0hA/2rTnYzKyiWTLlTigEra05Ie6QGkIXOu3hdiyW3DlJagMUunOlCKxxCz1VNkyxwTpiSZnSxm6xoyiKcf1krLgnhtmeTyoVBI8HXYsaeQazeVnNQalonzGHxYGaUg0pi7Eso4ifMZfVRSwVM/posfixK6kcgdDR0gCNZP945fVxEJ8/KhtpYRmvBQK1dHT8fkQByBUrZLaDoiL595tvFnPo0H9x8cUXDysnXxPk3yP9PlFgNRp5+YwSD13BbbTFQAk/Z2hmQXoekn645JJc0u0oc5/hJmUDq6Fcpe7uZ0gkWnG5Zg2bn2Syj1SqF6dzWnoeHzHmMZt0CbB+OlxYD39/dJA4P3SM4yF3BwK19PSspbT0cmKxfTgc0+jufoq+vpdzygzlWw2t+/wKeZNkCL8ZztXiYniq1cGn/D054qETsQN9B8h35LPAD+eW57YB8GjdoxQ4C444Vl3obO/czvzS+eNudyLk+InWIRAU3V1E3s/y+Prfvm7oawXVIFc/dzV9sb5xt/FPZWNkjQgG5aIcCHSgKBaSyR50XZLbVbUZszlPPkyyTKZHyTPuOV1XSaUCeDwnoapNOYrWgAQTvb2YrDZUTUU3F1NoG3zQjLR5JxYrIy8vRWdnKWazj2gUbA6NWKJHqrKHe5kxxUFnZymaJvvX2upiyhQHdvOg8npGn2iiVu2rNlK8gHzgfarqU6gaRgoXTQtiVtyY/LpUSM+orqfHrPoTxrrutXuxDUQN4KVqKg5bYc7cGvPW2YlJWBAi6+FeXY0aPCDnKZ1eRuZUHDxffi/enHBWXzyCt6QMbDpmcxrUNeynZfYkmQN3DA6e1+4l1Q/xAg0hBCklhqVHjj+jOJ/JF1jtq6Y52ICuR4ZdM0E1iN9mQbT3kzr1ZAoCCromF9KMqrrX7sU6EIO8PENpHiSo/VTVpyTQDQZl5vSsZ0EwHiTPlkdTsMlI4J0xXY9Skpd7bdmiCoEKMyZVl6r1QDQVNa6TkQjsJX0qVleJvNbMZnSPAxNWY44yQDajmp4xRVFwWBzjlpAZer7L6jJkGKKpKFaLD5uSTCdhlsBqpF2Mo9k/HlitXJmb7gQ+Fq+VridIJnux28vHLjzEMuTj2bOf5Jhjbh9RXHT9evjc5+RFeKRyH7Vlk/EydlK+mR9OD3F7vcBvhVW7cwVJVbUZRxdw+PDwG36Euc9wzIRIEo83GfOR4SoFArXs2fMNrNZiTCb7sHEPDNThds+nv//1YfOYTboEWD8DvloPn24aJM4PFQAdaczZ5UYiiyeT3YDCjh3nGTusRuJbrTpzFU6LfPNe4Jf8p9e6FNY02wxy7Mo5sGqPmYcO69TsxhAPnShPaX/ffn560lmsmC0JmI82DOplLfBLr1VIDeWkJBk61gN9ByhyFZHvzB93u2PN39HWkbHeWC+RZGTY8WgySmuoddxt/FPZODxWAIFAG1ZrPjZbGaoq50JVm3G5Zg/zPmhaCJdrtiEboqot2O2VOByTicczHqssYOXzSWBlkzn8dHMh+dbBTSXx+HCOaTxewvTpYXp7i1GUNLByCtRkgFQqxOFQN3NmeGlvHwQn7e1+jjnGj91iR02pJLUkutBzkj2P16q8VbnAKiiBVVTTcjxWLtcstHzwmp05Hivh9aIW6Njtk+QUOHzYo6oBvNSUistenOux0lVMJie0t2PCmpM+haoq4rGmHI+VxeLLOd/wWGUBg574AIXF5QgXmNLJk0VTE4mp1VBQAKMIxWbM5/Ch94HqT0gPmmLCFJBEqUyOxExamypvFR2hw8bcZFtIDVHu8mJq62dg0XyKexXje8twjH0OH/aICrNnG8BKFzqt4VZOm3QaLYFGiMXg2GNzgFdIDTG7eHY6gbfPANqyApWyIcDKEYJ4vsCk2I16MjpWmTFne4GEEJQFkli95ca4dH8eJt0yrPxQjxPkep2OZCE1hKZr+B1+45jT4hwEVskodmshFkVNp+RJYjJZR00DNJL944HVO+8M35acSMDbb3+kzahqKzZbGcpQtfBxWIZ8PDSBbjZJbv16OP30Ldx00+EjlsuYIQY65PeJWoaMl0Hf5XnlHO+3U1Mvt/HvCUtl72xB0njPbuz1PSNXOMLcZ8bR3f0Uvb0vDEtgHQ5vxus9hUmT/oNY7AB+/+dyxj0wUIfHs3DEecyQLjME3EShH58qdyhe9YHCn067e5hWVWbMGRJosas4h5w9Ell87txnKCq6ACFUGhqWj5qEe+m8pXxt7tdwWV0c54GwZmbhzBU8ct4jBMRkarthc7+bw3E/CS1hiMwd5xldxHM0O9B3gC9Omkyi8BYCQo4luz6ApJ7EY/MY32+VtypnrNvat7GwbPxhwOz5K3ZJyYCh5Pbx1nHXF+4akWB/JMsRSPxXsjGAVcZj1dfXjtnszfH+xuPNuN1zR/RYud1zc8rZ7VVGuiY9K7ktMAisrHZUTSWl5JNvHZzvkTbvRKNF5OdH8Hp76epyE42C3amQSvWTTAVI6FaOneqivT3feNh1dpYwdWopdrNsJ5aK4bQ6jQT1E7EqX5UMPWWmMe2xiiRTaNpgzkKLrRjTAFi6DxmeJICkEsaUBEtCrus+uw9nJGF8Hk/FcdoK0bQoIp2VQNfjmCxO6OjAhG14KFDvkPOUbkeGAnM9VhaLNycU2BUN4XPZQIG+JqnVZW3rxDp5qpHc+UjmsXlQenTinogEbopHAjukF8rn8KU9VlGqfFX0RBoAcsCNLnQGEgMUOhzY24IEFh5HaZdugMLsUKAzmoC5c41+dUW68Nl9zCycSaCrETyenNyJmX7MLZ5Lc7A57bEaBHUmklT6puWMyTMFy+UAACAASURBVN6vkfLomMyOHGCVCRkP1bJK6kmqQmDLrzbmW893YdLkGuO2ulFTKik9JUOBvuHAajxiyZlzs6/XHI9VMorDVoCZQWD1z+ex2rYN7rkHrr12MB4mhDz+EdrR7ggEKS469AGcn7+Y6mqZ+iKRgNpaWLr0y9x11zGjlsu27JDfRMN/Q23pvKU03tjItYuu5YZTbuDRwzFDPG1TH5ySLx/YD+5Pv7m8vx57Rt/QZpPinmPMfWZnUjS6i7Ky7+TMR1XVfzIw8AGlpZehKHYSic6ccQ8MbCMvb8Go83jeyX+h4cYG9OU6uwKXoZjkZelUrFz4dG76kewxN9zYwC2fvoVrF12bAwoy7WS3l5+/mLlznyIvbwHB4MYjJuHui/fxwJce4NGvNVDhzuerC28z2vvl1wQ1Fw3khLTq+qVIKIyfpxRLxuiKdDF3xh189YRVNNzYgJLel5ldH0BfrI/GGxuZXzqftZeszRlrXUcdC8omnrR56byl1H23jiJXEYdvODwhUJUxl9XFRXMuMvo9HhvqffuXME2T4Z5Jk0YtEgwGcTqdBAIdWCy+HGClqs243XPGBFaZNSxzrq6rBv8EkF6aSASTTYboUkoBPkvCSNYsk+nmSk1Eo0W43UFKStpoaTERi4HTZSGVCpFMhShwT6K6GtraPGhakN7eIEIoFBZ6DV5LthdiopbxWAkhSOkpOgc6mZY/jZQw0xttS09vEF1xIgKQaKszPElyTpqw91kMEOK1e3HFUuD1ogudpJ7EbnGkQ60yJKbrKkoaWCmKfZjHSrUGhnisRgoF+nJCgR3RAHaiEIfevVINNa8zgHvqceMCVmaTGXu3QsTenwZuWcAqHQrM5lgFoq2YTM4ccBNWw7itbjxmBUdXnO5yHyJhIqX2pedKXj9yjpIwZ47RrwzYqPJVEepqlsA0q98Z0JbtscrMiRACi6IxyZ8LrBw9Kopbx2R1GfVkh4yHhgJjyRhVIQVLUbUBBoXXiUmToFlRFDx2DyE1NKLHyml1jg9YjebtSg5yrJy2IswiRjSV4VhZ/sk4VgCvvy6Tl36M9mHEQceyN9+UXtORNE8/SVsyfQnrD6zPiR1nxCchzYtpb0ftP4CjbWKctgxnyek8ltbW+3LCm+Hw+1itRTgck3G5ZhCLHcg5N5NYeEzLTgsyzr5NROgyEKglFjuEzTZp1CTcCS3BhsMbOGv6WfT1vUh+/lkoyvDb5MPylA4FDjHFPyVH32msOqcXTOdAX+7cbuuYuMcqY+V55ZgUE63howvPrT+wniXTl4x7zC6ri0rvcA2pf3rr7AS/H46gfxUKhaiurqa/vwez2YvDUZ0V4pOEdF2Po+sydCcf9hou10zi8SajnN1eZaRrGjEUCJitMhSYEAoJ3UIy2Y2qtqfTeeUC22g0H6ezj7KyTpqaJBXG7bYjtDBCj1KcN5nSUgiFbESjMQ4c6KS0tAuTScFukQDuaPlVAG6bG6fFSU+0h7ZwG8XuYqxmK4rJSWdYjjuVCqEpdpJhM/Hu+pxQoKo2Yw/apHcJCazy4jq610NCS2Az21AUJSd0pesqJotLhgLNw4FVPC+Kwz7JaOdIocCQGiKlp+iKBFH0PlDNhA7uAqCwJ0LBsfMlQBkHgd3VbSZq6SOVCmG25htjyoQCMxyrKl8VoVgbdnt1DuALqSEJmkSSqMVBKBUhaHOgJfrR9STJZDc2WwV5tjw8cYE2e5bRr6ZgE1XeKio9lah93Qhv2mOV/nwgMYDL6mKKfwpNwaacOdH1OCkB1b4pOeOxd0awOTQU2yCBPxuED/VYRQcCFEQF5sIsj5XXiSk1+OKWAWPNoZE9VuPhWGXGmm3ZoCyajOKyyzBhIjmAEElQLOMCbRn7xwMrTZPI5Iwzjur0DLE620bKBB8I1KKqH4+Gzm23fTjl9I/KuiJdvNH4hkEYvrQK/DYwKzDT62DVmasIPPBdBqbq2LuyThyD05bNMSsq+gpCwI4dX6K5WSbWbG29H6u1iECgFl1XicX2G9+LpsWIxw/ids8ZW5zzKPh2C8sX5gKr9nYJ0js6Bn9PZ0mv33kRs2c/QTzZwz174fXNnzeyxDc13c1T79/KtX8p5BhnkJN/fzI7Dv4KGDlj+oflKR3oO8D0gukTqnNGwQz298kEhWt2rGHyvZN56eBLfO+F7x3VjjtFUVhYtnBcCZmzxUCL7i6i6O4inq5/mmUblnHOjHPGfLAWOgtZfe7qUcn4/9TW3HxE4jpIj1VVVRX9/T3DPFYyRFONxeI1HlapVAizeeRyMl1TUzoUOMRjBZhtcrdeQksQ1p3E482j7oiORHy4XJ2UlfXS3CyBVV6eAxtBdKxM8lZjMkFZWYK2NjuHDwepqAgAGKHAD+OxgkECe3Ow2QDpFoubnkhLei6CJIWdWNyKGjqQQ16Px5txDLgM747ZZMYXhwGnGTWlGuK52WRrIVRMVrcMBZocueR1nw+1SMce92YmYxhROxMK9Nq9BONB2sJtOGw+kolOhG5FPXwALZmgOKRROvOEYSG10czboaCa5G5Mi80vUySlUgTVjMfKia5HyXfk4zBpWGxlaFrQEG3OhAytqHRbpYcl5HKT0kNpKkwpJpMFRVHwxxVC06vkGqlpNIfk3FvNVqrwkchz5nisgvEgPrtPhm5DzTlzEoh1kNAlByrbbG1BbBaByekZF8cq0XSYLq8Fi61gEFh57ChZEnEZMDaUfA4TCwUe6VyjjyY3mhZGiBSagDxb3ph1Z+wfD6w2bJDJoY7SMsTqsbPDr8HtPv4j6fJQe+edfzywWrNjDdetvw6RkRkG9qYFLttUB3edfiHnTKqgftELpJwMhgJhTE5bNjeqoGAJiiKw2SZz+PB/0dz8K7q6HsPlmk19/cW43fOJxQ4Y30tHxx9wOmcSDL49pjjn0fDtpuZPJRALDIbmVq6UQH3lysHfly4lnNzB7NfO4MW2Hrb2JQjGe6jZDfmmTq5+7moe3vUWtt6f0R8fYPksOCWvEVtqH/tDyRH7PZTn5bV7J8RT2t+3nxkFM0atcyRhz4zHKiPOmQk7toZbJ0ycz9jCsoXUddQdscxQMdDeWC+9MSkU2xJu4Y8f/JEr5l9h9HuoOOlj//4YPTf1HFW48Z/CxpHjNBQKUVVVRSgUyAFWQggjRJO9rT/jFRkaMrTbq7BYvCiKhUSiYzjHCrBYJalc1VQiuhtVbR6VChGNenE42ikv76e5WXKWfd48nEqYpLAZXoFJkzTa2tw0NsaorJQPoOxQYGbDx9FYhmeVHaKxWbz0RTvScxEkISxENJeci6Eeq7jX8O6g6+QlIGQTxFNx7GYJPLPlAXQ9jsnmTktTuHI4VpoeQ3coWPd0yF1zJtMwj1UG9ObZ8oin4jT0N+B3lpFK9QEuRHMTXQe30+8yYXd7xxUKBPC1Q0rpSQM3n+Q5hcNZ5HUZClQUhSpPAQnhAgblIjLgB2K0mHWC8SBhbz4acVS1cfD7FwKPKgh6rJCfD52dOfIFU00FRF3WXGCVBm1VXvldZYcCW/oPkBJDMiuEQljSu7pNTn8uxyp9rQwNBWqNDXQW2HJeMHSPXaa0ycyRw0dfrI/OgU4qPbne72wC+pFsNG9XNJULrBRTHroWRogkSZ303I7P/jF5JrKtpkbezStX5iTtHa9liNU7dnyZysrr6Oh4hLlznwFgx45zKS//Nl1da8jLW0B+/pkfde9pSSuEL/r4c9ke0bKzdmdsW79Ulr312BgW7U3q619i5ilPsnfv1Zjjo5DXR7Bsjpic7yfYufM87PYqDh78EWChp+evzJ79JIlEOz09zzB16qp0Ko6v4HBMHZUsntvhLM/JqlXQ3Q333nvEvpkUE/PL5lPXUcfnHbPgkUek1+uBB2QBXYddu6jeBThf5l7TViaV65xcAHfvzSTyjLJq8wvM88GdcyGQgO9Og2ASTNpaZp/46oj9zqier9uzjge3Pjgh4HCg7wDzSuaNWudINqNwBo/UPcLfG/4+7LvOEOcnCl4WlC3giV1PHLHMSNfW0Lb/b///0XBjw4Ta/pexMYCVpmlEIhEqKyvp79+M2VyKwyG9TqlUAEWxYLF40w8U+aDJeEUsFj8gSKWCOeDIbq8iFjuA252VCysNNhSrFbPJTCQRIZoGVkIkcTiG93FgwENeXgsVFT7efls6afxeH/Z4jJiWR1W+PKeqSqG93U9vr25QyewWO3Et/qE9VhmeVSwZMx7uTqufjlhnei5CxDQTIbOXuOiCUH4OsHIn8w2PFQMDxG0mgskBPOlwJWCEAoUQMhRokzv3TFZXTihQVZuxDzhRDu4aBKqWXPK6pgXT4FZyfnZ17aLAXQ7Uo1h92Fo76d1Xh1LolMr74wRW/i4dnTiJRAdms0965YJBgvEg+c58zGYXiYQM21e4fEQ0BWe6b2azMw3APAhTkn2WFIoaJFpWhDfVQCRSPwisYjF0k0JQxI2+NYeajYTsk035hOwK+Vn9zoQZS/NKCapBNOwG+GkLHUZXhnAnm5uxeEqBRkxuPzRLrmwsFRs1FCiam+gpdORsFtDdNkzq4Nrjs/vY07OHIlcRVnPuLtRxe6zG4lilpNaWyZwHegQhkqR0McwjdyT7x3qs2tullwI+lHaV3V6Frkdpbr47i5Sso+sRWlvvo6Lie2habMSF5WgtI/aZWU8tlqMT+PyobHSh0C4qKq5FVRspKDgbh2Pyh56HoqJzqai4BlVtwuk8DkgZ8+50DnKs8vMXY7dXE4lsPyJZfERbskRutRyHGeGs228f9Hhli4RlTNP45nMtbOqTSZWzKdea0Ci0QSQF5U5oisow6jOt+pj9PpqExvv79jOjcMbYBbMs47H6KAQ+MzYslHqU9R5N2/8yNgawCofDuN1u/H4/wWAwxxMVjw9q62U/wDMEaUVRjNBfPN5k3LsORzWx2P7h5HUAqxWHxUE4ESYmPMa5I3msBgZcOJ0dVFbGjFBgoS8fp1ljIDWYBLi62kx7eyEtLVaqqiSZ2G6WnrHsh+XRWEbwsinYZHgS3PYCwvFuYy6imkLYVYxq6x9CXm/GoRcNAqtgkIjTTEgNjRAKDCFECkUxozglsFKs7hxgFY83Y0/4YNeuwdDqiKFA+ZD12r3s6t5FiVv22+oqIq+rn9D+XYRL0g/i8QArXccd1dBN+UQi9VgsXgnsgsGsUKALTZMP/xJnHqFEKse7E1SDFDldmJNWOv12DgUOES8vwaJaiER2DX7/oRARV5qMnQWsMmCjUs8jYNOhvBx6e0FVDW+YSTFR4amgKzaoodUZbkJRhuQrbW7G7E97lPLSHishckOB9txQoNLSQm+hO2dMwmXFFB+UBMrM91CPE4xfbmGkHYVD5RZcVhdmsxcTkrye0NMaauO0fyywWrFikFPzIbSrWlruQw7FSmvr/fT1vcrevd9BUSyAhdbW/yEWO4TdXj2uJLzj7boQcN998u+jFfj8qGw0AvEXK0vo6Pg9LtdcOjv/TG/v8wbX4mjnIhCopbv76bT45l5KSy83yOBO53Risf0IIejre5VodDeVlTeOShYf1RYsgL4+OOWU0QF3mkNl6+7jqT/fhv7AAyOrr2YskeDsmXCsLhPOfn+a1Iv6vA1qe+AHU8FtBg5DlQte6oDzK00EDj5tcLUM/laWVfuqUVMqXQfk53+tvZ8p905BqVGw3G5BqZECon/d8Bs6T5rFotur2HB4A1euu3IwfDcSN2xIO+V55UQSESZ5R959NhGBz4xtat1EY39jDndqaFLl8dR7NG3/y1hT05gaVj6fD5/PRzg8gMXixWotRtejxGJ7jU012VvYZShQLuR2exXRaD1CJLBYCoxjsdiBEUOBWCzYzXbCahgV3xFDgQMDTtzuEJWVCYO8XlIgMxz2J1LGA2jyZCudnWW0tbmYPFmCkozy+of2WKV5O9kP9zxHIWG115iLgZQgnF+F6onlyC3E403YTWWDocBQiJjLRlANjhAKDKLrcQlGXbK/JnteTihQVZuwKyWwc2eOx2qkUCBIcLCzayclHvkdOr1VFPVGSTQcQC1Pix+Xl0NPz3CaQ7ZFIiTsVlTFTySyUwI3nw9CoSzyutMQTS10OgioiRzvTkgNUWBzYImbSFSUsrNrJ9qkcswRiER2Dr5QB4PEnGn5gDRBPRvUlmpOei0JMJtl31tbDY8VyHu9LRI05qR7oAWzecj339SEtUjSJDSbS3od+vuHcayyPVbmljb6i/Mwm/MMeQzdbcUUH+TdZuZ7qMcJxuexEkKM6rEaCqwsFj+KkAKhCU2bUCjwHweskslxqX6PZYFALe3tD1JauhSTyYrdXsXOnecSjzeiKDZMJiuK4kLXw3R0/Glsns8E7cCBsct8EjYS8fnUQjs/nhFl9uwnmT79PkChoeF2QBlVIHMsG0l8s69vPdXVN1NffzEDA3Uoip2enr9RX/9VHI6pzJjx64mLpZpMUFgImzePDrhXrkRs3Mj0+x/noSfi49r0799n4pZ5Mumx0yzFPm9ZAP5J4LWAVQNzMXQ+B6cWgu69lPr9lxMY2AhLlw7yt7JMURQWli8kvvxWxMaN9Nx8g7GBQEtr5zQGG+n+6fUUvb+Hbz4n48dt4bZBbtRI3LAR2plWMI1rTrxmGKdlogKfILlT1zx/jZHMOsOdGppU+UhioEfb9r+UjUFeDwaD+Hw+vF4vodBAlidqEsHgOzkeq9xQoFzI7faqdLlqQ3sn46XPIa+73fIBZrFgt9gJJ8IkFL8BrEbaFR0O23G7g5SVQSCQvu28UkQ5oKoGiK+uNtHdPYX2dh/Tpkkx2oxA6NGms8mYVBJvNgjUAD5HKfFEvzEX4aROvPgYknk6en83eL1pCYkO7NbyHI+V6rYTjAdRNTUrFCjDrMZOygywsuUNCwU67NU5wGqoxyoTCgTpQdnZtZNyzxQAPIVTKRzQURoaEZlrIgugjGrBIKrbRlTkEYnslOrtmVCgmiu3AOC3WemOR3OkIILxIAUOG+YBgaiuYmfXTsSkSVjCGpHIzsHNC1lzRFUVWmMj3ZFuKjwyJU1xykaHJQ020x6toBo0gIUM3XYb4Kcn2orN4skdT3Mz5tKpcr4wQXU1WmMDSS1pSK4MTcRsa+sgWOpDUUyYzR5SqTC6w4wpNihym5nvkV7kxsOx6on24LK6cKdDwRnLAKuklkQIgdVsxWb1YxZxCax07Z/EY9XeDqlU7rGj8FoFg2+jKBamT/9v5sx5mkhkB7qeQFHMzJv3PHPnPkcq1YXJlEdDw/KxeT4TtP374bLLPrLqjtpGIj7/9OQLOOH4dWnS+eeZOfN+QCcS2Tk+ztMINpL4Zvbf4fBmnM7p9PW9SkHBlygp+SpwZLHUEa29HQ4dkl6nkQB3WppBEYJvbtGY3cO4gFXhFp3pDxZxQr6UoTALsAL9J4A5DuWvwNxlcP5vFLBczwmuY5i9XCM8U8jwgK6P2J8zLNMpf/olFCG4fKtmpOPJWFkYrtgmMAu4sm4wXU80GeXev/1kUGbioYfg4YdHbWdGwQymF0znkjmX4La6RyS5j9fGw53K8LZWn7sas2IekZx+NG3/S9k4VNe9Xm/aYxXLAUyh0NtDQoHZuwLlQu5wVBMKvZ0Tws/8ngOsTCb5MLZYZChQDZNU8tMhx5E9VuGwDbc7iN3upaICnE7wOyWwSmIzQmlVVdDVNZmurgqmTpUerUxKm1gyhsvy4TlW2SEav7OUlBYhpadIpYIEEym8rkJsITOquR98PhKJDqzWAkzewhyPVcLtHCEU6EuHAtP5FZ1OsNsxWV05uwLj8Wbs3mkyBJYOBQ7Ni5dKhYzv0Ofw0RvrpdInQYTNUURvnominYewT8nSdRorHBgKkchzMaA5SaV6h3ussgRCATwWE52xcI43LagG8VutWIIpbJOn0RvrxVI9BUsgQSrVmxMKTOTJOaKqinjDfkrzSg3pl3zVRKsSzul3MB40OEZV3iqaw61p8BOiP9qB3ToEdDQ3Y540laQOKSE5M4mGg5IUnn45GEpet7d3EyktSM95Ggg7zSjRwW2Bmfk+Wo/VSN6qzLmxVCwnrG23FmBBlRlHtNQ/CXl9YGD41vqjUFz3eE7E4zkRq9VPYeESiou/Snf3E1RX32qAhtLSK+joeJjJk5d9pKAKpMfquec+0iqP2o5EfAaoqLiGzs4/Ewy+cdRzkSGyZ5+bn784R4gzEtmB13sKra3/Q0XF1SOWG9NWrpRv3yAB+NDNDStXGq51e9ZlFDfDwwvhui8Pr7L+NzBr/WZet+yiu/VOTnLvJTUAphToTpj0Fzjm0TRAs1k57+kUqB2wKUn+pqyKMi8AWf257JkDmJPyRcEkZDqe7D6seg0c6feIoZ9f+XwrpNK3Yna4YIR2ZhTM4EDfAXpjvfz+3N9z2byjR/UT4U59acaXcFgcBH8axGyaePaCf1lLJGSYp3z0VFkZj5UEVvGcEF9X15+prLwWyPWMSK/IIAAbGNhGaenlRp2Zh2QOsAL5ME6HAkOJEC53EYlEJ6Bgs5UO61s4bMHtliCuqkpu0LaYbURTGMAO5PO1sXEaeXkhPJ5C4KMLBVZ6K2kPt2NSTJS4ZfjMavHgtztoC7ehaSECiQTH+HzYB1yoFVGcDgfxUBos+nywZ09mskl53COGAqPRjkGJCpcLfD5MJseQUGAz9qKLBueSXE+iEDqaNoDZLLfeG14c33T2IQFcT6GL4xoG2Dt99uAgxwJWwSApj4tA0sYUm2zT8FiR5jeZFHRdcoicZp2WcP+wUOBMu44lIiiYMwP2g8dbhDlpA9ScUGAqz53mWC1Ab2rIARseFZroz+l3qCJqeGyqfFV80PEBliLJhQrGu3DZTswdT/plI66bSeoSWCUbD+dcJ0PJ666OXqJlRcacp1JBdLsJSyQLWBnzPQo4GkPHaiR+FQzqWGVfy3ZrPjYlia4nUDXtn4S8XlEBixfnKn4fheJ6X996Cgqk1kEgUEt//2s5iZIDgVp6e9eNmDz5w1oyKekVxxwzdtn/HywQqCUarf9Y5iLbnM7pBINvEo8fwus9beIVZIRCMyAjmcz13rS3D+7+QwKhjLfKoeV6hLLtrTkeWL+eDxr/wMK8Vl5p9GADhAUm/wnavwL9GRHzREK2kR2uJuuzIf2Z8cxGTGLkPpSF4RsfjNzHsjBcVcf/Y+/O46Oq7v6Bf2bLziSBrCQTA7IGQgKJIAUXoGgtFBeQwgOtojx5XPqrS63SPipQW6W0rq3VJy2irRSsuKCg1LKogKCGRQlRZAvZNzLZM/v5/XEzk5nMTDYOJBM+79drXpnMcu659869851zvvcc79ZbX8uBksCeX52Pjws/xuzLZ3e5KTvTk9ypIxVHMCF+AoOqjsrKgIQEpbvHj/r6euj1euj1ejQ2ml35OcHBBghh61ZXoPvrnI8B8MyxAlwtVsFaJcdKqw6BTheLoKBEn9N51derER6uLMtgcPWQweRQI1jXPubY4MGAVmtHfHz7OC2yugKDNEEYEjYEQwcNhbptMF61OhTRwWEori+GzVaPc2YT9MF6BFujYE4JBVSq9ryxtgCkbYXgGBSutFh5dQU2eHYF6vVQq4O9rwocmtm+LQGPnB+7vREaTbhrW+qD9dCpdUgYlAi1OgRarR5NcVHQOYAho9xmROhGYOWIiMA5i7ptmb6S10NdXYFBKiuKmmqg1Q7yaLEa3NIMjQiDISrFVT+tehBU0EGnaxvBuqEBdn2EqytQU1ruEWyEtphRoWmF2WbupCtQGXLBYjWi2VyL8KAO49O1BVZmhxbWthYrR1Ghx+fEYxyrpiZozFY4Bke1rb/SSugIUkHd1L5/XMHdBWix6hhY6XTRiNCpYbWb0WqzBkhX4NmzPRr8yX0gUOd9o3E3Kis3YPDgG1Bc/AyOHv2RxwS/+fk3IT//5gs2KfLZs0p82MmAy/1GdyaSPl/O/RIaOhJVVf9EVNQs1Nfv7XmCvK+BQq1WYNIkJchYsaLTsc+cLUIdbRluxZefrsI81cfYuE+Du9ZZXMFO1GEgbTVQsBIwOs+HJpP/WemdrUnl5UBWFlRWq8fTagdw8P+A9HLgyEtKl6O7EBvw1A7gDzs1CPYRU7mYTMCvfuX6t7CuEG/kv4FGSyOyc7O9k9/dE+x9Peamq9wpQBlxecPRDThScaTXI7wPRF8dPgiVSgXVsGFQFRcr9zvcYmMHwWjcjcLCN10tVs3NNlRXvwmjcbcr58l5UU1DwxdeXYFFRWtdl9g7g6nY2DCEh4/CjBlAfPwij+UhNBSrVgokNqkwPjgfcZpShISkuJblfsFKUdFaNDQIRETYoNVGIiUFqKtrwNb9M9FgdeBg5bdIfS4VW/fPxHff/Q8SE6thNke4yrEZX4fJdv7DLWw4ugG1rbU4U3fGddHE/tKDaLEYMX39dJgstbDVvYtndv8Ep8oqUP69ZhhPvYW6ul1Ka5zdDmPldhQdewwoKcHIL0/DUVYGs83sarFytuwogVWIcj6pqICq2YK6uo9hNO6GEEK58jJqNIxXD0JR09/apr1Ru6bEce8G3HB0Azbmb8T8JCt+uG4obEKLPSWHcMxRgdpM4Jl9M9uPT70eeOEFz2PQ/SKVs2dhHnsCoY3KEBNabSSgUsG4+xnMC69ElLEVmjvugqPFCFxzDYz1hdAarSh96c9Yv+1RFDwUh6EN3yC6pgbaWgtKvzuIB0cCb346FWWNRugqHVBVVsFo3I3PzH/CgYYCrNm3BnGvZ0B7rg73/uJfuOI3Bmw4ugFV5SdRF+RA6O9C8dBnq2D+59+hqqhEfIMDuOYanPlmP/K/+g+aD+dj2dqJeGi/De9/9S7e2vVnZX2OHEFR1glsLXwBRosFv9/3DFYfehatX76C/4pun5x915ldOF5zHOrVatz6qxFwOOyIaxJt6690BYogQN1kcW3vX3z0CwDAmlIwbwAAIABJREFU/H/Nb19e2/ltSIMV2spqj/Of82Ih58U5D//nYbyU95LHxTkoL0fMDfMxvKgR8T9cCEOLzrUPInVaWOurkfnBV0hs6v7UXX0XWNlswDffdPvl7gOBDhp0BfLzb8bRo/MAOGC1GnHmzGMYNuw3Hl1ScXGLEBf3425NitwbJ04AI3t2xXyf6c5E0ufLuY9stjo4HK0IDR3Wu4sFfA0UarMpJ6InngDefbfTt4fYgatLNQjXeSYofpRkwpBYB9JXAvc9Vw9HkhnjH1NyqhrHANFHlOCqcUw36ujstn7iCYjycq/8rhAHMLQJ2PA2ENfinf+lBvCjE8Ctp0M6zw0TwtXXvOHoBjy9/2nXILDuCebug6H6GiDVVzJ8x7y8IaFDvLbZudZzyHk/B28VvNWrOQkHKpuj69fU1DShoGAhLJZYV/J6U5Mdev0UFBQshNWqDGrb2noKBQULERY21qsrcNCgK3Dy5EMAlFwrZWop390dNTVNQEUFVtf+P+R8UIlTzVqk4U2oVMEIDjZ4XbCi002BEFaEhiotJEOGfIfaWj3QvBsCytAj0aqzQPNulFb8A/HxlTh7NtlVTljERNckzL0NrJyDzzon5z5bfxbL3l2G5z5/GVqVHcFqwC6Aow0OPD4W0Jus0FgEvj65COXlryAiYgKMB15CwYNNGPTmUeCDDxBRXY8Zr++FyWZy5Vi1t1i1XRW4YwfQ1AT1zj3QamNQULAQNTXvQ6XSoLHxoFLe53WuY8b5Ra8Mg6F31bvB3IBvG4G7UirRYG7CU/uex6goG75ZCaT9p7H9+Ny3r/385eR+kcrGjYg6bMHUSGW8J41GD2PZNhTcXY2sXWbo174A9WeHYK8ugdizB47aEty+DxhWDsz+rgnxu6rx/SF5iKg4DI3RgsS3XsCMWGBGHBCktSO0zI6v1/4Qh76+EXlffo0qrfLDtNpcC5MWmF4E3P5+CZa9uwzlJcdRG+SAgMDkr2oRVN+Maa/twuT1/4bYswfBT63Fit02RBuBX38BDGsBRp5oxrlf3Q+xZw+waBEivgVCbC8BELA4gCybEacfNCFzR7Nrv6/YsQJ2YYeAwE/+XYkgqwOT/ratbXu3tVjpBNQNra7tXd2itJiWNpa2L6/t/Pa9V3di1ob9rm363f0/cV0s5Lw4xzkcQ8dzp+azA8jd1Iqwzw/hZ/82uvaBXqeGav9exJQ1Ytpru7r9uVYJ0fGa9IsjW6VCXmiokqCckNCt9xiNu3Hs2K0IDk5Gc/MxAALh4eNhsZRKT0rvjhdeAI4f79W4pgOWcx8pCZiDMW7c5vPfL84JboVQEnSdrVldfH5Sn0t1XZ0HKN1uJc8orUcCSrBj1gDBJeWeZZSXK03gdrv3MurqlCvAKiuV+8OHAyYTTBog9X6gchDwo2+BLZs8g6kWLTD8PuWxomcAnQDsADQqlbJeHZdTXg6kpioBXNtzqZuu9Fgfp2wk4cvfVnp2J7ZNZO3R8teN463jNnPSqXX47M7PkD002+97uyM7Oxt5eXnnVUZ/4EzA7Upt7S48/fROBAcH49FHH4VOp0Zzcx1aWg7h2LH5cDjM0GjCkJb2L9jtjSgv/xvS09/D11/PwdChdyMmZi6Mxt346qtZGDr0LlRXv4np0/0P7rtJtQiLxEaYdBpct3oE/uuqmRjreA0RERPR2vqdx3myqgoYN86CN98MQ2LiHXj33WasWLEBmc+psDYd2FsDTIwCVn8DxIfHQ/POGnzwwe3YuzcWaWn/Qqt2NLJzs3HTmJswPm487rninh5vR3+ft0lRwJIU4HffAn/NAubvV4ZFWTVBOXYdwQC0KsRE/BD1JduQthqI/lrtSikxB6nx7rZn8EHTIbx202tobDyI48f/G5df/gwKv/sVJl51ELBaUbJQh5ZfLUXsZT/BsWPzAWihEnak3W9E9KH24/KLou8jLW0j7PZGnDr1EG75tMyj3plRwB8nALuLgB9EAuNWA8H5yjFvGJSEL5+qUVrZncegEK5zB9Tt9a7IBr79A5AUtRxVhX9D2mpg0BFAq1bDEunAl+uAabcAe98Fsm4HjNOBhtHAmKeBmkyg4Clg0DdA8zDg8W+U883KTCC0DDAPAf58NgZXvFGD8gjg6Wlt58SnAQ3az1GfrQNm/xRo0QGnnwdCbYANgEatgsohYIOS/nr8f4HB+wFTImAPAlLXe7bMV2QBR38PHKoEpoW1b5Ow4nKPc1lCI3D2WSDIAbRqgdDichyvX4mIiImor92NIQ+/jSnXJ3mdy53vcXK0HZJqAUCthl04oBHt61XZ4cJFoO3c+bsqwGp1fSeYdGqEFJXinO4QNn8yHzN3mxFSKTD0vSBMGT0GeV991eXnum/HserhVYDR0TMQFjYWzc1fISbmRsTE3ITm5q96PvikJCdPAiNGdP26S0l09AwkJSkn2KSke+Xsl9/+FtC1jbIrRHtSexefn47J2Y99Atg6fB8KwLuMJ55oz5npuIyoKCAjQ5k4/IknlC4Ft/IB4AcnAWuHI8vZPfnYJ4Dd11HXcTnu9y0W4Ikn/Cab/+/GUu8cLV/jeFmtXR5v/pZhdVgxPm58p+8lb9HRM1zJ60LYERoKNDfbER09A0OH3guHo8V1/nJPXnfPsYqOnoHExByUlb2EoUPv7nR5i8RGAECI1Y5Pf30c7756OxIT70JDw2de50llZpggvPXWuxgzJhcrVihdI0fuF7hulsDZD1bivXLgyDsr8e//rsAHH9wOAJg+vRqDB8/Ac2uiXF2BvZ3Sxt/nzeQAgjXKuHLNbR/t+W8D8VsARzgweB8QWzwMNU3bMHSbGtFH4PF5VzkExv3fO25dgcq2FcIM9ZkS1zlEbXZAHDrQduX09bDZqjH062GIPtp2MUnbcekc1sDZYtWx3kfqgK1lwPcvA+LfV1q/ncf8sq2l7XVzHufu6Q5u9Y4+DCSeSkNp3d9c66Vqe43aBNhDlHOWPRzQNis3e9sUdtFHgNASoH6iUof5byu3xPeA5suVx656vQaRJqChLX3FPWXCWV+9WXn+sU8AVVvVlDp43te0APYwwBECqM3tzztFHQEa9gNThnpuk47nssc+gSs/VdX2vDPf0KGyQWV2oOKcZ/D92CeApkOrsUq41UEIV5n+UkMA54VDnudOtRBKK5ZGj+GNVgi1gMoOZX+Vl/suqIO+Daw6JOcmJCT4zFWIjx/c1vz8X2ho2IeYmPk4d24bjMYdFzwRuzOB1BV4sRiNu1FW9pK8/dIxkd09YOhi7DP35OyERiVh3HkFoXsiuVdivPvyfC3jhhuAv/9dmTanLQfLmZCeXq78Depw0IfYgWWHlVtIW9qWxrk+HZfTsQ52O7BuHfLW61wJ7x+vV5b12V+Becd9rLyvwMpmU4ZymDrVb65HFobi4/W+k//H/HlMr+YjvJQZjbtdgZXd3oDwcBUaGhraxt972eM4cR953X2sJKX77y3XazszDvkAAAEVWrQq3L7wFVRV/cPn8VhfD0RENGLRomU4ffpx7N2rJDdnPqfCO/9WQT1jNeYlApk3r8b1f01wPb93byxqa3fj8ZWO874q0N8FFGY7EKIGwrVKYJXQCNwigOofKhea1GcBtdGncdk/NSib41DyIt0+80E2gdHvf4bYBuVgcw5L4DhXDnVhmevYUpvscJz5DsZTb+Hcua2ICB6PsuSDMI5r+8HUdlxq7SGurkCtNtKr3plRwIwYIOl1oOpHSp6m85i/4wg8zyevvOL3nNaSDtTEFHisl/M8oTYrLXWOYAAOQGcFNM2ArW3TN2QCLZcBcTuUOsx3ALc4gKrrlW1W9SNgPoC4ZqA+pP2c6LykwXkOizQBYRblvvu5StVWR03bTdusBHj2YEBrai/HqTUdiB8PJP3Dc5tg/XpkqZRR2Z110Lpd+IP166FtVStdgQ5lwuxxQe2DInest5MKbgGNEF1e0KRcOKRybXvn64NsyhA/2tMViHTYIbSAygblqu+a7k0F1/eTMLv9Uq+srPT5kqoqI44enYvq6s2Ijp4No/E/bVdlCERFzbggidjdwRYrTxckQd5XIru7Tlqt3JOz3X99dVqGr+V1XMYNNwCbN3sFLmqh5FT5W06QHdB1lpvj69esk9mMiWctWL1Xg8c+UXIiNrwNXFnavfG73MvBgQN+cz02FIzB9CLfv/A88hKoWwoKFuLcudPQ65VR1SMitCgp2eHzOGluPua6wss5urevY6ozRWj/wm+YACTY1/s9HktLD0Ot/sqr7CfGKd1/6wuVv0+MAx4e2eB63lmOqenAeU9p4+sCCp1aBzt0CG4LrFrswFMlwMlHlRzIKLcLx6MOOrwvOmmjcjjww00HAbhdvv/mP6G2tB+gagtginGg4ORSDBkyDzEHQ5H2O61neXY7NN8Uw2ZrcE2O7V7vzChlsvu6VwHDq54XwQTZgSBHhyPUYvE5CrsxU3lf2m9UGLZOeK2X2qF8wVujAG2T8pgzuHG+V1cLXPa6UofvVgMnViv3h61X/p78X2BMrHeLlGt7COV88si+Ts6XbbRNgC1CabHSdLiWyFmfMW7Ldq2L3Y7XC0YjTBfm+7xst0Pzn32ukfLVQeF4fNL93TuX++Gr1Wr1Hg10Pq6UddZBe9+vYQ+DK7Dq0fJ69vILoJtjVwlhhUqlRWPjIcTFLUJ6+vsYP/5dNDZ+eUESsbsSaEMtXAwXJEHeVyK7u04+P+7J2VNL2n99dVqGr+V1XEZ8vEcXoFOIHbjc6H85WrT/Muu0Hn7WWQVg+SFg+WEll2F8tedQEz3SsXWsbXDSUe/ugUYAd3yl8tlq5Rw09FKn7cZGj4mJQFrav1BbW97WYlWPiAgdKioO+jxOWltPeHUF+jqmYmJ8d7sNCVahEXoMhXIVoXkUMOylaL/HY2VlIRITR3s8f++97wPhM2AUygUNRnEZED4DSQk/QXT0DKxc2V5OS9MhCAg0mBt6PdyCr4GN19+0Hk9+/48I02oQrgGsIghpehXGrVa6kxrHoP2ik1HC70UnWqsdw75RWmaV8b5UsBV/C5XZrcvQAlgjBdL+lgSVSo2QrysR/aXNszyLBdpSo0dXoHu9xwxSJrufe/gyhNg9L4LRAlA7Ohz0DofPH4uNY5T3RR8SgMPhc73UFsAyGNC2jSqgaQZs4cprxq4GbHoguEqpQ/xuIG63ch9Q/o5bDeiGaRA6JN7nOTHEDqjValxdpvV/vmyjaVFayxxBbV2BPtYlpq01ymNdLBaMPn4OuT/KxbRStfdyLBZoC4pgt7cN6BoUgRsTru3eudwP5wVN7gMbL6hPdo096MVigeabItjCAaEB1M7ldTclXfQRrVbt7BHt1m3v3jixezfE6dOP9VWVPZw4IURqal/XgvrE3XcLodEoDfhBQULcc8+FX55W23HEt/Zbd+vgq9533y2EWu2zzD9nQ2CV9021StXrVcnKyur1e/uTrKwsUVFRLYAQERRkF83NQvzlL38ROTk5QgghDhwYJZqaCoQQQkyaNEl8+eWXwmj8VEyfHi22bt3qs0y73Sw+/lgrHA672L1bLex2q9/lv//++yIqKkpMmTLF9djRo0JERQmRkCDEPVvvEVgF8Ub+G37LePVVIX76096sfbvQ34aK9L+ki31F+86voA4slnNiz55oUVa2Tnzzze09em+zpVmE/DZE/O/O/xW/+fg3rsf37o0VhYW/Fd98c6frsZqaD8SRI9cLIYQ4dOgaUVu702eZJ08+JM6e/b04ffpRcebMb3y+pku33SbEunXt///850I884zHS4b8foiobq52/f+v/H+J+W/Md/2/b1+iqKp6R3z5ZZY4XXtaZP55qNi3L0lUNlWK1KcHi08/jfS9bINBiNOnlftjxwqRn9/+3MGDQmRkKPe//VaIkSNFTXONiHxKKctkNQndb3TC4XB4FFle/pooKFgqjh69RVRVbfa52BPnTojU55QvyiMLrhJv5lzl8fwf9v1BPPDh/UKEhYkbXpoudp5Wtn9V1Tvi66/niby8K0T9f00UYtcuz4KPHxdi+HCPh45VHRNj/jym/YHcXCHuuEMk/jFRFNcX+94un38uRNs56YrcK8RH148Qb951jRBCCIfDJnbthPj6Nxqx/i6VMFlN3T5/9VmLla071yu7cTjMfZpP1RHzqy5RzhYe5/hWvZzjssfL8zWAqFN36uCr3q+80j59jo8y/bVaXdITLrvZv/8ItNoEGAxqlJQABoMBxW2DQAYHG2A2K/edOVY2Wz0GDQpBfX29z/LU6iCoVFpYrTVQq0OhVvufGKO4uBhTp051LU95DMjOVuYu1wll2AznvGy+1Ne7xsDstRBtCOpMdec1jpUvznnx3Kf26a5QbSisdisazA2u4RYAJYHdYqnyGK3efeR1fxNVO9/rbLFy5r71WMdBQn1MhaQP1ntM8+IcHLS9vmGwWCqg1UYiSZ+EwoZq2O31aDA34LKIUI9pj/wuu+OOd3+uoQHQ6zE4dDAsdgsazY2uCZg7XgnrnDRcmbPS9/5P1iejtKEUdocdtTERiKs1eTxv0BtQW3YK0OlQq7W6Pkfuk2argwe1DwDbybbzGiDUYICj6CxqWmqQGOFnZgS3csJ0YSjWA7FtdVSpNFBZVWhJCMHgJrgGm+2Ovu8K7Karr67HlVf+uc/yqTo6eVKZtJQuMd3JwbrQy/Olqzr4ydvqrJs1xCawdpfnKaLTCZfdBzx0vz9AHT58AqGhMa7vJffAKiTEO7Cy2+sxaFC438AKUAayNJmKuvzyLi4uxuTJk1FdXQ1rW7d0cTFw2WXKaBqWOiXRvKvAKrL7s3T4FKwNhtFkvACBVTCEsMBmM7qujuwulUqFyJBIVLdUe3wZarWRsFo7BlbBEMIMIRwwm0sRHJzsq0jXF73SFdjLjWYwKPkjTkVFXsGBx2jkUCZWdp+jTqNxBlZ6BGmCEBo0GHZ7C+paa5EcFtw+0XJHKSmewZP7jo+JAVpagOZm14dCpVIpk2M3tI267mM6F+c2sdtboNH43v8h2hBEh0ajsrkSNUNCMbjGc2T0lMgU2M6eAQwGj4sgXBcbOMxQhUX2OrCyFRUiISLB/4wRbuWE6kJxOsKKIW51VLeo0DJYhbgeDA4KBFBgBShJ7H2RT+XLiRPAABiOh3qqOzlYF3p5vnRVB1/ldJEvoBLAwtNhHvkvnU647D7gofv9Aerbb88iKirG9X2ZkpKCorYvzuBgA0wm5b5zEmabrQF6fTgaGhr8lqnV6mE2F3cZTBQVFSE1NRXx8fEoLS1te0z5jjAYgNaargOrtsaJ8xKsCUaTpanXwy34o1KpoFaHwmKp6HGLFaDMKVfVXOUabgFQvqy9W6yUKW0slipotYOg0fheD+cXvTN5vVfcgxtAuZ/iGQhFBkd6zJ/nnIC5vb6hsFjKXcGdIfIyQB2KRlMlEkPVflvcXNG/3a4EURER7c+pVO3Pu30oDJEGFNcXu1qsOnINieBohVrtf/8b9Eo5VYODEF3t2QRuiDRAU1zqCqycnyNnC6HDYYY6LKp9ku1Otl2oNtRzrkCDUrZB7ztYBuA8cAEogdnx8FZE1bTXUdcEWMLtiPF/yPoUUIGVU3T0DNdkwH3l2LE+XTz1lcOHfWc69XCOy/NeXk/r0LGcd95pfy40VGlhcj5XVuYaxyvEYkfhogNwrHSg8P5C/0FVeXl7t+JLLwH/93/K/QvZTdrHiooqERcX4/q+jIqKgt1uR0NDg6sr0GRSuhVCQkJgsylzBnbWYqXVRsJsLu4ymCguLkZKSopHK5nzx3dKCtB6Tpko+UK3WDm72mS3WAHurTM9r6Q+WI+q5iqvrkClxar9MWdXYGfdgM73Su0KNJuVAYbjPSfG7qor0L3FClCCFjtC0GCqQGwwuu4KbGxUgiq12vfzbh8K55yAHVvN2uuib7tS0n9XINAWoDUUoyJah8gqzwglMSIR+up62JOH+mmxMkEd3r0WK+dEysL5g1Gvh12rxhi19+TjvsoJ04WhILgRkVVty3I4ENTogDrIAn2zw+cFS/4EZGDVl1atUgL8XW2j26tUym3Vqr6sFVEPffRR+6CrvgYndQ6QarN1r9Xpscc8W8Sc3Y4Xspu0j1VUVCMlJcH1naRSqVyBTkhICszmYldrFQDY7Q2IjIzstMVKo4nsVotVcXExDAaDz8DKYACaapRJcXVqnd8yOvYI9Yazq+1CBFbu+UQ9FRkSiepm765Ai6VamdKmjUqltFgpgZX/3EHnF71zGIxecX5QhABKSpSJZjsEOJEhPlqsgt1brDy3iUFvgEVo0WyqxBCdrfMWq6Ii/9G0n8CqqL6oy65Ah8N/V6CznOL6YlTo1Qg1Nnrki2rUGoxpCUdDXJTHsB3OAVmFMEMdPti7xcpHN6pWrYVOo4PZ3n6JYl3sIIw3d7K/3AMrbRhOhLYirKZBOW9VVkJl0kCntqM5SKf84OymPgustNreLdrXAKLOW0I3p8Y5H0IAkycDr73W/r8QDKwogDgT2a2egyD6HJzUalWS3KdO9T/B85VXAq++2l6+exfjhU7u70NG4zmMGpXs0RDhDHSUrsBiV34VgLYWq6guWqz0MJk6D6wcDgdKS0uRnJyMlJQUj8AqJUX5nmioVt5/oZPXnV1t7i1DspxPV6A+WK/kWHl0BephtVb77Ao0m4v9t/agvcXKfeDWnldKr/xgqavz2eICAPogvWeOlVfyuuc2MUQa0GJXo9V8DnqtueuuQH/9v/66Ahs66wrUt3WPtnTdFdhQjEZhgnlwpFeAMqIlGFWDg5WuwLZhO5R9pAwSqo6I7laLFeCdZ1UdHYwRzZ0knXfIsbJqAUvUIOX8VlwMIZTjpzEi2LMbtwt9FlhlZEzEokVpUsv0N8CoTL/5jfJjfOnSC74oogujswR8f0nuBw74n+D588/brzb0ZYC2WrW0VCMjY4TfwMpsLkZdXZ1HYBUVNeS8uwKrqqqg1+sRGhrqWp6zEcTZYtVQpbz/YiSvh2pDuz13Yk+cT1dgZHAkHMLRoSswEoCjQ1egkrxuMnXeFeicFNhmO48cK6C95chHiwvQlrxu6pC87tZa1HGbGPQGNFkdMFnPIULdgpCQLpLXe9BilRKZguJ6/12B7cGPsdMWq5TIFBTVF6HF2gJTYqxXgJLSoEKh3gGr3eqVEwc4oNIP6XZg1THPqjgSMDT4+WxarUB1NZCoXDHobC1z1bGoCEKlBHrN+ojACKwA4Pjxkr5cfI81KxNz47nnlBbclSv7tj5EvdJZAn5nSe7HjrkGEnXlU3Un2dBiUeZWHGCs1gpceWW667tSiPYEdq12EFQqHYzGEo+uwOjomC66ArtOXi8qKoKh7UvFYDCgqKgI1dVAWJhyMxgAY9uMsxc6eT1EG3JBugEBpdtLCEuvWoicgUDHrkClXO/hFszmoi4DK+eUNr3uCgTaAxwfydfOenfVFahsk/bgx2ixwmI9h2BVk9+rGl1X/pWX+97p7oGXvj1/y3lVoK8WK0DZLkJYupVj1WJtgWVovOeVkQDiz1lwLLgeYbowjwBd2e8aqCM7dAXW1ysHW1SU17I6tlidjLAgvtbs9ToAQGmpcgmtVut6LwBYkxJc+8ihUY6j1kh94ARWJ0/6GCTHjejiqqWLxZlX5byQYvr09nmAiQJOZwn4HZ+7+27vRFdfU3IEBQH33OP53pYWICREOViuuebird9FYDJZAKgxbFgKIiOVVayv9x5yoabmjEeLVWRkXDdarEo7bbFyJq4D7ctz/wGfkgLUVnRvHKvzbrHSBF+wwMrZCtKbQMYZCHTsCgQ6BlbuOVaddwVarbVQWry6P56RF2fLkL+uwODOuwLbt0l7d905Uyu09go4VGH+66ZSAcnJQH6+/xaroiKPxDvnVYH+WqwAZZuqVFqoO8nlc+ZYtdpaYU9K9AxQHA5E1jYhT13h9TnSaCKV9dHrPVusnNvOx5dwx8CqIKTR60pEr3Lc3gsAtqShrn0kQpTgzTRkcGAEVmZziys/tr9btUrZpkOUC22YV0WXBvfpbrriK5eqrk5JVBViwOVZtbS0QKdTrjZyv1q94yChtbVFrsBKabFK6GK4BaX7o7MWK2fiOuA7sBoyBLBYNIAlrMsWKyldgb2czqYrzryd3iavA54tVs4AzTN5PQhCWGEyne0ixyoEKpUWWm3k+XV7dhFY+Uxe7zDcAtC+TeLD41FrNiNUVMChjul62ceOdbsrMCIoAsHaYJypO+MzeR1wBj+d7//EQYmoaalBnakODkOyZ4BSWQnboHDkN5z0+hxptW2BVWSkZ4uVn20HtF8ZCCjTb50KtyC4vNp3xTqU4xzqQSQntQdW4cqXvi02zqulrTN9FliVlrairu7aC7qMhISETpPdu3NzJsT/8IfKj3eiS0Z3Byd18nV1ofNLaIDlWbW0mBEeHuv633dglYLa2lJXV6DNVo/o6IQuBghVXttZ95d7YBUbG4umpiacOtXi+o5QqYDYBBNQb4BO47slweEAmpo8hzPqjQvZFai0zqig0YT3+L3OVh73HKv2Fqv2x5TzfDAslioEBQ3ttEytVt+rRHoPPW2xMnXeYqVRa6DRDEKEqgZqXSfDCjiXnZ/vuyvQmVh/9qzH8wa9AflV+Z10Beo77QYElKv14iPicdp4GiofY3nZkpNwovaE1+dIKTvEu8XKT34aoLQ6tdqUHKvi+mLYkhOh8tfS5KfFSpWSoiyjuBiIVL7/HXEJgdFiFRJiRGZmOEJD/X0YlMfj47v4sLi/o8NrZSSzV1ZW4vPPgaNHgUceYV4VXUK6Ozipk/sgpf6uPOzBWDD9mdlsRXT0ENf/HQMrIQRCQgwwGis9ugIHD05GfX293zQHZ0tEZ91f7oGVWq1GcnIyvvmmxCNlJ36oFWgw+G2xamwEwsNx3r0GF7IrUK0Og0ajh0rV86+7q2xWAAAgAElEQVQpV46VVzI0vLrL1OpgBAUldNqdBSj75LwS14Guk9eD25PXrXYrLHYLwnXtgaUziHGvR3DQEMQGWaAL6mQgTEDpIz550n8zpcHg9XxKZApO1p7spCswstPEdfdyTDYTtJcN8wqstCmpMNlM/rsCIyN9dwX64N4VWNxQDK0hVcml8vUD0U9g5apjURHUMcpBpU5KCYzAqrXVhIqKa7F9ewUAgR/+UJlvec4cgRtvFACUboOKigoIIfze3n77bcyePRtCCFRcoK6GH/9Y+RsRwe4/uoT0ZHDSjoOU+rvysLz84q/HBWA2W5GQ0N5i5fyRGx4ejrCwMNTU1CA42ID6+hro9XoIIWC3NyAsLAZardY1cGhH7S1WnSevp7hFUQaDASdPFnl81yQmW4H6FL+BlYzEdeDC51j1dmiDzroCfQVWnXUDOmm1EgKrlBTgm2+UHxiDB3s97d4V6GuOPmcQ416P8OA4aFTwf0Wgk8GgHIP+dnxKitfzBr0BdmH322KlBD9d73+DXtm+usuGe03rE5R6uc+WTyV/qy3Hqqmp/XziJ/Ef8AysiuqLkBCbqiS5+2pkcRt13fleANClXg6cPg3U1EAbm6o8Fpes/Brppj4MrGywWidh507l/w8+UP5u2wZs2aLc787gm7NmzcL+/fvR7Lxk7wI4e7b79SEi+L/ysKmpb+ojmc1mQ2pq+7h5/oZcqKszIjIyEg5Ha1uSb1Cno687vzC72xXoXF5JSbFHYJWU5ADq/bdYyUhcB5SuNtnT2Tip1aG9DmS62xXo/L+zxHX39593V2BysnKJv5/ka/euQF9X4yn5TCpoNO19uPpQZbiAiNBhnS/b+QHprMWqw/OGSOUxfzlWyjbpev87A6uQoSlKVN/aNiRCcTFUKSlI1id7fY6UHKsQpVk1NLT93NFZjpW2PcequL5YWW7Hya+dOuZYteV4hSRdptQxPh4hIXEAgEGhQ4CkpC7X00V0w4cffihGjRolLr/8cvHUU095PW8ymcTChQvF5ZdfLiZPnizOnDnTZZkAXLeYmIi2x5TnrFbl/pYtQqxc2f4e5333x8LD4z3K4o033vr37WK7GOevHTuE0Ol4LuKNt4F+644uX2Wz2cTw4cPFqVOnhNlsFhMmTBDHjh3zeM2LL74o/ud//kcIIcTGjRvFwoULe3RiclbWvc6AECNGeD/m/bq+39C88cZb928X08U6fx0/znMRb7xdCrfu6LIr8IsvvsCIESMwfPhwBAUFYdGiRdji7Ktrs2XLFtx2220AgAULFmDnzp29GoPKPTF85Upg1ChnHZSb837Hx4iIfLlY5y8/PRNEdAnSdvWC0tJSj/785ORkfP75535fo9VqERkZiXPnziEmxnNcjdzcXOTm5vpcTnZ2NgBg61ZlKiH3HNcpU7zvuz/WM1ke/yUmKnNhOh08eLC3BRNRP3Oxzl9hYdmSa05EgarLwEqmnJwc5OTkAFACqby8vIu5+AtmIK0LMLDWh+tCsgzU8xcwsNaH69I/DaR16UqXXYFJSUmuAe8AoKSkBEkdsuPdX2Oz2VBfX48hQ4aAiKgv8fxFRBdbl4HVFVdcgRMnTuDMmTOwWCzYtGkT5s2b5/GaefPm4bXXXgMAbN68GTNnzrwgs50TEfUEz19EdLFpVq3qfFQmtVqNkSNHYunSpfjTn/6EpUuXYv78+Xj88cfR2NiI0aNHY8KECdiwYQN+/etf48iRI3j55ZcRHR3d5cKzsrK6fE2gGEjrAgys9eG6XLp4/uq+gbQ+XJf+aSCtS2dUojeX7xERERGRlz4beZ2IiIhooGFgRURERCRJnwRW27dvx+jRozFixAisWbOmL6rQa8XFxZgxYwbS0tIwbtw4PP/88wCA2tpazJ49GyNHjsTs2bNhNBr7uKbdZ7fbMXHiRMydOxcAcObMGUyZMgUjRozAj3/8Y1g6zvnWT9XV1WHBggUYM2YMxo4di/379wfsfnn22Wcxbtw4jB8/HosXL4bJZArY/TLQ8PzVvwyU8xfAc9hAcdEDK7vdjnvvvRcffvghCgoKsHHjRhQUFFzsavSaVqvF008/jYKCAhw4cAAvvvgiCgoKsGbNGsyaNQsnTpzArFmzAuqE+/zzz2Ps2LGu/x955BE88MADOHnyJKKjo7Fu3bo+rF333XffffjBD36Ab7/9Fl999RXGjh0bkPultLQUL7zwAvLy8pCfnw+73Y5NmzYF7H4ZSHj+6n8GyvkL4DlswOjZzFvn77PPPhPXXXed6/8nn3xSPPnkkxe7GtLMmzdPfPTRR2LUqFGirKxMCCFEWVmZGDVqVB/XrHuKi4vFzJkzxc6dO8WcOXOEw+EQQ4YMEVarVQjhvb/6q7q6OpGamiocDofH44G4X0pKSkRycrI4d+6csFqtYs6cOWL79u0BuV8GGp6/+peBcv4SguewgeSit1j5mmKitLT0YldDisLCQhw+fBhTpkxBZWUlEhMTAQAJCQmorKzs49p1z/3334+1a9dCrVY+CufOnUNUVBS0WmVQ/kDZP2fOnEFsbCyWLVuGiRMnYvny5Whubg7I/ZKUlISHHnoIKSkpSExMRGRkJLKysgJyvww0PH/1LwPl/AXwHDaQMHm9l5qamjB//nw899xz0Ov1Hs+pVKqAGGBw69atiIuLGxBji9hsNhw6dAh33303Dh8+jPDwcK8m80DZL0ajEVu2bMGZM2dQVlaG5uZmbN++va+rRQMIz1/9D89hA8dFD6y6M8VEf2e1WjF//nwsWbIEt9xyCwAgPj4e5W0zR5eXlyMuLq4vq9gt+/btw3vvvYfU1FQsWrQIu3btwn333Ye6ujrYbDYAgbN/kpOTkZycjClts3MvWLAAhw4dCsj9smPHDgwbNgyxsbHQ6XS45ZZbsG/fvoDcLwMNz1/9x0A6fwE8hw0kFz2w6s4UE/2ZEAJ33nknxo4diwcffND1uPu0GK+99hpuvPHGvqpitz311FMoKSlBYWEhNm3ahJkzZ2LDhg2YMWMGNm/eDCBw1iUhIQEGgwHHjx8HAOzcuRNpaWkBuV9SUlJw4MABtLS0QAjhWpdA3C8DDc9f/cdAOn8BPIcNKH2R2LVt2zYxcuRIMXz4cPHb3/62L6rQa3v27BEARHp6usjIyBAZGRli27ZtoqamRsycOVOMGDFCzJo1S5w7d66vq9oju3fvFnPmzBFCCHHq1ClxxRVXiMsvv1wsWLBAmEymPq5d9xw+fFhkZWWJ9PR0ceONN4ra2tqA3S+PP/64GD16tBg3bpxYunSpMJlMAbtfBhqev/qfgXD+EoLnsIGCU9oQERERScLkdSIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkkYWBERERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgkYWBFREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkm0fbXgmJgYpKam9tXiiagPFBYWoqampq+rQUR0wfRZYJWamoq8vLy+WjwR9YHs7Oy+rgIR0QXFrkAiIiIiSRhYEREREUnCwIqIiIhIkj7LsTofQgjYbDYIIfq6KkTkg0qlglarhUql6uuqEBFdVAEZWNlsNqjVaqjVap64ifoZIQQcDgdsNht0Ol1fV4eI6KIKyK5AIQSDKqJ+SqVSQa1Ws0WZiC5JARlYAWBQRdSP8fgkoktVwAZWRERERP0NAyvC7bffjs2bN0sv98knn3TdLywsxPjx47t8T3V1NaZMmYKJEydiz5490uvUH7z66qv42c9+BgB4+eWX8fe//93vaz/++GN89tlnfp9/7733sGbNGgC924/u+wgAvve97/Xo/URE5ImBFV0wHb+0u2Pnzp1IT0/H4cOHcdVVV3k8Z7fbZVWt37jrrrvw05/+1O/znQVWNpsN8+bNw4oVK3q9/I77qLMgjoiIusbAqheam5sxZ84cZGRkYPz48XjjjTcAAAcPHsQ111yDrKwsXH/99SgvL3c9npGRgYyMDPzyl790tdy4t1wAwNy5c/Hxxx8DAD766CNMnToVkyZNwq233oqmpiYAylRAK1euxKRJk5Ceno5vv/0WANDU1IRly5YhPT0dEyZMwFtvvdVpOf74W4drr70WjzzyCCZPnoxRo0a5WpNaWlqwcOFCpKWl4eabb8aUKVOQl5eHFStWoLW1FZmZmViyZAkAJTD67//+b4wbNw7XXXcdWltbPZZ95MgRPPzww9iyZQsyMzPR2tqKiIgI/OIXv0BGRgb279/f77bxK6+8gvvvv99V/l//+lc88MADXtt1/fr1GDVqFCZPnox9+/a5Hl+1ahX++Mc/AgBeeOEFpKWlYcKECVi0aBEKCwvx8ssv49lnn0VmZib27NmD22+/HXfddRemTJmChx9+2Gv9duzYgezsbIwaNQpbt27tdBv42kcREREAlAtEnNsxPT3d9Rn/+OOPce2112LBggUYM2YMlixZwiR1IiJ3oo9kZWX1+r1ms9nj/5W7VwqsgrTbyt0rO13+5s2bxfLly13/19XVCYvFIqZOnSqqqqqEEEJs2rRJLFu2TAghRHp6uvjkk0+EEEI89NBDYty4cUIIIdavXy/uvfdeVzlz5swRu3fvFtXV1eKqq64STU1NQggh1qxZI1avXi2EEOKyyy4TL7zwghBCiBdffFHceeedQgghHn74YXHfffe5yqqtre20HHe33XabePPNNztdh2uuuUY8+OCDQgghtm3bJmbNmiWEEOIPf/iDyMnJEUIIcfToUaHRaMSXX34phBAiPDzctYwzZ84IjUYjDh8+LIQQ4tZbbxX/+Mc/vOrScZsAEG+88YYQQvTLbdzY2CiGDx8uLBaLEEKIqVOniq+//tpjncrKyoTBYBBVVVXCbDaL733ve646rVy5UvzhD38QQgiRmJgoTCaTEEIIo9Ho9bxzX82ZM0fYbDav9bvtttvE9ddfL+x2u/juu+9EUlKSaG1t9bsNOu4j9/83b94svv/97wubzSYqKiqEwWAQZWVlYvfu3UKv14vi4mJht9vFlVdeKfbs2eO1H4XwPk6FOL/jnogoEATkOFYdrbp2FVZdu+qiLS89PR2/+MUv8Mgjj2Du3Lm46qqrkJ+fj/z8fMyePRuA0jqTmJiIuro61NXV4eqrrwYA/OQnP8GHH37YafkHDhxAQUEBpk2bBgCwWCyYOnWq6/lbbrkFAJCVlYW3334bgNJSsWnTJtdroqOjsXXr1k7L6ej48eM+18HXcgsLCwEAe/fuxX333QcAGD9+PCZMmOC3/GHDhiEzM9OrjM5oNBrMnz+/0/r15TYGgJkzZ2Lr1q0YO3YsrFYr0tPTPZb1+eef49prr0VsbCwA4Mc//jG+++47rzpNmDABS5YswU033YSbbrrJb91vvfVWaDQan88tXLgQarUaI0eOxPDhw12tbT21d+9eLF68GBqNBvHx8bjmmmvw5ZdfQq/XY/LkyUhOTgYAZGZmorCwENOnT+/VcoiIBpoBEVhdbKNGjcKhQ4fwwQcf4NFHH8WsWbNw8803Y9y4cdi/f7/Ha+vq6vyWo9Vq4XA4XP+bTCYASjfM7NmzsXHjRp/vCw4OBqAEHTabzW/5XZXj6/W+1qGny/XH+X5nGR27An0JCQlxBRH+6teX2xgAli9fjieffBJjxozBsmXLulwnf7Zt24ZPP/0U77//Pn73u9/h6NGjPl8XHh7ut4yOwxw4R0D3tQ16q+N+7M1ngYhooGKOVS+UlZUhLCwMS5cuxS9/+UscOnQIo0ePRnV1tetL32q14tixY4iKikJUVBT27t0LANiwYYOrnNTUVBw5cgQOhwPFxcX44osvAABXXnkl9u3bh5MnTwJQcrp8tXC4mz17Nl588UXX/0ajscfl+FuHzkybNg3/+te/AAAFBQUewYBOp4PVau30/T3RH7cxAEyZMgXFxcX45z//icWLF3u9b8qUKfjkk09w7tw5WK1WvPnmm16vcdZvxowZ+P3vf4/6+no0NTVh0KBBaGxs7PY2evPNN+FwOHDq1CmcPn0ao0eP9rsNAP/76KqrrsIbb7wBu92O6upqfPrpp5g8eXK360FEdKliYNULR48exeTJk5GZmYnVq1fj0UcfRVBQEDZv3oxHHnkEGRkZyMzMdF1htX79etx7773IzMz0SPSdNm0ahg0bhrS0NPz85z/HpEmTAACxsbF49dVXsXjxYkyYMAFTp07tskvn0UcfhdFoxPjx45GRkYHdu3f3uJzO1sGfe+65B9XV1UhLS8Ojjz6KcePGITIyEgCQk5Pj6t6SoT9uY6eFCxdi2rRpru5Bd4mJiVi1ahWmTp2KadOmYezYsV6vsdvtWLp0KdLT0zFx4kT8/Oc/R1RUFH70ox/hnXfecSWvdyUlJQWTJ0/GDTfcgJdffhkhISF+twHgfx/dfPPNmDBhAjIyMjBz5kysXbsWCQkJXS6fiOhSpxKiby7pyc7ORl5eXq/ea7FYEBQUJLlGF0dhYSHmzp2L/Pz8vq6KFHa7HVarFSEhITh16hS+//3v4/jx4326f/piG8+dOxcPPPAAZs2addGW2d/5Ok7P57gnIgoEPW6xuuOOOxAXF+dzsMenn34aKpUKNTU1UipH/V9LSwumT5+OjIwM3HzzzfjLX/4SsEFvb9TV1WHUqFEIDQ1lUEVERD1vsfr0008RERGBn/70px4tAsXFxVi+fDm+/fZbHDx4EDExMZ2Wc6m2WBFdKthiRUSXoh63WF199dUYPHiw1+MPPPAA1q5de9EmX+2jHkwi6gYen0R0qZKSvL5lyxYkJSUhIyOj09fl5uYiOzsb2dnZqK6u7vXyVCoVHA4HT95E/ZAQAg6H46L9yCIi6k/OexyrlpYWPPnkk/joo4+6fG1OTg5ycnIAKF0CvaXVamGz2Qbk3HFEA4Fz/CwiokvNeZ/5Tp06hTNnzrhaq0pKSjBp0iR88cUXF+zybJVKBZ1Od0HKJiIiIuqt8w6s0tPTUVVV5fo/NTUVeXl5XSavExEREQ00Pc6xWrx4MaZOnYrjx48jOTkZ69atuxD1IiIiIgo4PW6x6mreue5MrEtEREQ0EHFKGyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkkYWBERERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgk6VFgdccddyAuLg7jx493PfbLX/4SY8aMwYQJE3DzzTejrq5OeiWJiIiIAkGPAqvbb78d27dv93hs9uzZyM/Px9dff41Ro0bhqaeeklpBIiIiokDRo8Dq6quvxuDBgz0eu+6666DVagEAV155JUpKSuTVjoiIiCiASM2xeuWVV3DDDTf4fT43NxfZ2dnIzs5GdXW1zEUTERER9TlpgdXvfvc7aLVaLFmyxO9rcnJykJeXh7y8PMTGxspaNBEREVG/oJVRyKuvvoqtW7di586dUKlUMookIiIiCjjnHVht374da9euxSeffIKwsDAZdSIiIiIKSD3qCly8eDGmTp2K48ePIzk5GevWrcPPfvYzNDY2Yvbs2cjMzMRdd911oepKRERE1K/1qMVq48aNXo/deeed0ipDREREFMg48joRERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkkYWBERERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgkYWBFREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkvQ4sLrjjjsQFxeH8ePHux6rra3F7NmzMXLkSMyePRtGo1FqJYmIiIgCQY8Dq9tvvx3bt2/3eGzNmjWYNWsWTpw4gVmzZmHNmjXSKkhEREQUKHocWF199dUYPHiwx2NbtmzBbbfdBgC47bbb8O6778qpHREREVEA0coopLKyEomJiQCAhIQEVFZW+nxdbm4ucnNzAQDV1dUyFk1ERETUb0hPXlepVFCpVD6fy8nJQV5eHvLy8hAbGyt70URERER9SkpgFR8fj/LycgBAeXk54uLiZBRLREREFFCkBFbz5s3Da6+9BgB47bXXcOONN8ooloiIiCig9DiwWrx4MaZOnYrjx48jOTkZ69atw4oVK/Cf//wHI0eOxI4dO7BixYoLUVciIiKifq3HyesbN270+fjOnTvPuzJEREREgYwjrxMRERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgkYWBFREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkibTA6tlnn8W4ceMwfvx4LF68GCaTSVbRRERERAFBSmBVWlqKF154AXl5ecjPz4fdbsemTZtkFE1EREQUMKS1WNlsNrS2tsJms6GlpQVDhw6VVTQRERFRQJASWCUlJeGhhx5CSkoKEhMTERkZieuuu87rdbm5ucjOzkZ2djaqq6tlLJqIiIio35ASWBmNRmzZsgVnzpxBWVkZmpub8frrr3u9LicnB3l5ecjLy0NsbKyMRRMRERH1G1ICqx07dmDYsGGIjY2FTqfDLbfcgs8++0xG0UREREQBQ0pglZKSggMHDqClpQVCCOzcuRNjx46VUTQRERFRwJASWE2ZMgULFizApEmTkJ6eDofDgZycHBlFExEREQUMlRBC9MWCs7OzkZeX1xeLJqI+wuOeiAY6jrxOREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkkYWBERERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgkkRZY1dXVYcGCBRgzZgzGjh2L/fv3yyqaiIiIKCBoZRV033334Qc/+AE2b94Mi8WClpYWWUUTERERBQQpgVV9fT0+/fRTvPrqqwCAoKAgBAUFySiaiIiIKGBI6Qo8c+YMYmNjsWzZMkycOBHLly9Hc3Oz1+tyc3ORnZ2N7OxsVFdXy1g0ERERUb8hJbCy2Ww4dOgQ7r77bhw+fBjh4eFYs2aN1+tycnKQl5eHvLw8xMbGylg0ERERUb8hJbBKTk5GcnIypkyZAgBYsGABDh06JKNoIiIiooAhJbBKSEiAwWDA8ePHAQA7d+5EWlqajKKJiIiIAoa0qwL/9Kc/YcmSJbBYLBg+fDjWr18vq2giIiKigCAtsMrMzEReXp6s4oiIiIgCDkdeJyIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkkYWBERERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgkYWBFREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSqYGV3W7HxIkTMXfuXJnFEhEREQUEqYHV888/j7Fjx8oskoiIiChgSAusSkpKsG3bNixfvlxWkUREREQBRVpgdf/992Pt2rVQq/0XmZubi+zsbGRnZ6O6ulrWoomIiIj6BSmB1datWxEXF4esrKxOX5eTk4O8vDzk5eUhNjZWxqKJiIiI+g0pgdW+ffvw3nvvITU1FYsWLcKuXbuwdOlSGUUTERERBQwpgdVTTz2FkpISFBYWYtOmTZg5cyZef/11GUUTERERBQyOY0VEREQkiVZ2gddeey2uvfZa2cUSERER9XtssSIiIiKShIEVERERkSQMrIiIiIgkYWBFREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkCQMrIiIiIkkYWBERERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEimBVXFxMWbMmIG0tDSMGzcOzz//vIxiiYiIiAKKVkohWi2efvppTJo0CY2NjcjKysLs2bORlpYmo3giIiKigCClxSoxMRGTJk0CAAwaNAhjx45FaWmpjKKJiIiIAoaUFit3hYWFOHz4MKZMmeL1XG5uLnJzcwEA1dXVshdNRERE1KekJq83NTVh/vz5eO6556DX672ez8nJQV5eHvLy8hAbGytz0URERER9TlpgZbVaMX/+fCxZsgS33HKLrGKJiIiIAoaUwEoIgTvvvBNjx47Fgw8+KKNIIiIiooAjJbDat28f/vGPf2DXrl3IzMxEZmYmPvjgAxlFExEREQUMKcnr06dPhxBCRlFERHOQcf4AAAbNSURBVEREAYsjrxMRERFJwsCKiIiISBIGVkRERESSMLAiIiIikoSBFREREZEkDKyIiIiIJGFgRURERCQJAysiIiIiSRhYEREREUnCwIqIiIhIEgZWRERERJIwsCIiIiKShIEVERERkSQMrIiIiIgkYWBFREREJAkDKyIiIiJJGFgRERERScLAioiIiEgSBlZEREREkjCwIiIiIpKEgRURERGRJAysiIiIiCRhYEVEREQkibTAavv27Rg9ejRGjBiBNWvWyCqWiIiIKGBICazsdjvuvfdefPjhhygoKMDGjRtRUFAgo2giIiKigCElsPriiy8wYsQIDB8+HEFBQVi0aBG2bNkio2giIiKigPH/27u/kKb6MA7gX33XVZBFbE02xWyz5mYiU3bthhEsJrhBRrvoHwO7yIqgu+giLIIoi25GXRgUu+imSJLIughrkWwEIsaKCfsjUtNdZAyne96LaNBb8u6t83o64/u5+x3nOc/DV8aD53B+OiVOkslk0NDQUF6bzWa8fv36h8+Fw2GEw2EAwNTUFDo7O5W4vOo+fvwIvV6vdhmKqJZeqqUPoLp6mZmZUbsEIqL/lSKDVaVCoRBCoRAAoLOzE5OTk+t5+f8Ne/nzVEsfQPX1QkRUzRS5FWgymZBKpcrrdDoNk8mkxKmJiIiINEORwaqrqwuJRALJZBLLy8uIRCLw+XxKnJqIiIhIM/46f/78+d89SW1tLaxWK4LBIG7cuIFgMAi/3/+vv+d0On/30n8M9vLnqZY+APZCRKQVNSIiahdBREREVA345nUiIiIihXCwIiIiIlKIKoOVVre/SaVS6O7uRmtrK+x2O4aHhwEACwsL6OnpgdVqRU9PDxYXF1WutHKrq6vo6OjAvn37AADJZBIulwsWiwX79+/H8vKyyhVWJp/PIxAIYNeuXbDZbHj16pUmc7l69SrsdjscDgcOHDiAQqGgmUyOHDkCg8EAh8NRPrZWBiKCEydOwGKxYPfu3YjFYmqVTUSkqHUfrLS8/Y1Op8OVK1cwPT2NaDSKmzdvYnp6GpcuXYLH40EikYDH49HUsDg8PAybzVZenz17FqdOncL79++xZcsW3L59W8XqKjc4OIi9e/diZmYGb9++hc1m01wumUwG169fx+TkJKamprC6uopIJKKZTA4dOoSxsbHvjq2VwePHj5FIJJBIJBAOhzEwMKBGyUREypN19vLlS9mzZ095PTQ0JENDQ+tdhiJ8Pp88efJEWlpaJJvNiohINpuVlpYWlSurTCqVErfbLePj4+L1eqVUKsnWrVulWCyKyI9Z/any+bw0NTVJqVT67rjWckmn02I2myWXy0mxWBSv1ytjY2OayiSZTIrdbi+v18ogFArJvXv3fvo5IiItW/f/WP1s+5tMJrPeZfy22dlZxONxuFwuzM/Po76+HgBgNBoxPz+vcnWVOXnyJC5fvoza2q9/BrlcDps3b4ZO9/WF/FrJJplMQq/X4/Dhw+jo6MCxY8ewtLSkuVxMJhPOnDmDxsZG1NfXo66uDk6nU5OZfLNWBtXyPUBE9E98eP0XfP78GX6/H9euXcOmTZu++1lNTQ1qampUqqxyjx49gsFgqIp3Cq2srCAWi2FgYADxeBwbN2784bafFnJZXFzEgwcPkEwmkc1msbS09MOtNS3TQgZERL9r3QcrrW9/UywW4ff7cfDgQfT19QEAtm3bhrm5OQDA3NwcDAaDmiVWZGJiAg8fPkRTUxP6+/vx7NkzDA4OIp/PY2VlBYB2sjGbzTCbzXC5XACAQCCAWCymuVyePn2K7du3Q6/XY8OGDejr68PExIQmM/lmrQy0/j1ARLSWdR+stLz9jYjg6NGjsNlsOH36dPm4z+fDyMgIAGBkZAS9vb1qlVixixcvIp1OY3Z2FpFIBG63G3fv3kV3dzfu378PQDu9GI1GNDQ04N27dwCA8fFxtLa2ai6XxsZGRKNRfPnyBSJS7kOLmXyzVgY+nw937tyBiCAajaKurq58y5CISNPUeLBrdHRUrFarNDc3y4ULF9Qo4Ze8ePFCAEhbW5u0t7dLe3u7jI6OyqdPn8TtdovFYhGPxyO5XE7tUv+T58+fi9frFRGRDx8+SFdXl+zYsUMCgYAUCgWVq6tMPB4Xp9MpbW1t0tvbKwsLC5rM5dy5c7Jz506x2+0SDAalUChoJpP+/n4xGo2i0+nEZDLJrVu31sygVCrJ8ePHpbm5WRwOh7x580bl6omIlMEtbYiIiIgUwofXiYiIiBTCwYqIiIhIIRysiIiIiBTCwYqIiIhIIRysiIiIiBTCwYqIiIhIIRysiIiIiBTyN5B42w4uFEMHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Variable 1: lateral shoot type\n", + "obs.plot(\"Intensity\", 0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJOCAYAAAB1IEnpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlc1PX2/1/DIjsjixu7piKLKAhqLmHLVb9GmEVEoveKlkX5u3VbbgupaHkzNfS63Ey76a3gmlpqZphLedNyzcQFKytkQEyFcGAYlhnm/P6Y5uMMswIzzADn2YNHzvvz/rzf5z2fz5w5c875nLeIiAgMwzAMwzBMu3GytwAMwzAMwzBdBTasGIZhGIZhrAQbVgzDMAzDMFaCDSuGYRiGYRgrwYYVwzAMwzCMlWDDimEYhmEYxkp0GsPq8OHDiIyMtKjv5s2bMW7cOKPHJ0yYgHfffddaonU5RCIRfv75Z6uM1db3+tChQwgJCbGKDB3F5cuXIRKJoFQqO2S+9lyniIgIHDhwwOCxlp817b7/+Mc/8OijjxodNz8/HxMnTmyTTAxjT/g7hrEWncawGj9+PH788Ue7yvDTTz9h6tSp6NWrF/z9/TFp0iS7y9ReWAEwLTH1WXvllVeE+8WQIZmZmYl9+/Z1iJwMY034O4axFp3CsOooD4A5bt68idTUVPz444+4du0aRo4cialTp9pbLKaNOMp9ZQhHlo1huhqO8nnj75iugc0MqzfffBNpaWk6bU8//TT++te/AgA2bdqEqKgo+Pj4YMCAAXjnnXeEfpow0Jtvvom+ffsiKytLLzS0dOlS3HbbbfDx8UF0dDR27NihMxcRYd68eRCLxRgyZAgOHjxoVNb33nsPUVFR8PPzw6RJk1BaWmqw38iRIzFnzhz4+/vD1dUVf/vb3/Djjz+iqqqq1e8PAPz8889ITk6GWCxGYGAgHn74YeGYSCTCv/71LwwaNAg+Pj6YP38+fvnlF4wZMwa+vr5IT09HU1OT0H/jxo0YOHAg/P39kZqaioqKCuHYt99+i6SkJIjFYiQlJeHbb78FAOTk5ODw4cOYN28evL29MW/ePOGcAwcOYNCgQejZsyeeeuopaBfoN/V+7d+/H0OGDIFYLMa8efNgqrB/Y2MjnnnmGQQFBSEoKAjPPPMMGhsbdfr84x//QGBgICIiIpCfny+0f/7554iOjoaPjw+Cg4OxYsUK4dhnn32G4cOHo2fPnhgzZgzOnj0rHIuIiMCbb76JuLg4eHl5mb1PpVIp5syZg379+iE4OBivvvoqmpubAQDNzc14/vnnERgYiAEDBmDPnj1G16qZ+4033kB0dDT8/PyQlZWFhoYGAIbvecD0ddW8DwMGDEBgYCBeeOEFqFQqAMAvv/yCu+66CwEBAQgMDERmZiZu3rypc+7JkydNymKI3NxczJgxAwBwxx13AAB69uwJb29vHD16VC9E8sMPP+BPf/oT/P39ERkZia1bt+rIbuwaMow5+DuGcVjIRly+fJk8PDyopqaGiIiUSiX17duXjh49SkREn332Gf3888+kUqno0KFD5OHhQd999x0REX311Vfk7OxMf//736mhoYHkcjl99dVXFBwcLIy/detWunLlCjU3N9OWLVvI09OTKioqiIho06ZN5OzsTHl5edTU1ERbtmwhX19fqqqqIiKi5ORk2rhxIxER7dy5k2677TYqLi4mhUJBr732Gt1+++0WrXHHjh3Ut2/fNr9HGRkZ9Prrr1NzczPV19fT4cOHhWMAKDU1laRSKZ0/f5569OhBd911F/3yyy908+ZNioqKos2bNxMR0cGDBykgIIC+++47amhooHnz5tH48eOJiKiqqop69uxJ77//PikUCiooKKCePXtSZWWl3nuhPfe9995L1dXVVFpaSoGBgVRYWGj2/bpx4wZ5e3vTtm3bqKmpifLy8sjZ2VlvfA3z58+nUaNG0bVr1+j69et0++2306uvvkpEt+6Bv/3tb9TQ0ECHDh0iT09P+uGHH4iIqG/fvvT1118TEdHvv/8u3DunT5+mXr160bFjx0ipVNLmzZspPDycGhoaiIgoPDychg0bRhKJhORyudn79P7776e5c+eSTCaja9euUVJSEq1fv56IiN5++22KjIwkiURCVVVVNGHCBAJACoXC4HrDw8MpJiZG6D9mzBjKycnRWa/2PW/qumqu04QJE6iqqopKS0tp0KBBwnt96dIl2rdvHzU0NND169dp/Pjx9PTTT1ssi/ZnLTw8nPbv309ERAsXLqTMzEwiIiopKdFb76ZNm2js2LFERCSTySgkJITee+89UigUdPr0aQoICKALFy6YvIYMYwn8HcM4KjYzrIiIxo4dS//5z3+IiGjfvn00YMAAo32nTp1Kq1atIiL1Te/q6kr19fXC8ZY3fUuGDRtGO3fuJCL1Td+vXz9SqVTC8aSkJHr//feJSPemnzx5Mr377rtCv+bmZvLw8KDLly+bXFtZWRkFBQVRQUGByX6mmDlzJj322GNUVlamdwwAHTlyRHidkJBAS5cuFV4/++yzwhfl7Nmz6YUXXhCO1dbWkouLC5WUlND7779PSUlJOmOPHj2aNm3aRETGDSttI++hhx6iN954g4hMv1//+c9/aNSoUcIxlUpFwcHBRg2rAQMG0J49e4TXe/fupfDwcCK6pfhkMpmOHIsXLyYiotDQUFq/fj1JpVKdMZ944gnBONMwePBgOnToEBGpjYR///vfOseN3ae//fYb9ejRg+RyudC3oKCAJkyYQEREd955J7399tvCsS+++MKsYaXdf8+ePcJchu55U9eVSH2dNAYvEdG6devorrvuMjj3jh07aPjw4RbLYg3DasuWLTRu3DgdOebOnUu5ublEZPwaMoyl8HcM44jYNMdq+vTp+O9//wsAKCgowPTp04VjhYWFGD16NPz9/dGzZ098/vnnqKysFI736tUL7u7uRsd+//33hXBPz549cf78eZ3zg4ODIRKJhNfh4eF6YRQAKC0txdNPPy2M4+/vDyLClStXjM5948YNTJw4EU8++SQeeeQRg30kEgm8vb2FP0MsW7YMRISRI0ciJiYG7733ns7xPn36CP/28PDQey2TyQAAFRUVCA8PF455e3sjICAAV65c0TumeS9MrQ8A+vbtK/zb09NTmMvU+1VRUYHQ0FDhPJFIpPO6JS1la3mN/Pz84OXlZfD4xx9/jM8//xzh4eFITk7G0aNHBfneeustQb6ePXuirKxMZ9yWMhm7T0tLS6FQKNCvXz9hrMcffxzXr18X5Nceq+X7bIiW/bXlannPm7qu5sa7du0aMjIyEBwcDF9fX8yYMUPn82FOFmtQWlqK48eP61yL/Px8/PbbbwCMX0OGsZTu/B3DOC42NaweeughHDp0COXl5dixY4dw0zc2NuLBBx/E888/j2vXruHmzZuYMmWKTj6O9g3bktLSUjz22GNYu3YtqqqqcPPmTcTGxuqcf+XKFZ3XEokEQUFBemOFhobinXfewc2bN4W/+vp6jBkzxuDc1dXVmDhxIlJTU5GTk2NUxrCwMMhkMuHPEH379sXGjRtRUVGBd955B08++WSbHp8PCgrSidnX1dWhqqoKwcHBescA9XsRHBwMwPT7bAhT71e/fv1QVlYm9CUindfm5G55jaqrq1FXV2fweFJSEnbt2oXr16/j/vvvR3p6uiBfTk6OjnxyuVxHObVcs7H7NDQ0FG5ubqisrBTGqqmpwYULFwBAb70SicTs+9eyv/Z6W8pl6rqaG++VV16BSCTCuXPnUFNTgw8//FAv382ULJZg7t4JDQ1FcnKyzrWQyWR4++23ARi/hgxjKd35O4ZxXGxqWPXq1QsTJkxAVlYW+vfvj6ioKABAU1MTGhsb0atXL7i4uKCwsLBVj2jX1dVBJBKhV69eANRJiufPn9fpc/36daxevRoKhQLbtm3DxYsXMWXKFL2xnnjiCbzxxhvCl6VUKsW2bdsMzltTU4NJkyZh7NixWLp0qcXyGmPbtm0oLy8HoPbOiEQiODm1/pI88sgj2LRpE86cOYPGxka88sorGDVqFCIiIjBlyhT89NNPKCgogFKpxEcffYTi4mKkpKQAUHvFfv31V4vnMvV+3Xvvvbhw4QI++eQTKJVKrF69WvBOGJP79ddfx40bN1BZWYnFixcLidEaFi5ciKamJhw+fBifffYZHnroITQ1NSE/Px9SqRSurq7w9fUV3rfHHnsM69evx/Hjx0FEqKurw549e1BbW2tUDmP3ab9+/TBx4kQ899xzqKmpgUqlwi+//IL//e9/AID09HSsXr0a5eXlqK6utuieWLduHcrLy/H7779jyZIlOg8sGHp/jF1XDcuXL0d1dTXKysrwz3/+UxivtrYW3t7eEIvFuHLlCpYvX94uWQzRq1cvODk5Gb1/UlJS8NNPP+GDDz6AQqGAQqHAyZMncfHiRZPXkGEshb9jGEfE5pps+vTpOHDggI6L1sfHB6tXr0Z6ejr8/PxQUFCA1NRUi8eMjo7Gc889h9tvvx19+vTBuXPnMHbsWJ0+o0aNwqVLlxAYGIicnBxs374dAQEBemNNmzYNL774IjIyMuDr64vY2FgUFhYanHfHjh04efIkNm3apBPms8RTYYiTJ09i1KhR8Pb2RmpqKv75z39iwIABrR7nnnvuwWuvvYYHH3wQ/fr1wy+//IItW7YAAAICAvDZZ5/hrbfeQkBAAJYtW4bPPvsMgYGBANRP0Wzfvh1+fn7C0zSmMPV+BQYGYtu2bXjppZcQEBCAS5cu6V0XbV599VUkJiYiLi4OQ4cORUJCAl599VXheN++feHn54egoCBkZmZi/fr1GDJkCADggw8+QEREBHx9fbF+/XrhicHExERs3LgR8+bNg5+fHwYOHIjNmzebXZeh+xRQhwOampqEp+fS0tJw9epVAGojbtKkSRg2bBgSEhLwwAMPWDTPxIkTMWDAANx22206622JqeuqYerUqRgxYgSGDx+Oe++9F3PmzAGgNkhPnz4NsViMe++916BsrZHFEJ6ensjJycHYsWPRs2dPHDt2TOe4j48P9u3bhy1btiAoKAh9+/bFiy++KDz5aewaMkxr4O8YxtEQUcv4AMMwNiEiIgLvvvsu7rnnHnuLwjAMw9gI9r0zDMMwDMNYCTasGIZhGIZhrASHAhmGYRiGYawEe6wYhmEYhmGshIu9Jtbs/8YwTPfh8uXLeoVKOyOsvxim+2Gp/rKbYRUREYFTp07Za3qGYexAYmKivUWwCqy/GKb7Yan+4lAgwzAMwzCMlWDDimEYhmEYxkqwYcUwDMMwDGMl7JZjxXRfFAoFysvL0dDQYG9RGBvh7u6OkJAQuLq62lsUhrEqrL+6Pu3VX2xYMR1OeXk5fHx8EBERYXKHeaZzQkSoqqpCeXk5+vfvb29xGMaqsP7q2lhDf3EokOlwGhoaEBAQwEqpiyISiRAQEMC/6JkuCeuvro019BcbVoxdYKXUteHry3Rl+P7u2rT3+rJhxTAMwzAMYyXYsGKYP7h8+TJiY2PtLYYeEyZMsEoxSmuNAwBvvPEGBg4ciMjISHzxxRdWGZNhmLbD+stybK2/2LBiHJ78c/mIWBUBp0VOiFgVgfxz+fYWyWKUSqW9RbA6xcXF2LJlCy5cuIC9e/fiySefRHNzs73FYhiHhPWXY9ER+osNK8ahyT+Xj7m756JUWgoCoVRairm757ZbOeXl5SE2NhaxsbFYtWqV0K5UKpGZmYmoqCikpaVBLpcDAF566SVER0cjLi4Ozz//PADgxo0bePDBB5GUlISkpCR88803AIDc3FzMnDkTY8eOxcyZMzF69GhcuHBBmEPzy6uurg6zZ8/GyJEjER8fj127dgEA6uvrkZGRgaioKEybNg319fV68u/duxcPPfSQ8PrQoUNISUkBAGRnZyMxMRExMTFYuHChwfV7e3sL/96+fTtmzZplck3a7Nq1CxkZGXBzc0P//v0xcOBAnDhxwvybzjDdDNZf3VR/kZ0YMWKEvaZm7ExxcbHFfcNXhhNyofcXvjK8zfOfOnWKYmNjSSaTUW1tLUVHR9Pp06eppKSEANCRI0eIiCgrK4uWL19OlZWVNHjwYFKpVEREVF1dTUREjzzyCB0+fJiIiEpLS2nIkCFERLRw4UJKSEgguVxORER5eXm0YMECIiKqqKigwYMHExHRyy+/TB988IEw5qBBg0gmk9Fbb71FWVlZRERUVFREzs7OdPLkSZ01KBQKCg0NJZlMRkRETzzxhDBWVVUVEREplUpKTk6moqIiIiJKTk4WxvHy8hLG2rZtG/3lL38xuSZtnnrqKWEuIqLZs2fTtm3b9PoZus5d5XPfVdbBtB7WX6y/zMF1rBi7I1rU+icwSqWlJs+jhWT02JEjRzBt2jR4eXkBAB544AEcPnwYqampCA0NxdixYwEAM2bMwOrVq/HMM8/A3d0dc+bMQUpKivDL6sCBAyguLhbGrampgUwmAwCkpqbCw8MDAJCeno6JEydi0aJF2Lp1K9LS0gAA+/btw6effooVK1YAUD/GLZFI8PXXX+Ovf/0rACAuLg5xcXF6a3BxccHkyZOxe/dupKWlYc+ePVi2bBkAYOvWrdiwYQOUSiWuXr2K4uJig2MYwtiatH8hMgxzC9ZfrL9awoYVY3dMKZGIVREolZbqtYeLw3H5mctWl6XlY7YikQguLi44ceIEDh48iO3bt2Pt2rX48ssvoVKpcOzYMbi7u+uNo1F6ABAcHIyAgACcPXsWH330EdavXw9AXYju448/RmRkZJtkzcjIwNq1a+Hv74/ExET4+PigpKQEK1aswMmTJ+Hn54dZs2YZrMeivU7t46bWpL2esrIy4XV5eTmCg4PbtAaG6eyw/mL91RLOsWIcmiV3L4Gnq6dOm6erJ5bcvaTNY44fPx47d+6EXC5HXV0dduzYgfHjxwMAJBIJjh49CgAoKCjAuHHjIJPJIJVKMWXKFKxcuRJFRUUAgIkTJ2LNmjXCuGfOnDE658MPP4xly5ZBKpUKv74mTZqENWvWgEitmL///nsAwB133IGCggIAwPnz53H27FmDYyYnJ+P06dPYuHEjMjIyAKh/oXl5eUEsFuPatWsoLCw0eG6fPn1w8eJFqFQq7NixQ2i3ZE2pqanYsmULGhsbUVJSgkuXLmHkyJFG184w3RXWX91Tf7FhxTg0mUMzseG+DQgXh0MEEcLF4dhw3wZkDs1s85gJCQmYNWsWRo4ciVGjRuHRRx9FfHw8ACAyMhLr1q1DVFQUqqurkZ2djdraWqSkpCAuLg7jxo1DXl4eAGD16tU4deoU4uLiEB0dLfySM0RaWhq2bNmC9PR0oW3+/PlQKBSIi4tDTEwM5s+fD0CdvCmTyRAVFYUFCxZgxIgRBsd0dnZGSkoKCgsLBff+sGHDEB8fjyFDhmD69OlCWKAlS5cuRUpKCsaMGYN+/foJ7ZasKSYmBunp6YiOjsbkyZOxbt06ODs7m3rLGaZbwvqre+ovEWnMzQ4mMTHRajUpmM7FxYsXERUVZW8xGBtj6Dp3lc99V1kH03pYf3UP2qO/2GPFMAzDMAxjJcwmr8+ePRufffYZevfujfPnz+sdJyI8/fTT+Pzzz+Hp6YnNmzcjISHB7MTfVXyHwGWBAICq+io4i5zRTM0I8AhoVdvv9b/D38PfonPCxeFYcveSdrlhGYbpXNhCh2nrr9boIGvrt9/rf0eYOExHr+Wfy0fOwRxIpBLhXO1xzJ3T8hjDMK3DrGE1a9YszJs3D3/+858NHi8sLMSlS5dw6dIlHD9+HNnZ2Th+/LhFk1fVVwn/bqbmNrdZeo6mOBsAVhoM002wlQ5riw6yhX7T1msAMHf3XMgVcpPjmDqH9STDtA+zocA77rgD/v7+Ro/v2rULf/7znyESiTB69GjcvHkTV69etaqQ1kSukCPnYI69xWAYpoPoajrMEBq9lnMwRzCQ2nMO60mGaTvtrmN15coVhIaGCq9DQkJw5coVnUx9DRs2bMCGDRvaO2W7kUgl9haBYRgHwVId5ij6yxht0WumzmE9yTBto0OT1+fOnYtTp07Z/WmaMHGYXednGKbz4Sj6yxhh4rBW6zZT57CeZJi20W7DqrNVYW5vcTam63L58mXExsbaWww9NJueOso4VVVVuPPOO+Ht7Y158+a1ezx709l0mCE0es1QQcq2nMN6svPB+ssyOkJ/tduwSk1Nxfvvvw8iwrFjxyAWiw2GAQ0R4BEgPN3iLHJuU5sIIovPcRY5Y0NK+4qzMXbi6lUgORn47Td7S9IqlEqlvUWwOu7u7njttdeEPcI6O23VYW3RQdbUbx4u6r3ctItOagpS+rr5GhzH1clVr1Cl5hyxmxgA0M+7X7uLWDItYP3lMHSI/jK3S3NGRgb17duXXFxcKDg4mN599116++236e233yYiIpVKRU8++SQNGDCAYmNj9XaxNkZH7w6vUqkoJC+ELt642KHzMvq0Znd4gexsIicnoieftIoMb731FsXExFBMTAytXLmSiIhKSkooMjKSpk+fTkOGDKEHH3yQ6urqiIjoxRdfpKioKBo6dCg999xzRER0/fp1euCBBygxMZESExOFXeUXLlxIM2bMoDFjxlBGRgaNGjWKzp8/L8yt2aVdJpNRVlYWJSUl0fDhw2nnzp1ERCSXy+nhhx+mIUOG0P33308jR47U+1wVFhZSWlqa8Pqrr76ie++9l4jUO8WPGDGCoqOjhV3pteclMr47vLE1GWLTpk301FNPGT3ent3hrYktdJg91tGS1//3Or1y4BWDx/6848/03un39Nof/OhB2np+q8FzXtj3AiEXtPvH3VaVs6vB+ov1lznMGla2wh6K6bFPH6O8b/M6fF5Gl1YrpooKInd3IoDIw4Po6tV2zX/q1CmKjY0lmUxGtbW1FB0dTadPn6aSkhICIHwYs7KyaPny5VRZWUmDBw8mlUpFRETV1dVERPTII4/Q4cOHiYiotLSUhgwZQkRqxZSQkEByuZyIiPLy8gQFUVFRQYMHDyYiopdffpk++OADYcxBgwaRTCajt956i7KysoiIqKioiJydnfUUk0KhoNDQUJLJZESkVkaasaqqqoiISKlUUnJyMhUVFRGRZYrJ2JoM0VkMK1vgCOtYfWw1PbXH8Pt/5+Y7af8v+/Xas3Zm0bvfvWvwnMd3P07Oi5zpXyf+ZVU5uxqsv1h/maNbVV73cvXCK1++AqdFTohYFYH8c/n2FokBAJHI9F9QEKDZwby+HujXz/w5Jjhy5AimTZsGLy8veHt744EHHsDhw4cBAKGhocL+VDNmzMCRI0cgFovh7u6OOXPm4JNPPoGnpzof5cCBA5g3bx6GDx+O1NRU1NTUQCaTAVCHlzw81KGa9PR0bN++HQCwdetWpKWlAQD27duHpUuXYvjw4ZgwYQIaGhogkUjw9ddfY8aMGQCAuLg4YdNTbVxcXDB58mTs3r0bSqUSe/bswdSpU4U5EhISEB8fjwsXLqC4uNjiS2FqTYxjIXYXo6axxuCxspoyhPqG6rWL3cSQNkoNniNtlGJwwGCU1ZQZPM4YgfUX668WtLvcQmch/1w+3vnuHTQo1Tc4F8FzIExtV3n1KjBgwC3FBAAeHsCvvwJ9+1pdFFELpSYSieDi4oITJ07g4MGD2L59O9auXYsvv/wSKpUKx44dg7u7u944Xl5ewr+Dg4MREBCAs2fP4qOPPhI2BiUifPzxx4iMjGyTrBkZGVi7di38/f2RmJgIHx8flJSUYMWKFTh58iT8/Pwwa9YsNGi/dwbWqX3c1JoYx8LXzdegkUREKK8pR6hY37DydfOFtMGIYdUgRWzvWDasWgvrrzbJ2pX1V7fxWOUczEG9sl6njYvgdQJeew1QqXTbmpvV7W1k/Pjx2LlzJ+RyOerq6rBjxw6MHz8eACCRSHD06FEAQEFBAcaNGweZTAapVIopU6Zg5cqVKCoqAgBMnDgRa9asEcY9c+aM0TkffvhhLFu2DFKpVPgFN2nSJKxZswb0h2L+/vvvAagLWhYUFAAAzp8/j7NnzxocMzk5GadPn8bGjRuRkZEBAKipqYGXlxfEYjGuXbuGwsJCg+f26dMHFy9ehEqlwo4dO4T21qyJsS9iN8MeqxvyG/By9TL4dKApL1dNYw1ie8dy/SprwvqrW+qvbmNYGVMWrEQcnKNHgaYm3bamJuDbb9s8ZEJCAmbNmoWRI0di1KhRePTRRxEfHw8AiIyMxLp16xAVFYXq6mpkZ2ejtrYWKSkpiIuLw7hx45CXlwcAWL16NU6dOoW4uDhER0cLv+QMkZaWhi1btiA9PV1omz9/PhQKBeLi4hATE4P58+cDALKzsyGTyRAVFYUFCxZgxIgRBsd0dnZGSkoKCgsLkZKSAgAYNmwY4uPjMWTIEEyfPl0IC7Rk6dKlSElJwZgxY3SegLN0TREREXj22WexefNmhISEtMpdz1gHsbvYoPepTFpm0FsFmA8FxvaORZmUPVZWg/VXt9RfIiJTfkzbkZiY2KGF9iJWRaBUWqrXLoII/h7+bdrslGkbFy9eRFRUlL3FYGyMoevc0Z97W+EI6/j5958x6cNJ+OWvv+i07/xhJ977/j18+sineudsu7ANH134CNvTt+sdC18Vji9mfIFh64ehPqceTqJu87u7VbD+6h60R391m0+OscJ5BEJVfZXwf81GpdqbnWqOa/KyOOmdYRh7YywUWCY1nLgO/OHlMuaxapCij1cf+Lr54nrddavKyjDdiW5jWGmK4GkK7LUVzstiGMYR0CSitww6lNUYDwUaS15XkQq1TbXwdfNFqG8ohwMZph10G8MKUBtXKlKZ72gGzstiGMbeuLm4wUnkhMbmRp12iVRidJ8/Y16uuqY6eLp6wtnJGWHiMNZxDNMOupVhBVhnY1HenJRhGEfAkAfKWA0rob+BUKC0USpsgxPqG8olFximHXQ7w6o1m5Qao1JeicBlgVxolGEYu2IoZ8rkU4FGyi3UNNYIewWGijkUyDDtodsZVppcq3BxuM4Gp6Y2O/Vy9dIZo05RxwntDMPYnZahvWZVM36T/YZgn2CD/b2D6pBeAAAgAElEQVRcvdCobISiWaHTLm1gjxXDWItuZ1gBauPq8jOXoVqoQuXfK1H590qdf9NCgnKBErSQUPn3SgR6BpocjxPauwaXL19GbGysvcXQY8KECVZ5tN9a4+zfvx8jRozA0KFDMWLECHz55ZftHpNpGy1DgVdlVxHoGQhXZ1eD/UUiEXzcfPS8VtJGKcTuWh4rNqw6Hay/LKMj9Fe32dKmPViSyMnJnrZBIlkGH58k+PndKbRVV3+F2tqTCAv7ux0lswylUgkXl671MQsMDMTu3bsRFBSE8+fPY9KkSbhy5Yq9xeqWtAztmUpcF875w8sV4BkgtGmHAjl53Xqw/nI8OkJ/dUuPVWuxJFndSeTE4UAb4OOThOLidFRXfwVArZSKi9Ph45PUrnHz8vIQGxuL2NhYrFq1SmhXKpXIzMxEVFQU0tLSIJfLAQAvvfQSoqOjERcXh+effx4AcOPGDTz44INISkpCUlISvvnmGwBAbm4uZs6cibFjx2LmzJkYPXo0Lly4IMyh+eVVV1eH2bNnY+TIkYiPj8euXbsAAPX19cjIyEBUVBSmTZuG+nrdrZgAYO/evXjooYeE14cOHRKqF2dnZyMxMRExMTFYuHChwfV7e3sL/96+fTtmzZplck3axMfHIygoCAAQExOD+vp6NDY26vVjbI92Mnr+uXxM/e9UHL9y3GTup6EEdu1Q4P8u/w8VtRUGc0jzz+UjYlWE3fNLHUUOc7D+6qb6i+zEiBEj7DV1q/nw7IfkucSTkAuTf55LPOnDsx/aW1yHp7i4uFX9f//9SzpyJJB+/XU+HTkSSL///mW75j916hTFxsaSTCaj2tpaio6OptOnT1NJSQkBoCNHjhARUVZWFi1fvpwqKytp8ODBpFKpiIiourqaiIgeeeQROnz4MBERlZaW0pAhQ4iIaOHChZSQkEByuZyIiPLy8mjBggVERFRRUUGDBw8mIqKXX36ZPvjgA2HMQYMGkUwmo7feeouysrKIiKioqIicnZ3p5MmTOmtQKBQUGhpKMpmMiIieeOIJYayqqioiIlIqlZScnExFRUVERJScnCyM4+XlJYy1bds2+stf/mJyTcbYtm0b3X333QaPGbrOnelzbwpHWcf/+/z/0aqjqwzqKGP6aNx74+h/l/+n07bimxX07N5nTY7Tmjlsib3lYP3F+sscXcvHZyM0W9jkHMyBRCqBv4c/qhuq9WpiaXKteMub1nHokMh8JwClpeqNS4uK7jLbd8IE4zs1HTlyBNOmTRN2cH/ggQdw+PBhpKamIjQ0VNifasaMGVi9ejWeeeYZuLu7Y86cOUhJSRF+WR04cEBnj6mamhrIZDIAQGpqKjw8PAAA6enpmDhxIhYtWoStW7ciLS0NALBv3z58+umnWLFiBQD1Lu0SiQRff/01/vrXvwIA4uLihE1PtXFxccHkyZOxe/dupKWlYc+ePVi2bBkAYOvWrdiwYQOUSiWuXr2K4uJig2MYwtiatH8harhw4QJefPFF7Nu3z6KxGeujCeutPLYScoVc55gxfSR2099jUFNuIedgjtFxNP+2ZA5bYkpGe+he1l+sv1rChpWFZA7N1PnQOi0yHEXl3ITWY0qJALfc50FB2aioeBvR0Vt1chasiUgk0nvt4uKCEydO4ODBg9i+fTvWrl2LL7/8EiqVCseOHYO7u7veOBqlBwDBwcEICAjA2bNn8dFHHwkbgxIRPv74Y0RGRrZJ1oyMDKxduxb+/v5ITEyEj48PSkpKsGLFCpw8eRJ+fn6YNWsWGhoaTK5T+7ipNWlTXl6OadOm4f3338dtt93WJvmZ9uPr5otrdddatcm8sVBgf7/+bdqsvqN1XltktCWsv1h/tYRzrNqIsbwrLh5qXTRKKTp6K/r3X4zo6K06OQttYfz48di5cyfkcjnq6uqwY8cOjB8/HgAgkUhw9OhRAEBBQQHGjRsHmUwGqVSKKVOmYOXKlSgqKgIATJw4EWvWrBHGPXPmjNE5H374YSxbtgxSqVT49TVp0iSsWbNG2JLk+++/BwDccccdKCgoAACcP38eZ8+eNThmcnIyTp8+jY0bNyIjIwOA+heal5cXxGIxrl27hsLCQoPn9unTBxcvXoRKpcKOHTuEdkvWdPPmTdx7771YunSp0d3nmY5Bk7zeGn1kqPp6TZM6ed3UOI6i8xxFDktg/dU99RcbVm3EUKFRT1dPLLl7ifC6syRYOjK1tSd1fuH5+d2J6OitqK092eYxExISMGvWLIwcORKjRo3Co48+ivj4eABAZGQk1q1bh6ioKFRXVyM7Oxu1tbVISUlBXFwcxo0bh7y8PADA6tWrcerUKcTFxSE6Olr4JWeItLQ0bNmyBenp6ULb/PnzoVAoEBcXh5iYGMyfPx+AOnlTJpMhKioKCxYswIgRIwyO6ezsjJSUFBQWFgru/WHDhiE+Ph5DhgzB9OnTjSqOpUuXIiUlBWPGjEG/fv2EdkvWtHbtWvz8889YvHgxhg8fjuHDh+P6dd601x5ovE+W6COdc1qGAv9IXjc1TmvmsCWOIoclsP7qpvrLokwsG+AoyZ/t4cOzH1L4ynAS5Yqox+IeOsmT9k6wdGRam/zJdE44ed32fP7T5zTpg0lERLT5+82EXJAoV0ThK8ON6polXy+hl/a/pNN293/upv2/7Ccite4KXBZIyIXeOB+e/ZD83/Qn5IIC3gywmz778OyH5LLYxaCMtob1V/eAk9fthCbvStGsQK/lvXBP/3uEY46WYMkwTNdDu47VuLBxiOgZgZKnS0yf4yZGeU25Tpu0USrUscocmonB/oPx+GeP4/Tjp3X6ZQ7NxMUbF7Hsm2V4etTTdtNlmUMzkXMwBw9FP4TlE5fbRQaGMQaHAq2Aq7Mr7h5wN7745QuhzdESLBmG6XpoJ6Kb2nzZ2DkatOtYAaarr5fVlCGhX4Ldq7PLFXKDG0ozjL1hw8pK+Ln7IXtPNkSLRHBZ7AKC4SdFHDHBkmGYzol26QSJVGJ082WdcwxsxFzTWCNsaQMAvb16o7axFvUK/eKOEqkEY0LH2P1HolwhN7ihNMPYGzasrED+uXwUnCsQQn/N1Gywn6MmWDIM0znxdfMVjIsyaSs8VkbqWGlwEjkh2DfYoFeqTFqGsaFj7eqxIiL2WDEOCxtWViDnYA7qlfq/7LTxcvXChvs2cH4VwzBWw8fNB3WKOjSrmlFWU2aRR7xluYWm5iYoVUp4uHjo9Av1DUWZVNd4IiKU15RjTOgYvWMdSVNzEwjEHivGIWHDygqYc4mLIIJ3D288EvtIB0nEMEx3wEnkBO8e3pA1ySzOsRK7i3U8PZoNmFsWlzSUZ3VDfgPePbzR17svCKTn+eooNNEBe83PMKZgw8oKmPuVGCYOQ0/3nvj+6vcdJBHTFi5fvozY2Fh7i6GHZtNTRxnnxIkTQv2XYcOG6RToYzoeTTJ6mbTMohyrlqHAlonrGgx5rDRziEQihPqG2i3PSjCsOBQowPrLMjpCf7FhZQUMFazToMmr6t+zP+5+/24uFtoOcnPtLUHrUSqV9hbB6sTGxuLUqVM4c+YM9u7di8cff7xLrrOzoElgl0glFudY1TTWCBWzWyauawgTh+l5rLTnMPXkoK2pV9YjwCOgU4UCWX85Bh2hv9iwsgKZQzOx4b4NCBeHAwCcRc4AgHBxODbctwEA8NXlryBtlIJAKJWWYu7uuWxctZJFi6w3Vl5eHmJjYxEbG4tVq1YJ7UqlEpmZmYiKikJaWhrkcvUv45deegnR0dGIi4vD888/DwC4ceMGHnzwQSQlJSEpKQnffPMNACA3NxczZ87E2LFjMXPmTIwePRoXLlwQ5tD88qqrq8Ps2bMxcuRIxMfHY9euXQCA+vp6ZGRkICoqCtOmTUN9vX7+3t69e/HQQw8Jrw8dOiRUL87OzkZiYiJiYmKwcOFCg+vX3pR0+/btmDVrlsk1aePp6QkXF3UJvIaGBr0QEtOx+Lr54krtFTQ1N8Hfw99s/x7OPeDq7Krj9THqsWphOGnncYX5htktz0qukKOPdx/ImmRQkcouMrQW1l+36PL6y6qlSluBo1Qu7gjCV4brVGDX/IWvDLe3aHahrZWLrXW3njp1imJjY0kmk1FtbS1FR0fT6dOnqaSkhADQkSNHiIgoKyuLli9fTpWVlTR48GBSqVRERFRdXU1ERI888ggdPnyYiIhKS0tpyJAhRES0cOFCSkhIILlcTkREeXl5tGDBAiIiqqiooMGDBxMR0csvv0wffPCBMOagQYNIJpPRW2+9RVlZWUREVFRURM7OznTy5EmdNSgUCgoNDSWZTEZERE888YQwVlVVFRERKZVKSk5OpqKiIiIiSk5OFsbx8vISxtq2bRv95S9/Mbmmlhw7doyio6PJy8uLPvnkE4N9uPJ6xzD5w8m04psVNHjNYIvP6bO8D1XUVBAR0a4fdtF9Bffp9Sn6rYhi1sXotD3/xfO09PBSIiJadGgR5RzMaYfkbedo2VEauXEk+fzDh6QN0g6dm/UX6y9zsMeqA+BioaYRiSz7a21fYxw5cgTTpk2Dl5cXvL298cADD+Dw4cMAgNDQUGF/qhkzZuDIkSMQi8Vwd3fHnDlz8Mknn8DTUx32PXDgAObNm4fhw4cjNTUVNTU1kMlkAIDU1FR4eKifskpPT8f27dsBAFu3bkVaWhoAYN++fVi6dCmGDx+OCRMmoKGhARKJBF9//TVmzJgBAIiLixM2PdXGxcUFkydPxu7du6FUKrFnzx5MnTpVmCMhIQHx8fG4cOECiouLLb4WptakzahRo3DhwgWcPHkSb7zxhsEd6JmOQewmxvkb51tVI087gV3aIDUYCjSUQ1VWcyuPy5BHq6OQK+TwdPU0WDqio2H9xfqrJbylTQcQJg5DqbTUYDsDkOFaqnqIRJb3bSst3cIikQguLi44ceIEDh48iO3bt2Pt2rX48ssvoVKpcOzYMbi7u+uN4+XlJfw7ODgYAQEBOHv2LD766CNhY1Aiwscff4zIyMg2yZqRkYG1a9fC398fiYmJ8PHxQUlJCVasWIGTJ0/Cz88Ps2bNMqg0tNepfdzUmgwRFRUFb29vnD9/HomJiW1aB9M+fN188f1v32No76GtOkdjkEgbpfDtoR8K7OneEypS6Rhe2k8ehortl7xer6iHp6unYCCGwnxuma1g/cX6qyXsseoAOtNu7N2B8ePHY+fOnZDL5airq8OOHTswfvx4AIBEIsHRo0cBAAUFBRg3bhxkMhmkUimmTJmClStXoqioCAAwceJErFmzRhj3zJkzRud8+OGHsWzZMkilUuEX3KRJk7BmzRohifj779VPjd5xxx0oKCgAAJw/fx5nz541OGZycjJOnz6NjRs3IiMjAwBQU1MDLy8viMViXLt2DYWFhQbP7dOnDy5evAiVSqXzVIwlayopKRGSPUtLS/HDDz8gIiLC6NoZ2yJ2E6P4RrFFieva52gSv40lr4tEIr0EdolUcivHSmzfHCsPFw+dAqndBdZfjq+/2LDqAFomt/f17svFQtuAkTzGVpOQkIBZs2Zh5MiRGDVqFB599FHEx8cDACIjI7Fu3TpERUWhuroa2dnZqK2tRUpKCuLi4jBu3Djk5eUBAFavXo1Tp04hLi4O0dHRwi85Q6SlpWHLli1IT08X2ubPnw+FQoG4uDjExMRg/vz5ANTJmzKZDFFRUViwYAFGjBhhcExnZ2ekpKSgsLBQSPwcNmwY4uPjMWTIEEyfPl0IC7Rk6dKlSElJwZgxY9CvXz+h3ZI1HTlyBMOGDcPw4cMxbdo0/Otf/0JgYKCpt5yxIb5uvpAr5BaVWtA+RzsUaCh5Hfjjyb8/jCelSolrsmsI8gkCAIT4hqC8plz4Yu1INKFA7S19HB3WX7p0Zf0lInt8KgAkJiZapSZFZ+PpwqfR26s3cu7IsbcoduPixYuIioqytxiMjTF0nbvK596R1rH6+Go8vfdp7M3ci0kDJ1l0TtauLIwPG4/Z8bOR/Vk24vrEITspW6/fo58+ipHBIzF3xFyUScsw+t+jceXZK8LxwGWBKH6qGL29elttPZaw/tR6nPntDKobqvHAkAfwcOzDHTY366/uQXv0F3usOpj/G/R/KPzZsHuTYRimtYjd1GG81nistD090kbDyeuAbpFQQ5XdtT1aHYkQCuzhy0VCGYfDIsNq7969iIyMxMCBA7F06VK94xKJBHfeeSfi4+MRFxeHzz//3OqCdhWu1l7Ft2XfcqFQhukgurL+yj+Xjxf2vwAAmPzhZIv0Sf65fGw+sxnP7nsWgcsCsb14O2Z8MkNPH+Wfy8eaE2vw+uHXEbgsEJM/nIzjV44L/fLP5ePHyh+RtDHJpros/1w+IlZF6OhMIRTo3nlCgUz3wexTgc3NzXjqqaewf/9+hISEICkpCampqYiOjhb6vP7660hPT0d2djaKi4sxZcoUXL582ZZyd0ryz+VjXuE8ENTRV02hUADdLt+KiLiwZBfGThkGenRl/ZV/Lh9zd88VCn2W1ZSZ1Sctz6mqrxKOaesjACb7Ze3MgkgkQlNzk9651tRlLeXVzHNP/3swMngk3Fzc7JK8zvqra9Ne/WXWY3XixAkMHDgQAwYMQI8ePZCRkSFUWNUgEolQU6O+uaVSKYKCgtolVFcl52COoCA0yBVy5BzsXvlW7u7uqKqqcpgvX8a6EBGqqqosfuTZlnRl/dUWfWLoHEPnm+unUCkEo8rSuduCsTV+dfmrW8nrHRwKZP3VtbGG/jLrsbpy5QpCQ2/F1UNCQnD8+HGdPrm5ucJjjnV1dThw4IDBsTZs2IANG9RbvNy4caPNQndWuFCompCQEJSXl3fLe6C74O7ujpCQEHuL0aX1V1v0iSW6pj36yNq6zNh4tU218HD1gJtzx3usWH91fdqrv6xSIPS///0vZs2aheeeew5Hjx7FzJkzcf78eTg56TrE5s6di7lz1e7i7lhM0FihUAIhYlUElty9pFuEBF1dXdG/f397i8EwADqv/mpL4WFj5xg631w/U+daC2Pyerl6wdPVE949vDvcY8X6izGH2VBgcHAwyspuPfVRXl6O4OBgnT7//ve/hfoWt99+OxoaGlBZWWllUTs/hgqFauCNmRnG+nRl/dWWwsOmdJD2+eb6uTq5oodzj1bN3RaMrTGqV1Snq2PFdB/MGlZJSUm4dOkSSkpK0NTUhC1btiA1NVWnT1hYGA4ePAhAXfuhoaEBvXr1so3EnZiWhUJb0h3zrRjGlnRl/aWtT0QQIVwcbrbwcMtzAjwCEOARoHe+uX6b7t+E96a+p1OF3RZFjzOHZuKfk/8pvNbI2Muzl7BXYHervM50AizZqXnPnj00aNAgGjBgAL3++utERDR//nzatWsXERFduHCBxowZQ3FxcTRs2DD64osvzI7pSLvD2wNRroiQC70/Ua7I3qIxjM2wx+ee9ZdtCXoriCQ3JTYbX3JTQsgFrfhmhdCWvCmZvvz1S/qx8kcauHqgzeZmGG0s/dxblGM1ZcoUTJkyRadt8eLFwr+jo6PxzTffWNfi6+LwxswM0zGw/rItob6h6uKhrShQ2hqErXe0cqk0dazYY8U4Ilx53U4Yy2GQNck4z4phmE6Drauva28WraFeWc85VozDwoaVndDkMAR4BOi0V9VXcRI7wzCdhlDfUJuWjNHeekeDxmPl7uIOFanQqGy02fwM01rYsLIjmUMz4d3DW6+dk9gZhukshInDUFZjW4+Vi5OLjsdKrpDDw9UDIpGIw4GMw8GGlZ3hoqEMw3RmNDlWtkLaKEWIb4hOyE/jsQKg3i+QN2JmHAg2rOyMsWR1WyaxG9rUlGEYpi3YOsdK2iBFqG+ojvFUr6gXDCv2WDGOBhtWdqYtRf7ag2ZT01JpKQjEhUkZhmkXtvZY1TTWIFQcKhhPimYFVKSCq5MrAHACO+NwsGFlZ1oW4nMWOWNDivUL7WngjaAZhrEmfbz74GbDTTQoG2wyvrTxD4/VH8ZTvbJeyK8COBTIOB5sWDkAmUMzcfmZy2he0IxQcSiG9R1ms7k4p4thGGviJHJCsE8wymvKbTJ+TWMNwsRhgvGknV8FcCiQcTzYsHIgRCIR/m/g/6HwUqHN5rBHThfDMF0bW+ZZSRul6OPVB0qVEk3NTTr5VQCHAhnHgw0rB8PDxQPzv5pvtcRy7UT1wGWBqJTrby5ry5wuhmG6PrbMs5I2SCF2FwueKfZYMY6ORVvaMB1D/rl8vH3qbTQ2q4vdaRLLAbQp50qTqK7Jqaqqr9LrI4II6+9db7OcLoZhuj6hvrbzWNU01kDsJobYTSwYVh4uHsJxsZvYoG5jGHvBHisHIudgDuqV9Tpt7UksN5So3hIXJxcMDhjcpvEZhmEAdSqBrfI0pY23PFbSBqmwnY0GTTvDOApsWDkQ1k4st+Q8hUqBwp9tl9PFMEzXJ1Rs21Cgr5uv8PRfy1Cg2F2MmiYOBTKOA4cCHYgwcRhKpaUGjwUuC8Tv9b8jTByGJXcvsSh0Z2o8DT49fPDGkTew+H+L4e/hDwCtnodhmO7NuWvncODXAxAtUpeMaaZmYR/Uqvoqk23h4nBB1+Sfy0fOwRxIpBJBB7UMBSpVSsGwyj+Xj7/t/RtuyG9g/y/7AdhefxmS0drzdMQctqAtcj+QfRanI1M73VpNwR4rB8JQsVAAIBCq6qtaXdDT2HgaXJ1c0djciKbmJmGOtszDMEz3Jf9cPl77+jUoVAoAQDM1A4CgT8y1aXTNk3ue1C9e/OlcKJoVcHdxF0J+mn0CNTmkN+Q3dMa2pf7qiALLnbWIc1vkzj+Xjx3r4zrdWs3BhpUDoSkW6ixyNtnP0ryrzKGZeCflHYj++C/AIwABHgEQQYRwcTh83XzR1NzU7nkYhum+GMoNbS1yhRwbvtugX7xYKQdE6lI0Go9VvaIeni6eZnNIbaG/OqLAcmct4twWuZ9d94VeW2dYqzk4FOhgZA7NxMxPZprtZ2ne1ajgUQgTh+HyM5f1jjktMm9Xc+FQhmFMYS0dofFgtURFKgB/JKk3SuHl6gVPV0+L5rW2/uqIAsudtYhza+TOzQUWLQKA9/9oIPX/k3OBOxc5/FrNwR4rB8SSYp2WFvT8/rfvEd8v3ubzMAzTPbGWjjDmqRf2BHQX64QC7aG/OqLAcmct4twauXNzAYVCu0Gk/rtzkcmxOgtsWDkg5nKjAKBSXonAZYE6hUS1i4Fq2s78dgbxfQ0bVubm4cKhDMOYwxJ9ZQ5PV0/MHTEXbs5uOu1uzm64ze82ALgVCvyj3II99NeSu5fo1NCyxTyG1tUZdHFr5W4ykoXSGdZqDjasHJCWGzMHeATAy9VLp0+dok4nUTNrZxZm75qtlwS456c9GN53uMXzaD4Y4eJwbLjPdptBMwzTNdDWI8Atz5Mmp9NcWy/PXthw3wb8695/YU78HGHccHE4spOyMThQXWdPEwrUlFswpL/EbmLhXFvor8yhmVgxcQUACLmq1p5Hsy4/dz8AnUcXa+TWXF9zcmsMqyl/Kbb5detoOMfKQckcmqlzc0WsikCdtM5of80TOdrIFXKcv3HeqMfK0DyfXPwEm89sxqePfNpGyRmG6W601COWMu/zeRgcMFg4N0wcBjdnNzyZ9CTyJuXh/aL3hW24xO5qj1VP957CD8CW896ou4Eh64YYzCm1FpMHTgYAfDb9M0wZNMUmc2QOzYTkpgSrjq+y6VqsTebQTNQ11eGF/S+YlVtjWG1YEo11PzyJomtF2DN9j+2F7ADYY9VJaGsyn4pUCPENsbj/IP9B+Pn3n9s0F8MwTGtoWbFdIpUgMShRaJM2SAVvhrbHqmU4TkOgZyDkCjnqmoz/CG0vmiffbF3tvUHZ0CkryssVcrM7fgC3cqwUCkDRrECDssHGknUcbFh1EtqTzNf/n/0trgtym/9tKLlZgmaV4Sd0GIZhrEXLzZvLasowJnSM0CZtvGVYid3EBre00UYkEtl0Q2jglmFl642fG5sb1X/KRpvOY23kCjmUKiUUzfpRFG00HiulEmhqbup06zQFG1adhPYkiLam6JqnqycCPAJQXlPeprkYhmEsJVSsu3lzWU0ZxoaOFdpqGmvg6+YL4FYosOWWNubGtDb1CnXNLmmjbb1JGkPD1gactdG8P+Zqm2kMK4XiD8OqmQ0rpoMxlKipSRK0hNYUXRvoP5DDgQzD2Bw9j5W0DCODR6JSXomm5iZ1KNBdPxRo0rDqII9VR4QCAdsbcNZG8/6YCwe2NKy6UiiQk9c7EYYSRJ0WOYFAFp1vaZ7WIP9BuPT7Jdw94O5Wy8gwDGMpQT5BuCa7BqVKiabmJsiaZOjr3Rd9vfuiorYCNU23PFa+br6oaaxBXVMdPFwN51gBfxhWNvRYdWQosCPmsTZtMqxUHApkHIjW5F5Z2pc9VgzDdASuzq7o7dUbFbUVKJOWIcQ3RJ0nJQ6FRCrRSV53cXKBu4s7KuWVJj1WLRPirY1cIYcIItuHAv8wrDpbArsmBNhajxWHAhmHwVDulauTK3o499Bpa03RtUEBao8VwzCMrdHkRJXVlAk//jReJ2njrVAgoE5gvyq7aj7HyoahwHplPQI9A23vseqkOVYag0qTa2UMfiqQcVha5l6Fi8Ox6f5NeG/qezptrSm6xh4rhmE6Ck1OVJm0DKHiUJ027eR1QJ3A7gg5Vn29+9rcY9WgbFA/CdlNcqy6UiiQc6y6AMaK87W1eu1tfrfh1+pfoSIVnERsezMMYzs03ql6ZT1CfdWGVZg4DD9U/qATCgQgGFnG6lgBtzxgRASRSGR1eeUKOfr59MONuhtWH1ubxuZG9Pbq3elCgXKFHC5OLhYbVkK5BQ4FMl0Zrx5e8Pfw55ILDMPYHE0+lUQqEQwrTTivprFGLxQIwKTHytfNF85OzrjZcNMm8mo8Vh0RCuzt1bvThQI1ocJ7SKUAACAASURBVNK2PBVIZNmDWI4OG1aMHvnn8lElr0LEqghhM2eGYRhbECYOU4cCW+RYlUpLUdtUC58ePkJfjcfK3cXd7Ji2SmCvV9Sjr1fHhAJ7e/XulKHAQM/AVtexAgxvzdYZYcOK0SH/XD7m7p6LxuZGnc2c2bhiGMYWGMyxEofip6qf4OnqCWcnZ6Gv2E0MT1dPsyE+W+ZZaUKB0gapTT0snTkUGOAR0GqPFYAuk2fFhhWjQ87BHL0PRGuKizIMw7QGTSiwrKZMCAX28uwFItJJXAfUyeum8quEMW1Yy0qulMPP3Q8ikcimeUFCKLCpc4UC5Qo5AjzNG1baTwUKhlUXybNiw4rRwZj73JZ1YRiG6b5o8ohEEAn5VCKRCCG+ITqJ64A6FGjJ1l62LLkgV8jh4eoh7F1oKxqUDejl2avTeazqFfUI9Ag0W25B22OlCQF2lZILbFgxOhgrItqeTaAZhmGM4SRyQrBPsBAG1BAmDtNJXAduhQLNYctQYL1CvQm0phK8rdCEAjtb8romx4pDgWbYu3cvIiMjMXDgQCxdutRgn61btyI6OhoxMTGYPn26VYVkOg5jmz2XSks5kZ3plLD+cmzyz+WjorYCxTeKBR2Tfy4fJ66cwLHyYzptrx9+HT9W/WhSF+Wfy8ffD/wdH579EIHLAhG4LBBOi5x0xolYFQGnRU4mj4sWieCy2AWiRSKd+TR1tMTut2pMaY9pLT2pCQWamsPcWloikSxDdfVXOm3V1V9BIlnWbnkBoFnVjKbmJvh5+LXasPJy9erQUGBuru3GNlvHqrm5GU899RT279+PkJAQJCUlITU1FdHR0UKfS5cu4Y033sA333wDPz8/XL9+3XYSMzZFU/sq52AOSqWlOsc0ieza/RjGkWH95dhoPywDqHVM1s4siEQiwYthrM2QLtKMp/lSr6qvEo4ZGsfc8WZq1ptPrpDDw+VWKLDlnNbSk9rJ64bmMLcWQzL4+CShuDgd0dFb4ed3J6qrvxJeW4N6ZT08XD3g6erZ6jpWPm4+HRoKXLTIdsaVWY/ViRMnMHDgQAwYMAA9evRARkYGdu3apdNn48aNeOqpp+Dn5wcA6N27t22kZTqEzKGZuPzMZYSLw/WOcSI705lg/eXYGHpYRqFSCMaCqTZDusjQeObGsfS4Zr56pW4o0FYP/GjKLRibw9xaDMng53cnoqO34sKFB3DyZLyOkWUNNGFST1fPVpdb8HXz7bBQYFGRbcc3a1hduXIFoaG3Yt8hISG4cuWKTp+ffvoJP/30E8aOHYvRo0dj7969BsfasGEDEhMTkZiYiBs3bFu1lmk/nMjOdHZYfzk27dUlLc+3tW6SSCV6oUBb6EmlSgkA8PfwR21TbZvHMnSen9+d8PO7B3V1ZxAUlG01owq4FSb1cPFo9VOBPj18bB4KzM0FRCJg+HD1a5FI/Wdtz5VVkteVSiUuXbqEQ4cO4b///S8ee+wx3LypX/V27ty5OHXqFE6dOoVevXpZY2rGhhhLWHcSOenF722RY8AwHQHrL/vR3odiWp5v64dswsRhtwwrNzFqGmts8sBPo7IRbs5ucHZyhoeLB0J8Q9osb0uqq7/C779/gR49glBR8bZezlV70IRJLQ0Furre2oS5I0KBubkAEfDGG+rXROq/DjesgoODUVZ26+mK8vJyBAcH6/QJCQlBamoqXF1d0b9/fwwePBiXLl2yrqRMh2Mskb2ZmnWKhmri/6XSUi4qyjgUrL8cG0M6xtXJFT2ce5ht83T1xJK7l5gdz9w4lh7XzKcpt+Dr5gtpgxRL7l6iVwnekGytoUHZIIwpdhfjhTEvWPQ+mZNBk1PVr9+jcHHxQ3T0VhQXp1vNuNKESS01rDw9gaYmgkKlgHcP7w4LBZbZbo9uABYYVklJSbh06RJKSkrQ1NSELVu2IDU1VafP/fffj0OHDgEAKisr8dNPP2HAgAE2EZjpODKHZmLDfRvgLHLWO6Ydv+eiooyjwvrLsdHomHBxOEQQIVwcjk33b8J7U98z27bhvg16yeEtxwvwCECARwAAtfdGM04Ppx7Ccc2WOZp5VvxphbD5vEb3BfkECfNp8ojEbupQYObQTDyZ+KQggzHZWkNjcyPcXNwAqGt33dX/Lmy4b4NQHFX7Penj1QcA9NZiSIba2pOIjt4KN7dQqFRyIeeqtvZkm2XVRuPNszTHytMTaGxSwcXJBR4uHh32VGBZGfBHSqVNMPtUoIuLC9auXYtJkyahubkZs2fPRkxMDBYsWIDExESkpqZi0qRJ2LdvH6Kjo+Hs7Izly5cjICDAdlIzHUbm0EzM/GSmwWOa+D3nYjGOCusvxydzaKZBI8TSNkvGC84LxpGsI0KtrGe/eBbfP/49gnyCcOLKCWTvycZ3c78DABwtO4rEoEQcf/Q4ACDhnQRsvG8jRgSNEMoJuDm7wdfNF5d+V3s2b/O/Df179scAvwE48OcDrXsDDKAJBQIQQo6ZQzOx6tgqnLt2DpefuSz09Xf3x+oTq1GYWYhDlw8h91AuDs06ZHDcsLC/AwBqao5CpVIbPuqcK+vkWWm8eR6u5nOsmpoALy+goakZPXx7wM3FrUM9Vj4+5vu1FbOGFQBMmTIFU6ZM0WlbvHix8G+RSIS8vDzk5eVZVzrGIQgTh+mVXgAAAsFlsQsIhvfL8vfwR8SqCEikEvh7+ANQPxLsLHJGMzUjXBwuuKpzDuZAIpUgTByGJXcv4XIOjNVg/cVoCoaGikPRqGxEdX214Olpuf2N9tY6gNpjpKklpQl1iUQinTpWZdIyjAkdg5MV1vH8tPRYac/T2NyIZlWzsIeixkvUsq8pmpvlaG42bfi0BW2PlaWGVWOTCj2ce8DN2a3Dyi2Ulanzu2wFV15nzGIqb0FT56Ulrk6uqG2qFfKuquqrhDor2rVhsnZmYfau2ZyfxTCMzdDsRwgA5TXlCPIJEgyTPt59IG2UCl/qEqlEx7ASu4uF6ucajwxwy5MEqI2x20Nuh0QqscrGzC1zrGoaa9QGYUM13F3cdcJsmoTxljKZQqWSQ6WyvmGlXW7BkqcCvbyAJkUzejj3gLuLe4eEAuVyoKrq1lOJtoANK8Ys2nkLluDn7gdfN1+TNVY0WFqfhmEYpq1oe6XKasp0npbTbKlTXlOuPi7VPa5JUgduGQ4t2yVSCaJ7RcP9/7N35mFyVOX+/1RVV2/T0z09WyZLTwaSQFYIOxeBS8DLpoK4oJjrgkvcFVTQH6iZoCjiAni9iFwRvdcBBZVNDZerBlwACYRIhiSQhMxMJ5kss3XP9FJd2++Pmqrununu6ZlJIoH6PE+e6aXq1Dk1qZpvve/3vMfjLyrUOVXGpgIT2YQjCEPeUJFoGRexqmJtQV1PY5oahnFw1UVaTRP0jHqsqlgr0IpYmU7E6nCkAuNxaGrK19E6FLjCyqUq7KKhAkLF7QQETp51MgOZgWkdz/Vnubi4HCwK1w7sSfSMW5ewMKJlpwxtCqNAhSKmKBU4us/YtOJUKZUKtFOUY0WLnZ60+5RUkhNGzWx/lf3zYOF4rKqoY2ULq1zOQBZlfJ7DkwqMx2HePFdYubyKmKg2y5zwHJ7a9dSU665UexwXFxeXammNtDrCKp4o9lDB+IhWUSrQlxdQhWk3u/K6YRrsGd7DnPAcYpGDs/hzUSpwVNjFE5Z4GytaCsWeV/IiidKEAsVOAx5sn5XdF7/HT07PoRulrSJQOCvQPKypwEJhdRCytiVxhZXLpKjktwrKQd58zJtRdXVaN5fp1oAph1vE1MXl9UksUl44QXFEyxYwNraAgjERq9EU3b6RfdT56/B7/AcvYlWQCrTTe4URq7HCyhZ7zvYTGNhtQXWwfVaF5v6AHKhYcsGpY6UahzUV2NMDbW0giqCX133TwhVWLpNirN/KrvMyNzKX9x//fn72j58VPXXYqcPCejKl6mLZhOTQtGvAlMItYuri8volFi6f6oO88FI0hYHMgDNjEEZTftniWYEAtb5aUmqK7kS3I9QKjzMdClOBEX+EZC7pRNrG1ogq9H1BdQZ2OwV4qCJWwIQ+q3wqcNRjdRhTgbEYeL2HLh1YVbkFF5dCytWdabu1bVxe3cRkbmRuUd0Ve9tSJRwEQTgkpRYqFTF1Szu4uLy2KZz5N9acDlaq8Lcv/5ZdyV3MDs92ZgxCcQSoUDiIgkiNXMPmA5sdodYaaWXt9rXT7q+iKUWpwEQ2wX59PxcvuLhkxKpQWFVjYM9HrA6Bx2o0ejaRzyo/K5B8xOowpQLf9rb8cjqHAldYuRw0JlMotNy2w7nhg9qniY7nmuRdXF77iILIrNpZ7EruqpgKLPXdWPO6XW4BrGhS5/7OfMTqIHqsilKBSoIDqQOWx2pM8c20ViysCstDlMMw0khS5OCnAguiZxOVXLAjVqpqEjjMHqtDHbFyU4EuB43JLEZablsBAcM0pt2XsX4qu0DpWEotKO3i4vLaIxaOsfnAZhRNGXc/sGcFjvVXQfHsP7ucgPOdb4ywOpizAqWCVKCSrOyxKhR7BWb7cuh6GlluOPipQG1MKnACj1VNDagayNLhmRVompbHqrXVFVYuRwiljO3ljOjltq3z17FzcOe0+lHKT5VUkiUXLB27oLSLi8trk9ZIK0/GnyQWiSEIxWVjov4omqEViSSbQvP6WD9T2BfmxQMvOg+Kc8Jz2DO8p+JsuGooTAWGfWF2J3c7gjDoGVNuoUSfJkoFGkYGWW48JKlAuy8TLWtjm9fVwlTgITavDw1ZpvVIxBVWLkcIpRZULWdEL7ftma1n8vze56fVj1J+KtVQnSfAsbgFSV1cXvvEwjFLWI0RTmB5O2PhGE/teqpkKtAWKmP9TBF/hD3De5wol8/jIxqIsndk77T6mtWyefO6L0LvSK8jCMelAsf2qSrzehpZbjwk5nU7elZ9KpDDVm7BTgOCa153OYIoZ2yvdtuX+15m496NvGPxO6bch6n4t1yvlYvLa5tYJMb6v6/niqVXlPy+NdLKX3r+wjVnXFP0+VjzemHaLewLW20XiDG7Ztbs8Owp93VsKtBuF8YLlqmWW5Dlhn+6xyoYBM2OWB2GRZgPl7ByI1YuryqWtyyfdsSqnH8rKAedkg/V7uPi4vLaIBaOkdWyJSNWRd9HxqcCR3IjGKZRMjokCiIza2cWtTNdn5Wi5cstBDwBJEFy+j3RrMCJzOumqWOaKh5P3T+13II9K1BVhcO2CHOhsDqUswJdYeXyqqI70c2j2x9FWCPgucGDsEaYsJinbVS39ylVxsH2b119+tUlC5x2J7pfU0VD3WKoLi7FbNq/CYAb/nzDuGuiY1MHv97yawDecu9bir6TRImgHGQkN1JUx6pjUwe/7Pwlhmkw//vz6djUQcemDv7wyh+4/FeX03hzI403NxZdg2PvVcIaoeR26376r47H6p7OezAxuXvj3bTd2oY/9QAB/SWnfxktg6S8QE/PzUBx6rIUup5BFINIUg0bep8qe59ob5/8OZ5MuQU7FahpAl5xNGI1mgp828dfcPpln59SfxPs87n00nYu/HFLUf8HB9c558Smpwe2b7deu6lAl9cFHZs6uP5P1zuzAnXTMoDaxTyBcalD26huX8D2PmDNMDQxmRmayY3n3sgnf/9JrnnDNbRF27j+j9ePE2CVjnMkMfacvFbG5eIyVTo2dfD1P3/deV94TQBF18uu5K5x14ttYLeFQ6lr7MoHr0QQBGdR+cLFmEt9b9+rxm636pFVpDtSvPczO5zj2PfE7kQ3v94hsWbJFgYH1xGNrqDNN8hg/CpmL/mV09dKqUCr1EKQzgPb+P3LD9Gd0Madk5XLVrJmzeTF1diIVVXCajRi5ff4UTSFjk0dPHDHSmjvHnd+Cv8mFJ3Ph9v5+ifX8K0nPgTAxXNmsXnz5SxefF/RMeNxePxx67WbCnR5XVDKdG5TzmBeaR8Tk5A3xNWnX82S5iUc23gsXsnrLChtV4+v5jhHEpWKobq4vB65/o/Xj5v6b18T1VwvdhTIFg7lJsjYoqkUE33vHHvDWwDLCF/qOM8O6nxti0Rn52Vs23YVnzpqgLnzf0I0usLq6wSpQF1PI4oBfr/9j0hoJcf91FMTdrMkhRG9SsLKNPMeK10fLbcwmgq86rt/q+pYzvkcXe9vzRa47liFbS99zBFV9jmxiRdkaF1h5fK6YCID+WQKjdqkcinWbl/L873Ps7xleVX7HulG9tfquFxcpkqla6Ka66UwYhWUg4fmWlq3GtpN+PUvAPjISR+m++ou6/MxPN2fxeudwe7dt/HbXoHmxguK+lpNxGpvegjf2NXF1q2m++ouzjjDeisI1r9qI1fjPFZl6lhpGkgS+HygqyJeycsPvzODbZ95mb6f3W5t1G5a/0qM3+4r7SassZTVxqtMLjnfpOu3n2fWrI8Xiar2dmscTzyRH9cf/wh3313duCaLK6xcXjVMZCA3Mcf5EcoV/rSJ+qM83vU4H/vdx3ho60NFOfjJFDQ9knitjsvFZapUuiaquV7sIqF2ROaQXEsr1sBqAbDSfvd13s/cW9qsz8dwWoOXbHYn0ehFvKnFIJ18Mt/XCcotGIblsQr5GvCNVQAr1jD3ljYuvdR6a5rWv2qElWmaZNSMM2uykscql7MiRrIMmmYJqy99OcuMb7cg1e63NmoXrH8lxm/3lXYBvmCt63j8LQJr/yBwwbtvZM+eHzI4uM7ZtL3dGse8eflxXXopvPOdE49rKrjCyuVVQ6mioWPpz/TTn+kvKvzpEUtbBWVRZkQdwRyNFQ9mB4uKgU6moOmRxI3n3egYX21eC+NycZkqla71au4DhanAgBwouY8syiWLEFf7PQC5EPafZZ/HV/I4p9TLXL9Qx+ebSyjyr3zrZT9btrzLERKFi0aXwk4Fvm3xFdR4ikNW9rgTlas1lETRFbySF1EQnbbKCStVtYSVxwO6Vjwr0C9Eqjqecz41a/bk9QtknhkQaaiZzeLF97F58+VF4gogXdAdNxXo8rqgsGgogCSMjVOPRzVUZEEm4osU7TM3MpewLzzO01DonbCPZz99xsKxsgVNjyRWLlvJh0/4sCM4KxVqdXF5PVCpeHE1hY3HpgJL7XP3W+/mJ5f+xPmsIdBArbcWwPn+x2/5sdOmfa9qCDQ49bBme5dYP8/5HX6Pv+RxVi09m1/uXwgYZNUE2zMhFi++j+Hh9U5fq0kFnt12PqfMXFbyPpFI4KQDq2Vs2YdKwqowYmVoUr6Ola5gqD7OeNNO557eEGhwyuTY5ywWjjnnu8E7B4Dbt83ixNgbCQojRKMris6JTSYD115rvXYXYXZ53TC2aKi4RnQiTuXI6Bk63t7BZYsuK/pcXFP6uaHQH2Efb9kPl/Hfb/1vTph5wjR6/+qhxlvDtWdcy3ef+i7bP7O9bFTPxeX1QqXixRMVNrbX3yssgFlun8LPnt3zLKseWcWGj24AIJ6IM6t2Frs/t7ton2d2P8Onfv8pfvqGp1myBhrP+C0+6d0lj7OhdwO3v/xhdH0fOW2YoBwkGl3heIpC3hBpNY1u6Eji+IdTK2IVRJKCtNREaQo2Mat2Fs+uetbZJpmEN7yh7OkoyVhhFZADZT1WuZwlbGQZdF0sWtJGUEy+8KGj+Evwg8yunc3nz/h80b7N325m/UfWMyNkpQD73zCLzwJfOvc3HOX/L/bseQxdTxedE6ePaVgzmll0I1Yur1uq8TJIglRSEE3Ga7SgfgHbB7ZPvoOvUjbu3cjpc06nJdRC99D4ul4uLi7VM7bcQrXEwjHiyfxUNHsh5bHYws1OwSk5nAKhY7EiQSk0LYE6KqwKEQWRkDdUdqUJw8ggSUFEMYhhZEir6aI+AiQSxWmzahhblX6yEStJlBBNL4YhkE5DIptwqs4XUrgoNsDgiHWM/uQIhmEpJUUZX6BV06wIlW/0tLrCyuV1y0S+q4AngFfyliydMBkP1YL6BWwb2Db9Dr8KME2T5/dasyDn1893BKNbNNTFZWrYvqWxUZmJaKppYlgZdiqQxxPxcZXdIb9wcnLUc65khXE+SZuAJ4CqpTFNFVUbKdmfSgZ222MligF0PU1Gy9Cf7i9aTiaZtNJmk2HsYtBVCytdwiPIAPhMS0hlMpDMJZ0UaSGFi2IDJEasfg8MpzFNSylls+OFVSYDgYA1IxBcYeXyOmasx6Ah0EDUHwWsyNNnTvsMp805bdxq9aX2reQ1KhQgRzq9I73ohs6c8BxHMNqFBrsT3Y7xv9DI7+LiUh47ojRZYSUKIrPDs9mV3AVUiFiN1p6yI1a5nFB20figHAQjBYCmj5SMoFUysNseK0kKoutpVF0lFok5fcxmLcExlYjVZIWVIIAg6niwxurF8qQ5EStfiYjVmMryibS1DM5gKo1h5BAEX8mIVSZj1c2ycSuvu7yuKeVlWHr7Uu665C6e6H6CE1rK+6KqXRR6QcMC/vuF/552X18NbNy7kRNmnoAgCI5gfHDrg2WLILqmdheXytiG8KyWLUp3VUMsHKMn0cOChgX0JHo4qu6ocdsEPAFUQ2VgUAM85BShYipQxAon6XppoVfJwG6XWxDFILqeIigHnZTlvPp5jribrrAKeAJl1wq0ZwUCiB4dybSicz7CzrETwUTZiFXh2BIpS1gNjWQwTZVA4OiSwiqdPnzCyo1YuRyRXDT/Iqvw597xhT+nwmspYvV87/Msn2GdkwUNVsTKLRrq4jJ1Iv4I+0b2FZUTqJbWSKvjYYon4yU9noIgEPaF2T9gpbVyilg2YhWQA0imJSZ0o7SwmigV6ESsDCt9F4vEnHuBnY6cbCpwrP+smogVgCBpiKY1VtkMOcdOKsmyHqvCsQ2nrKl9QyNZDCOH31+dsHJnBbq4jEGWZL7512+S03M80fUEkihNK/Iyq3YWiWyCYWWYh19+mOv/eD09iR5aI63ceN6NhySq07Gpw1mzUBIkdFN3phUPZAYmfezC9hoDjSyfuZwTWk5g+8B2WiOtJRendouGurhMTNgXZu/I3kmlAW1i4RjxxKiwKuOxAksMHdiVA2pQc2JZj5UoiNR5ZUDD0DMlI2i2Z6sUhpFGlpsQxQCGkSYoz6Q13Or0MZGwUnSTjVgVLmcDEwsr2bJVIYj5iJVsTj4VOJyxwk7JtIJp5ggGF5FOvzRuP9tjZeP1WmnPQ4EbsXI54ujY1MFtf7/NqVHVO9I7bb+QKIjMq5/H9//+/cPiRSr0PEHxgqyFBVCrPfbY9voyfax6ZBXP7H6G7qFuvrbia+OegN2ioS4u1RHxRegd6Z2asIrEiiJWpTxWYImh/iErhKLmxLKpQICoz4tHbsI0MwQ9UzGvBxFFP5gqQdlf1MdkEpqbD47HqlK5haKIlVEcsUqnrYhVNeb1VNpa73A4rWAYOQKBeSjK+Ei8mwp0canAoVpkeEH9Am79+62HZQHjSotHT+XY5c5J++PtzAjN4A2tb+CctnOcJ8CIL+IWDXVxqZKIP0JWy049YpWMk9WyDGWHnPpLpY4xOGQQjYKWk8qmAgHqvDKipxHTUEqnAseUJCjELrcgCAIIPiJef1FZiEQCWlqmWG6hIBUYkCde0gYsYYVhha9kwxJWIymDjJYh5A2NH5uveGyprC2scphmjkBgPooSxzSL6x+6wsrFpQKHyi80v34+fem+Q9L2dNqrZttK52R+/Xy29W9j59BO/vT+P/GH9/6BhY0LXVHl4lIlduRkssZ1wPEv7UruYlbtrLIerbAvzFDCpKnJBM1Xsahv2OtBkOoRzNLCqlIq0I5YASD4CHtHI1aJYmE1FY9VKfP6WIEDxcKKAo+VZNQAMJzSqPXWlpztPXZs6bTh7GMYOWS5CRDQtOLxu8LKxaUCh2qR4QX1C6iRaw5J29Npr5ptK52TBfULeGzHYySyCZa3LOfM1jPZ0relrIh0cXEpJuAJ4BE9U4pYtUYs/1I8Udq4bhPxRRhOQmOTgWTUlBQVNmFZwhCjCGaupNirlAq0yi1Y+5iCl1pZpjXSWmRen0rEamwdK0m0Cn9mtfFGpsJZgYKkIhjWG8+osEqOaCWN6zBqXs/lx5bJWsIqldEwTRVBkPH5YuMM7KU8Vq6wcnEZ5VAtntw11FXyJnAovEjVLDhtM5IbmdBnVe6cXLzgYn754i/53tPfYyQ3wr2d9+Lz+Jgfnc+iHyxyi4W6uFSBPWtvKsIq4otgYvLigRfL+qvs7YaTIg1NOpJZ+Ti1soguRhDJTbrcQmHEysBLrewl6o+iGirDyjCJBMycaQmrEsGmspSq8VVuWZuiiJWoIprWG8kIInt1RlJ6SeM6jDevZxVLWKWzOqaZQxS9JYXV4ZwV6AorlyOOyRT+rJaOTR3c8vQtjoncJuqPHhIv0splK7nlglsQsJ5KCxdkHRs168/0T2hiX7lsJd8875uIguick/cf/35+9o+fMZQdAiClplj1yCo+8btP0Hmgk75Mn1ss1MWlSiK+yKSWs7ERBIFYOMaT8ScrCquwL0x6xEO0QUXSS0fObUIeAU2IIKJO2WMFoCMTkmWnj/FknGQS6ust4aEoJZsoydglbaD8zMDCWYEURKwkM0hNOMdIyixpXIdi87ppmihZS8akM8ZogVAvfv/EwsotEOriMoZqC39Wy/V/vL7kk5VX8h4yL9Jps09jSfMSNn18U9Hnbbe2kUqkij6rppin3+PnXUvexT1vv8dpp5Sh/c7n7hwnIN1ioS4ulYn4I1OKWIHls/pb/G+c2XpmxfYzI17qGlREvbKAC0omihnAj0GwRFmGiVKBomi1ryMRkj1OH+OJOInEYubPt9JmmQz4S1d9GMfYcgtQWVjZEStT0BBGTeuiFiQYVshkBOZWSAXaojGlppDMIBqQzRpFEatstth36nqsXFwOM+XM3/tS+w7ZMctNvZ6qOX/t9rVcNP+iCbcfK6qqbd/F5fXMVFOBjiKj8gAAIABJREFUkK++PlHEKpvyEa7PIhqV1UxAMskaEhoSQY9Usq1qzOuaKRGUJKeP8WScRAIiEUuETMZnVSoVWI2wQsyBboWvRCNAoFYhkxYqRqzssSWyCbxmLbW1JmpOciJWPl/rq99j9eijj3Lssccyf/58brrpprLb/frXv0YQBJ599tmD1kEXl8NBOVNpuYv7YBBPlBZWkzXnd2zqYO6tc3lw64Nc96frnJReue3ttGO17R9M9uw55IcYh3v/cpkK7e351x2bOli/ez0/+8fPJu1JfNvHX+BXm38F61bz0d9+tOy+NWIUQ5MI1ioIemUBFxB1soaEakoEpfF/xp/ofoJF3n9w4m2C09+OTR1c+OMWDiRf5qyfvpGOTR3W/h6Jjk0d/GbLb/jIIx/hgY1/4Cfr30a/up1Tbz+naN8rfpJv720ff8FZ1L3x5kbuf/F+3vfA+4qOt7VvKyf+6ETabm3jbR9/welfUcRKKhBWuh9/KEMmI1b0WCWVJPT2UnfhW6lVaohEBLyEMQyFPXvuQNP6UZS4s/D8ibcJ/Gb9rXz7mTWOr/S5nd8k3retaGH6+zdcz0PPXMEpa+bwRJvA4q/U03hzI8I5a2i7tY0dPdVNlZxQWOm6zic/+UnWrl3L5s2buffee9m8efO47YaHh7nttts47bTTqjqwi8uriVLmb6/k5ZiGYw7ZMePJ0lWYJ2POtwuD2tGmXcldjl+qXDurTlp1SMz/1dDbe8gPUYR7/3KZKmvWWD/ta8y2Cky2cO8Ddxxnpa6eaK9YzNij1uMJphA8OQS9csTKJ2qkdQHVEAl4iv+Md2zq4Mt/+jKbkwZfXQRRoZsrH7yS2x7/AB9r3QcC7BjazapHVnEgPcyBlHXPsNNrajrITm0fM2vT1KqDRftuHbbGf+WDV/LAHcc5hZT7M/3kjJzj2bzywSv54EMfJKfnP3vgjuOccRfOCjTFnFPHCi2AL5RGyUplhVWtr5aUmsK4YQ3Bp5/j2LhAJAI+sxbDVKmtPZXu7hvpT2xk1SOriArdfHUR7B2WSXPA6c+92/6IntlFVLDGEBW6kfu/wY1//xVX/nY3Z/bAJx8dpD/TD0+spjvRzdCB6jx2EwqrZ555hvnz53P00Ufj9Xp597vfzUMPPTRuu6985St88YtfxF9tQtbF5VVEKUP8V8/+qlPd/VBQLhU4ti8CAj+46Acl/U+ViqWWM/nf/qbbufMtd9IatiJUc8JzDkux0ETpzMQhxb1/uUyX6RQkvu6x1daLbD7yXW5fSY0i+kcQZGVCYeUVVFKaSc4Q8EvFZRlsv+jGIVizBVYvgn9vVbnuWI01W8AjQM6w+hEf3sf2/s7i8SlhtqtJDugZrpwdKNp3ozUPBlWvPJ1ONdSS90573MUeqxymbvm8BN2HL5RCVaSy2QJREDk6E0D46c8QTJPm/RAO5JDNWkwjR339eSxa1IFoDPGu2WlWL7LOQ99IEOT8OF9OZdmZlFm9CK5ss87Tms0Q79a4ciNIJly5EZoHRn8X2eqzFxMKq927dxOL5W/+c+bMYffu3UXbbNiwgXg8zpve9KaKbd15552cfPLJnHzyyRw4cKDqTrq4HA5WLltJ11VdGKsNuq7q4jOnfYbtA9tLFrg7GNhrEU7Ul7PmnlW2WvNEfqyxY7LF08plK+m+ups3H/Nmbn7jzYdUVLW3W2uP1dUdskOUxb1/uUwG+/+qXUJKEKD76i5Yt3rctpU8iXY7PV8YXdj9ptGninYT2k26H7xy3D5Ctg7BnwRJAa181XUAmRzDqoliME5YFfZr4xB0JuF9c+HhXvjHEHhFGK1QwLCqYuhj0ltKBHwJ0mKaJ/YEnX03DmGdh3YT1phF4yl1fqBg+3Zr++6ruxAE+MMf8rMCjQKPFbofTzCFlvNQ6y0dsQL4yp9xDFIKPsL7to8uh6MhCDINDRehGBT3XQ2AXDBWKUdK8dKXK97uK0+ArEM7q6nRTPZ/f3Sfm6p/Mpy2ed0wDD73uc/x3e9+d8JtV61axbPPPsuzzz5LU1PTdA/t4nJIqfXVUuutpXfk0OSvKi3IWshF8y9i7ba1Jb+bbrHUi+ZfxNrtpds+WLS3g6YVG0dfLbj3L5dC2tut2k2XXGK9N02Ye0sbrFgzbttK15jdju/ov1sffH7m6BcCtAvMfevd4/YxsrWYvgR4Kgsr0zSQBJURzSCrg08sfvAr7NfyOjgpCrsycMlMODkKqgH2HgYy9f4xfq5sBPwJwsE0J4as7y6ZabXFijWwWrAM5wXjKXV+YHT7dgE+sQSwzqVpwumnF6YCFTBHCxRoPgRPBknWCBAt3WZvL5evTyMYljrMmT4iezYTzPowkRAEkcHBdcgi/HZPQd/V4ogVUg4/XuYG4dkBa7tzvVaUymNCO2tIUksNI/mxVsmEwmr27NnE43l3/a5du5g9e7bzfnh4mM7OTs455xza2tp4+umnueSSS1wDqMtrAns5mFLYxsixRTbLfV6IYRrsHt7NnPCcCftgmiZ3PHeHYxJtvLnRabvpmf/EK3mLtp+MXyqn5+jY1FHU12r6P1l27LCKDh5u3PuXy1QonA03nYLEs/zzrRe+fLSj3L5GNoTuHQApi1lBWOn6MAZe0mqGjG7gHSOs7P4ur7PSW3/rA82Ab7zk4fpFoJr5ftQFmjmxZUl+fIYAag3HN4+wpCHNb7qsp6Fbt0usXjQqUDQfGMX3nLHIolx8X1KsNNqas78B5FOBhmlgCiqGZk2oMTUfpkdB9Gbxm2WE1de+hmgUNI2PiJmgNa5i4mFwcB2bN1+O5lnAxqTXSYeGKBZWS+p1Gj1eutPQnbbShf9vGSSPy7edJEyYyXsYJhRWp5xyCtu2bWPnzp3kcjl+8YtfcIkt54FIJEJfXx9dXV10dXVx+umn8/DDD3PyySdPujMuLq825tfPZ/vA9nGf24ZW27xpG1o/8btPlPx8rDjZn9pPxBfBX6IGzdjjfP0vX0czNMck2p/pd9p+9t43Mbt2Ng2BhkkXS+3Y1MH1f7reurmNMZ1O1P/J0tkJS5YcfnHl3r9cpkI6DW94g/V6OgWJ/WYD513+Mq2NzYBOa838svuq6SC6PIAupTG18sJF05IYglXGIKsbyIJR9L3d38VhkRu2gCCFaA35+eTZP+bW0WdEewxeT5h5dXOc8ZELI3jTHB+V2JrJkFGth5CPnXEz33rZx8JamONbCsCyM/bg9/gREGgINBTdg+5+69385NKf0BhsBKBZsiYBvXnue4C8sFJ1FcGjo2lWNMjUvJhSBkFW8JUTVk89hVfPi0kFH2FjEN8ImIgMD69n8eL7OGrG+XzqxHexdcTPDVsgaNTg85vO+D910nmoRjOaAU0+GDTncsydM1AK5isliFBHglU17cyNzKWu6SDNCvR4PPzgBz/gggsuYNGiRVx++eUsWbKEr371qzz88MNVHcTF5UhlQf0Ctg2Mj1iVM7Te+dydVRldq00DljqOw2AbYC3F8+InXhzno5pK26VMp9UadSvR2QlLl8KsWdNqZtK49y+XqZDJwPHH59+X8ypW085/3XQM3Vd3UV8v8dwHtpXdNzUiIQVGSBuDEwirBIhB0lqalDZeWNn97RX/le9c8keuWHwJopnlgrYz2TECXu8MZwwpTccj6M74ej4xxKzGWs5d/l801s/hsyd+CYA3zTuH+vrzuH+XxGPvtNKbbzxtFgvqF7Dhoxvou7aPvmv7is7PymUr+f17fs+JM0/k++f+DLDWIYT8rMCcnkOSdGdpGVPzYkgZBDmNRy9jFn/+ed51/+Uk22bx2BWn0nPMPCI3fIHtxx6NgURr67VEoyvw+2Msa5jBvOg8fvrufzAr9C+0v/Fa3rH4HXRd1cXFp9yKaEbwSXBUbZCuq7pofXgvM/4nyzOzBYxPf5rEk5vZdbTJezpX0HVVF/Naq/MzVFV5/eKLL+biiy8u+uyGG24oue3jjz9e1YFdXI4E5tfP5/7N94/7fLrFNysZ1yc8zrrV8ES789ZsN2hph9Wri2vvTKntg7BtKTo74a1vhccem1YzU8K9f7lMlnT64MxiLaz2HYlYbTY2lt42kQBfTY6EPoyhyqU3AnQ9AWKItJombehIQukZehG/taZek26pmcHUy3hFqyio0z9dx4NW1IdIxNpX9wyTTluiTdOSJLIJdFNn595+oJl4HOIzSs9stolFrMKoSSHfPuQjVjk9h+gxHGFlqDKGlMH0pMoLK6xaVtJICj1jRfciERB0L7qZ90H5fDGGh593Zl+n0zC3qYkHd1jWAFkGJWcQkj3IQn6N2N3Du6lXJcRcjmQSfDVK2Sr25XCXtHFxKUNPz80c6H8JX+oBTrxNYMCcyw9OO5oF9Qs4f3YzUXEfv4hbvoOFtfCLuFV8s5S4GiuiypVaKLVfd6K7+MMVa6x/v7oHOq+Aq9r4+QdvnPTMvpJtl6E+UE/brW30JHqoD9QD1hqG9ngbAg0ADGQGaI20cuN5xf158UX48pcn1T0Xl38aB1NY2ZM2wuHKbSYSEKjJMajuxdDKCytNSyKKIQYyA2heCdMYv3A85Bdi1swEohggmdqOXwLVzCeqUqqGR8jfr2xhFfaF0cTdZDKWsNL1BAklQcATYMfePgKBZrp6dJTlinM/KEVzTTNJJUnfgArI44SVaqhIBcJKV2VMMY3hGUHSy/sGwr4w8kgaQ8mgqzLhsBXt0oqEVSvpzE50Q6fOX0c6DUc1zaBng/WQ6PWCkjOp8XgIilkyuSQBb5h4Is4SRQBFGf2dqGXXXSyHu6SNi0sZ/t6XIJb7CTndKrR3SqgbUuvY3fszrpmfpCvtcwyiW4fzxTdFofiyKmVWLVd1fSyljLMOe5dbP7ddOCUfVMW2C5BFmeHccFExwP5MP5CP0I31fhX2R1HglVfg2GMn1T0Xl38a6XQ+bTVVTLNYWEUildtMJqEmrDGo7kXPVRJWCSQpTF+6Dx0PhlHa92NXKNe0JMHgYjLZLnwi5Iy8+BhWVUTyEa9k0hKAEV8EVUySSuUjVkklyeKmxfTsG2TxYujpMYhFYghC+dlyoiAyu3Y2uw8knfYhvwhzTs8VCStDk9GlNLo0gqiFyrZbJ4XwZlXMbBY95yEcBkP1ohX4+P3+GJlsN62RVgRBIJOBuU3N9KX7yOk5S9jlBLyCwYgm0tNvTViJJ+OEFBOyWet3UqtNOmLlCisXlzJc8+cO2jfDylZ4fgg+Pg/WD0BWz+GVZD57/NmsXgQ3bIF/DAnc8aY7+M7530EWZWe2X7nim+Wqro9lrHG2IdBgCbdcEIbmwrEPwLaLp+SDKmy7EmFfeNKFUgv78/LL0NYGvsqleVxcXjVkMtOPWKkqSFK+XpOdCixHIgG1tSb9uT3oavlkkq4n8Xgi9Kf7MQUvul7ag2mvqafrCWpqlpLNxvFLoBQE1IfVHCL5a7swFaiIg6TTllLRtASJbIKlzUuJ7x9m4UIY6JeYHTxqwvPQGmllT3/aaR+KU4GSx0AbzUZqOQ8ZYwjBm0FVyovLJn30ZpLNoqkSkYiVRlSNvLLyemeha/20RiwDfjoN4ZCHllALe4b34PWCpopIgsaAVkPvkLXkTrx/J/6s5kSsasNG2XUXy+EKKxeXMvQketg4ZBXTW9EMhmn9FDHR9RQt+v+xU1/Ghs+aHN9yPG11bTze9Tinzj6V+NVx3rrwrXzzvG+WTNFVmwqEYuNs37V9VsHSfcdB02a45CPQdQ5o3in5oOy2Bco/dQ5kBibdLuR9WbZx3cXlSMCONE03YlXorwIrEjRRxCocNunL7UZXPZSrS6xpCWRPZDRC7MUwSgurfMQqQU3NEjR1DzUeD5mCGXXDuRyCqTjvEwmrn2FfeFRY2cccYjg3zOKmxewdSFNfD7X1aRq0ZROeh1gkxv5+BZ+vOGJlCyuPxyxIBXpIaPuR/VrFBaAbRoWnoORQcyKRiLVvobASRRldCHFMpAHDgGzWih7GIjHiiTiybEXITBNyQj39w1sB6Nv7itWAopBMQm3YdFOBLi4Hi9ZIK8vrrKm46/aDKMD/7gUdAUHwsEup57hgF4OD65xCm2u3reWi+RcBlYtvVmteL9cv9i6Hmc9DTb8lsLrPmtYiyuX29Xv8NAQbptWmK6xcjiSyo5al6UasCtOAUF3Eqi4icCCzF0HMp8fGomkJvN6oVYJF8KGPrZxuH88fIaEMoWlJamqWgLafmaF6Mno+ZJXMKWDmI1bJ5GjEyhchywCZ0aYzuX4CngBtdW3sH1AIh6GmYYCazMIJz0MsHGNgSCMWy4+/aFZgobDKSQxqvXj9mnPsUkRzlgFfyFnCKhwGNedBMYpnSKaMGo6qrSGbtSLmomj1J56MI4ogiCqGWYsotzCSsQTV4P5R3+loxCoaEdxUoMvri8nMgpss3z57JWsWW+tqnVAHP9wBb2iwIlYZTWF/eoBvvexjwwuX0ijs4jtPfocfrP8B//HMf9CxqYOsluUXnb8oKuwprBHw3OBhz/Aezrz7zCnVh7rxvBuR9p0CLRutDxasxfPKJZz4klU+YCrnpFwRxJNaTiKZnfyju4BAd6KbtlvbePTJOEuWTL5PLi7/DDIZqKmxRMB0VrPKZMZHrCYSVtE6iaSSxOM1UJTS2+l6Ep9sGcYF0V82YhX2hUkpA4iil0BgHpIxwIxAhJRmCSvDNEiqSpH53U4F+jw+BDlDKmWdgEyuj4g/QmuklYFBnUgEPPW9yCNHT3geYuEYiYRZJKyKIlZyXlipqkTaGMDvNypGrOoUK8IuKBq5nGAJK1VC0YuF1YDqYVbAQyaTF7mxcCwf3ZdUTCNKwNdKLmctdTV8YJf1XTY7+jvxuBErl9cXa8qspHAwOK0xgh55PyOawJot8KvdsO4A/GEf3LEDYkH4vz19fOkfaTZ034NqWHeH3pFernzwSq75v2uc4pulDN89iZ4pmc5XLltJa+ZSZszvRUCgZflGmnvfzwN3WCWDp3JOShVBfP/x7+e5vc+RM4r9VTVyjTMLUBKsJ0e7QKCNObpoRneimw1P1/CRp08/KBXcXVwONem0JS5kmYpRk2raKRRW1ZjXG+stX5HXq5cVVpqWIOC1ajYIor+sxyrii6CoA3g8EXy+GF4zQXMwzIhqGZqyWhZT8BUJM9u8DhAMCoykTQTBh6IOEPFFiIVjTlTLqO3GGJpd6tBFxCIxRoYlWlvHpwJVXS1KBaqKCB4Ff8CsKKzCCigeASHnwes18ftBzUkoevGM7L1Zg0afWfS7aI20Ek/ESSpJBCkHZphIaAGibq3/merrxfT5nFRgQ9Tjlltwef3w4ouHtv3W1mvxen/O3bvvZ+OQdZV/b7RWaNgDHx59WHt2UOfZweJ9bZE1EbbJezKlEjQN9u1sYN+NvyEUAsOAllHN8slPVt3MOOyifjZtt7aR1cZP5W4MNtJ1VVfJNtpubSsu4ZALQraeoeCzrHpkFTMypReTdnF5tWD/EdZ1K8ISnHjibMV2bCIR6Ooqv30iAY1RqzCo7DWclORYdD3pCCtRDFaMWKnqEJIURpKCaEjM8Av0DFoPShk1gygGimYV2hErgFBIJJ0R8HqbUdVBwr4wLaEWlJSPQI1KJvgymYE3TngeWiOtZFNeYjFrdjDkZwWOjI1Y5UTwZAkGK4va2ozBgRrwGEH8fgGfD3KKRFbXME3TmanYPZLhPDFT9LuIRWL83yv/RzwRR5JnoOthmsPLGOwdZiQ3QiCVg+YZTiqwqd7rmtddXvvYK8fbvh17NfpDkRbMZLaxLTn+xpXUrDRB+CA8mkzWdL51K8yZA6GQNWZJggPWwxa33279PBjnpFy/KvV33HcHFlk/JZ20mmZ3cvfUO+Tichiw/whPFGGqpp1Cj1Ul87ppwvAwNEetJa5kX/lUoKYl8Hnr8YieUWFV3mOl6Qk8HkspDesB6j0pkqrVcFpNI0nBooiXbV4HqK2RSKdFZLkJTUsQ8UeQRAmv1oQq95HwdTK0r3wRT5tYOIaaDhKLlTavyzLFwkpSqAkKFSNWwYzKvqCJqNfg81n+qVxORDME52HQNE22JxN4GSoWVqMeq3gyjiwbGEaYOfUnEvEoxBNx2oQoQlOTU26hud7vpgJdXvu0t8Oll8LCUd+kYVg3pmmJiJ6bGRxcV/TZ4OA6+voeJktp8/auDMyp5ml23erSr0ep1nRuj+/55/NTuNvbrbHbXpDeXuun/dl0zkm5ftmf220XHsPZZ91qaDfhv0YXM243od0kNzQ1I7yLy+HC9uNM5Imqpp2xEaty7aVS4PdDfcgSKl6vWUFYJZGkCEE5iGeMMCok4otg6MNIktXmkOYlQB8pVUMzNEtYjQozc/QGYqf5AMI1MpmMhNfbjKGPEPZZ7chqA3vVl/DW76N398RPlnX+OsxsLfUzUiU9VoXCSlEE8CiEglJFYRXIqOyvAUkLOKZ0j8fA0IOOCOpL95HUA2i5PcUeq9Fq8D2JHmRZR9draa6dj0cw2bzvOWJCBJqbnYjVzMaga153ee0zMgIPPQR3322937Nn+m3W1p7C5s2XO+LKXiHdMDJctuxTJQtp7snAbH+JldwZ81nB8jNFrym/0n0pbO/Uxo3l06ANo7rFGL982KQpZ2i3+2v3p9DT5eyzYg20C3DmN60v2gVoF/DW9U+/Yy4uh5CDGbGqttxCYZkDAJ+vvLDS9QQeT9gSVp5QxVSgqY84Eas+RbR8RKKfpJIko2UIyDUIghdj1MBeGLGK1MpkMh5keQamMULEZ7UjKFFeTj1LLGYSj098HlRVAMODGeotOStQ9ghOHaucIoAna6UhKwgrTzJFX0hA0H34R9ex93oNDL3WSdv1JHrweeegKPGi30VTsIlULsVLfS/h85roeghRFBnSZDbt+SOzjVCxsGqocVOBLq99vvUt6+fpp8PRR1sRnOkSja5g8eL72Lz5cnbu/CqbN1/O4sX3oar7uXTpp8YV6WwINLArA0uiEWcl90Ljt/1Za22b1b62kKgxH8gbvu0V5qvxV9mezH37YP360tusXm1Fsnw+GBwsvc1kKGVot/trP2Hu21d6H8fI3pefjh2Ug8wOT2x2dXH5Z2L/EZ5uxGoy5RYKyxwAeH2U9VhpmpXeC8pBZClUNmJV66tFQkHyWEppv2JFpSQpSCKbIK2mCcpBJCnvsyqMWNXVeskpMl5vE4KZcfpmZkNsSvyVttk1jIxQUQDZbcrBDMPsKl3HqsBjpSiApBAJyRU9VsLwMImwH0P3O4WHvV4dXQs70aV4Mk40dDSalmRkJOcIK0EQiEViPLXrKfw+E12vBSBjhnil7+/MMAKWsBpNBc5priWpJJ2oXjW45nWXI4b29uLoiL2Swve+B29+8/Tbr6lZgq5n6e7+GnPnfoVQ6DhM00CWG8YZuwH27v0fBgbWsnix9Xnh9/m+Wp8Nfn2L852+2no8+8BqWDlBfb2xY25pyb+2x28vvmyn5FpbLc9Vw0HIuo0dd3s7CMeN709xX6x9OjZ18IHbl6KdfDtzI3O58bwbueU3t0y/Uy4uhxBbWNklF6bbjk0lYWVHiiJ+S7yMTkoriZUKDBPwBPB6QmU9VqIgEvV5MbBCOnsy1n3HI9WQVJKOsBJFK50oy/VF5vX62gDZrBdZbkI0s4R9lgBR00E2Jf7GKYvezpw5sGsXHHNM+fOQSIC/RmGI7pKpQK8soKrWpBzTFJA8UBf00ltJsCUSjNQFQPU6wsrn0zD1WicVaC0b1orPN4tkcoBAIH/zjIVj/C3+N+bKJoZRA4AuNpBIvUyDehY0N6NmdVQdwiEr+5BWJ1CQhee+6i1dXP7JtLfD734HZ51lvTdNuPdeiEYPTvtbt34IwxghGj2fPXt+yP79vyQYXFB2LaxAYAGZzLayfTVNuPLKfF/f857862r9T3Y7q1YV71upnaamvJn9YNPeDo88AosW5fsAcPnl4/ty+cKVSIn5iBdew47P7Jj0ItEuLv8MbD/OdFOBpepYlWvPjhTZqUC/v7SwMgwFMBBFP0E5iNcTLhuxAqj3edGwlEfPiBUCk6UQCcWKWAXkAJKUn1lYmAqsD/vJZf1IUg0GHqI+P4YBuayMKvUTC8eIxZgwHZhIQDCk06e/QjJp3SfsWYGqoTrCSlEsQenz+IiEvJUjYYkE6WgIXZcLUoEaphEqiljFIjF8vhjJ5GDR7yIWiZHTc/h9oOvWmoSSPJN6WSeqCNDcTFLxEQ6bCEJ+QetqcYWVyxHF2rVw0UX59yecMLlUYKFJ3X49OLiOzs63MzDwO5qaLieb3cnixffxyitfQpJqy7YVCMwnnd5Gd/e3Shrfe3puLurbCSdU38/x/a5+20MhrGzB9JWvwOc/b0UJC3nqKfjrX4uF1c6dMHu2wAcWQM++hw5uh1yOGCY7gaLcRJKenpun3IdKbY79Lp0GSdqNaT45LsJUaiz2Z6XaEcUup99DQ98mmTSLio5+8Ys76em5mUTCivw8uv1RAJ7ufZz33vcRp/ab3bamWesE3tN5D2Q38sKOb5DKDfDQM1eUHN9xYZ2cKdPd/S1qxBQALzxwtVWEdOD7XFi32YlYKQpomsn+/VZ/ozUhTBM0zU/O9FDn9bJ58614AxkQTb687susH/k116/5Ky+99NHS57bzy2z9/OUMqzvYuesGTDHNWbfNJJPNsfRHx7B9z/20BXY6wkqUFbJalpv+/lWe2PaMM67Cczs4uI7Nx/6d/uZd9J4h8tz+J+nY1IEhjrCzb4C33/d2Gm9uZM+u7/HL5/4fa3c+xws9GwkGrX0feuYKHtz6IAAHMt3ED2zi/g3Xs7brOZp90Ln9SR7XfsuWS+qIRKxzf0qDPCkDuyusXI4obGG1enRy3fz5logYGqpu/0KTem3tKXR2XkZn51tJJJ6isfEyBgf/iKLECYdPo7HxMipdIrLcgCAIBIPHljQb8XjuAAAgAElEQVS++3yn8tJLcN111vbLl1tpuqkQj8NHC+5d9vhLcSiElZ2O/PrXYd48uPDCfB9Wr4abboKrripOW27das3c7Ncb6dn+4XE3fpfXB5MtWFtuIklt7SlT7kOlNsd+19e3nXT6IRobm8dFmEqNxf5sbDsDA10kk/c6/Y5GT8brTbNr15+dPtx881HU1p5CIgFbtsCn137aasyjcCCZcAoI220PDPwvGV3kB098iOuOVXkxCbJgctMzv2HDC5eOG5+OTFaXkANL+ZRl8WTD/R8mM/wUPuVvLPDHMYwchpGhu/uvGIZAOGz1N+IP4/VnyeVqyBoSYVnkL905agL9LK+z2gpFt/L3v5zJ7r3/U/LcJu76Pd2nKxyj9bN1GMKhJB9pETB0L1FpO6f7HmO3kkNV4Z6NvyZlDGKYBsgplKzITc88wIYXLkUQPGzefDnx+PfY8MKlDA8c4KJzDbxdfhQSXPnglaSMA6QVy7/an+nnxaTO6kWQVlM83/MP4sN/YcMLl3LTMw/kRZKU5h/7DiD3fwPJSNPkB29MIT37V+ReqSccMqitPYWPxvYyMPCnqv+/ucLK5Yhh2zbrKfD44/NPiZIEy5bBP/5RXRvFJvXrMIz06HRjlUTizyxZcj+1tacyNLQO09RoaXlf2bYEQSAQmI/X28LixffR2XkZL730Ecf43tt7DkcdBTeOTvo74QRLAE5lxl48Dt/4Rv59pSjAwRZWP/2p9dMWdt/9bnEf2tvhiivyJSBstm6FY4+FIeEo9Mbr2bTpzSjKQZjC6XLE0DGFYvv2Nfrii29n8+aVzvUUja6Ycj/sNjs7L+GVV64rajN/vHeyadOl9PT8ijlzLqalZX5RxOqvfx3fbuHs3Hw776Cz8x3s2vUoc+e+0+l3NLqCujoP69d/lJde+hidne8C4EtfWsFPfmK14fh4JAV0n1NA2G57+/ZPM6L08cVjFNZsgeeHQDNhw2COb28L0tl5GVu3ftgZH6KftCFi+I/nBzsbeOQR6yKODn+fHt8qnsxeTDa7g927/5Pnn/+c00+w/F6yN4OiBEnrIiFZ5Gt//gMpT4Ibl8CH2uCyRVYo/eZtYTo7L2X79mvy5za7kGP/43mi94RpWpDkk60QqkmgjDQgSirtS0zWbIa/7u9CVeGb624BadSxL6dBDfJ0v8K3twXp6mpHkqLs2PF5ukeyKJfC7etB2OlDEBVUQ8UjZ1FyPuf3sXEI1myBMxpgpuQlaD7Bt7dZbdp4PDn2jMis2QxXtMKCEAifgLufhNT2GiIhg2h0BQ/0L0Ppvbbq+5crrFyOGOxo1VjL02TTgdHoCpqa3kUy+TTR6L8Rjf4bmtbHrFkfJxpdQX39RfT3ryWT2U4gsKBiW7bPqrb2FExTp7f3x047zz9fnP5raLB8FDt3TmLQWP4LTaveS9bYeHCElV2I1faJ3Xmn9XPx4uLio+3tVh2Zp5+23tvFSe+914pYNdc0s1+fjSgGyOV6p98xl1c99v+df/936/1kC9ZGoysIhU5g//57nOtputTVnYOuZ+jp+ea4Nq3r/nz6+x9Gls+gvr7NMZvbY7G9nfZYShUpvu22FUSjb6Sv79dI0kk0Ns4f0wcf99zzFRYuvIOzz94PWNfVU0+NbjBa740Di0GzzEN20V2rjxdSJxs83GsJB4CsDn4RHtu9n0DgaPbuvcsZX1CClGbyza/5+MNH+/je9+4A4N9WDPPBM27jsXs+wc9/fgtLlvycd7/7maKxPPKjk/D60mSzQdIa1EjQ25cm60nyy/9ZzV0fMLnj+z8C4H8/spezz07y9a/X5M/t176GpIPWE6FxMMH8KOBPsPNAE14554whbSRQVdgz2A8eW1hlQLVMUY/t3o8o1pDNbsPnO4qja1QafwfPDENK9CGNijFJVsjl/EXne+MQPDMAITPIDiXFY7v3F30vyzkU1cvGIXh0L0RkqH0UNiSgT6glErIM/0PCUWhSa9X3L1dYuRxWqr2xltru+98v9lfZnHCCVdup2rYHB9exb99/EwgcSyLxVxKJvzF37lfYs+eHvPTSR5HlRgYG1pLJbCMQmF/S32Hn/AOB+WQy29m27eMYRgqPp4E9e37I4OC6ccKqp+dmli49UCQCq/GOxOMQi40XlOVoaoK+vom3K+c3s/vT1/cIZ5+9iVtGJ/LZ3pDu7puLjOq2wd4u8ZBKWe+DwbywSif/hqYN4PXOrG4QLkc09v+JefOs95MtWDs4uI5k8kmCwUXO9TRd+voeAHSam989rs3BwXX09z+Cx1NPX99WYJtjNrfHYt977LGYJnzsY8Wfffaz6xgYWIssNzMw8AqmubmoD8FgknPPvZ3160/iRz+6oGhfwKn3Ruwp0Kzoi1101+rjb+lKy1wyEycdpxjgk+D82c2kUp0Eg0uc8QUkgxHN5N8/s5133pW/Gf3vn4Lcuu5K3vHBn/Pe917D88+fx223XVbUn09csx+vL00u52dYMwhIBs2e+UTDCa68cg3X/ULg1jusac0X/tcM1q0TuOaaLdaxd/wK7r4bCdjbEkE6JoFnABpCScR0I4KUc8ZQ4/OjaTAz0Aae0WiSnAbNqlVx/uxmVHUfjY3vQFG6MEwYuBiOaoER0Y8kWvt4PAo5NR+xAqv9k+uhPxXkhKYM589uLvre41HJaTLL6+CCFlANSF0Ac2ZCQowSDljC6phgGknbVvX9yxVWLoeVav0WY7fLZGDHDnhjiaWpli+3IlbVtG3n/xsa3kw4fDogACZ1dVaoff/+X7BjxxfQtASmaTAysqmkv8P2PBiGSl/fb9i3rwNRDCKKfifV+OyzQyxfXrxPS8tPeeqprqK+TOQdiccn582qNhVYzm9WW3sKg4Pr+M//fAs7d/q54orHnf7a+5WibvRG//jj1o15yxZLWC0Ippij3AUI+Hyzqh+IyxHPVGbV2ddFKHQCfv9RzvU0HXE1OLiOl176EGBFrgrbtI/X2PhWJClIIPBmhoZ+iCA8V5QKLDX7rfAzu51Zsz6GJAXxelfQ1/fdIu+RJD1HJjMLr7cFr/e7zuc2TkHe0VSgXZA3f9+6hPqGS/jWyz5WL7KEQ1aHU+tlrlmQxuudhcdT54yvRsySyGkMJ/7Mv0n5xdSfzJ7PYvMejhPup6XlgwSDi6ivv6GoPxF/xIlYJXMaflHnirYLWdpsnZSNQ/DjAesEfGHeMAANDW+xjr3tvQwu0xhcDjv/JczsrUnkAagNJhhKNCFIKmu2wOrFcPHRbagqfHT5ZxE9owWtRlOBpzf4uGZBChBJJB5n3rzvIAgCzb+D65fCYMyHJChWQWavglYgrJbXwepF8ONXIJWpQaz/V65ZkOb0hvw2Xk+OWvysXgw3bAZRgIU3wOdOhJG5M4gEVQYH13FOzRNkaKn6/uUKK5fDRrmCd2NRS6xf/Pjj1k/7j3chS5da/qtqGB5eP1r4c2B03wdYuvRBhofXE42uYOnSB2lufhe6nkIUg2zZ8q6S/g7b89DbewepVCeC4GXJkl+jqn1EImexcOF9dHYGiiJW0egKzj33Qp56ats4n0clenqsiFW1VCusCv1mfX0PYZqW+WtoaB0vvGDVhrj55gzbt7+Tz3zGurFfe+3Oiv0991wrZWtHzJqaYKY3wTPZM/B6m8vu5/LaJJGA88+f3D72NWoYGQwj7fw/HR4uUxm3yjbnzLE8RNlsT1Gb9vFARNfT6Pos5s37MJK0sUgY9vRA7ZhJwrawyuXy/fb756JpCTStmWOO+azT7+Hh9bS0LGZ4GBSlh4GBpZx0UsL5fvVqnIK8eBTqPC1OQV67bUGQOKX1zXzqX+/ijp4ZLKwFU5D52HHncsKyB9G0fhQlPz5ZUBjK5chlXmBtlxUhO/2iV9ieCRHXF5AQTyQaPRdFiaPry1i8eMTpT9gXxutNk8n4GMypyEKOGUTxR+oBaPZB0l+Hx6Pi91rRLl1PWMe+azbD8zSGF4L3zxHq0wkED0R3DrNhTwteOcegOZdHh05lab0XVYUVsQuZ39w6Ov4sqEG+eMplLDn2P/F4IixefB+x2Oeo8R6D1iRzR88Mhht91Pkl7n7r3cyqC+M1G50izidGg9ywBfbps/CaUc5aeBknHvcQXzr1MqfoccBncFzDQtSG6+g352KYULMFco3XkYxGCQdyDA+vZzPvAKr8A4YrrFwOA7ZHwa5CXM5vYW/n9RZvJwhw8cWl921vt9q1q/RO5OVobb2WaHQFIyMbOeqorznm1dbWawFLbBx77I9oano7qtpb0d8Rja5g5syPADBnzlU0NFyA19uConQzOLiCaNRHfX3xPmedtYzt208u6fMoh50KrJbJmNej0RUEAgvYvfs2wOSuu77A0UffwDnnWF6CK644jjPPPEAi8QSzZn2cb33rqIrtffe7lrCyZwQKAkh1K+lO68iyK6xeTyiKJTjOOGNy+9nXaDbb49RoKrxGp0Jr67V4PBEkKYSixIvatI+nKHEMI00mA42Ni1m48ENOxCqZtB74slmc5VfAEluhEOzene+3rqfRtCSZjElz83FOv1tbr6W+voZMpplsNk48DldcEXG+b2+3CvJ2XdVF+xv/H58+6Rqn9lthH/3+GCuXreTRD+/l3g+aLJ1xEmct+iq1tSdimga53F5MUycaXYEIDCg5esVz6Ou30nZnX9BHQknwVPpfGKj5AD5fDEWJk0zCihUhpz8RXwSfL00q42FYMxGMNB7PBRzdUo8khfji6VfSfXUXxxwjo2mWEVPTLCUavX87rfeatP5vFKXlDGo+9x5qT/t3jr78AyysfRtIOXZ8ZgdyzamkAqc65RZaG5rpuqoL8wYV2SNx0fJ78flmEwod59wrQ+J86uP1PPrhvTTubOU9yy5l5bKVRGt8vO3Y92GsNui7to+73pdiw2dNHv/gs2iKn2DQ+p1feuq9dF3VhbHaoK2+iTn1b+adJ95I11Vd+D1h5JYm3nnijYivzCbiU2htvRbDexz/n70zj5OjrPP/u/qqPqa7ZyaTmczRkxMCk4RDRFH5iQFdiYrXCsKiorgohwvigSIbMxC8EFhREE8OdRcMuhweQRYYbhCiCUmY3Nf03Ef39H1WP78/nq7qrunumQnEY935vF7JdHdVPfXUU9VVn/5+P8/nq4o5H6s5/B2huxuefbb0vpbeortb3rj0X4XBoFzv2Weho6P6trr+YeNG+T6TmVnLkckMIUQOVe2oulymB/5g6K5qpSDC4R6Gh+9k4cK1DA//1NBcJZN7KvRVOrzeHtJpQTjcMWvtyOESK128PpsKDMPDPycafYGOjitRFAsXXvhNnn66iUsvlV4Ku3b9Gz09Ni688NsMDHx/xv4ef7ycufnb38oZgSA1VtnsKHb7/NkfxBz+10MnJa/GvVySk1BNV/FXA2mjcopBrKotLxTSJJOiolZgMAgLF8pKJ3pt0nhc3q+OO86cEpR91kgkCiZTSgCPJ0IudxRC5Ojry9X8XtdyXk+n+1BV80YlH6ogTuci7PYmMpkhCoU8CjlCmSSRTIT8pNQHWTVZoiWZl87rOrEqd10HWRJHVRNMxjUKONG0mHRRd46axjEQgEOHpEdWPl92soWAaJRI0o7HM4nV6sfvh3DYi92WYyQxIk06HVaDtKplEim3W/5gTqeDpmNW841kWmXRmIzVhWqRKQ6HI0M2a67ZCmCz+Uin7RXnQi5Lkc+XdmpFpTBPGoZG8ON3ypPQ4LRzOJO554jVHP4q2LgRVqyYeb2nn5azzkD6P61bJ/2RvvGN6bc780z599ZbZxbIxuObqas7saqjuq5l6OrawOLF19XUd9Raz2p1k0rtZcuWSm+tcLiHHTvOYfnyA3z/+19n6dLvzEo7crjEyu0Gmw1iserLy4Xqu3b9K62t/4qqdiBEFiE0bLZ5TEy8A4DBwdvw+9+CqnZSX7/apEupJrpXFHkufvSj0sOm2dOMlp+YSwX+H8NrIVbyoW2d1lX8cJFOB/H53kI6XUmshBBkMv2A1SBEHo/8kaBppe9gudO4/llnp5lY6X1OJgumWoEALleIVKodVQ3Q15ev+b2u5rwuRIFMZqCCWEnn9BSZjCQgOlHStChCcRPNxIhmomRCzVitoOQ9plqBDkcz+XyMcDhnuK6DLInjdCYZmUwjLG40LUI0Ci7XsGkcJbHKoaqdaFrZyU4kQNOIpOy43SFsNh8+H4TDbuyOHMFIkGwhi1O1mpzXdbjdcvz149KhZnxkireSjMWN0yBWaXK5SmJlsbhJp104nfmKZVOJlUU4KMyTJW6iwovPIdN/9bYsMc1VsX0tzBGrOfxVsHGjNJG02+UvvenWW7MGrr4aHnsMrrtOPqz/5V+mN8UEuOwyScBmErHH41vweqvboOtahnLvmWr6jlrrCVEglZIRqyefrN72smV/5tFHP4rV6pyVduRwxesw/cxAXbQeDN6EzdZIU9M/c+DAWhYv/hpLlnydbDbInj0aZ575AA5HJ/H4FrLZQUKhR1i69CZGR++dVnS/Zo0klY89Jt83e5pRtMm5VOD/MejRnlcjYE+ng7hcS4xSK0cCmUwQv/9NZDL9hp5QRy43jsXixmbzk0pJYmWxyOh5NFrSOVYjVlPLuuh9TqVERZTE7R4jlWrG6QwQDFqmjVhN1aTmcmPYbF6sVvMD3mJxUSgkjTShTqzy+SiKpY5IOiKJ1HgjS5YAObeppI2iWFDVdiYnE6aIFYDLmWZ4MoViqSOfjxYjVvo4BhFCEAhAf78Fj2elkQoEjBMfzahFYiUjVhMTThz2PMFokKyWRXVYDGLlLHNLcLmqEytnwkNmnqxKn7aUIlZ2e4ZMppJYKYpCNutBVSsfPFZr2hyxKtjRGuRJixS8+O3yXHotKcI5e8X2tTBHrObwF8fICOzdC+98J5x6KvRME6DRidXXv14y1rzlFnmTmykSdeutpXp800FGrE6oukzXMpSjmr6j1nptbZ8imdxb1Vers/Mq6uqOY9myF4v92DKjdkSIw49YwfQ6q4aG1Rx77C8JhR6mvv5Udu78CKtW/ZZA4HMEAp9j1arfMTCwmI997GoKhTgrVz7AypUPABqHDl3P+Ph/Tyu6f8c7pHGrjnpnPR5rDoutser6c/jHxGuNWLndy494KtDlOhqrtY5cbmzKMplis1rdJJPCiDTp6cByEqWXl6r2GWD0eWoRZgBVHSKVmoeiLCIUstFaY/Z+tVTg1JSYDj0VqKcJnU49YhXBapVFiaPZKJFRP8uXg8i6iGaipHIpYxaiqgYIhzOmiBWAS00yGklhsXrJ5yNEIuBwHMLtXoGi2MjnwwQCMDDgwuNZZU4FFk98JOPE5RrDapURq1DIgcOWJxgJktNyOB22aSNW6XQfTmfpl6UadZL2y8HJKE5URc52tNvTZLPVyU8mU4fDURnCt9mS5PMlMmbJ2yjUy5Mf0erw2SSxclniTGRnT5fmiNUc/uL4wx/gjDNktGrNmpIeaioOHZJRlt/9zmxM+aY3zWwuqAvfv/td+X46EXssJlOBfwncfPObOOGE3zE8XNmP7m5wOOZx/fU/BmDJkvUzHtf4uPzl5vEcXj9mErB7PMeiKA7Gxn5VIaJ3uVYTDrfS3LyH9vZLDYF/R8flpFJ7aGh4Z01S1d0tjUw1+YMSRQGLRWHnb64jXXBW3WYO/5iIRqGl5dVFrCSxOuaIpQILhTzZ7DCq2o7TGahIB6bTMtpjsbhNhMjnk/xAjxqXp/30z6ZGrEqpQKUiFeh09pNI1DM5uYL582OmHyDlqEaspkZudOhFlOXyTlQ1QDrdRz4fwWbzE81EmUxFCI/USWKVcxJJR0jkEgaxcjoDRCK5yoiVK8lYJI3d5i+mAgs4nf2oaitOZyeZTJDOThgc9OPxrEDTqkSsci7c7tGyiJUNhyNnRKxcqo18vrbGqiIVGLaTqZNjnFFcOBU5UDIVWItYeaoSK6s1adrGkrei+eV9Kqp5jIiVQ0wykp6FaFVvZ9ZrzmEOzL5AajlZuOGGkrmeTqyqpfUuu0xGta691myaNxtzQV3Ers/YiUTM25QXMc1mh3C7l7/mwq7l+9axfr2XSy+9iosuKlT0vbsb+vpuYvfuywF4wxueMJW3KW9Hf/1qolUgidXOnb+vea6Gh+8C8lUF+ps3/5GWlkMsWfIVY1k43MPQ0I/xeFYxOnoPodCjFW0CXHjhDYRCPaZzFwr1cPEn1xMvzD6UPof//YhE5LX7aiJW6XQfLtcyhMhRKFRqYw4X2ewQdnsTFovDSJWVQyclFouLZFIxiFW1iJVOoqqlB0FPBVpIpawVESun8yCJhJeJiaNYsMDsAm5erzIVqEfVpkJGrFJVU4EOewORdISJcB6LRaG1FTJpK3arnYnkhCliFYmIioiV25lkPJrFbqsnn48SDufw+x0oitUgcO3teUZGmnG7j62IWAnFQizvQlWHDWKVzVpw2LL0RfoMYlUtFVhLY2UP5SlYNTQtQUZRUYvEym5Pk8nUIlZOHI7KgrJWa5J8vrSNNWeh4JPsLpJ347fK9KFVG2cgWcUHqAbmiNUcDguzLZCq65w0TdbT0sXlK1ZI8nPddZVt/+531Z3VDwf6L8CptQP1fg8N3YnHs5LJyadec2FXHeWaLqvVyUsvncUZZ4xUXbc8WjY83MZDD00a25e3o79+LcQqkaheHFpRbBw6dD1NTR+sEOiHwz089dT3OOaYBmPZ9u3vZ/v2D9DVtYGlS78DKGzffpbJXFEfx1rXh81iZTJbq7dz+EfEayFW+sPUYnEfkXRg+cNZVTtrECuZCkynlYqI1XQaq2ridYulDU0rWcfosNv3E4+7GBnpZP78/pr9rZUKLE+J6bBapcZKTxXqkSRNi6A6GolmokwMu2lpyxpkxaf6GI4P47K5jDGJRi2miJUQGqojSTiWxemYRz4vI1aNjXXFbSSBa24eYny8A5ttXgWxijcvKUaUwkYqUI5D1hSxqpYKdLkgFksAAput1DElEkXN1ZNOB0kLJyp6KjBFNmurOp7pdC1iFTdHrDKgeeX7aM6FT5FRLqGN0peY87Gaw18I5iLGX53W5PLQIfj97+Vr3S5BUaqTJ/0mMtVMcCbBejWcdJIscVOt3wcOXIMQ+SNS2LUa4nF45ZWTOOWUV6r2PR7fQl3dCaxbB5///B184QvyS3zoEMZf/TW8OuE6SGIVjy81ztX+/dcYxyxEHq/39TQ1vRcwC/RjsZfIZrvp6ppnLGtuPpfm5g8Xa5WdztFH306hkOHgwWsrxrFUiPYcw1S0q2sDqkVhPKMd/oHM4X8tolF57b7aVKBOdI40sdI1SFOXO50BFMVNMmkxaawmJ6G/v7bGqqlJkpWEdBwoFnVfiMuVN5Wh0rQUTucQ0aiNkZEWmpr21+zv4aQCZcQqTibTj6p2FCNJMmKl2hsRCMaGnLS3CyO95lf9ZLSMKRUYi9lNxKpQyOBwpokmcrjU+WhalEhEYd48f7GPchwtlkO4XGnCYX9FKjDatASfJY6mRY2IFcjoUjAiiZXbaa9ptxCNTqCqAfMM7mgUtdBEJhMkg4pTyOvDZqtOrISQxMpmC0/5XCtuU8rHWtNQqLNJp4is0yBW+ewg/cnZ/zKcI1ZzOGz4/f8PsHDo0HqTPkfXOenfgUWL4L3y2W0y+/zxjys/00PA8+dXGoAeLi66qHpR5oaG1Tidi4nH//yaC7tOPVb99UUXwapVfdhsuyr6rmkp0un9eDzSd+KKK77J3r1SPLVoEcZf/bWiwL/9G+zadfj9072sJBl6F319X6e19VOGWD6TGTDpzMrNEgcHl7GsrHbs8uU/ZPnyHxrv29ouwu1eYZiGTh1Hv/8tFAoJPvCB043lLkuGkVQVY545/MMiEoG2Nvkgzx9GNk9aH+gRK9cR0VnpGirASGGZl8s0mxBeFEXqQUFGrPbvL+kcm5slUUylzDU8OzpKUStNS1IodOJ0mlNHmUyQhgYP0ajC0FADTU29iBpmc9VTgbU1Vul0H1ZrXbGUTgv5fJhcblRGiVQf40NuOjsVY6adT5Who/JUYCzmMqUCC4UMDjVDIlGgztGIEDliMRvz5s0r9lESuEwmSFtbiIEBH/l8tHRMkQiRhkX4lRj5fMQcsbKlGU+Ok8glakasJLEKo6pTfllGIqhKc5FYOVCFHCiHI0kmU0msslmwWgtYLOaIlaalsNshny+RNku6QMFtI5EA1aZhy6cNm4sMvqlN18QcsZrDYWPfvi+Qy43idq806XO6u6FQKNXzq6aTEgJDV/STn8j3iUQp3XW4xVqr4cQTqxOrUOgxkslXaG+//DUXdtU1XfffL99fcIF839AAZ5wxQjJZWWMnkdiG270ci8VBdzcMDf2MV145DzCP00gxi7hrF5x3XknEfzjQ7RZCoUcZGfkvwM7AwG1FnVmEbHYYt/voqtvu2QNHHVW77XC4h0zmIB7PcVXHcWDgexQKKZqbz2dw8HYmJn6PRYHhZGUofg7/uIhGZcTH663tqVYNMp2kFJ3S3UfEckHXUEEp0lK5PEAmU4/LVWKBfj9s316KGlsskkRt2ybJl04UylOEhUISTevA6cxU7KOpqZ5IBAYG7LS0jJDLTVTtb62IlU4Oy2GxuEmldhlpQkWx4nC0kkj0yiiR6kdE2lmy0GakAv1OGTpy2WVozm4PkEq5pxCrNKozg8i68Dvr0bQmhBD4fK3FPsqUoyRWSQYGbFgsaul8RaNE/J34iZDPy4hVXR1YLAKrNUtbXQsHJw/itNspFCRZnaqxikYjlcccjeK0t5NO95EuqAaxqhWxSqVAVfNmKwhkZNHhUMiWBaKsCQ3NbZXXrpqBdJpsVgrv3Y4q9dRqYI5YzaEmdMF3uWD94MHrGRi4hZaWT5JO7+fYY+/l859/yVh+/vmyvMN00KM8//7v8ub77nfDKadM34dyzCQ6X6pgrfsAACAASURBVLVKkpLyL4zU+nwIVe3kqKNuOSKFXaFE4B55BDZtgl/8Is1b37qTUOgPRtu7dn2aXbs+zejovYDV+Gx8/CFiMTMD7Ou7gXRaHtsXvwjPPCNv2ocjtO/ruwFV/RNDQ1FeeeUDuN3LaW4+G6dzUVFndhd1datQlOpTkvbuxRSxKoeumVqyRPZl6jiGwz0cOLAWsODznUJX1wZ27PgoBVyMJmZZZ2cO/xDQnbz9/sPTWekkR1GUv5DGykyshNCMGYO5nL8qsSrXOQYCshrE1M9KxCqFprXhdJpDTul0EL9/PtmsjIJ1dORrusBPJVZyVuMIDkdlEWApuN9t9npyBkgktmO1+vA7/SjRhSxeaC8RK9WP3WLHZrEV+1aPqqYQZWVbCoUMqjMHOTc+1Uc63Y7HE6sYx0wmSEeHRjAoXc4NnVUkQtTbho8ImhbDZvOhKODzKTgcBRbXtxNKhVBtDmw2KaOo1FjFK6N0kQhqUUeWEXaDWNntSbJVLBGSSXC58mb9F5IATyVWloRGwVm8dl0ZyGSMSQN6lG82mCNWc6gJXYisKLaioeTNHDp0LS7XsYRCD2K3z8dm83LnnVcVtTlwzz1w881mbVQ1rdG6dXIG4BVXyALL3/pW9fVmK5Yvh8sFixdDb2/ps1jsJebNex/z538IqG38ebjYsgXOPhuuv156aMViTtzuq8nlxo0xGx29l5GR/2Rg4FZ8vjcRDvcwOnov4fCjpNMHWLs2Szjcwyc+cQNe78l4vSfzsY/dxNatKYJB8PmePyyhvdd7MpOTlzA6mkZRHLS3X0Yo9Hs0LUZX1wYmJx+v6eOVTsPwsCzfUQ26yemCBR8nldqN3/9m0zjGYi/hcLTQ3HwOyeROGhpWs3jxeiwWB6OJ2rOg5vCPh0hERnR0AfhsUT77zWp1H5FUYHm0R1XbyWZHjNmGmcwQdvs8LBYH2azflMLz+WD37sMjVrIcTyuqaiaEeh9KbVqnJVblqcBsdhC7vRmLpXLWmx7VM1kSqAFSqd3YbH58qg9rbCGdnYqhsfKpPiMNCBCNKtTVJUw2FEJkpFt53oXf6SedbsXtDpWNYweZzADp9CECASvBIFitfhOxijgX4COExeIyfsj5fGC3F1joWwCAw+owjKOnpgLj8WR1YuVZLIlVwY6zIMVtdnuCTKbyx6K0z9DMrvDI81QRsYrn0JzyB7/PlS8SKzlpQI/yzQZzxGoONVESfH8Vq9XHvn2fRwgLudwoXV0bmD//QwSDctr92rVX8Z73yO3OPLO6dUA5urulCeiGDfL94sXV19P7sH37B9ix4+OzFp1PTQd2dl5FMrmTefNKyvnXWtgV5D6+/nWZCqyTk2Xo6rqHfH7cGDO7vYlCIYsQeTQtSm/vOUXTzfsRosB5511Eb+853HTTyYZn1He+8zouuuhiACYnP3RYQvuGhtWccsqNTEy4UNUODh78Kl1d95HPh3G7j8Zun1fTx+vAAZn2sFWfXGMYo1qtLpzOpSQSr5jGsbn5PPL5GC0tHyWZ3AnIm7zNuXyOWP0fg54KLK+5NxuU66F0V/HXivIaexaLHbt9PtmsLDRenibMZLw4naUnrd8v9WFTSdRzz5k/K58ZWCgkyeebUVVzv/Womd8vv1+trf6axGpqSZtaaUB5PCUBug5V7USIvJEKJBqgs7PkZu5X/VOIFXi9aVN/CoU0TpcGOTd+1U8qtQCPJ2KMldXqxGbzE4ttYtEilxGxMgTs0ShRRxN11knTrD6/XxKrTq+sxKATq0SiMhWYSKQriVU0itO3jEwmSFqzo2q6eD1JJlMrYlWokgpMoqoWc8QqlqXgKEas3FJRr8+2nItYzeEIooCi2Emn9+NyHQ1kaW+/lFtuWc1RR93IypVfAeBnP4P/+R+5xXTmnDq6u6G9XV70M23T0LAau30eIyN3z1p0fuKJ5pmB2ew4yeQO/P5TZ3PQs8LEhPwC/vzn8kapE7mmpneyerXgBz/4KC7X0aTT+5k3bw1NTe9nZORnxjHIf6ebPgM5Bo2Nq7nmmrsBOP30ARobVx+W7qyz863kcirh8C7a2i6hsfHtNDT8E6HQw0atxGqYSV9VDq/3ROJxcyozFHqYxsZ/wuNZQSolVfe53ChuZ9scsfo/Bj1i9epSgfLhrbuKvxYUChny+UkcjgXGZzKN1VfcX4l0ZbM+E7HSNUflM3M7O2FoyPyZPltQCIGmJcnl5qOqCVM/dAdxn0+u73R2VojoS/0zE6tarusgI1Zym1KHdJJltfrw2v1ok610dGCyWygnVpEI1NXlpxCrDG5X3kgFplLNeDxx7Pamsn52ks0OsXhxPX19YLNNiVgJH15XHJulzjSmDgd0eGU7OrGKxapFrHKVFhORCGrjcimc1+yoxevDbk+YZvjpSKUkoZyaCtS0FA7HFGIVzaDZC/La9ZQiVqoakAR1lpgVsXr44YdZvnw5y5Yt45vf/GbF8ptvvpmuri6OO+44zjjjDA6Vzxefw/8qlGuahNDYtesihMji8ZxIKrWHlpaPMjh4O+ed92kmJv7A1VdfUlxXGkHqr2dr6DkbE9CJiY2k0/tRFHXWovMTToAXXgjypS8dACAcfoT6+rcRiTw3a63STERmyxY4/vhKQ9NQqIdnnpnPl7603xizycknCIcfNxlyhsM9RCLPYLH46O+/hV27Pk043MMVV/TQ2/tRenrk1/OJJ5yEQj2HRazC4Ufx+8e5557/YXDwdj7zmd/gdC5ifPxBbrvtQ3g8K6vqtvburV1jcCrq6k4gHt9iumZCoY00Nq4hmdxLNjtCPh8jmx2jPx4nGA3yp8E/zf4gjhDm7l/V8VomiFRDX98NxvcN5MN6fPzLwIumiFX5dVfehyuvfLY4MaJEIjQtxtjYhtJKQ0Nw2mkYpQ3K9j1VD/qZz/xGaht3/xhrQkMZGWXXrk8XvwsBvvKVYeN7+L3vvQuAWCyCzVbSAur2APX1fzY+0yNVPT2bTZ8d3B/lytNuQcFKLudHVWOm/ujH5XDsIZkcN2m9TN/FoSHUf34PmWSevq8sIbzv12TGX0F98DkYHjbW7dv+74QvOB5LOMldd60rlqXpYevWd5HLSWuBa0/ZQu/GJ7EXNNbdW8/Dh/6biWiS+x77Lj+9eR8nXxfgwRfPY2DgZfx+YRC9cLiHp165mpH4XrzhDq6/dzXBoQyh0QUoIyOGblRaVDhYsqSBQ4fS3HrrB0qRoWiUSN7D5vzrsCre0pg607yyaTmRgR1y7P4jwGR2lP6R/eRyW40xczoFf/7zcYyObiAc7uHKK5+F/n76zkoQm3geRbGSKVhxagnC4R6s1kmy2TJbhuK1kuwPMT7uMltBoEesbCViNTTEfzx3JYV8nGgUdoQg3NhHJhNk0+ghfrP7N/SOzu7+NSOx0jSNyy67jI0bN9Lb28s999xDb7l4BTjxxBPZtGkTW7du5UMf+hBXXfXa0itz+NuhXNO0b99Vxhctnd7P0qU3EgptpLPzakZH7+WVVz7M6OgbgZL26UhDtnsuHs9x1NUdR2fn1bMSnZ94IuzY0coNNywmHO4hFNqI07n4sLRKMxVz3rxZErip6O09h87OqwmFNrJ06Y2Mjz+IEBogqK9fbTLdXLx4fbHsi8ro6L1s23YW27a9h9HRDfh8bwWgvv70wxLa6+eioWGSu+76f3R1beC2284qztD7LXfddQ3R6AtVx2LvXnjxxVnthrq6E4nFNhvXTCj0COHw41itHnbsOBdV7SSV2s22oSf51e7HZtfoEcbc/as2Zrq+Dxde78nG9w0gEsmTTv8nNtt2hoZk9HKqRrK8D9/5zlvo7T2HeHwrTmeg+MPjORyO9tJK69fLGR3r11fse6oe9LbbzmJk5D/ZHbwSdUgj/IOLGR29l9tuOwsh4Pvf/2e2b/8Aw8N38KMfXUg43MPw8PO4XKVyCDqxSiYvMo7L75dfkMceO9H4zOt9iv4BC7c8/VksOaVYQiVuup9mMkFSqYM4HHsZGGgilxsnkwlW6kbXr8f5whOk43m8fzhI796PEN38C9TNg4R/cLGxrve+bfR+YCuJX93A3Xd3k8kEi9/7t9PffxMAt+z+LFdubiJbcNP1SITPPX4xk7EMlz8S5dQ++Phv+vnmi/fz8vb/wONJGv3589b3ce/Op2lPRIll5/HpZWGiu8foG1xujOPo6C8BBVXtwO1+itFRCz/5yaUlLVMkQjTv5tnY/8NGqSaX/9A2Xt79ZprvewgAgUBT0gyEcgQHv2qcw2TyAfbsOQmr1U1v7zl85ztvgXXr8O6E3n0fw2ZrJJ23kGrcT2/vOdjtSdLpMkpTvFaSd9xLMOisErFK4igWgNYvxpv2rUPbtZVIBHoPLKb37c8wOPEsX3/+Jyxzx2mbZVWuGYnViy++yLJly1iyZAkOh4Nzzz2XBx980LTO6tWrcRetak855RT6+2s7ys7h7xslg8ezGRj4HhaLk5aWj7By5f0EAp8zDCZXrnyA5uYPs3+/l7e97VFD+/RqDD2n2yYWe4mGhtNpbj6PxsY1ZLPDsxKdNzZCQ4MUCvX2nsPY2H8zMvLzWWuVykvN1MLmzZLAleOzn33WGKOurg0EAp+juflcWlrOZ+XKB4rHUzLdDAQ+x4oV95PPT+J0LkGIHELkAAvJ5HYuv/wxrFb3YQntY7GXaG29mKYmKc4Nh+XxZjKfYXBwmTEm1cZiT6VLRE3U1Z1AIvEy9fWnGaagVqub3bs/TVfXBrze15NM7mTr4NOMpmZfDuJIYu7+VR16LccjCVWV11Jv7zns2fMVEgmFk0/+GYsWncGePRvYt+/qqtfd/v3yH8hZponENsbG/pve3nOYN+/MUipoaAjuvFN+Oe+80xS10u9bhw59A7//VPbt+4JcIIBCHqFA74kP0ur8BQDbt8toycBAJ8PDAaPfLtf7cLtL3lJ6KvCtb73JMNqNxUqV3uVnX6G/7wNYs/KmYY1lSY/lcTgipvtpoZBm9+4LaWuTN41Dh9YTj28zj0nxGFWRIiMc1P9Z0LVWY6LlINEVgt4TH6RrwQ9oSB9Dww2P0HUt7DtGkru9ey837jnLm28iHJ4PwMtvOAmAD/8aGpNRyLn5xBawCvjEFjhwMMP9B5qwWrcwOfkkvb3n8O09bkJjORYnZJrN++XFTIrF8phPfJCVbXewcuX9hEKPIESePXvOZv58OW6mVGBGMhFbwWWcQ98BqdF4R1+BFt2Gw5ojnarj1yMKhw59Hb//VOLx/wLg+ef/i7o6ScL4z/+kYQt0rSuQzQyQysOBt/Zw7LG/xG5PldKnZddK8tFnzf0qwhSxGhqCu6X0om+7wqFemcbtevBErNogpzRkWHcsDM7WfF3MgPvuu0988pOfNN7/7Gc/E5dddlnN9S+77DKxfv36qst++MMfipNOOkmcdNJJorOzc6Zdz+FviJdfXiN6ehD796+ddr2urj5x++2vF/v2/ftfrC/PP79UxGJbxOTk8+LFF1fOuP66deWuWaV/l1/++Kvedt26ynW7uoTYvPmwD6cqdu26WPT0IJ56ql489VS9MfbxeK94/vmlh9VWrWOY7rgO57jL8dxznSKR2C2EEOLFF1eZrpn9+9eJ/fvXim//GnHyLQi6EbTOeMs5opi7f5nxas/zq2nTbs8JIYS4/nohPvWp3xvXxmyuzwsukNfO3r1XiUOHvil3dMklQthscgWHQ4hLL63oy0UX/bBqe8cf3zPr78TRRx+s2cfDaeeYY14QmibHYOfOT4sLLlhX4770WOkALrnEWGAlJ7LI4312A3L8/tUij/uSS8Q6uqu2d9ppM/WtIBKKVQgQKSvi1tcjeMcXxCc+8T/GOeK06m1PvWZ6ez9W87hm/e+0dYJ5OwXqpOCTp4iPf/ybM+/bcp148b+bhN2eFjuuXyk0LSPuuWeZML6Wl1wi1lG9X/q1Pjj4E3H//V8Vzc2zux4/cdfs719HVLz+i1/8gk2bNvHFL36x6vJPfepTbNq0iU2bNjF//vwjues5HEHouoPGxjXTappCoR4OHqxn4cIwg4O3vmZPqGpIJvdQKKTweI7D5zuZTGaoojL9VOj6LT0S9tRTfl544WjOOWfmdJq+7RVXyPfxuHw/VY+STMoZdF1dr+qwTAiHexgb+xULF64FCoAwtFiZzADZ7HDFr62ZjmHz5jMYH38YkP0Heb7+8Af5q/MnPznDpNvq7oY//xmOLnqG6reUmXQ4dXVSwD4wcDuJxCsEAlcZ14zbfQzJ5E6aXXYm/zYBq8PC/4X7l359f/vb8v1sz/Ns2tTr6z31lJf7738z9fWjhMM92O27GR3tR1GcDA7ezhVXyCLdL7xQ6oNejWF09Nf09FhYt67A4ODtZLMjUryuRyB0C/dstiJqFQ73cP75n2Hz5tO5++5jAXh4Qx1P/Ubh/tet5pn7FZyKnEH2zDPzi3318/a332d89rWv/ZZVq3ZVaEBDoR6eeMLJHXdczTPPzDf0pE8+Wccfnz2aZx5QOMO7EYAXf6rwDdtaTnrdc2hatGivcg8XX/xz07bPPDOfJ5+s4+yzz5b3Jf0Yi3CSJo2T8AmQbYS2B2Dw3QXCm34Md95JN92ETlD4+XflTejRRzpkP+8ZYtsJi5nXIGc9PnO/1B0JFBJWBQ8JNCEjSE5NRq26lAUoyiYsFg+Dg7fz4Q/cSt87FF75d7lt6ATFaOeZ+xVCb1S54qO/JhT6PevWFXjmmfm8731ycsqePVcisjmE1cbrXicHcM+T5yIGhxBOFwLZzvDbFRI2hZbXXwuWHGTreHObmwsu+DKvvHK+oTF95pn5nPXOfuMYBApXHPdVkq5x8nk74yfsJhR6FFXVpEVFcRy7uRaBQjfyQdDTY6NQEMa1rmlJVNVOoy+PcLro4W0AbPq+gnDJi3nswi4ef1zBsvpa3tsKrhqzpadiRmLV3t5OsKzCZH9/P+3t7RXrPfroo3zta1/joYceQi2X9s/hiONIi07Loef7VTXAwoVfrWmkGQ738Oyzl+F0qhx11PuYN+/9R8RwE6gihj6Tyckn2LbtLOrqjicUetjUj1pi9GXLtgHQXPde5j2epGvBD2bdR31GYU+NVbdtK81ueS3Qx7urawP19asBBcq0WDt2nIeqBojHS1WlZzJNFUIUZ/6ZBWC9vedw8sl3APDTn/6aV145R4qNiyLPjRtisy6CrffB6z2RsbH72bv3cubPPxu7fZ5xzWhalGRyJ+1uD2kxS3HCEcbc/as6Xk39vumQz5dm+La0fIRMppPGRj/bt7+fSORm4A0IkeaYY+42voPlhYt1QfiuXf+K07nUKAA+NvYraduxfn1lfl7TDK2VUezb1kg8vgWrVX6eyMhcXv1mWLbOTk6RPlBdXbogXmH+/AHjs6Gh57DbK93QZZpwKR7PcYZGEqCp6X2oh9J0fc2G+xR5QJYMJAtOnCSZmHiY3t5zaG39JA0Np5u27eragMfTxaJF18kx+cHFphytSoaRlSq968CagIU/h65roffqHOGuDOEToHcdNH9PHqP3wfdKfdm9H+LZDy9gYVEY31XUsYVPAIcGbpKkcBn7iR0HxzodLFnyXqBAV9cGLj06QnIpWIrC7t51pXa6roXt/55l+75/oatrg3GunM5fFa+FqJzi5/USDEoSZcs5Ks6h5gCLgLVPAtYcCCufXDaJxVJHOPwIS5feCEBn59UUxKPGdvpx+x9zYbfkWfHfK9i582M4HDmZCly/3jSOQYo2G3nFZN1hpAJHw1AoGOsVVIztd35wNwVLHb8ccHPtDo6cxurkk09mz549HDhwgGw2y7333st79QJwRWzevJlPf/rTPPTQQzQ3N89uz3N41TjSotNyxGIvceyx/0U2209d3aqaRpqx2EvYbL/gqKMcNDauIZXaeUQMN8EsoA+FNqKqAUOUGYu9xPDwz4CZzUKXLHkWjycPf/4TrhcHabj58Vn1UQhJrN70Jti4sfo6W7aUSs+8FuiGmw0Nq4nFXmLlyvtNWqyurg3YbH7i8ZJ3xEymqbIwqoqqLjCidrr2q6FhNWvXQiJRz549Pdxww2JD5Lnx7hHOPHN2ha/1PoCViYkHsNmamZx8DK/3ZKPf2ewoqdQebMT5xj/dzkL/wtc+YIeJuftXdUQisjzLbLSEs4FO1N761hB2+3yiUUFjo4fm5nNpbz+ORKIBAKdzifEdDAbhDW+Q2wUC0NCQpKPjSjweGYFpaFjNggUXygj188+bSymAfP/cc0Dpe5TPh1m+/G4yGWkE7HzUz8q1EDsGrFt91DkiXHb6t2hoWM1nP/ssK1fezwknvItVq4ZkTUvXu3E4Qqbd6N8dTYuSz0cMjeRll/0Gm60eLTNBw0t5Vm4L8rq2p4vESsUtEsRiL9LVtQGLxY2qBkzbNjSsLs4SbJZjEn+JkpJaEqvQEpWua0E4wJZE6ouuhdjRgtgx8rXYIxX20YclKQqr27D/IMCiZJB1dNOwBa5q6SZ2DNgAFymSlKwWMkeD4+U2Fiw4lkIhi99/Kqvu6CTbBkoOPruim65r5b719pp7oHlTnan4+nHHvYNVq/bK6HokQsrbTCQCl73jFqxZu+kcfuYN3RScMmL25n5wOCQBW770s9hs9YZW7KqrDiBEns4DBf5fyx/kuS4et2O3HYctRcNuD0cf/UPs9owkVs8/bxrHIAH+hV9gS5p1VpqWQlUdZFMaZLMECXCK/Rk0VV5bn33DDSx9YAFeV4AfnfUjwmLhkdNYCSHE7373O3HUUUeJJUuWiOuvv14IIcTatWvFgw8+KIQQ4owzzhDNzc3i+OOPF8cff7w466yzZmzzpJNOmlWucg5mZDIyQK1pf7l9xGJbxB//eMyM6915pxAf+YgQmpYWTz3lE9ns+BHrQyj0uHj66XniiSfs4umn54lQSOqjRkd/LXp6FLF375fFM880GZ9XQ6EgREO9Jh69boGYeD1CuFxCDA3NuO99+4To6BDi5ZeFWLxYtjMVF14oz8NfAwMDPxQ7dnzc9Jkcnwaxdev7KsZhbOwB8fLLa6Zt8/HHhVi0qHgMqirC+IWXiEjun3l8zH1oLGrD/FXPxXPPdYqnnvIb7/8W3/u5+1clLrhAnvvh4SPT3v79sr1LLhFi9+7Lxbe/fa545zvlsp4eId74xqDo6UFMTDxibHPllUJ8+9vydTQqhNstRF/fLWLXrpIGbnDwp2LHjk+UdvS2twmhqlX7kMtNiqeeqhOFQkF0d8v+PP+8EOI97xHijW8Ue/fKa34qHnhAiHe/W77+whcGxMUX31axjqblRE+PRbz88pmmz1955Xzxxz8eK8TYmLiTC8TZKx4RL7+8Rlx6qRBf+tJNIhx+UgghtUiDg3dUtLt79xWir++m0gc//akQH/uYEEL2de9eITQtK5543CoK7y27Lvftkwd46aXil7+UL+8oa/7Gyw+JK5r/S77ZulWIFSuMZcccI8Qr/3qz3KgoEn3/+4X41a+EePrpBuM+3tf3H2L33ScL0d0tN3zySSFOPbVyAIv41a+EeNe7hsWWLW8XYvNmsfvod4slS4To/cEiMfjAp0orvvGNYu+/qeLgwW8YH735zbI7W7Y8JLZt+2BF2+vWCbF2rRDi+98X4lOfKh7WPaKxPizE618vUqlD4umnFwoo3q9/+EPZ4Oc+J445Roht24R44YWjRTzea7S5d+8XxUsv3SpaWuT7i7ueFP/x4YfFs8+2yg927hSTZwbEn/50irHNbL/3s9JYvetd72L37t3s27ePa665BoDrrrvO+OX36KOPMjIywpYtW9iyZQsPPfTQLGndHGaL7m5poKlnKazWmU04Xy3i8S01DSTLodeUs1hU6utPIxR65Ij1oaFhNW73MQiRo739UuOX0fz5H8TtPoZg8JszmoUqCpzg3sPW1HG4+jGlDqbDli1ytt+qVfIH1u7dpWX6ebjjjtI+/lLnQUdd3QkVNQXr60/DYnEzMfEgzc3nmcYhFqtMA5ajuxtOPx0OHpTvlUyaBiZpYRTXjTOPj46GhtW0t18GQEfH5aY+6KlCt3UxjpGs4b+TzQ7Xau4vhrn7VyX0CFNfdX/KV91eMAiaFiUetxlWBT4fxGLSuFE35dTX1VOAXq8sajw8PG5yEK8wCA0GpXPm1ArFlNzVFUUx0ozRaPG/aNRwgp+K8nI06bSKwxGvWCebHQQq3btlFEu2HyDIQNiPxeIullFRjPXLvbnK4XQGzCahfX3GoOju65oWxarUofQFzesVD7DauQwGIeArRmemWN+73ZCazJRWpOSSLw0+5bqFQhpLJFk6STNY6AcCMDDgMcYj6FhKIACas4AtXWbcGY1ijWQopEtF2e3FSj2K0ld1nIxdl53EfL4euyMLmQyFQhabzYbNVgxWBYNw7LGIQ33GdWaz+U1eVrrGSg+EBsedBJY6S9ebqpK3prFaZ28MqmPOef3vHOXi4i98AZqKprfr17920WktTPdgLt+f7tLd13cDTucSgsEbTempctO+2aBcOzQ8/F9Eo8/R1PTPBIM3m9pNpw8CdgYGbqvYnwlbtnD8yG/ZMXIi6ihVBa/VoPtTKYosz/Pww+bjPvtsuO46+fpIiH+nQ1/fDeRyIVKp3Rw69HVjYsHLL7+dXG4Eu72VgYHbDHNRgHD4f0in+2qOvS7M3fOsFJsOsYAT2Mzl3CIZ45veNOMYyf30MDh4u8n0VIc3t4Te596JtfcA9qGU4b9jtXqmaXEOfy1Ip21MOqcj0V5fn0y3xGIuvF6pU5EPRQdWa51p4klfX6WjeV9f2uQgrtfBA2Tesr8fPJ6qD/hyx/a+PtmfSKTYuUjEKAo9FeXlaFIpBw5H9bat1rqKSST5fET6NkUidLonGIg2Y7W6isTKZng66a7rUzG1IDTBoDEouvt6Ph/BZveZT1YwaBxgtXMZHLTS2Vj0MphSXl9sqwAAIABJREFUrNHthmQkVzphlFzyrdZSEWUhMljC8dJJmqHoY2cnDAw4jVRg0LqQQADyTg1rsoxqRCJYhINCpFSJQSdWhcKhquNk7FrvKKBpPhwOSbKFyGGx2EuO9X198OY3M3lwEoulnDSWF5lO4nKpBrHqi9azaEVjqei3qqLZs9hssy9lo2OOWP2do1xPdeONcP758nUt7c+RwHQlT8r7o0esvN6TGRn5OcnkLsOcr9ys73CKB+vb79r1CRoa/olI5EkWL77O1O7ixddjsdhwOpeYPq/Yz/nn09Wwhf3bT8Sia0lmEbUq96das0aOtX7c114rZzN9/vOzOqTXDK/3ZHbu/Ch2ewt2exPbt3+ArVvfw+TkE7S2XoymJQDB8PDP2L79AwSDNxONvoCqds449st+0Q3ANXyNLZzIGjbKu9ILL8w4RuWie128Wq77arjpcbrW5gg395HzYfjvWK3eadudw18H0aic0XqkiFV5e/l8lETCj9croyJ+P8TjDtzuLhOJKI9YgR45EqaIhawVWHzQjY1JMtDSUpNY6dGuYFD2Z2rEylflGTlvnix4HI9DOm1DVSvJQzodxO3uqnDv1rQomhZHRMJ0HOtlKNkKQkasPB4r+XwEIQSZTD+q2lHRblViFdCLHJeIldXRKDuozxAoO8Bq57JvxEGgqSgI8nrltkVBncsFyWjetJFOOmVURx5/oZDBMh6bdcSquVlGJpPJjIxYFTpkxErNY0uWOaJHo1gbW9FiJYd7nVgJcfAwIlY+7PY0pNMIkUVRHCViFQzCW95CsE8YvFCSxlL/C4UUquosRawyzXS+rhUh8rJAt9NJ3p411TmcLeaI1f8C7N4NjxWNq7/6VbjmGjkrLRSafrtXAyEE8fjLVSNW+tRj/bUesWpoWM2KFb+iUEjjdq9k374v4PefRl/fNw67eHBX1wb2778GRbERi/3JEDF2dW0gHH607P19xON/xus9mQMHvlq5n6Eh6O1lecdm9u4vO5YywWst6KlAgLe/XVayh1JK8Fvfkr/6Xo0Z6uGiJAQfYnT0lwihIUQGVe1kbOxeVq16gM7OaxAii6q2FY0RLQwP/3jmsX/+eb7EN/gNZwGwjH2lkzxDZK9cdF/ez1jsJTn2d9xBw2ZoexBSC6HttxYabn78SA3LHF4jIhFYufLIRqyWLJF12eLxDMmkD69XPth9PojHXbjdKw0Skc3K0kmtraU2AgHo73eYUoFWa1kqUCcdNSInej09IeSqK1aURTnicSLhQtWIlaJAR4fcJp22YbdPVqyTyQTxeFZWjVgB5KPDuFrrqbPHmBzykkqBx2Mnn4+Sy41htdYZNf3K4XR21iRWTqckfJoWlVGTjg4ZsdPXW7nSiFhNPZfBCTeB1rw+iDLKF5cpTrcbkjHNtJFOOsvJR0FLYRmPlIiVzydXLH8QlMFigbY2wdCQjKT15VtlxMqRw6aXTdQ0SCaxNLVTSJQeYDabPA+aVptYGeeyeBI1zSuJVTEVaLE4jDEjGIQ3vpFgyEOgo1DcR4k0yu2TOJ1OcjmIDcXJCAdNR88rRklTMhXoyGG1zkWs/iGg63iUIslfvlw+4EH+uvra12DBglLR4yOJdPoAVmsdDkfJp0fvj6V4teivczlokJN9aGhYTX39aiKRJ1AUlfHxX9PS8vFZkyodcqZMB4VCkvb2S6bMOvm98b6p6d00Nr6TUGgjgcDnKvdTzM11LNvJ6GQH8YuulAO5aVOpWnIVjI3JKusLF8om6uuN+xHLl8u///IvpXPz10BDw2rmzXsXk5OPY7E4sNvnk8kcMjRmixdfV/SM2oGiqEB+VsWqu9+3mW9xNWPImXBK0SWmm3UzRvY6O6+qaL+hYTWdnVfBVVdBRk4HH14DC39W9N/5009Ms3Xm8LdDJCKJx5EkVvX18tk/MOAhkZiHxyOfpg4HWK0aVuvxBokYHJT3MGuZ9KajQ2NoyI/D0WZ8ZrGUpQJ10lGjqrOuY5qclO0GAhCZFHJdl4vISLpqxApKOqtk0orDIaNMU9v2eLpkdEqUplLm8xEsFhdafAT8flr9Q4wc8BUjVg40LWKKpE2Fw7GAXC5EoZDBYIRVIlY2m98sBitjjuXESgi5TSjhZMGCsh2VkVG3G1JxzXQBlEesdLJYSEZQLGrJoMxmk51KmItLm8dRYWSkmUI0RDDdTGcn5O1ZrPHimEWj4PViqW9BS5XOod0uiWQ2W32sdE5XngrM5bzY7aliKrAsYpUWkoAuWkSfdwWBRtnf8jQnyFSg1erCbocDfxylwz6CYlFK15yqymjbHLH6x0B3t/xFN9Wssfz1FVf8ZdKB8fhmvF5zGrC7GyYmQPdE/MY3ZLmu448vrRMO95BIbKGl5aMIkcHhaGNo6IeH7Ws1MfEH0ul9dHR8YVpz0nC4h2j0j9ULMxcjJgC5To2j63p5+e4t8Na3zjho5fqqaoWi9b9/SV3VVMiaaU+zcOHaYpg6ZdI1TU4+QS43aoy9Xih7RjPUKyOIOi+iWLZCN+/r5tpZ69EqMDQE99xjeM10XQuL7yz673w5izb2f6PA8d87olH5MD6S4nWfT+pshoZ8pNOt1NWVHsAeTwJNO450ug8hRLlG20Br6yRjY8uwWOzGZxaLqxSx0kVZxlPWjExGCp9Nq4Xy8qnd1ER0PFM1YgUlzpJKWXA6ZWqpHFIjtbjYH/lLSwiBpkVR1QD55Bj4fLQ2jTB8wFskVir5fNSIpFWDolhxOBaQyQxAOIwhCGJKKtBaJFb6CevrkyewmAoMBOQ9a3ISBgag1RPB2lBGCMrSeC4XJJPCuACkQF5+Xi7wLsRDWOoazR2eUcCuMD5+NFpynGCiUaYCrRls0aKvVPFCsTa2UciW2rHbQVUFudwEDseCinYNLl2WCszl6rA7EqaIlapCZjgsyaDbTdCznIBb+pKVC/NBRqwsFjd2O+zbHCVQJwtXy3OcAquVvEfBZjl8+cIcsfo7xVlnwaJFtZevWSNF1Z/97LMVD1C98ng5ZhKR68Lx8hmB5dusWQP//M9y3RtvhKefLqX7db1NeeHhfD6Ky7W8piFnNZPLYPBmtm9/P253F8uWfXtac9Le3nNYseJXeDxddHZeU1pvaEjm8YoOzal2ON62ma/lviiXPfggnHZaTcKwZUsxlFwNQ9LJuCbZKBptMjxsfv1qMTRE+ILj6d3+IboW3E5994MgAFGgvltqlvRizuVjrxfKNo1JtX7dd5+8o+k3ymkMGKfro6ntVatA0wyvmYai/Zbuv6OVGfTN4W+DbFZ+PZYvP7IRK3/x2T801EgqNR+Pp/QQ83iipNMdKIqdfD5crtE20Nw8xPj4YtNnRloGZoxYpdNBnM5O82rjOfnC7ycylqtJrHQBezIJLlfBPBORUjTMFNEppFAUG3b7fPKpcRmxahljuE8Sq7o6F/l8pEj4KgXZOgyd1ZRBUdUpqcBylb0pFSiMsQ/qzbjHzYKyKRGrZFKREauhIaJhDZ9PEjOTeD0xicXfZO7sLATsY2NLyafGCUZ9tLdnKSgalliRqBYvFEtTO1q+NPvSbgeHQ8PhaENRrBXtmsTrBrGyY7dnKGgpRCFjRKzSh4YN1h60LSFglfftqanAQiGF1erG4YB9OzJ0ztMjW6Uoad5nxSpcHC5madA+h78mJibgD3+A7dvls09HuaZnyRJ5fd1yy1s4++z5ht5Flk+4F1Bobj7X+EwXGteCLhx3OpfS2XmVaZsdO+DFF+G3v5W60WRSirh1AqLrbcp1N3Z7M3v2XMKKFSWzy2r7K+/3gQNr8XpPZt68dwJm3Y7ZTqC0n8bGNeRyI6X1vnmfybkz1Q4nZrdwpfgU9H0ZduwoEYbbbqsYh82bS6U2yrFuHbB+PetogfWjVbfVjTaNKZv662rrzgbr1xPLbaPrsffSMPo4fbltrHz8vSAEsdxv6Lz5cZovPxcAvehzQ8Nq6upONJ2Thm/eV71fjz8uf+KuX8+6llUwUtuAcbo+Gu0VCvLiBTrvnbJeWxsNmwdwvP71r24s5nDEoP/ob2uD0VFJsmyv8UkQjco0YEeHRn9/G8lkIx7PgLHc45kkmWzD6ZQkIhhsrIhYNTcfZHT0DabPTHYLwSC87nXy75SHe7lAvJxYRcOafCr7fETDGgunSQW+8ILUiLndovhgbTCWlxMrPaKTz0exWn3YbD60TAj8S2hpnWB4oIVUCrxe54ypQNAtF4IQjJnCeLrdgikVuGmT1CZkMlKgZrUSnRT4/YpBrMJhCDhGzVMgyyJNbpcgmVbkFPOGBiL7xvH7W4ApqcBUBEv9FMPcGqS2fBx37lxI2PICmrBQVxfBJtwoqeLDokiMrC2dFIIpYzsZscrXHCej++5SKjCTUVDVAnmvhUI+jaLY5ZgFx0rESmujs/Ai8KYK8boesXI4YO9+C4FWGVUrv+Y0r4JNmyNW/xDQU0wrVsh/Uz/XsWaNFFQfe+wv2bbtPbS1XcrIyF2sXPkAANu2nUVr6ycYHb13RiFzQ8Nqjj32HrZu/ScmJ59gdPQeY5uPfESuM3++7EMkAnfdVSJWnZ1XGW3oWLDgIxw6dB12e6OxfOr+ZHmH97JgwScYHb2HVat+y+7dF9PYuMa03tR+l7fX2LiGPXs+w5Il36AhfQzcUfzF63Si7eslu+dYTv79d+FUZIivo0MSgDvvhLVrMQsRZL28auj+9BAsvoNuMnCnq3LboSH46U9l2z/4gfz5N81+ZkSx3lVnWoDlN/K4C6XXDQUBrjtZvnZ/RdvlY9aQPgbuXFLqF5Re6xGqO++ke/9+WHCxnCWxfj088cSs+2hqG2ROYX9Zv37845kJ2hz+atBlKna7/E4PDlZGj15tm4qSZMuWJcTjdbjdYWO52z1JPH40ra2SRASDx3PMMeY2Ght3Mzp6JoVCSc9pslsoF69PSUeVC8RNGvfJQiliNVldvA5y/fvu0yNW0pVbh6alyeejOBzNpoiOpknCY7P5yefGwO+jpX2U3VuWF1OBdcRiMhU4nS9gKWJlJlalVGC0RKzuv780DooCPh+RyQI+n8UIaIVCELAOVhIrPWLlyJFSPHIHgQDRvaP4fDqx8hk6uEI6hqVxlbmzs/CyGh3t4JBNJTA/TaEQwSY8pfRGMRVoWbCQAkVdmaIUI1bZmilTt1v+zstFktiLx5XJIIlVvQORTZRSgYMTxgUdTDURSO0uHlul3YLV6pIRqyE3J50hz7kpYuVRsBYOvxzXXCrw7wi6SPzWW+X7WuaT+nq33CLfz5t3OqedluD66z2GaFm/OAYGbp2VkBkgnd6PqgYYGPgebW2XcMstq1EU+P3vzf2pr5ci7+n6CJL0hEK1NU1+/5vRtIyxP6dzIfl8ZFpzy6nw+U4hk+kjkxmUhEAv0loosPacP/G2t6U59VT5+0Fpa0UpaFXF2fqY6jP/Ko5r/fqS8Dqfr0yRlS8XolSrapampBWY2l65wEsnRLNpu7xu1tR2dAV+eTvLlkkfjdn2sVrbU/u1cqUMv87h7wLlfk7leugj0WZbW5yxsYXE427cRW1LoZDH4wkTi7kMEjHVakHiIH5/xlQqymJxUiikpZh8mlTgVKsF02rFiFWZ7rkCJfG6fIiX15STkbA2FMViejhL7ZOvRLb8fpoDEwyOzyOZBK/XXUwF1tZYAahqZykVOIVYyVRgWcSqr89kIorfb0rD9vUVmxF9NVOBLtIk1XrjwCMHQsb1YLWWRayyCSzzyqZtTmmn1jgOD7dyKFpHYEFOjpFSRqz0iJV3PppTMaa22+1gt6en0aKBzyeIRkRZxErqsrQGB4VMspQKHApBIEChAAPROjom5b3HZvNVpAL1iNW+cCOB5dJjr9ziI18HtvwcsfpfjzPPhJtvlq9riaQvvPAGQqEe4zn2wQ/ewRNPOACFgYFb+dKXDrBz5yeKuWo7/f3frWqkWa5z+upX0+zb92Xy+RD19WcwOHg7icRBurrggQfM/akmpp/ax76+G3A42kzEaqrOa2DgViCPxeKhv/+79PffUiy4/OSsTUX7+2/G4zmO0IFfyuiJprHrc7DrM1k+5zifl198h9HXh9/9upri7O5uGVg5933yCyWGhkvHtWWLOcKTy5mNNPXIzVSVO8j93H47bN1a0iO9/HKl/qpcq6TvrxYhKm97OoG53q9aBE1/Xd5OICDTeckZtFDTtT21XytWyBTskSpMN4fXhHI/J2nKeeTabGubZHS0nUTChds9DkiNUF1dklhMKdoL9FUVr6fTfbS3Z039URQLFotKIRuXKf729qoRK911HaZo3GMWI2IVjVmmjVj19WE4ppdrrMo1UvLhXEoF6hErrRAHn4/mwDj9kVYyGairk+vORKwM9/Upg1I1FWiIqEqmndGYgs9nXhzQDtZOBSopkvbiss5Oon2TxqqmVGA+iTK/NENzaju1xnFkpJn+WAOdHdKp3mbxyhwrlCJWFjcFt9W4+Gw2sNuT046T3yeIWBuN8iPpNKiqQt5vQ+SSht1CZngSAgFGR8HrKeAakD8UJWk0pwJ1jVVfaj6BVfXF9cpSgS4hC0gfJuaI1d8Rrr1WZlAuu2z69aYW4X388fdw8OBx3H33Ouz2Fm64YTHJ5C4UxYHFYsdicVY10ixvZ/16J4VCHLCwcOE1dHVt4MYbF9HUFGZKzdpZwes9mWDwRmKxP5HLTVYUCtY1VQ0N7yjePF0MDt4OFA7bVDQe/xPDW2+EQoHwCTC6Wv6beF0e9+ZRY5z29U6JhE2JrGzcCGtiRR1aecTl/PMrvVvS6ZKRZnmkrBqEkB4Nuh7p/PNLuiQd5Vqlj3ykpldMBaaLWk2pJj+rdiwWWLwY9u2bfv2Z2i7vl88nfUL0Gjpz+JviLxmxamkZZ2RkAbGYitMpnbXz+Sh1dRkiEZn2kqnAyvRjJhOs2h+LxU1hcL/MW9rtNSNWOvkxRawSVvnC5yOSsNYkVnpqNBIBj8cyJWJVioaVR3T0SJLV6iNPHPx+5rWNMpaZj9MpsNv95HIhstkRVLW95thNJ17XU4FWq08eh6LI6G+RgOW8jeTyCm73FN6V2V1bvC4SJHU38UCAyEDcWLWcOBa0NJaWKURnhohVQwMUChZ2hBcTWGiRY2T1VUasrG40J8bJttvBZktUdV03du3RiHhKRC+TkeQz77NSyJUiVplR6b1lDGdxH+WkUQhRjFi5sNsFGjYCJ0k9WbnFR94tsObsHC7miNXfCfQf/jfdJH1fpjOf1PVJr7zyIS644Do++tEbuesuWadvx45i2kuxsmrVb1m58jfk8yGczqUVRpp6O5s3n1fcxsnKlQ8Ul8t1vvKVB1CU6v2ZqY8rVmxAiDy7dv2rSagOUoButzezePF1rFjxAPn8OELkGPv/7J13eFRV+se/d2rqTIaEFMiEDhISiqCIDQHr6ioqoq66yLo/FXQXURddV01YbCsWdC2oWFbXFRULCogFAiE0KaGEYIBAyEB6JplJm3rf3x9n7p07LQUj9XyeJ08m9557znvOuXPum/d973tqv+hyUtEhQ96HrWcFDt7uQnEOkPUE+6m+TESr5xCKi6difHIB9h8KihdQBGe73cCqn0Rcsf5J5CDXb3HxJRqNyPvvA/n57StWALBnjz8Ga88ef/yV0uIlisCiRex8Z2kvwFyxm3yX6hk4kGV/bY+O6g6Wa9gw7g48SVDumdddipVUZ2ysFWo1QRQFaDTMFej12mAwuGC3w5dnqgatrf7tuSScTgv69NGFyKNWx8B7tDQwA3gEV6AosnQD6ek+40qblikDRiPsbdqIrkDAH7ak12v9byICAekSlK/s+4PXjfAIrextN3UzUnQ1iNaLsutJq00KSCERTIBi1Z4rUBDY+Q0b5HL22DQYot0QBP9LgxYLYG7dF9liRS1ok3ZAMJthq3aEugK9XhBcUKUEZYvvIHhdEIC0NDu21Y6GuR9LkKrWGEMUK5UqGqKWghSrpvYtVjFu2GP88aTMFaiC16gBuVrlGCtHXbOsWJn7aeSM9QFKo+iAIOggCCroVF4YYYOhd7xvDPwWK0+UFxoXV6xOOaTYHp3P2vj733cu+aTJNAGxscMAiPj3v5/HmjUs38j06bsBAJdc4kKPHhPw6qsTkZp6J5qaNqNXr5kBCktuLtCjxwRMmsRcNuPH29GjB4ur6uFLX3LlldMjytNRHicWRH0F6uq+QFravQFtJyffAlFsQXz8GPToMRGpqX8CAJjND3U5qWhy8hTo9L1RfgfQy3kFTIUE4zYnhBgTrJlN6NVrBh776EIUjp/NLEErVwIXXMA++5KFbtgADNSUIcVZzlyFksVFaQ3S6YCZM4EZM/zRtV4vy4/Vpw9THJS+0hkzAl+3ClZElG1IipmyjNResA+2uZlF2LpcAX0IobCQlYmOZtcE1xP8I9UzaFDHcVaFhUwRNJmYcthefQCPszqJUMYadafFymBgykZqqhUGg0eOZ2EWK69ssbJYvEhPD1znpADxPn2iw1isoiFWHg7NAK5AUn5qfC/DRUWxZOMOtxruOBOLRXLoI1qspLGIiQHU6uggV6BSsTIo+uUPXveqnYDBwBIbx9YiRueBSqWDShXVrrIAAFptEkSxDd66I0wj9BGYx0oxYYWF8ljY9MkwRLE1Iz2dedYcDkJi2xG2/Y+EQiGK9jShVRUr12evd4VarCorIUarodIp6pDqaccVCAC90pqxp34EzIPYvoEaXUJo8LoqCqLaC7KU+8YAUKvt7StWUS7YolLkvyXFyhMngDxMUdLrRDhtbUDv3j49VZAz1gfEj/lSLQCAjpww6/37FkoxVqLoBFSAytlJ74ECrlidYKQklNLzu7PJJ1nSyI145JFDKCjoCauVubvWrWNZPGfPfhRWax5mzcpDXd1XiIsbhYqK1wJyQuXmAl9/vR2pqYcAAK+/fg2s1jyUlPj/m/w1yTAbGvLQ1LQJGk0ijh59NaBtq/U7mEyXQxDUaGjIQ13dl2E38+1sO15vM9QtwNG0n9HQkIcDB2ZBFFvkOvv1K8COHT4P2/jxLOapwf/W0nefN+Oqhk/8lbpcLI7Kl2g04JhkXVIec7vZ3lsSkhWqPUuWso1w5SLFUMXGMkVu796OB6e4mJWN7cLmx52xWAHA4cPsCZaS0nFZrlidNHS3K5BIqVjZkJZmR3y8GBDkbTRKilU6jhzRwWwOfFhJAeIZGaqQmC+VKgbe6vIOLVZMafMXEwTAoHPArksCxRtgd0V1aLFiilVMiCtQeuCHugJ9wetaJ2A0wuttgznBjhi101fe0G6qBSanAL06DY5+seyfIB/+GCu7f786s5mtFQrFyqhjr2dHR/uy3/cSIcTHBWquSlegx45Wwa9Y2RooNMbKYoEYpYFKpQ8UtgNXIAD0SmuBh7Qw99eyMdKZ/DFWvptPEFRQkRZiRZlvnJzQ6Vqh1SZGrNega4Nd5zdzOhxAdLQanjgBoqcNKpUWUd5WOGMTAZ3Ofy/4bnK1Ohai6IAouuVUCwCgE9tgNvi3MZLSLXg8dqidGgjOTlr9FXDF6gQRnCBT+ue+pOSegHNSsk9l4LfF8hJ2774GKpUeQ4Ys8qUtmAwAGDaMxQh99NE/sWH9nXjwL+uQmboQiYlXg0jAnt03oGHaCKCqCg88sBEPP6zBzJlPAQDeeed/KCq6Gb/7XSseeeTX9U+ZBysp6VoIgh67d18Di+UloLISVT/OAbW1wLInF7u3XIrM1IVhN/PtbDvJrvMRe1BAUtyV2L17Mioq3kJ6+myo1XHIzPwMNTXXIybGwcJ8oqKAc85hViufK+79N1pxFS0PrNzlCrUyhTvGIlUDF7LOxjc5nb5dQyMQKYZq1CgW5C4RKSGpcuPDztIZi1VX687KYjd5SUnXZOFERLlOzJ7NEgUr14lISYFDgtfLvMjtE6jAlxc9ztaJnTtR/lh/NJR+gZLCO1AyPw2oqvKvS6VLsG9OJrRaQotlCeq/exK9kxvQ1qaR3S5erw1GIyE/vw52+0bU1Q5G3db9wM6dKJmfhpLCO+CsKIR+rxXmmHocOmTH7Nnr5XtaLWpRqfkOj3zbG6iqQu57GYDdjpKSe3D//d8ClZV4/fkrEdUUheLiIths9XI/DBr2MG7R90CUytVuvq4MUxNc1iaonEBt7ddycl3H3rWIao5BQ+kS2JY+DU9TNVBZCc//3oG6VQWN2gCvzgPEx0MUW5FhaoK1sQ0NpV9AozHKsV/h5kOaQ73DAKfRAVRVyeX0ehZ2KbkCc3Ph30PM5+Kwa3rAoPUrgWYz4HGJCDHNKV2BbhtaybdNTVoa7K0arHt+A7BzJ9SXT4bHYwft3AFRcEOos0WsB0DAuiPdM+Zodh/Fub9Gc/NuNLn3Aq2trF+Dt8k3n0oVhXJzARqmjYBQtx9HDg2EUF3tH6egNc2obYNN61esnE5gy5ZB8MbCb7GyVeOblolMnnJg82YAiYko//oWNB78EiqVDvX1K2TFubz8eQieahwR1XI7kmLt8diYG1BanysrO71+ccXqBBEcgL59exuuv/5t1NR8CkHQyMHmNTWLUV39MYqKJiM+/hw56Dsx8Tr06HEFVCotTKYJSE6+Bffd9y1MpgnIyQGmTNHhs1fm4YOPn4TppdVISJgIQRCgswpocu9Gw8J78cor42AwqDFlioAnnwSiogx4882dKC2NwV/+8us2GVYm8UxOvh1ebyPi4kbh0KEnUf7ZDbBn2BG7sQKHKp5Gv0WivEFvwGa+XWgnedEhtPYh1NQtgU6XCL2+D6qq3kV8/DlynUOHHvV7p1wuZvGZNw9H57yCGkrGWGwOrFwUQ4PIRTG8wiRlZZfobHxTR0HqkWKoRo4MdLUpg9+VSHv0dIXOWqy6UvfQoazO5uaOy3I6hXINWbDgAhQVXR+wTkR6CURpsUpOBuyNIuaWTw+4d+I/343i63ehIXdw88rfAAAgAElEQVQy4r8vQ1HpH1Bd9wlqhlbBsvhG/7pU+geI3zfCoG5E8f47oLE0oHfbHlRXaxUWKzsMBgH79yehuHgq6spTsbtpMBpyJ6NmaBVqaj+D9cdnEHXAhvjVj+Dw4VYsWHCBfE+ryqoQtaMGzx94CA0L78XcVxLQYK5HTc1ivP7672F962689+kTaH3vn9i+fTFKS/1WD6OmGTZ1D9hUJhjV7d975i1fwuaNh/rnXdDr09jYLrwXzthWtP33BRTvvwNxW+vg3bsFmDcPnsaj0HyXD41bC0+cAGi18HpbYW76BXVtKSg+cDuIBOj15ojzIc2hUHYEzngHGhbeK5fT64Ft2wCPpwlqdTzmzgVLEAoAL7/M5lLdI6BfGRnAIYs2NK+E0mLlakQb+VIIqNWwqU1Y0XA+cNttUOVvgMojQPzkA4hqEaqXXotYD4CAdUe6Z3oe/QYAcKjyZtTVfYmYuKFoGNzC+lWqlW8+tToGMdvrUXz9LrgKP8dBS1ZA/4PXNIOqGXaNMmkrUFDQF55YQPQ4WIzVzi340TsJmDcPFgvw5ZcADh1C/Po6FB+4HYIQhZKSP6Gi4i24XFUQBA1ccWXYXX+23I5ksfJ67eyNQEmxmjev0+sXV6xOENLDfvfua7B9+6Oorvbi7bcHISvrK5SV5UAQolFa+hDUaiNE0QlRbEVV1QcoLp6K7OxlEAQKSKQ5ZMhbeO213wNgbrt/3leNFT/5zr//PkzOoRiW9jZa4xvQ0pewZQhTZB5++E0kJV2FuXOBBQuATz5heUv0+l+3F55yk94ePSZi8OC3YLdvgEYw4uDwTdDYgKPpW5D9qBfmzxHg8pI38+1sO46zYPpsH4blABDdcDoq4fU2hQTqn3/+AKaLVFYCW3yK28KF+PZj9h+YOlrPzk2axBLxsfTJQF1d+BiiigoWHAAwV6DSWlRY2HFMk9KVFx3N2u4oVkli1Cj/8cpKlitCGRCvlKOrFiuzmfW5o5QLXam7sZGnW+hmpDVkw4a7AQBebwtEsRU1NZ+EvCyiRBm8rqquRG/R5wtUvExhevY7ZM4F9txZhv33E7yCCyR4oW4GSkdsgFqIZ+uSyo3SC+OhN9Yg8x9OaJoBc+1mnzxSkLcNCQlsm5J/zSvEirU3AQCKp5WxF03+7sbRvjvQlgpYL/oAdrsv2/d77wGiCPXBI3hj+f0AgOt/YNmKbxA/wPz5TPm/4YdpAIAbv5+G75YHrhtGoQl2wQi72gSD0BR5MCsrkbHuYzYm2/dA54pHZuqb2HP2N/DqgX1Z3yHzH04YdgOe6kPAW2/BGwNofloPtcUKTzx7lIpiG/qUbwQAZOaIcDoOwW5fH3E+TKYJyEx9E7be9ai6DCgexbaqMpkmyF7B3NzPceutvnVm/fqAubKrEmBU9Et+qbAdi1W0sxGtol7ut83ji6PyvVSjsXngKf4Zog5QffhJ4HqidMNKe7L6EgSbnlqGzLmA9hK2rnlVLhB54HQdQfGTQOag/8K0078XokqIRvweJzLnAk1ZzMoo999xlr9uX1+NqibYkCCLIiWo9kQTyOuA0OxEdPkvAIApCy/F7l2+9Wb3bpgK2Xx4vU0QBB2OHHkJGo0J5WVPo8cBZ8CYqtUsxsrjsUHt0bGGpATQnYVOEKNHjz5RTZ801NevpLw80MsvX0xnn32YiIiam4to7doYyssDbdp0FuXlgXbvvpF27LiM8vJApaV/J1H00Lp1PaitzRK23pyc8E/ynOwvaMb4nLDnxo+PcE1O9/V3797prF8fgPLyQAenKxrS6Yhmzjy2iv/0J7meA3erWN0Hnwgp9sUXRNdcQ0QzZhDpdJSD8GORc9l6onvuIfrhB6Lzzovcrq+eY5Z/xgwirfbYrq+pITIaiUSR6Nprw4+jKLIyNTVdk4uI6KyziHbtar+M2Ux04EDn6psxg0ijodEnbsnpVk6G9SvS93zatJyw97/E735H9O237awTY5YRCQIRQHv/xr6ru3NBu3MQ8P3d/WF/2vom6I03zqHspJ8jfp86+slBLm15CzRt2rFd397PQP1h+ub5vbTxs3I6V1/YpXHMGbOMSh4U/GuVIJDtLNCWhazAjudBdedryHnnZCr4Rk1PPuk9pvmgGTNo57O+NfHPKsoZs6zjMVP9k2jmTHpt+haaMWBl5D7k+NqorCRKTiYiosM3/43STU0Rr7lrcg41Z4DW/AjyxmgD16XiYqIhQ2S5Sa1mFwkC5SA3cv9n6ImsVqL+/Yn27ycioi1fJtGjiXMj34NS3b417bXfLad7z94cUe7OjNkv7w6Vn62R7rcHH9xOe/feSbW1X9OuD81E77wj97Wz69cJW+VOhoXpN6Oigujii9nNTESHD/+LrNbVdHj3P8j6x+FEO3ZQ/Z3ZlL/WQGvWaOi++2bT5MmLqL5+FW3ZMobWro2in38eRXl5AhUX30H5+QZasyaK1q9Pp7VrY8li+Tf9/HM2q/PwvwLb3LGDaOxYIkEgJ7QEEK3E5ZSDHLKeLdDaFaApv1tARkMtAUTb140OrIfYzdXdY2E9sIQK8ntQ8T9UlLcKVPwoqOArkHWk4o4WBKKdO7tev085sY5kdR78Pw0V5Pcgq3V1QNHSUqLeaR7KUc8jAigHOfRPPE5TsZj1GSCKjiZas4aod2/28/DDkduNigr8RkZHy3PeKbl/zfVERKmpRCNGyA/BkHo2bmSLUlfqlLjsMqLMTHat8t6S7uuiIrbwHT3apb5yxap7sVpX05w59xFAtHq1idaujaKtW8dSQUFSyP0vccEFRPn5JM/LbfjIf/9HRclzZR0Jyl/GFKn8b9lP8aNg399/qCj/W9DaFaAFf7+URg//kawjQTufBdWeBwKI1q6JIbfbTiUlM8li+TcBRNZztbR2BTsvff+tI0FrfgAVPc6+v+fGrffLA1Dh7CjSCQ5Wp3TtUoGsmxYSQJS/TFHfWF3A+nWr4Vv66LkjtHJxA12mDT8eyvsTICqfAtr/VzVZz9VS/regjf/1r1UtZtCmj5hcW18HNWaCvHE6WvOjQG5LCeUvh1yPdSSo4GvQwV2zI89HRUVoO2P931mAaNOmIXT37c0BYyJ9z5++qZAe7fdJQJUAEd1yS2A7ra1Eej0REdX+fjolxjvkfieiNqDurW+wfuWtAonB69LRo2zdCbd+KdZggOR75uCu2VSwVEXWfZ8SJSayf/QqKmjbawI1DvPN/0rFHJ6rDbs2fjThXfrDqD1yl0aNYqe2LU6ifZ9fTJapGnnspXtZ2S9pPoq3TWHP1m03UsHX7Lhy/a8uWUhFRVOpsvI/VPzBYKKnn+7y+sVdgb8FQb5h2Y/+Yx6Kr98Fy6IrUHTzbng9zCxZWjoKQ4bsQ1HR79HcvA2ACg7HQQwY8ALq6paCyAtBYMnWiAgHD/4NGk1ioM9emXxy82aACDqw5FgP4iXMRS6KnyD0ew9YsmIWbrqOpXdX7filSwk5j2UsGprXofjA7cjYehasY0QMeBOwjgUyPgaKc4AGKUyHiCXS7GL98HrRMJLVlTkX6PcfFTJXXRQSBN+vH9Bc78Rc7+MAgLnIxSuYhX9BEanv9QKffsrM3UePAocORW432LXVle1rfu31APPX7tzJxi1cPTk5LEbrWLbUqa6WY9DCJjb9+99ZO08/3XFdXUlUyuk0UtxOU9OlAID6+l4ABAiCrt2XQOTgdd93JwOK1/B8L2dI36eUH4HYMnaK1EDdBcCAN4G680SQGoAINDsNSDtsR3EO4OwJaHweZE2rAK/X7ktLwGJ+iv/uZq5/sO9q0Tz2o6sD+vyPHYsfGfhaYE19OpLj2YbOpm3s2FkLYlDU+BcAQPIqf33FjwbGNRo8DbB7YmD3xsLgaQj9rgAh96faCbSmelH8dzfSVgAJO3x15wDN/QCPL+7bG8P6qnKIgEjwLJgHlaL54hwg82kN+i10RpyPhoX3ovjvbgx8HRC8/j40LLxXLqPRGJGxb1Wo3F4v7DsOsn4FE+wKjIpifXQ6EdNah1aXBpg3D61ePZoRmFJB0wK4TYDKDQi+duQ1RHIphvlOK9dgJQlfHETmW6korrwXDX0b2M03j42VLZNdI91jmXPZPdKQGfRCj9cL4/6tsHn8bzdLb7N69B6IZfshuIPmVhHjKsmWsVgFa+0yDBjwAqw1y5GxWIXinMB2VJ8t9bsCxWhg2bIur19csepulMkefT5byY9+eMAGxO8BSq+vhqgBVA5Cdu8PYbFMRr9++RBFBwANUlJuR1bWVzCbH0Ry8i1ISbkN2dnLkJx8KwSBIIoONDVt8vvslb7uoOSSTyIXqWA+cno0GxuWTAUA3DTlZUyblgvboBbZpy/xa4LWw41F02BCZo4IOlyKzLmAeQn7ApGG/W5SbsZaXBx5i5ZwbNwIiCKazmJ1mXYAcLlgWno4JAheEICRWpbscxdYstB78Bb64jBLCgp2LfLz/a8Hr1gRXp5wwentJevs7usrK5niFw6XC1i7FljN4uja3fYmUt1797KH0KJFoYlNFy3ybyDZmbq7kqiU02mkFzeqqliwdmzsh+jffz4cjkPtvgQiB69v3Ai43TDDgrPh01h8L2dI3yfBA4halnA35ScgOY99f5Pz2N/D5gI2wYgkmw2ZcwFXAnsw5yAXGrsHHo+NBQFrjHjgvBeRORfo8TPwf7/LhWkHqyc5D/DEA/oa9v0dWmLBBck/yfJWN5iR0sOCOSm5gABMm5aLqKNeJG+Oxn3n5ULlAR4YyurLnAs8cN6L8rVGdy1s7hjYWrUwCjZ/YI4Sxf2Zg1yonIArkdWldgBRPrky5wKtZrZ/HAB4YgF1MwCPB5pWAa79m6HyVf/AsFy2Hm3xABs2RJyPpuYtyJwL9MxnSqmkxDU1/QwAmDOnFBqNAeaqLcjGrkC5XS7YapwwumoDDudMKggNXvdt2Ay7HVFNtXC4VBA3bMIRdzJ646h//QOgbmXzKLj97cjrUkwMC+besCHkO61cgx8Ylisnam5q+hkmSyIyNU+h6SyB/UO4cSPUrYSW/uwabzTwd6N/DpsGhypJhsbDsLtZ4FlbG9DUBDz2WCO8Wg+oxQaVwyvPIQBAFOXPkmwEEZmLesNsfhCZ7/Zmf89l8krtqHbv8wevUwzbMaKr61en7Fq/ASeLKb3b8cWSEMBcVD7/dMs919Ca75kffe0Kvz/dcc9fKSqKaMeOu30xVI+3W/3+/X/zlXvMf/COO0IdxTpdp3z1fx2Ve+yxTZ0ZC5UqwE9OkycTffhhaLljjTUqLCQaMKDDYh355QNiyX6NPMeLcDI+8wzRX/7Czt9zT8C90KU+KOvu6KeLdZ8u3/uTqR/nnruNjEYXffIJkcNxhNavT223fEICC3chIqIPP6RvY2+mK5N+9hfIzycaN46IiHbvvoGqqz9jx5uamFtIFNnfHg+RTkd/+ctjdP/9LUQffkgbvomh1taDRES0detYamzcSNu3X0xWax67ZudOartgMK1f30tuzu220dq1sSTqtEQOB73yiu+WSkggqq2l+fO/oOuuYyECW7aMpHXrEqj+7tFE333HZHwnjWqujGGxMEo8HnpaeIwefUSkF18keiD6TaKqqsgDM348UUICVX/zEO3efQMRERW/M4AqPrtTLiKKIq1ZoyHvgvmU/4OW3G4b0Tvv0KalBqqp+Yo2bx7qr2vVqnbnQcblItJqKT/fQC5XfcCp6urPaPfuG2n1auaFD+YPk5vpv6b7Aw8+9hjRU0+FFu7fn8VEDh1KUXovtbQQ/fQTE1XJ3r3TqazsKSooSA4vr8lEVFfHPvfuTXT4cMd9HDuW6Kuv5DgvIqKiopupquoTEkWR1q6NIfeAtMC6MjPZPbB2LRERFZ53Lw3vZyMion37WHdcrgbK/0FHe744myot77F1y+MJbT8zM3zM6KZNREHf5cbG9bRt2zg6cOBvdHjRJKInn2T3fHR0p7/33GLVnQQnhXS72d87d+KXrGUQvEDK94CoZ78rrhaxcf0m9MuwobmZJcisrFwYMYdTQ0Meqqvf95V7W86zgv/9L7Swy4XcoimgqGgQM+iCIICimMZf8JWAg9MFTH0yFw3bFnXNotHZsZCsaD558P77wE8/AVdcEVhOuZlvRxsLB7NyJXDVVR0WkxKxSp4A5W8ixRuQv1ae40EkGc85h214KI29RFf6EFx3R5yM43OGUVVlwtixDlgsgE6XCrfbClEM/x82EftPP963owksFphHJsLS5H/bSpllM2AD4bg4Zm2wWtnf1dWAyQSnMx0xMWzjW6/GKSez1GiM8HptAa5AWCzQGfrC7a6FKLrlNqKizBDSegFHj7KtWQ55mGUkMRFVVUlITWVvjTkcFhgM4+BMgfyWm0Nvgz5tRGimU7sdBr0LNrvArHRRrvaTW1oswLhxUNfY5S1tnGor9KYhchFBEKBWG+A2J8CrdkOtjgPsdqjFKLhcVXLSyS5lXq2oAJKT/VvbKJDGLlJ1tjYdDG3VQQdtoRYrwJ8qwWZDTDShrc2/YbUStdoAl6sGKlVUeHmlzPceD1BTA/TqFb6ckpgYtkYo5GL5otrg8TRAELTQ9Ozj7yQRE27cOPmYwVEDWxvL3yXJrdHEw6txQyQnVA1NTBa1OrT9SAMYtI0QEJQgVBXHrJz19cyd2km4YtVFlCkIpM/ysUcfRa6DxeuU3+KLHXK5YPnXaNiHsniF2osREGP03YQsOF1lHSbIlBNupr6JfneuRWbqQhQXTUHDLWcxH3g4wiSzlHzXmXOBfu8rfPq3D/PvWzd+PIvdCZdwUiJSQkrp3OjR4V1dTmegvzpc/I3bDZx9dudkeO45YOzY8OePhe6IffqtiSTjl1+yBS87O1Qx6mwfjiUe6mQbnzMIUSRUV6fg/PNZpmlBUEOnS4XTGd5N3NzMng9yokyLBeaL+8HiTPYXClKsAjKHm82QU6OXs2zobW1piImxgtLT4dF75e1XNBpDgCtQqluV3gc6XYoso8NRzpQ3X91mM1B+0ANp35uqKhNSU+t87plmxMWNgjNRlJUkp6EN+iEXhT44bTYYY92SLgFjjDuyYiVtMjhuHFRVDfKWNs6YZuhThwcU1WiMcKZpoXaqIQgqwGaDhmLgcrFX9eVx6qxi5RvvqCi2QbUSaezS05l4wV9NW4sGRkd14DNAmahMiZQqwWZDdIyA1tawegU0GiPc7trQrOvB9fgUwnazrkpER7N1XCEX2zqm1X+PKe8taZ6ysuRxNLZUwN7K2pLkFgQ11F4tPKoWCPX2UC1Roj3FKugaKd2C12uDRohjz6xwA9UOXLHqInPnhn6Wjy1bhrk+n278LyxYzjrCi/IbvUj5Aai+DOj3XmCM0ZH8UThYNqLDBJlyws0XVwMFBTC9tBqZP12Apl7t7NukSGYp+5oHE+akMF824I8daOppjRyoHI5ICSmlc1JOJiVeL3vgK68JF3/j8bDrO5Lh8cfZFzA/P/IYhEGKIQsbS/ZrY5+OB5Fk3LiRZWaurw+9prN9OJZ4qJNtfM4gqqqs0GpdGDZMLz+ToqIy4HSWhy2vzLoOALBYYDp3ELxQw1Zuk48hIwOi6ITbXQ+dzr/xrbzTr6JcW1tPREdXw9vLBJULUBGzkLPtX+yBe935lDG9PkO2zjCrWIb88DObAUuFSn7gVVYakZpa5SuXjqioDDgS3IDdDm9rIzzRBN3wixGyF47dDkOsCLvd1+84MfI+dzU1zIw3aBDUlfUQxVaQKMKZ4EZUxpiAomq1Ac4kLzQtJLejEeLgclX6LVYZGaHyRMI3jmxMAq9hY2dEVBTbrqY6yDhltwswxHiYGVLR74iKVUMD0NaGmNj2FSuXq7p9xcpul+eyU8TEsDU9yGLl9bb6Fevge8scqGwZWiphb1GDKFButTcKbk0LVLWNkeWJNB8RLFZy5nWVgStWvzW7fLGDkyezH+kzAEy+0oHJDT73S3Q0TN9VIjPrM+yZx96usJ4PZA9eAvPnzPdkKiRkPLQF+3b6rC0dJMiUEmHKgfFvvgnTU8uRsRjtJ5f0/eRSLkCEjE8I/6rK9Z87ehSmXSpWz5tvAm+9FRioHM7NU1nJApjDnZdcSQBzG0hyrVnjL6O8JjiR5sGD/q1hOpLho4/Y5//+t0uuqBBLo5JIiT0jbXR8Iogk44oVbPwAZpYIvic604fOJDY92cfnDOLgwVqkptYEPJP0+lDLh0SIMcNigdAnA2ZdNSzbauRjMJvhdB6FTpcGQVC4VpT/+fvKtbYmIiqqAl61A5pWlfxdlDYsljYrVl6jdHsFWCwsFvTsCbS0qdCaNgAAUFFhQHJyBRwOVk6vz4Azvg2w2eAs3wa9TQOhb//wFisD+S1WBjGyxUp6cGZkQGVh1jF3dQlULgFqQ3JAUY3GCGdUEzRNxKKobTao1fE+i9UxuALDjImE0o0arkrWLwrsV3uuwCNsc+aYdixWarUBbncHrkCbrWvKhuQKDLBYxcgWK9liGaxYKW5srb0eOh1C5NaI0XBrWiFU10eWpwuuQEnh83jsUGsMzBXYFSUSXLHqFLm57Fk/YgT7e+lS9iN9BoCl30dhKV0HABDaWiGkpeLl23QgAXCmAr2WqWSrlFznOWOwFecEXNNutvN58wJdPJJF6Ne4Yp56KtCUG2xl8nhC6541yy9HcNtKGYn85z791J+lvD15588PNS2Hk8H3qniH9Z1JzJvnV0pFkY/JGUBZmQ1pabaA50a4B7REiDHD98AwxzXCsrsx4BhTeIJcK2EVKyOioiz+TNW+88zyUQWVSguVSue/JiMDUVF+GR0OS4DFQhCA9HgbLPFsU/OjR2ORknJUfgDr9WY4Y5qYYlW5E/qWGL9cyvXLbofRQLLFymgUIlusFBYSdXk1RLENziPbobeHWm00GiOcriOsr0eOMFegJuHYY6x8492eKzBSlfJ8KvvVnsXKYgGMRsTEMJ0wjCfMN2+1EIQOXIHhLo5EGMWKKTBt/vssnGIlHfN6gdZWuWmlnqOhGLh1bVB1k2IlKXxerw0atZFbrDqDcuNS6XNDQx527fodGhry5M1FAf+mmbNm5eHKK0swejSrIyAIuoLtEUcqNX68ii0Eoi9I/OarbgBpgIRtLFBdGSTutTVhqLAX34BtQ0MQQIIKuTfsCh/ntGMHsHChX5lQCnGsAcSSdUly/SjrlHC7WSD0uHFMnvPOA5Ys8Z9Xth0so3Ru587OBYRHCpyWXgKQyitTWvya/p9OBM8lH5MzgsOHHejduxUpKeyB43C0r1gFGDOam+UAcXNSKyz7fClGfA8RWeFREubh19wcC52uDB6PHRoxWj6vVhvgcFj8bkDFNUqrWjiLRYa+Bhb9QNjtgNcrIDa2RnYZRkWZ4dDZQHYbnNZfoPf0CA2s93XWYFLLFitDgqp9i1VGBpCWBlWlFaK3Fc6aPYhyhFp+pH5pKIZdZ7dDrZMUq2OPsYpksZLGL7hKIqZDxSeoO2+xslgAgwHR0UBLS3hDjEZjaD/GSgpe74qyIcVYKeSSYqzk+yz43spQKFtNTUBcHAwGIaRpNWJAahFCVV3XFaswA6BSRUEUnfB4GqHWKhSrziqROAMVK+XGpfHx58gbl5pMl6Ko6HpUV/8XNTWfwmJ5iSX1FDTYvn0aVq4cggULwlQoWQVEEWdXsD2SNp01FFUXOVA7XoTgBPr8NzTx21ML4tEbFbgGy/x1SQkyw8U53X57+OR2EsditelsoLLTCWzaFJB8NGzb4WT0etl1nQkIb08eZXmltaq9+s4kToWge063U15OMJtFqFTshagjRxBgDQomwBVoscgB4uY0LyxlzCqA5magZ8/ANwIlwgSvNzVFQacr9Qf7KixWTqfF7waUAsTT031KBKvH6QwMXgcAs2BBOTJgsQC9e7tA5A9y1miMEKCCx1EHR/NBRKlS/bIpH542G4yJGr/FKlHTsStQo4HKmAyvpwUO237oqWdIUblfap+iYrNBo08MdAUmJLDvX3tvIQa1HU6xas9i1dLCdEmtKS5UseqExUraNz64qFptBCBGdgUqLVa/0hXo9Qa5AoPuLSQlsXuyshIwGsMayzRgSUNVFbWRlZ/0dPblUK6RLhfbEzUtLaCoIAhQqaLgctVAo+vBLVadQQoOLy6eitraz0HkASCitXUviDwQBBWMxgtQWvowEhIuRXn5s1i1ag0A4MILAwOecx5sAt5/Xw4M77ETGBG9FR+fdxUOzAAEF5D9BAsQNykSv0n/VL1ED0AAApKzYc+e8AkZgxJ/hnAsAcSdDVSWlKVIMkgJKYuLw58rLe1cQHh78ijL+xIbdljfmcSpEHTP6XaOHNHCbGYudum5pNdnwOHoRPC64mGR0U+N8kote/ikpwMqlV/hURImeL2pSQut9iDcbivUugT54SgpILLFSgoQj472BdhbQERwOo8ExFgBgNlZCos7xaf7uQODnAHohWQ4UQunuwL66D4IGABFZw1JOr/FKkkX2RWosFyok80QqRXOtsPQ69JDimo0BtYvncmvWEUngcjldwUKQuBYtYccvJ4Op/MoiPwPf2V8WnD8tTyXkgUJ8JuxwlmsJMXKYEBMDLBvn/RmXXD/fJskd/RWYFcVK5crTLqFVv99lpzMLFOSj1ISLj0dKCoCDAa5C0R+HU2jYrlDhCPVkeWJiWH3Xq0imWpFBZCaGvatRpUqBkQuaPQJzAzMFauOMZkmICFhIioq3oRaHQ+VKg6VlYvkz1brCghCFObPH4ILL6zFs8/2B8DmeO5cRfBz2yOA241czAV0OmDmTMz9ZAy2/fIneExA+sC/w1ToD/B95TpCn5cqkMgSJWM4dkMAAWPO8ccfAeEfkBK+drolgLgzgcr33guogm4TSYZ33wVuvpmVu+iiyDK2tXVO3kjyXHABy1cllS8sZC7SZct4ALXEqRB0z+l2Kiri0LcvSwUuPcGAoxgAACAASURBVMc7cgUGWKx8/+Gbh8TAYo0NeIBIweIB9O7NrAcOB3O7pabCZhOQkKBBa+sv0EQlBbgCnc6jIYHrgD/A3u2ug0oVA7U6FkhMZNaB5maYm4phaUrwXSKymCeFBS1K3QtOjRVOoQ564yAEDICis7oecdBqmU5nTNZ3bLECIPTuAyKCA1WIiusfUlStNrJ+xSQxTcduhzo22Xcuxl+wM+5AKYV4z55Qq6PlN/Ik2nMFynMpKToAmxeVipmygjEYmMXQZ7EqKQlv4JGC5Tt0BXb1rUAgjMWqBU5nBfR6psyjd2+m3CsVmYwMplgZjTAY2EelQqhWsftf1eoCevSILEPwALajLKnVMVCpYiHofcFoFRVMtk5yRipWVuv3qK1dguTkP0AUWyGKbejT5wn5c0rKHSBy4K67XsEVV/wPDz5YBiAomaQU0xIUTzSy75fYuTMDMTG3oarqnYB8VFKSyokT4a+vohK5RVNOzoSMlZXABx+EupgkGc4+G/jxR3aDvvvur4/5isRVV/m3UAHYIrJtGzBhQuRrOJwzgKqqRPTvbwLgf25otYkQRQe83paQ8gFxzYoHi3m4CZYWU0gOqxCLlV7PUnps3w6kpsILNdraAJOpB1pa9kATlxzgCgTEsIqVVtsTXm8z2tr2+duQrBM7d8KsrYKlSid7K9kD2C+PXp8Oh94GZ7Qd+uQsBAxAUGeNRlZ1TM/YjoPXAQjmDKhFDVpj66FPHBpSVO5XXKrfYhXP3JFyjFU4ecJx5Ah7YPv+eQ1WittzBcpzKaU/CDgYBqORreVGI6KjmWIVTq9grkC0H7xeXc3aSk4OXyaY6Gj/tXI70XA4DkGjMUKt9rkdJavjkSN+4cxm5i3xzaWkWEloVEwRFHr2CjW/KemCYqVSMSUXej3b0qZHj/DKagTOGMVKGaj+0EPbEB9/Dt55534QuQAQXn31KgACiNx4/vlMDBjwAv71rxexdesEXHnlJaySyko0TBuB8j1PAI8+Ku87JSUDbchyo7zmFmRmFuO5515EUtINIck+m5qAn39WCHYyJ2TsKObpnXeAlBRg5MhjT0jZGa66Cvj2W38g/+efMwtfpEWSwzkD8Hi8qKtLRv/+7KEuPTcEQWCKR5iUCwFxzQqLg3lMCo64U0Blh4MUqzAmDbMZWL8eMJtZ8HQ8EB2dgZaWIqgNvQIsVsrfSguZJKPNtiHQKpaRAaxfD3MvLywWKcO2Cm43s+JISoY+pi+ccS1wGJ2IMo/2yxVs0jEYYDCwPgtGQ3iLVXAGcbMZKrcabT3aWEb3ICSLjjqhN9uk3eWCJranr69dtFgFWX2CFSulxSotjXmypKVWnkuDol+RAtcB/3GfK3D//kiKVSwAVfvpFvbskV3GnUKyWAUEr8egrW1/4D1mNjOlPTbWf43ZLLsClRYrWV6tTxFM6SADfBctVhqNgaWtqajokhsQOIMUKylovarqfXzwwWPo1WsGFiwYh379nkZW1tdYsGAcsrK+QkrK7fjgg0eRnv4gli//E+6663GkpGTjgQfWs53Ir9+F+M93swe9VLcvGWjVBA8ElxdXXUX46qsUJCffEpLsc/VqlihcjtU6mRMydibmKfhNnODz3cHIkUyhWreOKWsvvgg0NvLAbM4ZjcVSC4OhEdHR7D/pzqRcCHEF+h4YscmxiBYcqNtcCpjN8HiaIYoOaLWJoQ0rFCupPr3ejLa2A9CYerMEtc7ArW2C2wNYkL3Ntj7QKmY2Axs2IKOvCuXlki6mhSg6oNdnQPBZJPSGAWjp2QpSA5qe/f3XhvGVGY1hXGZKpAziUjiG2Qy1AxA1BH3G2SHFJYuOJikDOHAAMBig1rAtgeQYq3DyhCPMmEgKsSi6IYoun6LDQoFSUpi4iu4F9itS4DrgP+5zBToc4fUFQRCg0Rjaj7E6cKBrykYYVyCLsXKEZvZfvz7QR2k2s/Z8c3ngQOBpjTT2aR3IEzwf4fbz8cHc00a/laoLbwQCZ5BiJQWtv/FGCgBgyhT2JsCMGQ/ijjuYS+mOOybgoYfeAuB3182adQms1uW4784PUTzqG7Z79z+/YQ92wJ8MdPxq1F4dDX1yNgYPfhgAEB8/ISTZ54oVzAAj56s6mRMydiTbihX+gPVjTUjZGaqrmaJGxJKY/vIL+8zTCXDOYEpL65CaWif/rQxujpR9PSR4XfHAyNDXoHxTBZCRIWc5F8K5VjIy2D9NGRlyfUw58kKjTWCmlaNHFYpVYNZ1Cb0+A3b7hlCLxYYNMA5IgkoF7N4N9Omj85VXKCDxA2HPBPSNOgiS1SRCdLdksQpwmSkJjhXKyICqyQWdTQVVVFxIcdliZUhj657BIPc1wGLVmezrQXOgzL7O3ICGgDlQVhk2eL0jVyAgW6yk+sKhVhvbV6y83mNTrIIsVkDgvMr3VtB8wOuVg9eDm9ZomWIlpHWg/ATPR4cWK4VixS1W4cnNBXr0mIDXXpsPANiw4XIAwPLl7Cf4s5QovHfvOzBhgoinXk5Dr28gbwUj43N5RUX1wXvvPYZzz92BP/6xAAD7B0gQ/EoUEdsjtxN7Bp8aKC1Gv2VCynnzAjfWlBYank6AcwZTVtaEtDS/ohBssYrkCjQawRajoAeL2WCDpTFOTg4aEl+lbKi2NsRiBfisOT5BWLyRWrbwBLen15vhdteGWix8dUsf+/TRQBC0AeX0URlwm4CoVoXiIwXWS3GvwRYrQwRXYPAD1myGqtULfVN0aFlAoTAmsOuMRkXAdxdjrMKMiWRpDNgKKEyVES1WHbkCfTFWUn3h+2ho3xXY3sXhCBNjJY1ViMXSN/8Bx3zXhmtarWcxhqpeHShWXY6xMvg3Xv4tFKuVK1diyJAhGDhwIJ577rmQ806nEzfffDMGDhyIsWPHoqysrMM6LSU1aCj9AiWFd+D+y14Adu7E/Ze9gJLCOzp9rKF0CWb8/l+dqqf1qzcxenQ+Zv11NgCgYA17e4Aqq/xJPpWfd+wEAFgPfIG1edGYfutcHL0eKHkQaBhBKJlNKHkQgMuFhm2LsGPbJZg+/WkUFl6KggLmb09ODvSSFRez+35oaDzkqcfxSkjZXhJTngST0wl+y/WrK2tQd69vpXsPoeqQGti5Ew3TRqCp4gm43S48kPUu9LXAsw/pQmSsqSrF2//4L7BuHUpmtKHkwEw5KbI5oQkv9b0bJa1PoaHhR7zxxs0AgEceOYTy8ucB+P5JjItDLnKAuDjY7cDRo1a43Ww7HI3GCCQloWTtddi344/QqAzQLHibyejdinLhUzneVVKU9HqznIxZfoB99BHMyU7o9W64XHlQqWLkB3BJyT04fJjNo/5wK1BVxa6vfoU99C+8kCUl/uUXwOWC0ehbIoxG5mkITr68Zw+zklRVMdk0RVC7BOgr3P66ff0vL38ezc3F/r4mJ6Pkqr04sOs+AH4rTENDHso1n7OHd3B7ygTQS5aw5Ka+ut3uWthsm9HQkAePxw5BUMvjVV7+PMxmlq8ZYMapwkKwGLG1a1nd5eUshCPcmihpJc8/jxg3U8TSg7JJSG1pNH6LlbL/APzK0eefd37tbWWbWstxyeXPo7l5uzz/cjtJP7Fy333nr1u6Jz74AEZqkA/Jsrayf7SFGGOorErMZhaILo19UVFIQLpUp9IV2DCSHe/Sc4Y6wOPxUP/+/am0tJScTicNHz6c9uzZE1Dm9ddfp3vuuYeIiD755BOaOnVqR9USMJryv9fR2h/UBBCV359CANHaHzWdPpb/vZYA6nQ9ffrsodXLowkgsk7uy37nXEc0YwYBRDRzpv/zsGEEEBWsjKLymT0pfzlo40eg/G9Ba1ewn/xvQeVT2Oe81aC1aw1kta4mq3U1AUTTph2h2bOZJkBENH++//Mpz4wZRDpdoHNQp2Nj+Fu381u3yfnNGD169HFt77dev7q6BnXn+jblhpfltazgK5A15zoalGghgKhsVrJ8rbIec/ovrJ57Etla9qOG1q6Nofx8I8258DlW9w8aWrNGz+r2rWVW62pfv4no+uvZ75tuoo8/ZsfWretBeXkgm20TWacMoPxvQfnf66hgRTRVTxTIel0fJuMT15DVupoKCpKorOwZyssDVVZ+TAUFSayNoiJWoSDQn4cWsDW4IInWretBFRXvkdW6mvLzDZSfb6T8b0EH72T9lq/v2ZNIEIiGDWP1TJ9Of/2rT26Ph31Qqdh5lYqtHVlZ7JqZM2XZtrylov0zg+omNg7r1iVSXh6opWU/Wa81y31duzaaGhvXy3VYrauJ9PrQ9mbM8B8DiHz3G6u7B61da6CCgiQqKZlJa9ZoqLz8Rbm+V17xP0MeeMD3+cYb2YeZM4kuuMD/ORwaDZEg0H8vfT/ss0iSfevWsXT48PzAvki4XPIcdXrtnTqVXTNjRsg4NjYW+NspXxq+bq2WSBBo5TX/JoCopcUva+Xc8ylvFaj+wUtCZVXicrF6VSqioUMD5Anu/44dV9L+/bPJWrGc3bej2Jh2dv3q0GL1888/Y+DAgejfvz90Oh1uueUWLJU2yPOxdOlSTJs2DQAwZcoUrFq1CtRelnAfxcUjsHcPCw5cNpSZ8fYWjer0seLikZ2q59uz+gAAZv7pIYzMdSMHuTB9XYY5KbloOrAMePddlqRz0SL/5z178MCwXGQ+4YH5jVoMewJwpAEx5QCpAYEAQxFQOgMgACq3gOzsr2EysbiqOXMO4a9//QoffiiNI/DVVx0OyanD8UpI2VFwP0+CyWmH33r96uwa9Fusb4fKhrHz08pY7Oez36Gv9RcAwPfpfcLKaLezYPTSqfUwFgFweyCQAIP+bGguYrvM790zCnuLWXtLljwLANi/f4L8NvPPy5h16uelldi9sRkAkJn5GQCgqvQNFN9WiqwngKzHRbh1bagbRyi+8zCT8YVVMDmHIjPzM1gsLCyjtHQWMjM/g8k0wR9AToSM/avkuj2eRjQ0rEJx8VRkZX2NrF6L4I0CmgYBxaOWIjN1Idukvr6e/cslJTNevBhGNZMRNb5NpsMlX/bFbJqcQ5GZ+iZa+olo6auo28TicFms7mIAQMX+F1A83cL6+iQgik5UVX2A4uKprD+Os9j6FNyeMgE0AHzzDVBV5av7U4iiHXFxY1BR8Qa02hSUlz8rj48UE/Xzz/791rHMt3vHokVshwwg8pZhHg9AhJj8lQiHFIvc3LwDDQ0/+ftiUqS2qauT56hTHoPKSv+muh98oOjrYt+0fOZvRz0mtG6F3MYfPwfAQrZMpgnITH0TB0ZuAAjYe/GagLkKoa6O1SuKwN69AfIE999mW4Ompm0o3n8Hu28LEX67tQgI1MEKsmTJEqxcuRKLFi0CAHz00UfYvHkzXnvtNblMVlYWVq5ciXSfXXHAgAHYvHkzkpKSAup6++238fbbbwMAtm0rA9C3U0J2N2moQC9Udvk6ZxLg6gHodCzw3eWqhFodB6+3GTpdGvR6/+ueFRX+LQMiypHmf8P3ZKK2thY9e4Zu5XAqwvtyclFWVoa6urqOC3YTp+P61Z0kR1cAWi1q7N1zXyUmViBNqITeN8XORMCVCOjqAX09WHxkUpIvQL4CLldl4NpZXo6KWi0qkRa+7jSwsuXlcFItW4+tgF7wyS89PAFUIA2VCF1gI67/kmxAaN1BUd6y7FawvgoCnOZouKJa/f0pLw+QJyKKMVHWrXy21Nf36vh5ouxXUJ0A2h3b4GdR2LlR1CP3K1w7wbRTPqSdcGWByHLH2JAYc6DduQorh0QE+WW52mKgP9Imy1Om16OurS1yX32E5nL/Dbn77rtx9913AwDGjBmDrVu3Hs/mfzNOp74Ap1d/eF843cXpun4Bp1d/eF9OTk6nvnREh67A3r17w6KIpD9y5Ah6B6V2V5bxeDyw2WxITAyT/4TD4XCOI3z94nA4x5sOFatzzjkH+/fvx6FDh+ByubB48WJce+21AWWuvfZa/Oc//wHATO8TJ04Mn/+Ew+FwjiN8/eJwOMcbdW6unKoyLCqVCoMGDcLtt9+Of//737j99ttx44034sknn0RTUxOGDBmC4cOH4+OPP8Zjjz2GHTt2YOHChTCZTB02Pnr06O7qxwnndOoLcHr1h/flzIWvX53ndOoP78vJyenUl/boMHidw+FwOBwOh9M5zpjM6xwOh8PhcDi/NVyx4nA4HA6Hw+kmTohi1dEWEyczFosFEyZMQGZmJoYNG4ZXXnkFAGC1WnHZZZdh0KBBuOyyy9DQ0HCCJe08Xq8Xo0aNwjXXXAMAOHToEMaOHYuBAwfi5ptvhqu9BJ0nEY2NjZgyZQrOOussDB06FBs3bjxl5+Xll1/GsGHDkJWVhVtvvRUOh+OUnZfTDb5+nVycLusXwNew04Xjrlh5vV7cd999+O6771BcXIxPPvkExcXFx1uMY0aj0eDFF19EcXExNm3ahNdffx3FxcV47rnnMGnSJOzfvx+TJk06pRbcV155BUMVGxg+8sgjmD17Ng4cOACTyYR33333BErXeWbNmoUrr7wSv/zyC3bu3ImhQ4eekvNy9OhRvPrqq9i6dSuKiorg9XqxePHiU3ZeTif4+nXycbqsXwBfw04bOrfRT/exYcMGuvzyy+W/n3nmGXrmmWeOtxjdxrXXXks//PADDR48mCoqKoiIqKKiggYPHnyCJescFouFJk6cSKtWraKrr76aRFGkxMREcrvdRBQ6XycrjY2N1LdvXxJFMeD4qTgvR44cofT0dKqvrye3201XX301rVy58pScl9MNvn6dXJwu6xcRX8NOJ467xero0aMwS7tVA0hPT8fRo0ePtxjdQllZGQoLCzF27FhUV1cjLY2l3E9NTUV1dfUJlq5zPPDAA3j++eehUrFbob6+HgkJCdBoWFL+U2V+Dh06hJ49e2L69OkYNWoU/vznP6OlpeWUnJfevXvj4YcfRkZGBtLS0mA0GjF69OhTcl5ON/j6dXJxuqxfAF/DTid48Pox0tzcjBtvvBELFiyAwWAIOCcIwimRYHDZsmVITk4+LXKLeDwebN++HTNmzEBhYSFiY2NDTOanyrw0NDRg6dKlOHToECoqKtDS0oKVK8NvmsrhHAt8/Tr54GvY6cNxV6w6s8XEyY7b7caNN96I2267DTfccAMAICUlBZW+XTIrKyuRnJx8IkXsFOvXr8c333yDvn374pZbbsHq1asxa9YsNDY2wuPxADh15ic9PR3p6ekYO3YsAGDKlCnYvn37KTkvP/30E/r164eePXtCq9XihhtuwPr160/JeTnd4OvXycPptH4BfA07nTjuilVntpg4mSEi3HXXXRg6dCgefPBB+bhyW4z//Oc/uO66606UiJ3m2WefxZEjR1BWVobFixdj4sSJ+PjjjzFhwgQsWbIEwKnTl9TUVJjNZpSUlAAAVq1ahczMzFNyXjIyMrBp0ya0traCiOS+nIrzcrrB16+Th9Np/QL4GnZacSICu5YvX06DBg2i/v3701NPPXUiRDhm1q1bRwAoOzubRowYQSNGjKDly5dTXV0dTZw4kQYOHEiTJk2i+vr6Ey1ql8jLy6Orr76aiIhKS0vpnHPOoQEDBtCUKVPI4XCcYOk6R2FhIY0ePZqys7PpuuuuI6vVesrOy5NPPklDhgyhYcOG0e23304Oh+OUnZfTDb5+nXycDusXEV/DThf4ljYcDofD4XA43QQPXudwOBwOh8PpJrhixeFwOBwOh9NNcMWKw+FwOBwOp5vgihWHw+FwOBxON8EVKw6Hw+FwOJxugitWHA6Hw+FwON0EV6w4HA6Hw+FwugmuWHE4HA6Hw+F0E1yx4nA4HA6Hw+kmuGLF4XA4HA6H001wxYrD4XA4HA6nm+CKFYfD4XA4HE43wRUrDofD4XA4nG6CK1YcDofD4XA43QRXrDgcDofD4XC6Ca5YcTgcDofD4XQTXLHicDgcDofD6Sa4YsXhcDgcDofTTXDFisPhcDgcDqeb4IoVh8PhcDgcTjfBFSsOh8PhcDicboIrVhwOh8PhcDjdBFesOBwOh8PhcLoJrlhxOBwOh8PhdBNcseJwOBwOh8PpJrhixeFwOBwOh9NNcMWKw+FwOBwOp5vgihWHw+FwOBxON8EVKw6Hw+FwOJxugitWHA6Hw+FwON0EV6w4HA6Hw+FwugmuWHE4HA6Hw+F0E1yx4nA4HA6Hw+kmNCeq4aSkJPTt2/dENc/hcE4AZWVlqKurO9FicDgczm/GCVOs+vbti61bt56o5jkczglgzJgxJ1oEDofD+U3hrkAOh8PhcDicboIrVhwOh8PhcDjdBFesOBwOh8PhcLqJExZj9WsgIng8HhDRiRaFw+GEQRAEaDQaCIJwokXhcDic48opqVh5PB6oVCqoVCq+cHM4JxlEBFEU4fF4oNVqT7Q4HA6Hc1w5JV2BRMSVKg7nJEUQBKhUKm5R5nA4ZySnpGIFgCtVHM5JDP9+cjicM5VTVrHicDgcDofDOdngihUHd955J5YsWdLt9T7zzDPy57KyMmRlZXV4TW1tLcaOHYtRo0Zh3bp13S7TycAHH3yA+++/HwCwcOFCfPjhhxHLrlmzBhs2bIh4/ptvvsFzzz0H4NjmUTlHAHD++ed36XoOh8PhBMIVK85vRvBDuzOsWrUK2dnZKCwsxEUXXRRwzuv1dpdoJw333nsv/vjHP0Y8355i5fF4cO211+LRRx895vaD56g9JY7D4XA4HcMVq2OgpaUFV199NUaMGIGsrCx8+umnAIBt27Zh/PjxGD16NK644gpUVlbKx0eMGIERI0bgb3/7m2y5UVouAOCaa67BmjVrAAA//PADxo0bh7PPPhs33XQTmpubAbCtgHJycnD22WcjOzsbv/zyCwCgubkZ06dPR3Z2NoYPH44vvvii3XoiEakPl1xyCR555BGce+65GDx4sGxNam1txdSpU5GZmYnrr78eY8eOxdatW/Hoo4+ira0NI0eOxG233QaAKUb/93//h2HDhuHyyy9HW1tbQNs7duzAnDlzsHTpUowcORJtbW2Ii4vDQw89hBEjRmDjxo0n3Ri/9957eOCBB+T633nnHcyePTtkXN9//30MHjwY5557LtavXy8fz83NxQsvvAAAePXVV5GZmYnhw4fjlltuQVlZGRYuXIiXX34ZI0eOxLp163DnnXfi3nvvxdixYzFnzpyQ/v30008YM2YMBg8ejGXLlrU7BuHmKC4uDgB7QUQax+zsbPkeX7NmDS655BJMmTIFZ511Fm677TYepM7hcDhK6AQxevToY77W6XQG/J2Tl0PIRbf95OTltNv+kiVL6M9//rP8d2NjI7lcLho3bhzV1NQQEdHixYtp+vTpRESUnZ1Na9euJSKihx9+mIYNG0ZERO+//z7dd999cj1XX3015eXlUW1tLV100UXU3NxMRETPPfcczZ07l4iI+vTpQ6+++ioREb3++ut01113ERHRnDlzaNasWXJdVqu13XqUTJs2jT7//PN2+zB+/Hh68MEHiYho+fLlNGnSJCIimj9/Pt19991ERLR7925Sq9W0ZcsWIiKKjY2V2zh06BCp1WoqLCwkIqKbbrqJPvrooxBZgscEAH366adERCflGDc1NVH//v3J5XIREdG4ceNo165dAX2qqKggs9lMNTU15HQ66fzzz5dlysnJofnz5xMRUVpaGjkcDiIiamhoCDkvzdXVV19NHo8npH/Tpk2jK664grxeL+3bt4969+5NbW1tEccgeI6Ufy9ZsoQuvfRS8ng8VFVVRWazmSoqKigvL48MBgNZLBbyer103nnn0bp160LmkSj0e0r06773HA6HcypwSuaxCib3klzkXpJ73NrLzs7GQw89hEceeQTXXHMNLrroIhQVFaGoqAiXXXYZAGadSUtLQ2NjIxobG3HxxRcDAO644w5899137da/adMmFBcX44ILLgAAuFwujBs3Tj5/ww03AABGjx6NL7/8EgCzVCxevFguYzKZsGzZsnbrCaakpCRsH8K1W1ZWBgAoKCjArFmzAABZWVkYPnx4xPr79euHkSNHhtTRHmq1GjfeeGO78p3IMQaAiRMnYtmyZRg6dCjcbjeys7MD2tq8eTMuueQS9OzZEwBw8803Y9++fSEyDR8+HLfddhsmT56MyZMnR5T9pptuglqtDntu6tSpUKlUGDRoEPr37y9b27pKQUEBbr31VqjVaqSkpGD8+PHYsmULDAYDzj33XKSnpwMARo4cibKyMlx44YXH1A6Hw+GcbpwWitXxZvDgwdi+fTtWrFiBxx9/HJMmTcL111+PYcOGYePGjQFlGxsbI9aj0WggiqL8t8Ph+P/27j+mqvv+4/gLv8hcXatzuxQGEnSgXn7Ir1spsTMVhmmjwyhkk0hWf5Cb2S5amzbtH2ZxyaqMxLS26bLc1FW3trLVZKPTlXRiUzda585gWxmRUAcJP4y7VWhUZvh1vn80klmkir71cvD5+O9eDp/zOfcj9NlzD+dK+uxtmOLiYh08ePCa3/elL31J0mfRMTQ0NO741xvnWttf6xgmut/xXPn+K2N8/q3Aa5kxY8ZoRIw3v0i+xpJUWVmpXbt2adGiRdq4ceN1j2k8R44c0fHjx/X73/9ezz//vD766KNrbjdz5sxxx/j8bQ6u3AH9Wq/Bzfr8Ot7MvwUAmKq4xuom9PT06J577lFFRYWeeeYZNTY2auHChQqHw6P/0R8cHNS//vUvzZ49W7Nnz9af//xnSdIbb7wxOk5ycrL+/ve/a2RkRJ2dnTp58qQk6cEHH1RDQ4M+/vhjSZ9d03WtMxz/q7i4WK+88sro497e3gmPM94xfJGlS5fqN7/5jSSppaXlqhiYPn26BgcHv/D7J2IyvsaSlJ+fr87OTr355psqLy8f8335+fl6//33de7cOQ0ODuqtt94as82V+S1fvlw//elP9emnn+rixYu69957deHChRt+CC9bFQAAEydJREFUjd566y2NjIzo9OnT+ve//62FCxeO+xpI46/Rt771Lf3617/W8PCwwuGwjh8/riVLltzwPADgbkVY3YSPPvpIS5YsUXZ2tn784x9rx44diomJ0aFDh/Tss88qKytL2dnZo39h9dprr+mJJ55Qdnb2VRf6Ll26VPPmzVNaWpq2bt2q3NxcSZLP59P+/ftVXl6uxYsXq6Cg4Lpv6ezYsUO9vb3KyMhQVlaW3nvvvQmP80XHMJ7HH39c4XBYaWlp2rFjh9LT0zVr1ixJUjAYHH17y8JkfI2v+O53v6ulS5eOvj34v+Lj47Vz504VFBRo6dKl8vv9Y7YZHh5WRUWFMjMzlZOTo61bt2r27Nn6zne+o9/+9rejF69fT1JSkpYsWaJHH31UP//5zzVjxoxxXwNp/DVas2aNFi9erKysLBUWFqq6ulpxcXHX3T8A3O2iXDcyf9ITCATkOM5Nfe/AwIBiYmKMZ3RndHR0aNWqVWpubo70VEwMDw9rcHBQM2bM0OnTp/Xtb39bra2tEV2fSLzGq1at0vbt21VUVHTH9jnZXevn9FZ+7gHACyZ8xmrTpk2KjY295s0e9+zZo6ioKH3yyScmk8Pk19/fr4ceekhZWVlas2aNfvazn3k2em9GX1+fFixYoC9/+ctEFQBg4mesjh8/rq985Sv6/ve/f9UZgc7OTlVWVurUqVP629/+pq9//etfOM7desYKuFtwxgrA3WjCZ6yWLVumOXPmjHl++/btqq6uvmMfvhqhdzAB3AB+PgHcrUwuXq+trVVCQoKysrK+cLtQKKRAIKBAIKBwOHzT+4uKitLIyAi/vIFJyHVdjYyM3LH/yQKAyeSW72PV39+vXbt26d13373utsFgUMFgUNJnbwncrOjoaA0NDU3Jz44DpoIr988CgLvNLf/mO336tNrb20fPVnV1dSk3N1cnT568bX+eHRUVpenTp9+WsQEAAG7WLYdVZmam/vOf/4w+Tk5OluM41714HQAAYKqZ8DVW5eXlKigoUGtrqxITE7Vv377bMS8AAADPmfAZq+t97tyNfLAuAADAVMRH2gAAABghrAAAAIwQVgAAAEYIKwAAACOEFQAAgBHCCgAAwAhhBQAAYISwAgAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMEFYAAABGCCsAAAAjhBUAAIARwgoAAMAIYQUAAGBkQmG1adMmxcbGKiMjY/S5Z555RosWLdLixYu1Zs0a9fX1mU8SAADACyYUVhs2bFBdXd1VzxUXF6u5uVn//Oc/tWDBAu3evdt0ggAAAF4xobBatmyZ5syZc9VzK1asUHR0tCTpwQcfVFdXl93sAAAAPMT0Gqtf/OIXevTRR8f9eigUUiAQUCAQUDgcttw1AABAxJmF1fPPP6/o6GitX79+3G2CwaAcx5HjOPL5fFa7BgAAmBSiLQbZv3+/Dh8+rPr6ekVFRVkMCQAA4Dm3HFZ1dXWqrq7W+++/r3vuucdiTgAAAJ40obcCy8vLVVBQoNbWViUmJmrfvn364Q9/qAsXLqi4uFjZ2dn6wQ9+cLvmCgAAMKlN6IzVwYMHxzy3efNms8kAAAB4GXdeBwAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMEFYAAABGCCsAAAAjhBUAAIARwgoAAMAIYQUAAGCEsAIAADBCWAEAABghrAAAAIwQVgAAAEYIKwAAACOEFQAAgBHCCgAAwMiEw2rTpk2KjY1VRkbG6HPnz59XcXGxUlNTVVxcrN7eXtNJAgAAeMGEw2rDhg2qq6u76rmqqioVFRWpra1NRUVFqqqqMpsgAACAV0w4rJYtW6Y5c+Zc9Vxtba0ee+wxSdJjjz2m3/3udzazAwAA8JBoi0HOnj2r+Ph4SVJcXJzOnj17ze1CoZBCoZAkKRwOW+waAABg0jC/eD0qKkpRUVHX/FowGJTjOHIcRz6fz3rXAAAAEWUSVvfff7/OnDkjSTpz5oxiY2MthgUAAPAUk7AqKSnRgQMHJEkHDhzQ6tWrLYYFAADwlAmHVXl5uQoKCtTa2qrExETt27dPzz33nP74xz8qNTVVR48e1XPPPXc75goAADCpTfji9YMHD17z+fr6+lueDAAAgJdx53UAAAAjhBUAAIARwgoAAMAIYQUAAGCEsAIAADBCWAEAABghrAAAAIwQVgAAAEYIKwAAACOEFQAAgBHCCgAAwAhhBQAAYISwAgAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMmIXVCy+8oPT0dGVkZKi8vFyXL1+2GhoAAMATTMKqu7tbL730khzHUXNzs4aHh1VTU2MxNAAAgGeYnbEaGhrSf//7Xw0NDam/v1/f+MY3rIYGAADwBJOwSkhI0NNPP62kpCTFx8dr1qxZWrFixZjtQqGQAoGAAoGAwuGwxa4BAAAmDZOw6u3tVW1trdrb29XT06NLly7p9ddfH7NdMBiU4zhyHEc+n89i1wAAAJOGSVgdPXpU8+bNk8/n0/Tp07V27Vp98MEHFkMDAAB4hklYJSUl6cSJE+rv75fruqqvr5ff77cYGgAAwDNMwio/P19lZWXKzc1VZmamRkZGFAwGLYYGAADwjCjXdd1I7DgQCMhxnEjsGkCE8HMPYKrjzusAAABGCCsAAAAjhBUAAIARwgoAAMAIYQUAAGCEsAIAADBCWAEAABghrAAAAIwQVgAAAEYIKwAAACOEFQAAgBHCCgAAwAhhBQAAYISwAgAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMmIVVX1+fysrKtGjRIvn9fn344YdWQwMAAHhCtNVA27Zt0yOPPKJDhw5pYGBA/f39VkMDAAB4gklYffrppzp+/Lj2798vSYqJiVFMTIzF0AAAAJ5h8lZge3u7fD6fNm7cqJycHFVWVurSpUtjtguFQgoEAgoEAgqHwxa7BgAAmDRMwmpoaEiNjY3asmWLmpqaNHPmTFVVVY3ZLhgMynEcOY4jn89nsWsAAIBJwySsEhMTlZiYqPz8fElSWVmZGhsbLYYGAADwDJOwiouL09y5c9Xa2ipJqq+vV1pamsXQAAAAnmH2V4Evv/yy1q9fr4GBAc2fP1+vvfaa1dAAAACeYBZW2dnZchzHajgAAADP4c7rAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMEFYAAABGCCsAAAAjhBUAAIARwgoAAMAIYQUAAGCEsAIAADBCWAEAABghrAAAAIwQVgAAAEYIKwAAACOEFQAAgBHCCgAAwAhhBQAAYISwAgAAMEJYAQAAGDENq+HhYeXk5GjVqlWWwwIAAHiCaVjt3btXfr/fckgAAADPMAurrq4uHTlyRJWVlVZDAgAAeIpZWD355JOqrq7WtGnjDxkKhRQIBBQIBBQOh612DQAAMCmYhNXhw4cVGxurvLy8L9wuGAzKcRw5jiOfz2exawAAgEnDJKwaGhr09ttvKzk5WevWrdOxY8dUUVFhMTQAAIBnmITV7t271dXVpY6ODtXU1KiwsFCvv/66xdAAAACewX2sAAAAjERbD/jwww/r4Ycfth4WAABg0uOMFQAAgBHCCgAAwAhhBQAAYISwAgAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMEFYAAABGCCsAAAAjhBUAAIARwgoAAMAIYQUAAGCEsAIAADBCWAEAABghrAAAAIwQVgAAAEZMwqqzs1PLly9XWlqa0tPTtXfvXothAQAAPCXaZJDoaO3Zs0e5ubm6cOGC8vLyVFxcrLS0NIvhAQAAPMHkjFV8fLxyc3MlSffee6/8fr+6u7sthgYAAPAMkzNW/6ujo0NNTU3Kz88f87VQKKRQKCRJCofD1rsGAACIKNOL1y9evKjS0lK9+OKLuu+++8Z8PRgMynEcOY4jn89nuWsAAICIMwurwcFBlZaWav369Vq7dq3VsAAAAJ5hElau62rz5s3y+/166qmnLIYEAADwHJOwamho0K9+9SsdO3ZM2dnZys7O1h/+8AeLoQEAADzD5OL1hx56SK7rWgwFAADgWdx5HQAAwAhhBQAAYISwAgAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADACGEFAABghLACAAAwQlgBAAAYIawAAACMEFYAAABGCCsAAAAjhBUAAIARwgoAAMAIYQUAAGCEsAIAADBCWAEAABghrAAAAIwQVgAAAEYIKwAAACNmYVVXV6eFCxcqJSVFVVVVVsMCAAB4hklYDQ8P64knntA777yjlpYWHTx4UC0tLRZDAwAAeIZJWJ08eVIpKSmaP3++YmJitG7dOtXW1loMDQAA4BnRFoN0d3dr7ty5o48TExP1l7/8Zcx2oVBIoVBIktTc3KxAIGCx+4gLh8Py+XyRnoaJqXIsU+U4pKl1LKdOnYr0FADgtjIJqxsVDAYVDAYlSYFAQI7j3Mnd3zYcy+QzVY5DmnrHAgBTmclbgQkJCers7Bx93NXVpYSEBIuhAQAAPMMkrB544AG1tbWpvb1dAwMDqqmpUUlJicXQAAAAnvF/O3fu3Hmrg0ybNk2pqamqqKjQyy+/rIqKCpWWll73+/Ly8m5115MGxzL5TJXjkDgWAPCKKNd13UhPAgAAYCrgzusAAABGCCsAAAAjEQkrr378TWdnp5YvX660tDSlp6dr7969kqTz58+ruLhYqampKi4uVm9vb4RneuOGh4eVk5OjVatWSZLa29uVn5+vlJQUfe9739PAwECEZ3hj+vr6VFZWpkWLFsnv9+vDDz/05Lq88MILSk9PV0ZGhsrLy3X58mXPrMmmTZsUGxurjIyM0efGWwPXdbV161alpKRo8eLFamxsjNS0AcDUHQ8rL3/8TXR0tPbs2aOWlhadOHFCr7zyilpaWlRVVaWioiK1tbWpqKjIU7G4d+9e+f3+0cfPPvustm/fro8//lhf/epXtW/fvgjO7sZt27ZNjzzyiE6dOqV//OMf8vv9nluX7u5uvfTSS3IcR83NzRoeHlZNTY1n1mTDhg2qq6u76rnx1uCdd95RW1ub2traFAqFtGXLlkhMGQDsuXfYBx984K5YsWL08a5du9xdu3bd6WmYKCkpcd999113wYIFbk9Pj+u6rtvT0+MuWLAgwjO7MZ2dnW5hYaFbX1/vrly50h0ZGXG/9rWvuYODg67rjl2ryaqvr89NTk52R0ZGrnrea+vS1dXlJiYmuufOnXMHBwfdlStXunV1dZ5ak/b2djc9PX308XhrEAwG3TfffPOa2wGAl93xM1bX+vib7u7uOz2NW9bR0aGmpibl5+fr7Nmzio+PlyTFxcXp7NmzEZ7djXnyySdVXV2tadM++2dw7tw5zZ49W9HRn92Q3ytr097eLp/Pp40bNyonJ0eVlZW6dOmS59YlISFBTz/9tJKSkhQfH69Zs2YpLy/Pk2tyxXhrMFV+DwDA53Hx+k24ePGiSktL9eKLL+q+++676mtRUVGKioqK0Mxu3OHDhxUbGzsl7ik0NDSkxsZGbdmyRU1NTZo5c+aYt/28sC69vb2qra1Ve3u7enp6dOnSpTFvrXmZF9YAAG7VHQ8rr3/8zeDgoEpLS7V+/XqtXbtWknT//ffrzJkzkqQzZ84oNjY2klO8IQ0NDXr77beVnJysdevW6dixY9q2bZv6+vo0NDQkyTtrk5iYqMTEROXn50uSysrK1NjY6Ll1OXr0qObNmyefz6fp06dr7dq1amho8OSaXDHeGnj99wAAjOeOh5WXP/7GdV1t3rxZfr9fTz311OjzJSUlOnDggCTpwIEDWr16daSmeMN2796trq4udXR0qKamRoWFhXrjjTe0fPlyHTp0SJJ3jiUuLk5z585Va2urJKm+vl5paWmeW5ekpCSdOHFC/f39cl139Di8uCZXjLcGJSUl+uUvfynXdXXixAnNmjVr9C1DAPC0SFzYdeTIETc1NdWdP3+++5Of/CQSU7gpf/rTn1xJbmZmppuVleVmZWW5R44ccT/55BO3sLDQTUlJcYuKitxz585FeqoT8t5777krV650Xdd1T58+7T7wwAPuN7/5TbesrMy9fPlyhGd3Y5qamty8vDw3MzPTXb16tXv+/HlPrsuPfvQjd+HChW56erpbUVHhXr582TNrsm7dOjcuLs6Njo52ExIS3FdffXXcNRgZGXEff/xxd/78+W5GRob717/+NcKzBwAbfKQNAACAES5eBwAAMEJYAQAAGCGsAAAAjBBWAAAARggrAAAAI4QVAACAEcIKAADAyP8DXcDdJY5trBwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Variable 2: lateral flowering\n", + "obs.plot(\"Intensity\", 1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJOCAYAAAB1IEnpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4U2X2x7/pvibdgNI2ballaSmFQguyCS4jDiJuiJXqT0BhRJmRGXVcEEUriqjIKCqCAi5FFBxkFGEUHJRVQfZFQaRtushSStI2bZMm7++P23tzc3OztUnT5Xyeh4fm3vu+73nvcnJyzrnnVTDGGAiCIAiCIIhW4+drAQiCIAiCIDoLZFgRBEEQBEF4CDKsCIIgCIIgPAQZVgRBEARBEB6CDCuCIAiCIAgPQYYVQRAEQRCEh+gwhtWOHTvQt29fl45dvXo1Ro0aZXf/2LFj8d5773lKtE6HQqHAb7/95pG+Wnqut2/fjqSkJI/I0FYUFxdDoVCgqampTcZrzXVKTU3F1q1bZfdJnzXxsS+++CLuv/9+u/0WFRXh+uuvb5FMBOFL6DuG8BQdxrAaPXo0fv31V5/KcPHiRYwcORKxsbGIiorC8OHDsWvXLp/K1FpIARBSHD1rTz31lHC/yBmSBQUF+Oabb9pEToLwJPQdQ3iKAF8L4ApNTU0ICPC9qBEREVi5ciV69+4NhUKBjRs34qabbsL58+fbhXyEe7SX+0qO9iwbQXQ22svzRt8xnQOveaxefvllTJo0yWrbww8/jL/97W8AgFWrViEjIwORkZFIS0vDu+++KxzHh4FefvllxMfHY9q0aTahoYULF+KKK65AZGQkMjMzsWHDBquxGGOYPXs2VCoV+vXrh23bttmVdeXKlcjIyEB0dDTGjRuHkpIS2eNCQkLQt29f+Pn5gTEGf39/VFdX49KlS26fHwD47bffMGbMGKhUKsTFxeHOO+8U9ikUCrz99tvo3bs3IiMjMW/ePJw5cwYjRoyAUqnE5MmTYTAYhONXrFiB9PR0xMTEYOLEiaioqBD27d69G3l5eVCpVMjLy8Pu3bsBAHPnzsWOHTswe/ZsREREYPbs2UKbrVu3onfv3oiKisJDDz0EcYF+R+fr22+/Rb9+/aBSqTB79mw4Kuzf2NiIOXPmICEhAQkJCZgzZw4aGxutjnnxxRcRFxeH1NRUFBUVCdu//vprZGZmIjIyEomJiXj11VeFfV999RUGDRqEqKgojBgxAkeOHBH2paam4uWXX0Z2djbCw8Od3qdarRb33XcfevbsicTERDz99NMwmUwAAJPJhEcffRRxcXFIS0vDpk2b7M6VH/ull15CZmYmoqOjMW3aNDQ0NACQv+cBx9eVPw9paWmIi4vDY489BrPZDAA4c+YMrrnmGsTGxiIuLg4FBQW4fPmyVdt9+/Y5lEWO+fPn4+677wYAXHXVVQCAqKgoREREYM+ePTYhkl9++QV/+tOfEBMTg759++Kzzz6zkt3eNSQIZ9B3DNFuYV6iuLiYhYaGMp1OxxhjrKmpicXHx7M9e/Ywxhj76quv2G+//cbMZjPbvn07Cw0NZT///DNjjLH//e9/zN/fn/3zn/9kDQ0NTK/Xs//9738sMTFR6P+zzz5j5eXlzGQysbVr17KwsDBWUVHBGGNs1apVzN/fny1evJgZDAa2du1aplQqWVVVFWOMsTFjxrAVK1Ywxhj74osv2BVXXMFOnDjBjEYjKywsZMOHD3c4twEDBrDAwEAGgN1///0tPkf5+fnshRdeYCaTidXX17MdO3YI+wCwiRMnMq1Wy44dO8aCgoLYNddcw86cOcMuX77MMjIy2OrVqxljjG3bto3Fxsayn3/+mTU0NLDZs2ez0aNHM8YYq6qqYlFRUezDDz9kRqORrVmzhkVFRbGLFy/anAvx2DfeeCOrrq5mJSUlLC4ujm3evNnp+bpw4QKLiIhg69atYwaDgS1evJj5+/vb9M8zb948NmzYMHbu3Dl2/vx5Nnz4cPb0008zxiz3wN///nfW0NDAtm/fzsLCwtgvv/zCGGMsPj6e/fDDD4wxxi5duiTcOwcOHGDdunVje/fuZU1NTWz16tUsJSWFNTQ0MMYYS0lJYQMHDmSlpaVMr9c7vU9vueUWNnPmTFZbW8vOnTvH8vLy2LJlyxhjjL3zzjusb9++rLS0lFVVVbGxY8cyAMxoNMrONyUlhfXv3184fsSIEWzu3LlW8xXf846uK3+dxo4dy6qqqlhJSQnr3bu3cK5Pnz7NvvnmG9bQ0MDOnz/PRo8ezR5++GGXZRE/aykpKezbb79ljDH27LPPsoKCAsYYY2fPnrWZ76pVq9jIkSMZY4zV1taypKQktnLlSmY0GtmBAwdYbGwsO378uMNrSBCuQN8xRHvFa4YVY4yNHDmSffDBB4wxxr755huWlpZm99ibb76ZLVmyhDHG3fSBgYGsvr5e2C+96aUMHDiQffHFF4wx7qbv2bMnM5vNwv68vDz24YcfMsasb/obbriBvffee8JxJpOJhYaGsuLiYodzq6+vZ2vWrBGMm5Zwzz33sBkzZjCNRmOzDwDbuXOn8Hnw4MFs4cKFwud//OMfwhfl9OnT2WOPPSbsq6mpYQEBAezs2bPsww8/ZHl5eVZ9X3nllWzVqlWMMfuGldjIu+OOO9hLL73EGHN8vj744AM2bNgwYZ/ZbGaJiYl2Dau0tDS2adMm4fOWLVtYSkoKY8yi+Gpra63keP755xljjKnVarZs2TKm1Wqt+nzggQcE44ynT58+bPv27Ywxzkh4//33rfbbu0//+OMPFhQUxPR6vXDsmjVr2NixYxljjF199dXsnXfeEfb997//dWpYiY/ftGmTMJbcPe/oujLGXSfe4GWMsbfeeotdc801smNv2LCBDRo0yGVZPGFYrV27lo0aNcpKjpkzZ7L58+czxuxfQ4JwFfqOIdojXk1enzJlCj755BMAwJo1azBlyhRh3+bNm3HllVciJiYGUVFR+Prrr3Hx4kVhf7du3RASEmK37w8//FAI90RFReHYsWNW7RMTE6FQKITPKSkpNmEUACgpKcHDDz8s9BMTEwPGGMrLyx3OLSQkBHfddRcWLlyIw4cP2+wvLS1FRESE8E+ORYsWgTGGoUOHon///li5cqXV/h49egh/h4aG2nyura0FAFRUVCAlJUXYFxERgdjYWJSXl9vs48+Fs/nFx8cLf4eFhQljOTpfFRUVUKvVQjuFQmH1WYpUNuk1io6ORnh4uOz+zz//HF9//TVSUlIwZswY7NmzR5DvtddeE+SLioqCRqOx6lcqk737tKSkBEajET179hT6+stf/oLz588L8ov7kp5nOaTHi+WS3vOOrquz/s6dO4f8/HwkJiZCqVTi7rvvtno+nMniCUpKSvDjjz9aXYuioiL88ccfAOxfQ4Jwla78HUO0X7xqWN1xxx3Yvn07ysrKsGHDBuGmb2xsxO23345HH30U586dw+XLlzF+/HirfBzxDSulpKQEM2bMwNKlS1FVVYXLly8jKyvLqn15ebnV59LSUiQkJNj0pVar8e677+Ly5cvCv/r6eowYMcKlORqNRvz+++8225OTk1FbWyv8kyM+Ph4rVqxARUUF3n33XTz44IMten0+ISHBKmZfV1eHqqoqJCYm2uwDuHORmJgIwPF5lsPR+erZsyc0Go1wLGPM6rMzuaXXqLq6GnV1dbL78/LysHHjRpw/fx633HILJk+eLMg3d+5cK/n0ej3uuusuoR/pnO3dp2q1GsHBwbh48aLQl06nw/HjxwHAZr6lpaVOz5/0ePF8pXI5uq7O+nvqqaegUChw9OhR6HQ6fPzxxzb5bo5kcQVn945arcaYMWOsrkVtbS3eeecdAPavIUG4Slf+jiHaL141rLp164axY8di2rRp6NWrFzIyMgAABoMBjY2N6NatGwICArB582a3XtGuq6uDQqFAt27dAHBJiseOHbM65vz583jjjTdgNBqxbt06nDx5EuPHj7fp64EHHsBLL70kfFlqtVqsW7dOdty9e/di586dMBgMqK+vx8svv4xz585h2LBhLssuZt26dSgrKwPAeWcUCgX8/Ny/JHfddRdWrVqFQ4cOobGxEU899RSGDRuG1NRUjB8/HqdOncKaNWvQ1NSETz/9FCdOnMCECRMAcF4xdx5aR+frxhtvxPHjx/Hvf/8bTU1NeOONNwTvhD25X3jhBVy4cAEXL17E888/LyRG8zz77LMwGAzYsWMHvvrqK9xxxx0wGAwoKiqCVqtFYGAglEqlcN5mzJiBZcuW4ccffwRjDHV1ddi0aRNqamrsymHvPu3Zsyeuv/56PPLII9DpdDCbzThz5gy+//57AMDkyZPxxhtvoKysDNXV1Vi4cKHT8/fWW2+hrKwMly5dwoIFC6xeWJA7P/auK88rr7yC6upqaDQa/Otf/xL6q6mpQUREBFQqFcrLy/HKK6+0ShY5unXrBj8/P7v3z4QJE3Dq1Cl89NFHMBqNMBqN2LdvH06ePOnwGhKEq9B3DNEe8bommzJlCrZu3Wrloo2MjMQbb7yByZMnIzo6GmvWrMHEiRNd7jMzMxOPPPIIhg8fjh49euDo0aMYOXKk1THDhg3D6dOnERcXh7lz52L9+vWIjY216evWW2/F448/jvz8fCiVSmRlZWHz5s2y4zY2NuKhhx5CbGwsEhMT8fXXX2PTpk1u/9Ln2bdvH4YNG4aIiAhMnDgR//rXv5CWluZ2P9dddx0KCwtx++23o2fPnjhz5gzWrl0LAIiNjcVXX32F1157DbGxsVi0aBG++uorxMXFAeDeolm/fj2io6OFt2kc4eh8xcXFYd26dXjiiScQGxuL06dP21wXMU8//TRyc3ORnZ2NAQMGYPDgwXj66aeF/fHx8YiOjkZCQgIKCgqwbNky9OvXDwDw0UcfITU1FUqlEsuWLRPeGMzNzcWKFSswe/ZsREdHIz09HatXr3Y6L7n7FODCAQaDQXh7btKkSaisrATAGXHjxo3DwIEDMXjwYNx2220ujXP99dcjLS0NV1xxhdV8pTi6rjw333wzhgwZgkGDBuHGG2/EfffdB4AzSA8cOACVSoUbb7xRVjZ3ZJEjLCwMc+fOxciRIxEVFYW9e/da7Y+MjMQ333yDtWvXIiEhAfHx8Xj88ceFNz/tXUOCcAf6jiHaGwomjQ8QBOEVUlNT8d577+G6667ztSgEQRCElyDfO0EQBEEQhIcgw4ogCIIgCMJDUCiQIAiCIAjCQ5DHiiAIgiAIwkP4bFVHfv03giC6DsXFxTaFSjsipL8Iouvhqv7ymWGVmpqK/fv3+2p4giB8QG5urq9F8Aikvwii6+Gq/qJQIEEQBEEQhIcgw4ogCIIgCMJDkGFFEARBEAThIXyWY0V0XYxGI8rKytDQ0OBrUQgvERISgqSkJAQGBvpaFILwKKS/Oj+t1V9kWBFtTllZGSIjI5GamupwhXmiY8IYQ1VVFcrKytCrVy9fi0MQHoX0V+fGE/qLQoFEm9PQ0IDY2FhSSp0UhUKB2NhY+kVPdEpIf3VuPKG/yLAifAIppc4NXV+iM0P3d+emtdeXDCuCIAiCIAgPQYYVQTRTXFyMrKwsX4thw9ixYz1SjNJT/QDASy+9hPT0dPTt2xf//e9/PdInQRAth/SX63hbf5FhRbR7io4WIXVJKvye80PqklQUHS3ytUgu09TU5GsRPM6JEyewdu1aHD9+HFu2bMGDDz4Ik8nka7EIol1C+qt90Rb6iwwrol1TdLQIM7+ciRJtCRgYSrQlmPnlzFYrp8WLFyMrKwtZWVlYsmSJsL2pqQkFBQXIyMjApEmToNfrAQBPPPEEMjMzkZ2djUcffRQAcOHCBdx+++3Iy8tDXl4edu3aBQCYP38+7rnnHowcORL33HMPrrzyShw/flwYg//lVVdXh+nTp2Po0KHIycnBxo0bAQD19fXIz89HRkYGbr31VtTX19vIv2XLFtxxxx3C5+3bt2PChAkAgFmzZiE3Nxf9+/fHs88+Kzv/iIgI4e/169dj6tSpDuckZuPGjcjPz0dwcDB69eqF9PR0/PTTT85POkF0MUh/dVH9xXzEkCFDfDU04WNOnDjh8rEpr6cwzIfNv5TXU1o8/v79+1lWVharra1lNTU1LDMzkx04cICdPXuWAWA7d+5kjDE2bdo09sorr7CLFy+yPn36MLPZzBhjrLq6mjHG2F133cV27NjBGGOspKSE9evXjzHG2LPPPssGDx7M9Ho9Y4yxxYsXs2eeeYYxxlhFRQXr06cPY4yxJ598kn300UdCn71792a1tbXstddeY9OmTWOMMXb48GHm7+/P9u3bZzUHo9HI1Go1q62tZYwx9sADDwh9VVVVMcYYa2pqYmPGjGGHDx9mjDE2ZswYoZ/w8HChr3Xr1rF7773X4ZzEPPTQQ8JYjDE2ffp0tm7dOpvj5K5zZ3nuO8s8CPch/UX6yxlUx4rwOYrn3H8Do0Rb4rAde5bZ3bdz507ceuutCA8PBwDcdttt2LFjByZOnAi1Wo2RI0cCAO6++2688cYbmDNnDkJCQnDfffdhwoQJwi+rrVu34sSJE0K/Op0OtbW1AICJEyciNDQUADB58mRcf/31eO655/DZZ59h0qRJAIBvvvkG//nPf/Dqq68C4F7jLi0txQ8//IC//e1vAIDs7GxkZ2fbzCEgIAA33HADvvzyS0yaNAmbNm3CokWLAACfffYZli9fjqamJlRWVuLEiROyfchhb07iX4gEQVgg/UX6SwoZVoTPcaREUpekokRbYrM9RZWC4jnFHpdF+pqtQqFAQEAAfvrpJ2zbtg3r16/H0qVL8d1338FsNmPv3r0ICQmx6YdXegCQmJiI2NhYHDlyBJ9++imWLVsGgCtE9/nnn6Nv374tkjU/Px9Lly5FTEwMcnNzERkZibNnz+LVV1/Fvn37EB0djalTp8rWYxHPU7zf0ZzE89FoNMLnsrIyJCYmtmgOBNHRIf1F+ksK5VgR7ZoF1y5AWGCY1bawwDAsuHZBi/scPXo0vvjiC+j1etTV1WHDhg0YPXo0AKC0tBR79uwBAKxZswajRo1CbW0ttFotxo8fj9dffx2HDx8GAFx//fV48803hX4PHTpkd8w777wTixYtglarFX59jRs3Dm+++SYY4xTzwYMHAQBXXXUV1qxZAwA4duwYjhw5ItvnmDFjcODAAaxYsQL5+fkAuF9o4eHhUKlUOHfuHDZv3izbtkePHjh58iTMZjM2bNggbHdlThMnTsTatWvR2NiIs2fP4vTp0xg6dKjduRNEV4X0V9fUX2RYEe2aggEFWH7TcqSoUqCAAimqFCy/aTkKBhS0uM/Bgwdj6tSpGDp0KIYNG4b7778fOTk5AIC+ffvirbfeQkZGBqqrqzFr1izU1NRgwoQJyM7OxqhRo7B48WIAwBtvvIH9+/cjOzsbmZmZwi85OSZNmoS1a9di8uTJwrZ58+bBaDQiOzsb/fv3x7x58wBwyZu1tbXIyMjAM888gyFDhsj26e/vjwkTJmDz5s2Ce3/gwIHIyclBv379MGXKFCEsIGXhwoWYMGECRowYgZ49ewrbXZlT//79MXnyZGRmZuKGG27AW2+9BX9/f0ennCC6JKS/uqb+UjDe3GxjcnNzPVaTguhYnDx5EhkZGb4Wg/Aycte5szz3nWUehPuQ/uoatEZ/kceKIAiCIAjCQzg1rKZPn47u3bvbrejKGMPf/vY3pKenIzs7GwcOHPC4kARBEC3FWzrMWeFHuf0duVgkQRCu4dSwmjp1KrZs2WJ3/+bNm3H69GmcPn0ay5cvx6xZszwqIEEQRGvwhg67VH/JYeFHucKQ076Yhukbp3u8WCRBEO0Lp4bVVVddhZiYGLv7N27ciP/7v/+DQqHAlVdeicuXL6OystKjQhIEQbQUb+iwcl059Ea91Ta9UY+52+YCAOZum2uz32g2wmAy2G1DEETnoNU5VuXl5VCr1cLnpKQklJeXyx67fPly5ObmIjc3FxcuXGjt0ARBEK3GVR0m1l9SA4mnVFtq9b8ruHMsQRDtnzZNXp85cyb279+P/fv3o1u3bm05NEEQRKsQ668g/yDZY5JVyVb/u4I7xxIE0f5ptWFFVZiJzkJxcbHdBGdfwi962l76qaqqwtVXX42IiAjMnj271f35mpbosERlosPCjwuuXYCQAOvqz4F+gTYGWWuLRRIED+kv12gL/dVqw2rixIn48MMPwRjD3r17oVKprAp2EYRHqKwExowB/vjD15K4RVNTk69F8DghISEoLCwU1gjr6LREh8WExmD5TcuhALe0hrTwY8GAAvz9yr8Lx6eoUrDqllVYeN1Cq22tLRZJdBBIf7Ub2kJ/OTWs7rrrLgwfPhy//vorkpKS8P7772PZsmVCRdPx48cjLS0N6enpmDFjBt5++22vCUt0YQoLgZ07uf89wOLFi5GVlYWsrCwsWbJE2N7U1ISCggJkZGRg0qRJ0Ou5BOQnnngCmZmZyM7OxqOPPgoAuHDhAm6//Xbk5eUhLy8Pu3btAgDMnz8f99xzD0aOHIl77rkHV155JY4fPy6Mwf/yqqurw/Tp0zF06FDk5ORg48aNAID6+nrk5+cjIyMDt956K+rr623k37JlC+644w7h8/bt24XqxbNmzUJubi769++PZ599Vnb+4kVJ169fj6lTpzqck5jw8HCMGjXK4Xpc7Qlv6bAJvScgLDAM4YHhODLriI2B1De2L3qE98DVqVejeE4xCgYUICc+Bz3Ce6BXVC9hG9EFIP1lRafXX8xHDBkyxFdDEz7mxIkT7jWoqGAsJIQxgLHQUMYqK1s1/v79+1lWVharra1lNTU1LDMzkx04cICdPXuWAWA7d+5kjDE2bdo09sorr7CLFy+yPn36MLPZzBhjrLq6mjHG2F133cV27NjBGGOspKSE9evXjzHG2LPPPssGDx7M9Ho9Y4yxxYsXs2eeeaZ5KhWsT58+jDHGnnzySfbRRx8Jffbu3ZvV1tay1157jU2bNo0xxtjhw4eZv78/27dvn9UcjEYjU6vVrLa2ljHG2AMPPCD0VVVVxRhjrKmpiY0ZM4YdPnyYMcbYmDFjhH7Cw8OFvtatW8fuvfdeh3OSY9WqVeyhhx6yu1/uOneW537IkCHs6LmjLGNpBuu3tB87du6YzTGF3xey2z69jaW/kS5s+/DQh+zWtbeyoMIgZjKb2lJkwkOQ/iL95QyqvE74HoXC8b+EBIBfwby+HujZ03kbB+zcuRO33norwsPDERERgdtuuw07duwAAKjVamF9qrvvvhs7d+6ESqVCSEgI7rvvPvz73/9GWBiXW7N161bMnj0bgwYNwsSJE6HT6VBbWwuACy+FhoYCACZPnoz169cDAD777DNMmjQJAPDNN99g4cKFGDRoEMaOHYuGhgaUlpbihx9+wN133w0AyM7OFhY9FRMQEIAbbrgBX375JZqamrBp0ybcfPPNwhiDBw9GTk4Ojh8/jhMnTrh8KRzNibBGo9VArVJDrVRDo9PI7h+RNAJlujJhoVqNToM+sX2gDFbifN35thaZ8Aakv0h/SQho8xEJQoqj5SorK4G0NItiAoDQUOD334H4eI+LopAoNYVCgYCAAPz000/Ytm0b1q9fj6VLl+K7776D2WzG3r17ZV3K4eHhwt+JiYmIjY3FkSNH8OmnnwohKMYYPv/8c/Tt27dFsubn52Pp0qWIiYlBbm4uIiMjcfbsWbz66qvYt28foqOjMXXqVDSIz53MPMX7Hc2JsEaj00CtVIMxBo1WxrDSaXBT35sQFhiGC/oL6B7eHRqtBlndszhjTKtBfITn72GijSH91SJZO7P+Io8V0b4pLATMZuttJlOrchVGjx6NL774Anq9HnV1ddiwYQNGjx4NACgtLcWePXsAAGvWrMGoUaNQW1sLrVaL8ePH4/XXX8fhw4cBANdffz3efPNNod9Dhw7ZHfPOO+/EokWLoNVqhV9w48aNw5tvvil4Mw4ePAiAK2i5Zs0aAMCxY8dw5MgR2T7HjBmDAwcOYMWKFcjPzwcA6HQ6hIeHQ6VS4dy5c9i8ebNs2x49euDkyZMwm83YsGGDsN2dOXV1SrWlUCvVUKvUsrWohP3NRhTQbIyp7LchOhmkv7qk/iLDimjf7NkDGCTFGA0GYPfuFnc5ePBgTJ06FUOHDsWwYcNw//33IycnBwDQt29fvPXWW8jIyEB1dTVmzZqFmpoaTJgwAdnZ2Rg1ahQWL14MAHjjjTewf/9+ZGdnIzMzU/glJ8ekSZOwdu1aTJ48Wdg2b948GI1GZGdno3///pg3bx4ALnmztrYWGRkZeOaZZzBkyBDZPv39/TFhwgRs3rxZSPwcOHAgcnJy0K9fP0yZMkUIC0hZuHAhJkyYgBEjRli9AefqnFJTU/GPf/wDq1evRlJSklvu+s4CbyQlq5LlQ4E6DZJVyVCrLKFC3suVrJRvQ3QySH91Sf2lYMyRH9N75ObmCjUpio4WYe62uSjVliImlFt6oqq+Cv4Kf5iYCbGhsTbbUlQpWHDtAnqrpgNy8uRJZGRk+FoMwsvIXWfxc9+Ryc3NhfKvSjw1+ikwxrBw10Js+79twn5dow4JryWg5skaPPT1Q8iIy8Bfh/0V0S9H4/RfT2PlwZU4V3sOr417zYezIFoC6a+uQWv0l89zrPjFSvl1tarqq4R9Jmayu41fwBQAGVcEQbQ5Qo4VbHOs+MR2hUIheLRqDbVobGpEbGgs1Eo19ld0fAOTIAhbfBoKLDpahHs33GuzWKmr0AKmBEH4ijJdmdVbgWLnP290AYBayeVTiY0tcXiQIIjOhc8Mq0v1lzDzy5mCB6qlUAJox8RHEWiijejs17fJ3ISwwDCuQGhQOEIDQnFRf1HYzyeuAxCMKDlji+iYdPb7u6vT2uvrM8OqXFfeYk+VGFrAtOMREhKCqqoqUk6dFMYYqqqqfP7KszcxmAyCkQTAJoFdo9UIuol/K5D3WAFAQmQCLtRdgNFkbFvBiVZD+qtz4wn95bMcK4PJ4PwgJ9ACph2TpKQklJWV4cKFC74WhfASISEhSEpK8rUYXsNgMiBdlS49sUs/AAAgAElEQVR8Vqs442lwz8EAuFDgVSlXAeAWbP6j9g8UXy4WjLFA/0B0D++OipoKpESltP0EiBZD+qvz01r95TPDKsg/CAbYGlcKKBATGuP0rUA/hR/enfAuJa53QAIDA9GrVy9fi0EQLUbqsZJWXxeH/YL8gxAbFosfy3/EHZmW9dH4ECEZVh0L0l+EM3xmWCUqE1GMYjBY3KlhgWEur/be/+3+6BPbx5siEgRByGIwGYSwHgCrIqAArMJ+ABcq3Fu2F48Mf8RuG4IgOgc+y7EK9g9Gj/AeSFYlQwEFUlQpLhtVAPDn9D9j82n5qqwEQRDeRC7HqlTHJaMzxqw8VgBnRNUYamyMLUpgJ4jOh888Vr9c/AWqJhVeHfdqi8J5QX5BeHHni3ju++eQrEqmYqEEQbQZ1fXVeOSbRwAFV0fvl4u/YMPJDVA8pxDSFfq/3V/IAf3mzDcAgBs+vgEvXfcSAGDlwZWobqjGK7tfAcC9KU26jCC8SGUlkJ8PfPqpV9Zq5PFZ5XVFggL4i3vhP56io0WY+Z+Z0DdZ3ipsST8EQbQtnaXyulh/3TvwXqw+tBr1TfU2xwX6BUKhUFi9rCO3TQzpMoLwEg8+CLz7LvDAA8Bbb7nd3FX95XPDCgBSVCkonlPsctvUJako0ZbYbHe3H4Ig2pbOZlgBEDxUnoR0GUF4mMpKoFcvoLERCA0Ffv/dba+Vq/qrXSzC7G6egb3jKV+BIIi2xtNGFUC6jCA8TmEhZ1QBgMnEffYS7cKwcrfIp73jqVgoQRBtjb/C3+N9ki4jCA9SWQmsWmX5bDBwn//4wyvD+dywakmRzwXXLkBYYJjVNgUUKNGWIHVJKoqOFnlSRIIgCFnCAsMwc8hMG33EE+gXiCD/IKfbpH1S4WOC8CCFhYDZbL3Ni14rnxpW7pZY4CkYUIDlNy1HispSWI+vh1WiLcHML2eScUUQhFfh9dfbN75tpY94D1aKKgWrblmFlTevRIoqRSgrI90WGxqLqOAoqz4pcZ0gPMiePZyXSozBAOze7ZXhfJa87qkkVkpkJ4iOQ2dJXvf0PKr0VUh/Mx3Vj1d7rE+CICSEhgIffQRMmtSi5h0qeb01UCI7QRAdnZjQGDQ2NaKmscbXohBE58RsBhoaLAnsXqTDG1aUyE4QREdHoVAgWZVstd4gQRAepL65zhwZVs6RS2Sn5E+CIDoaahWtHUgQXkPfXFC8ocHrQ3V4w4pPZI+P4Ap9UfInQRAdEbVSTR4rgvAWbeix8tlagZ6kYEABbs+4HdEvR+PX2b8iOCDY1yIRBEG4hVpJHiuC8Bq8x4pCga4TEhCC9Jh0HDt/zNeiEARBuI1aRR4rgvAaFApsGTnxOTj0xyFfi0EQBOE2yapkepuZILwFJa+3jEHxg3Dwj4O+FoMgCMJtKMeKILwIhQJbRk58DhlWBEF0SPi3An1Us5kgOjcUCmwZg+IH4ci5IzAzs/ODCYIg2hERQREIDgjGpfpLvhaFIDof5LFqGV//9jXqjfUIeD6AFmMmCKLDQeFAgvAS9fVAYCAZVu5QdLQIM7+cCRMzgYHRYswEQXQ4KIGdILyEXg9ER1Mo0B3mbpsLvVFvtU1v1GPutrk+koggCMI9qJYVQXgJvR6IiiKPlTvQYswEQXR0qJYVQXgJ3mNFhpXr0GLMBEF0dCjHiiC8RH09EBPTfgyrLVu2oG/fvkhPT8fChQtt9peWluLqq69GTk4OsrOz8fXXX3tcUGfQYswEQcjREfQXwOWJPvbtY1hzdA3iFsUhblEc/J7zk30Rp+hoEVKXpNrdTxAeobISGDMG+OMP67/l9jtr72qfrsrjLm2YYwXmhKamJpaWlsbOnDnDGhsbWXZ2Njt+/LjVMTNmzGBvv/02Y4yx48ePs5SUFGfdsiFDhjg9xl0+PvIxS3k9hWE+WPiCcPbxkY89PgZBEC3HG8+9IzqK/vr4yMcsbEEYw3zI/gtbECboM7ljxfsJwmPMmsWYnx9jDz5o/bfcfmftXe3TVXncZfp0rt3Age63bcbV596px+qnn35Ceno60tLSEBQUhPz8fGzcuNHqGIVCAZ1OBwDQarVISEjwjhXohIIBBSieU4zf/vobIoIicFfWXT6RgyCI9kFH0V9yL9+IEb+IQy/qEG1CZSWwahVgNgNvvw288w7396pVFm/T++9bb5O2X7HCtg2/7e23gWXL7LeXk2flStePl6LXt59QYHl5OdRqtfA5KSkJ5eXlVsfMnz8fH3/8MZKSkjB+/Hi8+eabsn0tX74cubm5yM3NxYULF1opun2uiLkCymAlrRtIEF2cjqK/XHnJhj+GXtQh2oTCQs6IAQA/P0Ch4P42mbh9hYXc3+Jt0vbS/dI++VUG5NrLyeNoPGfU13escguffPIJpk6dirKyMnz99de45557YDbbVj+fOXMm9u/fj/3796Nbt26eGNouaVFpuOaDaygHgSAIh7QH/eXKSzb8MfSiDuF1eG+VwcB9NpstRpDBwHmOVq2yGDoGg7UXiW8v14Z/tsTPmLS9PXmamlw7Xo729FZgYmIiNBrLWyplZWVITEy0Oub999/H5MmTAQDDhw9HQ0MDLl686GFRXafoaBG2l2yHtlFLxUIJogvTUfSX3Ms3YsQv4iy4dgFCA0Lt7ieIViP2LMlhMFiMLh6xF0muvVwbe+1dkcddr1V7Mqzy8vJw+vRpnD17FgaDAWvXrsXEiROtjklOTsa2bdsAACdPnkRDQ4PXPVKOmLttLhpN1iePchAIouvRUfRXwYACLL9pOVJUKVBAgdjQWMSGxnLyqZKx/KblKBhQIBz7xKgnhLYpqhSr/QTRavbscWwEmc3yhtPu3fbby7Wx194VeRwdL0cbhgIDnB4QEIClS5di3LhxMJlMmD59Ovr3749nnnkGubm5mDhxIl577TXMmDEDr7/+OhQKBVavXg0FH4/1AZSDQBAE0LH0V8GAAhvjSP26Gj9M/QEpUSlW2/t3648kZRLiwuJw8C8H21JMoitwsPmeOnIEKCgAjh7lPsfFAcePAz16cJ+7dQNCQoDPPweGDrVt37s3UFcHVFRwn8vKgLw8LrQHALm5XFJ8Xp5r8lx3HfDrr8AzzwAzZrg3pzb0WDk1rABg/PjxGD9+vNW2559/Xvg7MzMTu3bt8qxkrSBZlYwSbYnsdoIguhYdTX+J4QuGSg0rjU6DkeqR2Pr7Vh9JRnQJGhs5w4lHrQY0Gs6wqq8HamqAkSO5bWLDiqe+nsuDMhiAoCDuONHLJAgL445xFY3GMp676PWAUsl5zUwmwN/f/T5cpNNUXhdjL1+h1lBLeVaE72lNkTuiS6FWya8dqNFqkBOfg1pDrcMyDQTRKhobgeBgy2fesAI471NiIpCcDJTaiQbp9ZzxxHus5AwrvYv3L2Nc++HDW25YhYVxhqKXvVad0rDi8xX4HAWeqvoqSmInfE9hIbBzp/uvCxNdDrVSLZvCUKorRbIqGUnKJFq0mfAeDQ32DavSUu6zeJsUvR7o08dieLXGsKqq4mTJyLBvyDmivp4bLzjY63lWndKwAjjjKiIowmY7JbETPsVZUT2CEJGsSpZdO1Cj1SBZlUyLNhPeRRoKTE62GFG8kSTeJsZk4kKAffpYt0kWpeSEhrpuWPFtHRly9mCMGyc0lDOsyGPVciiJnWh3tLbIHdGlsLcos0angVql5vaTx4rwFnKhQKn3yZ6h09DAGTJiw4v3cvG4k2MlHq+szFIjy9V5BAZyeVUUCmwd9pLVGRgVDSXaHr7Inb2iegQhQS7Hymgy4kLdBSREJtj1aBGER3AUChR7kORCc7yHSNqmpaFAvm1EBGccVVW5Pg8+vwqgUGBrcVR0j4qGEm2OJ4rcEV0KOY9VRU0Fuod3R4BfAHmsCO/iKHmd9z717AlcvGhbZ4o3ZuS8XDwtMaykcrgCn18FUCiwtYiL7slB+VZEm+KJIndEl6JbeDfUNNZYvflXqi2FWsV9wahVapTqKLWB8BLSHKvERODcOW5pGd7QCQgA4uMtb/7xiA0rjYbr69Il7lged3KsxGFEe14ye/DeM4AMK09QMKAAxXOKoYB8wT/KtyLajIMHOSMqNxcoKgImTeLyBA5SgUdCHj+FH5KUSSjTlQnbNDqNkOZAHivCq0hDgYGBXFHQykrnHiTeS8TnWJWXAwkJ1vWj3M2x4hPf3fVYiUOBISEUCvQUtHAp0S44eBAYNIj7RwYV4QLSPCuNVgO10uKx0ug0YO4k8hKEq0hDgQBn1Bw7xqU1REVZtkkNHd5LFBfH/f3rr9ZhQIBCgR0dKhpKtAsOHgRycoC+fbmkdZ3OtXbioqJUYLRLIc2z0ugshpUqWAUA0DZqfSIb0cmRhgIBzqjZtYv7n1/6SS40x3uJFAogKcnSRoyroUCTidN7/ALqrfFYkWHlOahoKNEuOHSIM6z8/YGsLODwYdfaiYuKUoHRLoU03MeXWgAAhULBvRlI4UDCG0hDgQBn1OzebV2PSq6WldiY4dvIeaxcCQWeO8et88fLYq92lj3EOVZUbsGzUNFQwqcYjcCJE8CAAdxnV8OBlZXAihWc6/3tt7lFS6nAaJchWZVslQtaqi0VPFaA/ersBNFq5EKBycnAjz9aG0mOcqz4/T/+aG2MAa6HAqX1r1qSvE7lFrwHFQ0lfMYvv1jqsACc5+rQIeft/vlP7i0cAPATPbJUqqFLIK2uzlddF/bbKSJKEK3GXo6VXu/csBJ7iZKTbdsArhtW0ortiYncD06+JqAzKMfKuzgqGhq3KA5xi+Lg95wfFRAlPM/27dzrxryXKScH+OknLl/q8GHbHKrDh4ErrwTWrLH0Ia6D1ZICo5Sr1eE4cu4Itp3dBsVzCgQ8H4Cq+ioMfW8oio4WoehoEdadWIdZm2bJ6q+io0VIXZLqVKdJj/v8u6Wy94b4OLv6sg3vMVfn53EczasVc27NfFxqK9YtcvpGKndDg3yOFcDpJf5YtRooLrZuL/YSKZXc/7yhxeMox0p8Ho8f5zxefN/BwYBKBYwcaS2vvXMvfStQzrDy4H3b5QwrR0VDq+qrUFVfBQZGBUQJz/Pee1whPd7LlJXFebF27gQKCmxzqAoKOGUiLSoqxl2vFeVqdSiKjhbh+e+fR5OZ81iaGPcLvVRbimlfTMP0jdOFxHWp/uL3l2hLHOq0oqNFmPnlTKvjqp6cA7Zjh9W9IT3Orr5so3tMTu4209mO5tXCObdmPi63FesWOX0jlduexwoATp+2HNutG1BTY91ebMxs3879/8kn1n05yrESn8d//5urkyWWTaHgfpiKt9k799I6VnKhQA/etwrmo/d0c3NzsX//fl8MjaKjRZi7bS5KtCVOj01RpaB4TrH3hSI6N5WV3JsxZjP3gP/+O1fDKjHRes2rgADufz705wru5Gr16sUpS/E4vDziwn1ewpfPvSdpq3mkLkl1SU+5g1SnSceIrwHOLgFCTLC6N1yRJReJ2Lewivvi8vI9Zk8er+vsykogNZXzGEvnVVkJpKVZ1slzY86tmY9LbcVy88jpG7HckycDt98O3HmnZX95OafLxMeKdRm/bdky7vMDD1j0jvScnDoFTJjA/S9GfB4DArgfkOK+GZPXp/bGKSzktr/wAvD441wi/BNP2B+PPyeSflx97rucxwpwXjRUDOVeER7h4Yctnifey1RYaF0sD+AeZqlRFRQEPPggpzgY436l5eRYPrtaD6uw0KJUxeNQrla7xRv6R9qn9PO874FAPnVFdG+4Isu0r8ot95WX7zGf5cvOn295jqTzKixs8ZxbMx+X2oqffx45fSOWW67cwoIFFr0l1mXS9rzHqrDQ8uNRek7s5ViJz2NTk217ufEcnXtnOVaFhZZ8LQ/ct13SsOJxpTgoFRAlWk1FBfD555bPBgOwciWXH+WKZ0qaS5WeDvz2m3uru/MLQMu1ocWg2y3e0D/SPsWf42uAaYcAwdwX3RvOZImvAaYfUsjf0164x3xS9LmyEvjgA8tn8bz4Z4yfv5tzbs18nLblZXMFsdzScgtyC8nzuozXLXz7Cxe4N6FXrbIYdNJzIpdjJT2PUtn48fgfquJt9ha4d1R5nR/PaHR8LtygSxtWjvKtACAsMAwLrl3QhhIRHQZnyY3ihNCsLNs8KYPB9tejI8S/nKKjOS/W+fOutxf/mpOjoQF48klb+cnY8imOdFSgXyCC/IPstpXbL6fTxGPM+x5QSG3v5nvPmb58boc/AhX+dvd72mslJ4/XdbbYs8Ej9pi0YpH1BdcuQGiAdXK3q/Nxei7k5HYEL7c0x0pujnK6zGQC9u4Ftm1zfE7kcqzkxnA2nj0ZxPle9tYKdDZeC+7bLm1YiRdpVkCB2NBYoc5ViioFy29ajoIBBT6WkmiXOEtu5PdPmQJUV9vuN5sdP8xSpIs1814rV9mzx7FhxRjw5ZeWz5TY3i6QLiTv32y4pKhSsOqWVVh580or/aUMVtrs91P4CdvkdBo/RlhgGIaXNedWiWm+9/jjEiITAMBmvEnaJPgbHdxjHl5wnJcnLjQOAFd2wus6W+454ufVykXWCwYUYNF1iwAACijc+g7iz0WIPxe2s2m7Z4+8R8YevNzSUKDcHOV0mcHA/Sg7e9bxOeHf0BO3lxvD2Xj2ZODHcRQKdDZeS+5b5iOGDBniq6Edcvz8cXbFv67wtRhEe6aigjF/fy7DKTSUscpK6/1HjzKmUPAZUPaPaw13383YqlXutcnKYmzPHuttFRWMBQRYy1hRwVhQkFfkbq/Pvbu013mcuXSGpbyeInxuMDYwzAcbu3qs07bD3xvO0v6Vxn3o35+xv/9d9rhDlYdY9jvZjDHG9pfvZznLcqwPePBBxpYu5f7+9lvGxjofuzUs27eMYT6YRqvx6jgCL77IWHAwY488Ir//1VcZCwxkzGx2u+sT508wzAdbc2RNi0TLW57Hxn00Tn7nRx8xlp9vv7HZzOmtpibLtkGDGPv5Z9cGf+wxxhYutHyeOJGxDRuctwsLY6y21nb7woWM/fOf9ttpNIzFx1s+NzVx5z0wkLH6eutjb7uNsfXrub9XrGBs+nTb/jZvZmxc87nT6TjdJ7mGrj73XdpjJUff2L6orK2EtoHW3iLs8NxzFre6nJs4P9+yhhaPp5N33fVYaTRceC8vz3p7YaFFVrkkUKORvFYdiMTIRFTWVsJk5u7PMl0ZALikz0q1pWhoas49aWgAtPJt9Ea9EHZSBitt1ynUai11i5KT3auQ3QL48dtMZ5eWArm59uel13PPTQuqewtzaeHaj9pGrf22paW2lc/FKBS2oTm5cgv2UKms7xlxXpMj7NWycta+Z0+gqsrifaqs5BZ8TkwEysrs92WvQKj4mMhI7riqKufyy0CGlQR/P38M6D4AR84d8bUoRHtEmgQqTV4dOJArZifnlvZk8m7v3lwdGVdlvvZaYPRo67cQpUmbfBLoypUW+ZuauM/Dh1O+VQcgOCAYMaEx+KOWu1YanQbxEfHQNTpe7LvJ3ITK2ko0NjV/4TQ22l0gXG/UC7lAqhCVbd86HfclC3CvxJeXuxf2dhN+fGdz9BgaDTBihP216ngjwdUF1kW0di66Rp39thqNbeVzKVIjx13DSjxncfjNEfZqWYnzouTw9+eMq/Jy7jO/7I2cMe8ox8reeO4u9CyCDCsZBsUPwsE/XHyFnehaOEpeff554MgRW2+V9DhP4I7HqrCQM8Jqamy3yxmA0lyMhgYuEZU8Vx0C8RI3Gq0GWd2znHpAKmoqEBEUgUaTyLCy47Gqb6oXPFaqYBW0DVow8dumWq3FsAoL45ZwunChdZNyAO+paqmXx200Gq7it70vXd5IsHP+HCHMpYXeN22D1n5bVwwrqZEjV3ndHkqlrcfKkWEkHlPOY+WKYSY2fvhlb5ytW2iv8rp0PDKsPEtOfA4ZVoQ8e/bYGlYGA/D995xnB7BfBsGTybu8x8pZyQWxh23XLmuvk6uJqDxUkqFDoFapodE2G1Y6DbK6ZdkaPxI0Wg3SY9LdDgUGBwRDoVBY2gHWoUCgVV9QrqAzcF6SNgsFajTAsGHcW7lyL4TwRkJLDKtWhAKNJiPqm+rtt3XVsGqNx6oloUB7hpUr7aWGlVptf91CZ4swS8cjw8qz5PTMwaE/XFgcl+h6bN7MKRCDgXuVeOhQzrgZNcpipEgLeor/uVrM0xnR0UBgoHNPgDhfymy29jodPGiRq6aG8yzodMD113N1txgDZs2yLPxMhUQ7BGqlWigMWaotRXpMOhQKhcUbJYNGp0FadBpMZhPMzOw8FBho8USogiXhQHEoEOC8CF40rLQNWsSGxrZNKLC2lvtS7tED6N6dq1EnpZWhwJbORdeoQ1RIFPRGvZBjZ4W3Q4FKpfWcPZFj5czjpVZbwn7ODCt3Q4GtuG/JsJIhq3sWfr34KwwmN+oMEV2D//6Xy1cKDOSMqV9+AY4dA95/33JMWxXcdJZn5U7BwogI7lf4V19xXrXrrrO0FxfiI69VuydZlWwJBeo0UKvUQsjOHqXaUiQrkxEcEIxGYwN3rR15rAIsX5g2Cext7LHSNmqhVqnbJhSo0XB5YwqF/XnV13P7WxgKbOlctI1aRIVEITIoEjUGSdi/tpaTKy7OcSetCQVKPVaeyLFy1l5s/LjjsXKWvA6Qx8rTbPhlA4xmI0JeCGnbFdOJ9k1lJfDYY1ziKsB5poYP5/ItHC0L4S0SE4Hp0+2vxu5uwcI//5krEurvzykZV9pTIdF2hzTHSq1UyyeZi9BoOQMs2D8YDfrm4+x4XOqN9VbFKK36ZoxrJzWsvPhmoK5RB7VS3TYeKz6PB7A/L72eM2Ba6LFq6Vx0jToog5VQBitt2/NGh738Tx5xWM5s5p73wEDXBJAmr/six4pPXneWYyUXCpTLsWrhfUuGlQR+lfAmc1Pbr5hOtG+ee44LvR0RvTFaXy+vQD1cDFGW0lLLCvNyBT3dLVj45z8DJSXcfAoLXWtPhUTbHdIcq2RVsnxZBBEaHWeAhQSEwFCn4zyYDQ2yOUTiHCsA1t6w+npuEdsgUcV3b3usGrRQK9Vtk2MlDqfZCxXp9dyivS3MsWrpXLQNWqiCVVCFyHgnXQkDAtZGTmMjdx2dGWM84uR1xrh7oTWGlbs5VvxbgeSxan/M3TYXeqP1RdYb9Zi7ba6PJCLaBZWVwOrV3N/r1lm8RD/+yG0LCeE+eyOfyp48R45w47z9NvDOO9wvTHGo7uBBYMUKrq6WK3JFRXFKlDGun82bLW2SkizrE/LtKystpRkoRNhu4D1WNY01aGxqRExojNNQIB8yDA4IhkFfw93PkZGyPxqkOVZWRpv4jUBBIC8nrzfq2jYUyBso9ual13NlAFpqWLUiFMh7rGzau2pYifOd5BZgdgSfY8UYZ5QHBdkuMu9sTDGu5lhpNJysly9zBm10NPdmM3/vGo2cTLznzdUcq6QkLofOnaWAmiHDSoLPVkwn2jfiMgviQpr8m1bSxPC2kIfHz8+2yCfP5s2cJ8oVXnjBonyk/eTkAIckL3QUFlpKMzQ1kdeqnRAfEY8qfRXOVJ+BWqWGQqGQDw+JKNWWQq3kQoEGfQ335SNNRm5GXG4BkIQCpYnrgPeT1xu1SFYlt00okPeKAI5zrOLjfRIKVIWobF8mkMrtCHG+k3QBZmcEB3O6qKHBdW+VdEwxroQC4+K44375BUhIsOhC8bWReqJcDQUGBwMxMcC5c67NQwQZVhJ8smI60b6RSwLnV1O3t2p7W8jDj202W68s/847nDertBTYuJEzitztUzqfQYOsPV2HDgHLlllysPhV7Mlr5XP8/fyREJmAvWV7oVZyX6aqEJVdL0i9sR66Rh16RPRAcEAwjLzHSpqM3Iw0FKgMUlq8YdLEdYD7wjt3zvFalS2EL2jaPbx723msxDlWng4F8snrTspj2GurClZxHiu5UKCjqus80lCgO4YVYLlnXH0jUDqmGFf64I2oPXusDUexMS9nMLkSCgRa7G0lw0qCT1ZMJ9o37qzo3hZeG2ersTPGLf78179yMi1b1rI+xfPJybE2rAoKbGtoUTmGdoNapcZuzW7hB6EyyL7HqkxXhsTIRPgp/BASEIImfZ3FY+WCYeXUYxUYCHTrJl+aoJWIw19tlrwu9ljZS15vhceqe3h3p+Ux7LVVBivlPVYtzbFy17DivZxtZVgB3Lx277aenyOPlbuGVQsS2MmwkiBeTV4BBUICQry/YjrRvnFnRXdvJ6zbk0fK8eNc6QTANU+Ss0R1cSiwshI4ccK2j7aaP+EUtVKNXZpd1h4rOzlWfH4VAAT7B8PY0GxYSd/yaka8pA3QnLze6MBjBXgtz0pI2HaSQ+YRGLM2ULp3586PNIxVX9+qHKuWzkdoK+eddCfHShwKdCfHCmiZx0o8phhX3ypUq7nix44MK3E/ruZYSftxAzKsZCgYUIDiOcWofrwaAX4BuLXfrb4WifAlfCHN6GgupCFX+LMtEtal8kj/zZpl/TYW71FyxZNkr09+PikpnOI5fx6YN8/SLigIuPdeziNhNrfN/AmnqJVq/F79u2AwWRk/EviSDABXSb2prsZiWMkYB9IcK6vQk1zyOuC1PCtxiQGvhwKrqznvW2Qk99nPj0twllvwtxWhQGWw0mHo1llbm1Cg1CB0hCdCgbyx6U6OldRjxSfAu2pY/f67fcNKGgoMDOR0ojQpXS6nq4X3LRlWDlCFqDC452BsL97ua1EIX3PpEpcj0q2bryWRR5ojBVjnXbU2/0mh4PKstm4FPvjAst1gAD77jDOqvBDqIVoGb1DxBpOjUBmfuA4AIQEhMNXrOU+FneR12VCgQRQKbEuPVaOWS9h2UqfLI8glgEvnxb+B1oI6VkaTEQaTAWGBYS0KbeoMdpLXL13iSmDIXRcpnggFeiLHik+c93PBRBGXv7g6X6sAACAASURBVBBv40N4UlkUCnmvVVvnWG3ZsgV9+/ZFeno6Fi5cKHvMZ599hszMTPTv3x9TpkxxW5D2Snx4PPLX58PvOT+hWGjR0SKkLkm12ka0kI5SYPL0aa7Suas1XdoaZ3lXnsh/6t0bmDFDvhhqaKhDbxX/zPxc8XPrZGgBXU1/FR0twvPfPw8AmLZxGoqOFtn1gBQdLcKiXYuwcNdCpC5Jxfna8zA16OU9Vs3PauhFrW25BWceK6USWLIEn//vLRvdKadPpds+/24pzuVmIO95tdVxukYdVMEqhAaEosncZLNahiv9fP7dUisdZFe/Hz4MlJdb66rYWGDWLGFeUc8EoSbAjA2V3zn3WEl0H+99UygUtqFAF/SkVfK6+FofOMA9s67o2NBQnCk/itQlqfjT8tHYdeGAe99vrUxe58993PwwXPYzuDZ2RIQgu0ByMnD2LHfOjh7l/onn32xYia915fnfsaFki3XfajVw5oxwz7iqvwKcHWAymfDQQw/h22+/RVJSEvLy8jBx4kRkZmYKx5w+fRovvfQSdu3ahejoaJw/f96lwds7RUeL8J9T/xEWGC3RlmDaF9OgUCiEB5gvIAqA8rBagrjA5Ftv+Voa+/z2G2dYtFec5V15Iv/pzBn5JFM+kf/QIWDCBJvdfNFdaX24tqCr6S/pua6srcTML2fiwdwHbTwg0mNLtCUo05XhmCEOI+WS15uf1XuZCmH/Z10g1Cp5PSHBVrDdu8EqKnDxyYdR8meTMJ6cPpXbduGJvyHuAMNUBbB/gkXv3j3gbsEY4b08cWFxducn10/Vk3PA9pmhKCxE0QMjbNoI+v3997lwoFhXnT0LduqUMK8eRqAugOHBHU9gwmUGhzXLJbqP974BMssEuaAnecPMxEzWbV9/3bKSghMdu/PiAVT+vgslg0zobwK0rMG97zfeyxkW5naOlfh6JRmBWn+za2P/5z/c/598wi3FBVg8ViUlnIElvW4hIfj8YBFm7n1cuNbBjSb87fsnoI+PtYynVqPp5AnEGQzcPePajJx7rH766Sekp6cjLS0NQUFByM/Px8aNG62OWbFiBR566CFER0cDALp37+7i8O2budvmWq/aDsBoNtr8KqICoi2kshJ4992OUWDyt9+A9HRfS2EfezlSnsr/qqzkEkQBThFKi6H+6192+5cruttWdDX9Za/A8UdHPrJJhpY71sRM2P/7Tku5BT6cVVnJFZs1m3HL3suIvFQntLHyhsklr1dWAtu3QwHgnp9N6CFaxk5On0q3xdcAM/Yz+DNg2iEI7fVGPdadWAdVMGeMSL080vnF1wAz9ln3E18DTN9ngqK5KO6SDU/Inr8l/36c+/ECWHRVZSVw7JjVvMKMQH0gcE5RDz99g/3ikuJ1OJv7471v/DkVjFUX9aQQFg2WtN261VpuB3xwah2CGjmZg5uAxgA3v994j1ULcqzE1yvUCOgDXRi7spIrKQNwhhU/P52OO/dmsyWUJ55/cDBe377Q6lqHNgEXUW8znn+jQbhnAhwEBcQ4NazKy8uhFsWVk5KSUF5ebnXMqVOncOrUKYwcORJXXnkltmzZIu0GALB8+XLk5uYiNzcXFy5ccE1CH+JOUVAqINoCnnrKEr5q76/q86HAroq4GKrctZKWYxDhy2ejq+kve+f6fN15m1CgvWMN9bW2oUBRgVw/M0Pca+8IxzsNBYruHT8GzPvevTnN+55rJ9e+uqEaymClRQ7RHKXzm/e95QuP70fcN0wmTP1SkojezLSvym11lcy8wpoNAuYH1AYBqKmR7U+u4DCffA5IjERxmN+BnpRNXnexLU+J8QLCmmv+hjQBjc2F011+hnljvAWhQPEY/Hl0Ora9+RUWWr/II90fHIyL1RY9oDBzhmRDgGS8F18U/vRjQE87l1OKR5LXm5qacPr0aWzfvh2ffPIJZsyYgcuXL9scN3PmTOzfvx/79+9Ht/aaBCzCnaKgXikgKo6rd5RcJFeprASKRPFzcWHL9kh791h5E2fFQwHu3Jw7xy1ILblH23tx3c6kv+yd64TIBJtQoL1jYxRh1pXX+evfbEQEm4Cwok+F62wTChR7rPi2zRX6Q0zWXidnxNdwx/OZjdL2yiClED6TJrCL5yfbz0Hun/AlaDBg+mGFjWzxNcD0QwrLF7i4QHBzviEvl1prMQjqQv3lE9gl54R/nhrLSqxCgbpG0bkXyWjP88R7vITzwLflDTgXXmJRRvVAaLNYwSbO0JCeS4e0InldPAbv+XM4tj29dPiw7Ys84v1//AGEhKBXSE9hV2izUQWFaLzm/sX3TJyLjnenhlViYiI0oqz4srIyJCYmWh2TlJSEiRMnIjAwEL169UKfPn1w+vRp1yRox8gVC5XDawVExXH1zrbYrfgXGw9f2LI90pU9Vs6KhwLcmmCRkVy4RHKPuvoceYOupr/sFTieP2a+TShwwbULEBJgXacowC8AA1V9rSuvy15/yxJOEUERqDPWwWQ22XqsZNqKvU6BfoEI8rf2LIi3zfseUEjq0AreocAwDOk5xG4oUHwurDxTzQSZgEDJtILgj+d2Wq9v99wOfwQqJGveyRQI9mPAzJ85wyosMAxhsXZqWdl5nlLe/NDaY9WoldeTMp4nxpht6QlXnlsJ00fORkQTZ0rwoUC3vt9a4rFqzrES34+8x8rh2PbmV1Bg/0Uefv7BwXg45wGEBYTZH0+mf1dfXXJqWOXl5eH06dM4e/YsDAYD1q5di4kTJ1odc8stt2D79u0AgIsXL+LUqVNIS0tzUYT2C18s1F/6UIlIUaV4p4CoOAb/7rvA8uUdIxfJVXbvlr/5T5xof/O7dIn7ddlOvRRex1nxUIC7Xy9etCzgLLqGBQMK8Pq416FwWS15jq6mv6QFjnn9NC1nGuqMdTAzs9Wxf837K0ICQoRjJ/SegMSQOOvK6zLXXyG6/v5+/ggPDEetodbWYyXTNsQEjCjjdOeqW1bh/YnvC/v4bStvXokAvwAML+OOl7YfUxGA5TctR/eI7lahQLHHij8Xfgo/DC/jPDBiAgAESIwtf2MTbrsUbyXPJG0S/I2SN2FlCgSHmIDs8wBCuaLSUd3V8h4rO89TzKFfBSNRCOft2WPxbImOlb6IojfqEeQfhED/QMHAZK48txLGD5yEXsHxCPYPRrAJCAqLdO/7jb9nWpBjVTCgAA8MeYDb1ASw0FDHY9ub35kz9l/k4ecfHIwb1FfjhWtfAMDldDUG+1uPJ3ffuzYj54ZVQEAAli5dinHjxiEjIwOTJ09G//798cwzz+A/zdn448aNQ2xsLDIzM3H11VfjlVdeQWxsrIsitG8KBhRYKSMpvz/8u3feBhQvcCsuZtbec5FcZflyICPDtrBlYGD7mx//RmB7LbXgbZwVDwW4aya3EHRzCHtc+ECkRKVgSMKQNhW9K+ovvsCx+VkziucUo2BAgWD81DRax7nSY9MxJWuKcGxuQi7Q0Ghdef3gQeDXXwEAhnvvhuolpc31FxLYpR4r8b0TGwucP4+YhdG4dk60INuf0v6EuLA4hAeG48isIygYUIApWVMQ4BeAmx5L5N7sAoBXXsE/tvwdivnA7999joIBBcLCw4B8EdTb+t0GMzPjnnn9LSsHvPcepn0xFZEvRgB8yHfwYEHO37atQ6+oXogNjUXxnGLE/FLM1Wjr3t32GSguBtRqFFefhWI+UPH0HIzJ+DP3nWCnwKpwTmbMAHr1Ah59FGAM7733oHXyuqH53H/8MXdcXp7dF1HEbxQGBwTDT+GHxn17uGcxKIgzdFx5iSUsDCpTALJ7ZOP6hNGYduUD7n2/tbLcQq/oXgCAJwfPwXVZNzke255eEs/Vnt5qLrcwOH4wAOAfA/+CxB7p1uPx/Y8fD3z5JcZ//GdgiGv6y6Ucq/Hjx+PUqVM4c+YM5s7lMuaff/554ZefQqHA4sWLceLECRw9ehT5+fkuDd5RsBfj9VP4oaLGvaKILtXA4he4lXujRCZO7mpdLWf1YuIWxSFuUZz36nPxeWKHDwOTJwNXXeVa/o64rS+8Wfv2cW+WtDdPWnvB3iLVw4cDTz4J7NyJ0IWvIiY0xifidXX9xSNXy0qjtSxnA3BfykJhSHG5heZwqqm2xmo5Gx7Bw2KvjhUAqFRgly9D16iD3qjnPFxoXlJHqYZapYZGy41zUX8RjDGLsQYAWi20DVoE+wcLx/FrBVrJIKJMV4Zg/2DZfmoNtTBVX+LmKgoXa3Qa5PTMQa2h1vLWmL3K5c2GBD+uSV9jMSjsrLVoGUgDjBghjC2ei1VYU3KcHOLEd6tzce4cJ6OrS9M0h+X0Rn3rKq+7GwpsNqz462quq3Hd49USQkKAhgZodJb72u54/DV2oxI+VV53AXt5C72je+N0leu5GHydjhJtCRiYUCPFxoC5+27bBW7FiDwCrvYpd9y0L6Zh+sbpwraq+ipU1Vc5lq018HliBQXcr9CKCtfzAHyZY7Z6NRfmam+etPaCvUWq9+4FPvoIMJsR++l/kNbgmzwrgkOumjdv1PCEBIRA0dhoXW6BXxJFqYS5rlY2X04VrIJOX815C8LD7QigRMOl8wjyD0JKVIrwJVqqLYVapYZaqRbeyNLoNOgb1xd6ox6my9Vce50OOoMOGd0yhC9EvigmYJu8zved0S2D266zJNjzx9VVVQJpady+hgahTbIyGUnKJEFG2arrAJdXWFsLXT3n+TLX1VoMCjtrLVqEK7UymMTeN6trpdFw3qqqKvk17gCrUg1W50Kjsa5I7oxm75HeqOfCvS2tvC63PIw9+LUCGYNGp+FqcYnPozdo9liVakuhDFZaXzcpzdfRnUr4ZFi5gL28hRHJI/Dbpd9c7sdejRmruhn2FrgVI4qTu9SnnePkasg466fFiHPGjh/ntm3dCvzwg2v5O5KaL21GZaXFJdxZ8ts8jb1FqsX/m8y4b1Nl28pFWCG3sK9Gp7HyyAf7B0PR2PyFGhTELYVSX88ZAX37gunrZA0rZbCSM1IiI+0vQ6JSoe5iBZTBSqiVasE40mg1SFYmI1mVbL1NlYyIoAjUVzU/c82eoazuWYIBxids8zLYeOR0GmR2y0StoRZm3kATeR/0FyqBqCiuqGnzmn/82GJ57Boo/v5AWBjqqs8BAFhdncXzYS8UKAjX7IlqXnrFymMl9i6WlnJrdSYkcJXfZRC3tToX9gxCe/AeK0Mddx+0ZBFm3mPlqsfJ3///2Xv3MCnKM238rj6fiznAzMD0DCqIJxQE4wETk/glBpN1k/1lc2KzipuwHnajiYnryuKBCV5Zsya6X2JWNhFxt6NfEg9RAyZGI4miIgo4iOCAzEzPTA9zpGt6urv6UPX74+23uqq6qrq65wRO3dfFBVS/xzq89dTz3O/9kHutYOgsqSP32XQYVtF4FEvqlkAw6q9gLFaSFNsyrExCi7ewuHYxOkbMe6z09DgUx+VcFZcLuOGGYmz4U58Cnn1WESc31aZBuWrHXDE2bJC+CCXk8yS8R+eXzZJEx729pfwdOd9sOj1HFerAzEqouQ7XXltSxJ7N4ZMvd5YScS1MG7Q8VtRbROF2uJWeCuqBiEaJYZVKanusPCzSIwPG+ehYFunhY2A9rCLsF+WiksdK4cUKhcG6WaSG+slaGI+D4zmcPffsosdKxi0qyZEHYiQtZBfC5/SBHxkg7RS8Dy67ixhtLKvILSeNRzZGwyTGhXkBUIbAdHItkoHHybNy9tkkXJfLKb1v6lBgS4th3jq5t0tR32zyZQqbDXC7IaRTRQO7EgQCwPg40e+qxDAqeMqop7KiUGI1kIUCl9QvMfawWaHA6cWi2kUVeaz0uFpq3QyFXorcS6Ihwli2zTLlqh1zRYjFlIl7KdTzcziI8SgXaKxCi2XSoNLvmda+T1bEYsAvf6n5k00o/G5hRqDmWImiiB6uRxEKdNvdsPPZoqeCeiAKhhWSKUWeQKltNwt+eECfXwUAoRD4kcFSj5WcY6U6FnKHkBkdApqbAY5DnCceq2g8CkEUkMgkEHQFNecntcOSdviRQdJOwfvQHGoGPzpIDCCZ0SKNRzZGQwMlFEJ6mKRBEuUvaCOPFW3P6SS7jWMx41BgOGxoWMmNMnoupFBgJYYVIHGebJls5YaVzUaMq4GBygwjrxe5BIdjiWNYVLOoMo9XNaAeK454rBij/kIhiPG4xAk0A8uwmgAW11XmsdLjahnpZii8JMuXF3e2yNp02pQZqXxOH65cfKWCqH7l4ivhtlf4kABIZBIT41nFYsB555Um7qVQe4FWrwaefLJIVK9Ci6USGBL/29q0Ew5bXit9GCSDduTyQML84mRhchFyKcndQ8kheB1e+F1FTpTH4YEtm9X2WJ1+OphkSjcUmB0dMjasWBbZ0SGwblbhnaIE+hJjiw2D9bDIjA4S46BgEJ019yz0jfWB4zn4nD7YbXZpDFqhTur5yo4MFdvh4wiHwuQY9VhFNcZj0mOVHSXnkkklzZHX5e0V+paH84LuINEGS4wRI6O+3tiw0gsFVmFYiT4fXHwe9moMK4DMu7+/MsPI58PgUDfm+ueSeaTT08axOr3u9LIeq+zocEVafJZhNQGcVnMajowcMZRjkGPN0jW4+cKbJfE71s2W1c1Q8I2WLSvxWK1ZuganzjkV9V6SeDQcCuPq867G1n1bFUT1rfu24py558BjL42ZU32hOm8d/E4l8XQ4NTwxEntbG2CU/kPNp/rMZ4AXXigS1avQYjGLssT/114rNawmqe8PLXSSQXefUoufv/XfgCz5sYXphZrcTY0XOdwON2yZXPGFSr0uBY4Vk07rktdzx0eMQ4GhEHLHR8B6WLSwLejmSOiNhv3CrIy8XuA5sW4WudFREgorhPDm+eeh1luLQ0OHlF4ajVBgd7ybtONhkYuTdoR4HDkhh8ZAI9kVyLKk/WgUfI7HSGoEDf4GMp7CGA25SiyZe1OwCbZUWsmx0gsFytsrGExyArqNscHv9CP5wSHiZWMYRbhSjRLyurtK8joAweuBLwtiWFXKsQLIvAcHKw4FHhs8inAoDJ/TR87jFBtW/HgcfI5HOBQ27o9lkY+PKM5vOViG1QQQdAfBetiKJBeyQha3rboNL/79i1hSv6RUN+Pf/x24+WZtvaDFi4mLVZZu43j6OPoSfej+djcubbkUm/9qM7Z1bNMktLcPtCvi8BQiRLSyrRi6dUjKDK+uWxWJPRYDflEQ/9NK3Kulq0K5VpSovn078IUvAI8+SoRSv/a1iScULqAs8X/3bqC2lixOk5XM+MMONd9KEACnE9/deClqPDUzPbpZDbXOEzVe5HDb3bBncspQYDRKXuxNTbCneV25BeH4aFmPlXCc5Paj/KWckMPA+ADmB+cjHAqjh+uBWNgdRkOBYnwUCIchxuNI59LwO/0Is2HsH9iv7aWRgXqfpPGFwxDioyT1i5tFnhtVhAJ7uB4sCC2A3WYn5PV4lHwoDA0BTU3qGRU6Jm03BhphT/HmQ4HU4CkYTGrJBNbDIvXBoaIBVjD+tKArt1ApeR2A4HHDmyO8yKo8VixLnv0KDavBwS6EWWJY2eUG6lTA4wEXH0RzqBl+l59cN4NQoHD8uOL8loNlWE0QlfKsth/ejtWLV+PSlktxcOggBsdV3pw9e0jITwt2O3DuuYpw4B8/+CNWtayC1+nF6kWrsb1ju35yVSGDgfEBzd9oHbNkeFO4++6i98JsCK2trbirKJ8H7roLeOkl4IorSJjwD3/QzxhfIcrOddcuYMEC8sVooTowDFBTg9zw4IzpWFkgUJPX1VILAAkFOuQv1FAI2L+fvJx9PthTvC55vUR1vaQQMTSkUCAXRd9YH+b558Fpd8Lv8sPn9OHY+DHExmJYEFoA1s1CjMelEF7QHQTDMAiHwnh38F0lYVvlkYun4xAhSkYUaDtcMfULjscVoUD5OaFjFHt7gcZGwgE1mFdToAm2dMYceV0VChS7uxU7HAFiCGeOHinxbGlBi7yeSIwYG4Q6yHvc8GUBR6ZKw4reAxVyrEZGetESaoHX6YU9zU+5x2psbAgtbAu8jjL9sSwQP67plNCDzp1iwQwi7RHsie3BJ7Z+AnVeotQ8khpBC9si8abWv7ge3fFu1HprIYgCRtOj+PJvvox7Lr8Hi2oW4cyfnqmos2bvXuD22/U7XbwY+MY38MR/fxu37PshuuJdqPHUINIegSiKeHD3gxChrYHFgEGttxbDqeGS3+iXawvbgq54V8nvIkQsvH8hGaOGGm6kPSLNdQXmY9uTXsw90FksQInfGzaQRUoLWkR1qtA+bx451tAAPP88jt35XXzuqgTeEnulF7bWue+Kd8HO2JEX82hlW3Hfud/Fpbf+FJ+7KqF7nkSIuODuZvzpoTQCX/iy9lgtmEdtLcSRYdR4LY/VTEJN7qYhODlIKDCvDAVSw8rrhYPPwqfhsWLdLDhuDGg2Jq8zYwmE3CEE3UE4bU7s69+nCEeGQ2Hs6t2FOl8dXHYXQu4QbGNj5LkXBNTbg1K5/QP7FeEZajiKogiGYSQjiWEYhNwhMGNjQDgMJs6B9cwH62HBjCWKHqvuboVgKuthwYBB4sh7CBp5fUIhMP0JNAYa4ZAbVmbI6wDQ0oL8yy/B1UhS0sjnIxzuUnq2DDhW6nMxEnubnDc9g1AHOY+LGFbZfPWhQKBijtXxkT6E2cuJxyqdnXLDKjk2UvSQya+bGqEQGC4B1n0ahjBkqnnLsKoSlJ9DQ0lyY4WKbzIMI+lEyX/vjndj7dNrIYgC8mJeqnPzE9/ElzvzcJxxhn7HXV0QjxzB0L/ehK7VpO5oelTqLyfokMRBDAa6zViuXyUn0G+6fJNiXoquCxwkAArjSn0u1j7Xi7p3ABGq3ErUa/XTn2oPUIv4LIok/EmxejWGbv1n1L93FNcwwO7PlT/38nM8eNu3UP+2KNXVw9rneuGPAdEDr6PCPTUW1KipAUYPWx6rGYaa3B3loji34VxFGbfdDVH+Qg2FiO7clVcCdjvyTjtCKPVihNwhJKmRogeWhWMsIRkAYTaMV6OvKoy7MBvGzuhO6RjrYWHnEoTnEvBjvhCQyv3mvd9gVXiVVNdhc8Dj8JCdgu6g0khys3BwCaCxEbZMBjX2AFg3C/sYaRs1NUAuh2OxjpLxjHa8Y2xYsSzsHcSwcvKZokFRAXldiHaD/ZjSKGU9LJhoD/CpC8mBujpC6k4kyM47GdTkddbDwhU7VjG/CgByHifmwkcMq+nyWPl84I534tQCx8rJT7Fh5fEgmRhFOHRR+f5Ycp+E3CHThpUVCqwSWvwcOcqJb2aFrPTCp1jUk8KBepAtuFqIxYDXXwcD4Otv5dEgS/tVrj95uaArWCJ2Sg0luRiqFsqJjzaOAWv3khurJLNeOeK3DvEZw8NFiYOPfAS1B47CLpJ+GsZKi+udi8Yx4Oo9omFdaQ57yPjrX91jyStMFLW1cIxyFsdqhqEmd0fjpaFAt8MNV1blserrk4yArMuBYK40KT3rYeFIpMrKLTgSSSmk0sK2KIwogHiidkZ3Sh501l1oNxRCNuhDo+iT6vaN9ZUQiuVzpArq0vjGU8CcOcgGfGgU/Qi5Q3AmkmTMDAO0tGD8yMGS8SSPHDTmKbEsXIlkwbDKlVdep0r2MsPK1tOrORdHX3+xHMMQWoKG10orFOjrH65cagFAxuVAPeOHMytUz7FyOPTfY1rw+TB+fABhNgyvwwsXn51yuYX0ONkZ6nV6yXUz4Fg5E0mwLotjNeWYNOFMGZb1A7vmGRhHbW2SppJNBDbsqK6fkdRIidipHFQMldHJ5W0kPrphB8AUImy8HUqB03LEbznx+frriw+mPDHzH/8ojarSc7BhB+DMl6+7YUcx6z0jiJa8wgSRn8MikMwi4AqUL2xhyqAOBapV1wHCsXLmBKVhBUiej4zbjlC+NNARcofgLmdYsSxcibTkWQmHwniz703FGFrYFrzZ96Zk3ITcIbjH0wDLIhPwoCHnkerS39XjoHOU73ok4yu04/egMe8lXp3xdNHDEg4j391ZMp5c11Fjz08oBGcijaZAE1x8vmhYUa+fWhh5cJB4nGi5hgbY4hzqbcrnI+QOwdM3oDSOdAjsWuT1UP/x6gwrtwN1ondihlWl3iavF0luWNoVqDiPUwG3G5nkGMJsGG67G56MgLxHZ64uF/J2G+pgyS1MOSZFOFOF5TGg6xSdcIkqWbEnb+x1MYLZsVcqPkq9VZ6C8eLOozpBTTpXqtJN+Vn79gGPPioZVpWcAzo2ajCp69oZu6KcUyiWs0RBJwY+5MOCrBcMo22oW5geyMnreSGP/kQ/FoQWKMq47W44s6KSvA5IL2jeZdf2WLlZuJOZsnIL3vFMMRQYCiOdS5dwrOTHWA8LzzhPRDh9bszLkXHJf1eMQ0ZglxPRWVdI0U59lvC3vON80RgMh2Hv6SsZj703VtZj5U3yaAo2wZ1RGQRaBHa1tpTNBn5eLU5LKl/srCsE/7ERZVkdnpVWrsA5Q2NVGVa8y45aeODKCdVxrEKhir1NOY8LTCqFhkADMazU53Gy4fEgl0yghW0BwzAI5O3IuPWZUWm/G/Py5o1My7CqElpinxSNY8DLW4xf+E6bU9KzonW+sh84Eshoa0Zp8I/kXhd1e3rHFIKkZaCeI52X7dgAzv63WuxYyGD59TZsvb8LDWNKb5WEagQ19URB16wxPAfyMarP/YYdBeVvjbo+pw/rVqyDz+mbvDlYkDDud6EpW8UCbWFS8ccP/ohk9xHsWMhg5Y1O/OHnGazadJpivXE73HDnRMDjQaQ9gm89dyMA4G9+uwaR9gjSbjsC+VLDavvh7WDjGey77gu4YGNYew1jWXhTWYTcIUTaI/jlH+7Dy1uAux6/Tip/cOggGseAFV+9BRdsJER2byoLsCySPifqssSL/aejf0LjGHDZ4w0ccgAAIABJREFU1XdK/UXaIxg4vA/8pRdj+fU2XHvzo7jvqe8h0h5BjehBzs4ALheSPifqc04SLkvmgBAZz+YPfo2rf9eLax+6Umrv8Rd+jObdHfi75/W1/MRgEN5kDg3+BngygmRURNojiAqj2LW8Acuvt2HHQgZnbajFP/3gMgwd2qsY935mCN/+j52KYy///iHY0hlc8MA50rH/PvoEOm/5Bs7aUKtYgx/7vzFc9eOPSGN86ehLqOsdxbvfv0n/euiAd9swR3DDmRMr9lhF2iO46093ITV0zHS/kfYIHn7r57jutTwubGvF84efJ+dxigyrSHsEtzx1PVYeSuDrD34KkfYIgjkbeHfpfU2R8hbvPTOwyOtVgobP5Lv+0rk0xrPj2LADuLSbvLT/+XMMRIi6uwZv2n4ThlPDuPNlIJgBPt6e0CSIa/GPPHngkh6glW0t2YWotTNR2nmosavPaI50jHRet/wxBQYpXNoNPPqEiLOGyFwv7il6qyRUI6ipJwp65IjmOfhYrx1+p0f33NsZOy7uycOtMqw8eeDjMafEMVvVsgrn/XQtPHlVPjtLFHRCGAu4MC9jLTUziUh7BN/9w3fxHy+Liuf2mmd7sM5RXG88Dg/EnIhfHf4t1u34Nv5nN+FOXvHqMaxrXIc3GAb+HFPS9o3bbkTnCFCXKm1TQigEXzqPv3TuwN1/acMPf5/Epd3AP24bxDr3Orza/Soe2fsI/qPwDF/zbA/WCz/CnSIx9MY9NtRm7Ii0R3Dd767DD2Xl1jJkw8qPX8wo5nf99mGs86zD+tOuxce8drgBjHtJO6yHhS+Vw2PRbVj3h3/Cs51JtMaBf3guhrW2Qnu/zyCQBT75+iDWtWjMCQAf8IDlgTmeOeCzxCCgG3o6U3msHCmO58bnR3HuseJ5ouN+ZzyPxSPKY4/+PgO7qDz2fGcGrXHSDgMo5nrtc31Y5yyex66+MtdDB2knAzblhCcLiC6XDiFE+x5b9+w6/KY9CU/eXL+0zosfkHN/zbM9+J79e/h7mYE6maD9Pf5WEnWp4jl7MSsi5QDm6NRL+OyozegbXiUQZwgrVqyYqa6nDK0/bhUbb4GYdBCm0LgDYsMtEFt/3Fq2Tspuvo4oCOJQvV/c+thtkz4HozEmC2PMMBCzDPm3AOW4V90UFAcaQ6IoCFM6plhLrfjwf12nO0b1eRzjx8Q/n2ITk0/9Wuz9t5vE/7mU1W3753/VLB79xhendPyzCW//+7fFl1bNF0Xxw/Pcn2zzoM8Hb9N+bulzIgiCmLJDXPzvzZrr0p9OsYk7H/m+Ztt5nTblSLgY8fRNTZrrpP1uu2KM4w6IZ18PccBHXlM7//p88fmbPif1l1aNTX6sZF26tV7snOcWRVEU37hskfjCxmvEY0NdYtoOw/bMrOUDb78iHqm3i3khL6bsEIVkUmozp1onM0zpeWq8BWLGpj8XrWNGazA9j3rXuBxeue6z4gtfWilyLojp4YGK7zH1uM28/3jV/HMMRDGTMd33RMf4dhPEIy/8Srfe3nPmin/++R2mn3srFDiJ6I53KwjSDoF4ToyI7uo6NDxlVEcEsH2RiM+YT1M4IdAxugpjtItknHLQuX50/xi2LdJTiJo8bFsk4oqOoguqZIyqcx9IC1gRY/DSQhHbThPxmcNiMbmyCp/pELFt0VTPYPZg1MugNjXTo5jdkNYZnXA4fU4YAC4BODLeowix03IJhwCfyqFL21ZvKtFaw+JuIDkUU4Tmafm8mMedL5P+6fHbXiF1aN0Qr79mbtgB2FUec/pbdmQI8UI0Ou4B2DTA8gw4d7E9umjJ21OPUXNOLhEhHrAJIlwCkLaLUpt5lbvHLltW5P0wJvresEMaouYaLD+Pd7xcetzshqukE/BlCUc2bTe/DtI50xpm+tW6d+58mZy37BRYJ3rX2pMFUk593xznBljefD+WYTVRxGJSwuBPjzXgH3cXCdIugWzb373FScjPsrIUnx5rwHW7AepkpKTqFcyCkq5owmD7RjueOiUN8emnStrT6kPzWAVQj9GG4o1Db0U61399BXhxXgL2jfbSpMYVQC85cqQ9ggU/WoBI8yiGHt+CYyvPlM69fIxu+bnftw+4+GJ0nlqLr2y/Ft/s/E/kxscwtPS00nOyfz+a3u/DDwee0k7MbKFiDLnzCCXN5dO0MDVYgflYu7f4vKo3gEjrTSaDnA1YZmtSbESh5USGgTcjGratt4blhBzibhEX83Oxdi+k0Dwtv6yfwTWyHPOePPDFA8C4ExBFEcddIkIpQerPJu9vD/lDA87qsZyfrkW8YLEdd4kI8ALc42lwHuB8NJWOp9Ceeoxa6/KoW0AwJQDpNFIOIJVPS2OkRqJkOEBn3GLpMafGMXo9tNZgxXncV/566CHpEOHlBbjyAF+BYUXnrL5njPqldeSbha7ZB6QdQCo3+V9jtD/1dQ3ywLhdf40adRWusUlYhtVE0dYmJQx+/Gl7yQn15IHlXRlSTlaW4vGnbCUxbJsI/O+BJYpj6oTBf1gooGbvIYh/+YuSWK3Rh+axCqA1Ri148uQGXdUpaic1Ngm95Mg3/O4GrHt2HfrG+vBKC7AklkX92wdx6Oa/0xyjm577NWsgHjiA0cQQEpkEwAAjbhG17x7FoZv/TlEn9o0vgxFEfPfPwoTmYKGIAU8OwfFs+YIWpgyRA2eUeDgoFOsNzyPjYPBI+6KSTRw2EThz1AZPVvmC0Wpbaw3jeA4Jrx3/cbBVs+3nts3RbKc+CaRzaYy4cvCl84gcOKOkvitf6o2Tt7H+SBOGCy6uEVcOgWQeiMcx7nFgS/tpptrTmhMAxBmejHt0FGmXDclsUnOMWtDqx+wxLRidR62xayHhEOAfzyLtAHgT2ogUWnMu169eHbsIQ53IaqHXX30KGHfqX7BRVx7+tPlUapZhNRFQWQBBAB5+GHOO9JYaSSh8OTz8MPlDkwsXPFhzPugrqePJA0sOKdPOqAVJAxly8zGiqGhPGo/RsQrnqDVGLdC5fv2d4q68ahI46yVH3vzWZul4bYp85dlFoOWJFzXHaC+MB+++CwbA+b0iGsbIzsHTRsh4W558qXhOYjHM23UADJRSDFUnobYAAIg50vAlKvCjW5h0nP7+MJE/0YBiveF58A4Gp78/XLIRxZMHasdFsmOrTNtaaxjHc0j6nGjpHNFse8FASvLwULgEIJAldYcdWfiSWc2xOVD0+mjNb0EPB84tgs/xGHJk4U1mAI6MZ/GhIVPtac0JAOI8h5SPRCWoYaU1Ri1o9WP2mBboeTRzPfSQcAjwJ3hkHQzSuXT5CgXo3TNG/WrVcecJtWQqDCu9MbrywJg6jizDkDMDb9L8x6FlWE0EbW3FvHZyETiXiwhjXn89SZxMf+cLLxe6fV/uQXK5sP+Ll+Hap9dqCmmq49TyWLaivVyu/LFKcMcdpfOSC37KBD3pZiG1BEKlYqp65eVK9Rt2AEKhP488iw8d43XXEaViGRjIuAp0rHmxeE7Wr5e+9CY6BwtF9DqS8IyldDltFqYBe/aQpOIrVhSf2dZW4PBh5XqTTiPrYND1p6cAUcTm3Q+BuQt4+O1fAKKIX1/ghVtlWGHPHuDQIfQ3BbF1zyO6YsDxdBy8zwXccw/5/ZvfJDu/fvQj8v9UCti0iRz71rfIsUcewUvnBhHn4xhw8vAkM6TdV14hjX7nO8p1aMkS4MAB8u8NG4A77wREEcx3voOU3w2O5zDoKLQTjyPtd2H/7x8FRBH/Z+vlGPjEhcDTTxfb+4d/wGP/9HE88Nr9ugLHHM8h7XMD/f3IuOzEINizB6IgwLXRCT6bVoxxaHwQtT+okf6fz+ew6h8dEFauVM7lG9/AXV9tQnv/O9KxTz7yCfzxyAul6+8ZZ5DUQ/Q8vvIKepa24ru/v8WcOLMMCYcATyKNjMMGPl/BB1FB4Lnt5Y0I3ROsSBT6+mevQ7I2BPT2Au+8g64GN1LZKSBmFvp7dO9WtJ/XBGzbJkn4jDv0XYKDjgy5Z0zCMqyqhVrEUo5Mhnin5AmFtX5/+GHFsTOfex3RQ29qdicX5VSLXSr6o0aUvA/5sUq8VrEY8MgjynFr1S+cCz3xzUrFVPXK64l4KswnOu9HHil5kWtxFdwCTImPToUg7GzBYC4OweUkOc4szBzicaUyupaKN88j67RJngqaWzAaJ+U4e46k/9BoO+PzKJTd1eB4DnzAUxTMjEaBCy9UjiEaBT7ykeKxeBy834N4Oo5j9jRciVSxHJ2T3hzlYpq0HZ62kyZjLrQNEEFRR+vCkvE4Wk9BlNNOfgyQPH0Zf8GwctslgyCdS8PG2OB2KLWg6rx1RJonMw4AODZ+DEyIhU0tJMpxcNfMVfQtFz1VQJ3wOR6HLTSnqg9Czp6DZyyFrNMGPle5pznOxyv2NiVzSSQb68i5TyaRpQbqFIHP8Tg+N0j643nk7TaMC9reuUw+g+MugeSaNAnLsKoWWiKWcmQy2nnvDH63CSK++MR7mnnu5GKdmiKWWv3xfNFLRkG9VuUI7bEYsGxZ0ShT15ejjHhpV7zLNAk80h4hPCgVqIinw+bQnr8cBudek6uQzQIXXVRiBMsFRM2KqlooxWhqFPk5LDAyMtNDmd3gOKUyupaKN88j47RLL1SO57AguEB6uXO2HMnjptF2NuhT5CJUI87HkQv4igZANAqsWlVqWMmPxePIFdrttyXhHEsWyy1YUKpqLp+jyrDKBXwFAy0F53hSGnOcj0MURUTjUfhPPaNkPP5TzzA2rNJxZIN+IBZDxu2UDAKO50pS7gAAwzBoDjVLbXbHuxGYu0DTSPTVN0nGkSiK6OF6FMrwEtQK7/E4nLV1huPWA2fLwsWNI+u0V+axovV5Dnkxj6xaD9AAyWwS6aa5kmElP49TgXQuDa6BLRpyBv3F03FkAz4wY+bTnFiGVbXQSxhMIQjGhpcglHhUmEwGH+tz4MDggZLiNDlywBXQFuLU6k8r9ELFLssR2tvagIEB/fpyGIiXUpghgVPS+nBKGZO3M3Zs/qvNePCzD2Kuby4+1ucw5i8YnHtNrkIuV5rPqzCHS3ttiiTVFirHSGoE4pw5wOjoTA9ldkPtsdIxrHKyF2qcj+OceecgykWRF/JI2POwpzRetvE48sGA5P3R7D5Nyig8VpdcYmxYcRxpl4+j15aAPTFeLHfOOUpjJJslH5J+f+n8OA75UACxRAwpnwtMnJPGzPEcRlIjRHX+lEXFOoVkyTWnnyt57LTA8RzyQT/Q34+cp/iCjvPxkpQ7FGE2LLUZjUdRM69V00gMzW2Wyg0lh+Bz+rQzfqg9VhwHT22D4bj1ELdn4UwkkZN5LiuqX/BaVmIYpbIpZOc3AN3dQCplaOhMBvg8j8S8mmJ/Hv3+OJ6DEAqUGr4GsAyrakETBq9aBbz8sjbvSOvPeecRgyaVAoJBYHhY8fv3H/j/sLd/r2aXa5auwVlzz0Li9T8X6zz5JPCpT5F/b9xY5By8/nqxotcL7N9PvmrSaRJXNiK0x2LFMKXHQ/5vlEhZnjy58Gfhj1tx/nXKYuVI4FqkdQAQRAGXn3I5Oo93Ii/mcVYPb/58l/vT01PkYnm9irm+2bMLX12/xDKqJojR9ChsdXWWx2qmYcZjlU4jL/NYSYZVPIpULkVyuml8hCAehxgKGHqsOJ6DGAySF1Q8TjzES5eSlxtFdzewciUxwnkeiMchhILoT/Qj6XWAkXu71IYVx5E1lT7PdH6iSMYXDKA73g0xVBgDR8YTT8eLIbZwuDie48cBhsH85jPLhgLFYJAYVm5X0bBSJUaWIxwKS56oKBdFw7xTiGEop5bE46hpXKjwbGmGAQFyXVWhQF9dEwbGB5ATNEK3BjhuIx/JOaejulBgunLDKplNIheeL3mQ8h7XlMgtUPA5HuONtVJ/OY9Ll9MV58k9aBlW04mODmDxYvPlV68Gtm8H/vIXsjDUKpMuL29cjj0xbbJfTshh/8B+nNd4XvHg5ZcTj9H4OGl39WpyfOtWwFFQdcnngQcfBM48s+ilog9wNlvqtdq4seiBEoSqZBr0YvvlxOK0IELE84efx/aO7bjitCtgYybxtt20SXmeZHNdMX8FhpJD6DreNXn9zTKIoojR1CgcdXMtj9VMQ8tj1a165ngeOadD8lRwPIdz5p2D7ng3xjPjyHldQFLjhclxADvHkGMV5+NFzwpNRNzUBAwNkfUmkSDG1Ny55HhPDxCPg2FZRONRMCEWGBsja1J3N1k/5V4ejlPOLxQiz/boaGHuc0g77BxStnA+4nycGC1sWMk7i0aBlhbMD87HscQxXQOF4zlgzhwgFlMYBOrEyHK0sC2SwRSNRxFmWzTDefWNpxXLcVF9rifLlpwLe00N5vnnoW+sT/eaaOE4Q4ypnKv6UCBQuWElNjcrDKupDgXKOV2CQX8czwEhttSjaADLsJoIOI4sBk1N5uusXg088wywdi1w6aUlP48kR/DQWw9pilO+P/w+mgJNyq+gUIh84f3iF2TXz+LFRWK9mrR+6aWE1P1f/1XkE+VyxDt18cXEc7V3L/DQQ8UwYqWE9wL0FgARIhwbHWDuZkrmp1fH7/Tjxm034oZtN2B7x/bJ05RSb0BQzdXG2HB63ek4f/P5llhoBZCLu7be3woGDGx19ZbHaqZhNhTodhRDgek4mkPNsNvsiCViED0ebcOqQJYuR15n5tSQdbNgtMDhABobgb6+orHFMMWxcRxs7BxEuSgCXpZ4lcfHtT1W6vnJ58hxsLEsolwUDDVC4nHY2DngeI4YN6Ew4W3195P1sTAep91paKDEedIO+vsheD3mQoEhWSiQixKjTu114jg0LjhdETLU9VhpkNcRCiHMhismsI8WDKu8zMCuBHE+DgZMRR6nZDYJJtxSNKxk53EqwOd5ZJoaiPE+Po68R7+/eLpwfS2P1TTh8GFg0aKSbf2GuPhi4NAhsq306FHFT5H2CO5/437weV5TnHJPbA+WNy0vbXP1auD228licO+92sT6fB7o7AR+9atS7lU6TUKHbW3A175W+nsVMg1ysr0aVDZBPb9Nl2+Cy+5SlHXanMjkM9JNP5QamjzBTr3zVJhrpD2CN/veJBwhSyzUFNTirlEuiqyQxYFczDKsZhomQ4GCLAREvS7hUBiHhg5B8HoIjUGjbUdNrTF5PR2Hc06t0mMlH4fWsXgcjjmEhM16WGJAHDtG2li8uNRjFVKF3uTt1JB2Av4awEl0pxw1dcpQoMtFogj9/YrxyDlRWvNyzKkFYjGFYaVHXpfak3miwqGw0jjK54HxccyfvwQ9XA8EUSgaYFrQ8HaBZRUGnFmMMsSYyrucVYUCOZ7DPP+8yjhWuRQcraeQc55KQfR6pkZuoQA+x8MWDAI+HxCNQvB6dA3BOB+Ho7bO8lhNG6hhVQmGhoqepN/9TuEJWv/i+pKLK+cl7e3fi2UNy0rbXLmSfMUBxOPy5z+XEuszGeC994wJ97/4BSmjhhZhvQwo2b6VbTUsJ5/fmqVrcF7Deajz1oEBg1a2FSF3CFkhq1tnQtDagCCb6/oX15fs0LTEQo2hxZMTISLSsx3vvv/KDI3KAoBSj05dHQm9yWUweB6Cy1mUW+AJTyjMhnFouGBY6XisnLVzDcnrXIaDo6au6LEyMqxoSI7j4KytRzQeJWE1liU6VfPnEz5VMln0vpfxWLlq5pJ2qIEWjcJZWw8uwynDbBrjCYfCujwrjidjRDoN0eNVcKz0QoHy9qQwpNw4GhsD/H743AEEXAEMjg/qSy0AmuR1hEKG49YDJ6QgOhwQXM6qQoHxdByNgcaKQ4Gu5lbyfjx+XHEepwJ8nofb7ibX99AhwMBDxvEcPKE67fteB5ZhNRFUyq8CiDfEVjjtKk9QOV7Snn4dj9Wvf130muXzREZBi6h92WVFwVItEVO5NINaDNSkuJwca5auQefNnWDK6LbT+WXzWbw//D7eveFdCHcK6Ly5EyMpbS/HpAh2apDu5XOthic226F3boY9It54Z7vu9bQwDVB7dOQhNwqeR97tkl6oHM+B9RDPx8Ghg2C8Pl3Dyl1TX9Zj5amdp+2x6u4mfzQ8Vu7auejheoj3JxQiQpjhMFlHg8GiMVIIfykga8dVU0/acRXa6emBu4YYg4TnpD8eI89PnCdjBAD4vJKnpZzHqjvejUw+g+HkMJoCTUrjSMYXo3wsyQDTggZ5HSxL6lbosUpmk4DPB8FducdKEAWMZ8cxzz+vIo9TMpuEzxMktJqODsA3tYZVOpeGx+Eh1/fgQYg+n2EoMOhlyb1mEpZhNRFU6rHS4z4VvFZ6HKMWtgWiKBLDqlFlWFERz3KcKNo3/bozI2JaTQocnfGb+X1ndCdOqz0NDYGGsnWnQ7BzJvs+WaF3bka8QDCZRy/XO80jsiBBz6MjJ7DzPERZCIh6XVrYFrw//D4Yv1+XvO6tbyxLXvfWN1YcCvTWNSIrZIuepvZ24tEClF4eNXkdIOWOHgVSKfhq5ynbyWalMSu8QdRbRnlgIPe13kcDx3Pw1jUCABi/X8mx0vFYhdwhOG1O7B/Yj6ZgE+w2u5KALrtWNAwZjVdGXgfLEgOOM/8hmBfyxEvv80F0uSrmWI3xY/A7/Qi4AhXLLXidXnLd338f8OsbOpMBPs8T4dZCf4yBYSVtQlDfWwawDKtKoBbVrNRjVYbTo8dLGkoOoe7eOoykRnDxLy5WcnzKtGlYrpyIaTUpcDRgxLfyOX24cvGVWHj/Qnx868dxeOSwYn5adadLsHMm+z7ZQAnrXXHtHZSjXpLfUUv81sI0wShURpFOQ3S7kc6lwed45MU8PA4P4VgNHwLj82tzrOJxeGsbkMgkIIjaGnKSAcJxxJijxpGGIYNwmHBCx8fhq5kHAEVP0/79RQNM7uXRm9+77wKBAELeOaQd6vkC4KtrxGhqFL1cL5pDzcpzouZYaYTU8kIeyWySeOIAMD6/MhSoQ16nbe6M7iwadHKvk8y7GA6F0Xm8E/2JfiwILtBuTI+8XiHHKp1Lw+v0gikYVpWGAilh3+c0bxhRY04emrP5AlMut+C2u8n9dugQGL9+fzQcXuINNYBlWFUCtajm4cOVGVZlOD2Ul1TnrVMUGc+OYzRNtqqXEKjLtGnYdzkR0yq4VVpQ861oapqgK4irz7saW/dtlV7IHM8p5ievS3lX0yXYSfuu99YDwLT2fTJBTljXw4gXqEmhZHOChWmEEbmbguchut3g87z0pc4wDMJsGIlMwtBjZa+phc/p08ycABR0neY0kF24WmE/tceqowPw+8H6iSSN5Gk6dEhpWMk9VlrzO3QIYFnJeyT3PgTr5uPo8aOo8dYUU89QL15vL9BMjC09rhLHcwi6grDNqQEA2Hx+JHMF8npGPxRI23w1+moxvKdjJIZDYezq24V6Xz2cdqd2Y3rkdR2DUA/JbJJ8THq9EDzuikOB9J6pxLBK5VLwOX1gaGg6kSDncbpCgYkE7Ab9Sbs7LY/VFICKZlJRzY4OQjCsRGqhDKcHIC/zgCtg2IyCQG2iTcNy5f5Uwa3SAuVbiXeKyN2Rw1vr3kJTsAnbOraV3NBqgjitS3lX02nYrFm6Btv/bjuWNS6b9r5PFugJu8q5daMeoC7NYEFI54vbwtTDjMeK5wG3C3yOL36pA5JXxeEL6nKsqPGiR2DneA4h+oIKBMiOLDqG7m6lYVVXRzhUWgZRJlMsJ/fyaM2vuZmUZ1nJeyS9JINBsP5aZPIZJSk8HAbeeotwarxeckhnV6DEoyr0aw8EJW6REXmdntNXu18t9m0QCny1+1V9fhWtqyavsyzm+eeB4znTfCfJsPL5wBQ8l5WAiqJ6HV7THiepT0C6rjZ/cPpCgQBsfv3QpRQKtDxWU4C2tqLHJ5cD1q+vXGrBJMyQo092AvWyxmWIp+MnBUF8Ue0iHB45DFErRZAFQ2FX6mkMNIbRlPOg1lurWdbCFCOfJwZRQPXRpk7EnE6DcXuKHquCMULDZPaAgWEVCiHkDmkS2EVRLH75h0JFwwgggqDj40QCgRKEGYaMrdAmoAzh6YYC1S8/j4e0r9VOKISAKwAGjJK7RA092Rjn+echzsdLDBTFnADYZQaBEXkdKIYXzYQCDXcEqutSZXy3GzbGhgXBBejhevTryiA3rFDwXFYCes9U5LGi/CpAOueOwBQbVjnZrkAAjkDIkLwuN57NwJRh9fzzz2PJkiVYtGgRfvCDH+iWe+KJJ8AwDHbv3m16ACcF9u4lopr0xZrNAk8/TRakSSB3q2GGHH2yE6htjA2n156uu2PwRJrfHM8ceBweHBs/NtNDmTHIRT/NCru2sq2Sp/Gdf+mEazxNwjLTjFm5fqn5oGNjxKiyqZb8cBj44INiWZ4HCp4KucflyYNPwsbY8J97foasmMcv395abIMabcEgWA9bQmCPtEfQen8rckIOp//f0zFqzyrXToYhnv9sVrmezpsHRKN4Yef/AAD+8bl/xI9e/zH5zV0I25UjrwOk7ffew1/e+DUA4Eu//hL+e+/DyA0P4qmXfwYAeOrgU8X7urGR7JTu7pbG89j+xyCIAvz3+KVykfYIPv0/n8b+gf04dQuRwVnyQASeoeMAjAVCI+0R3P/6/QCAtj+3kX51PFZvx94GADzx3hP6IsU+Hzl/mYziPETaI+gb68OSnywxJXCcyqXgdXgBmw1n/P4tuAcry5ZAvZyVGFYKj1WBY3fW/cXzaAS9dYkeZ+5mNAWp07k08VgtIB70wP/+CsGRcc32d/XuwmWPXIYnOp5B9r13Tc2prGGVz+dx4403Yvv27Thw4AAee+wxHDhQmiR4bGwMDzzwAC688EJTHZ9UWLOmVDQzmyWpEiaB3K2GEdkb+HAQqCPtEbzR9wYElHK8TsT5LapdhI7hjpkexoxALfqpJexaluRvsxEJj4Q2/2aqMGt00O24AAAgAElEQVTXLzUfVM/oCIeBrq5iWZ4H4/UqQoH0+lNSetIJ3PL09cWXdEFzCTZbiceK1qU8n654F1LHeiGOjCjXzkyGGGfyY4ODEMfGMHz7zQCIB3TZwThEAIfu+mdSphx5vTB3cXQUyTv/VWrnrCNjsKczGLztWxAhSmNb9+w6RA48TkKAw8NAW5s0h5yQk+7/tU+vxbW/vVb62Do61o2MDfC//wG+9vQRMhydUKA62fxgchDrnl2Hl0feLvFYRdojuP2l26W6uiLFDFM0zAqeO9qPnuC0FiQjp7MTwdgIrnjsTd2yWqBzrtqwKniQAoeO4itPHTasp7cu3fC7GxScTy1Baj7PE46VywX4fLB3duOmP3Ca7WeFLESIOLUnCWfSXGi0rGG1a9cuLFq0CKeeeipcLhe+8pWv4Le//W1JuQ0bNuBf/uVf4PF4THV80iAWI4J0epgkSQI51ITtOm+dQjTzw0Cg1hLfBAix/USc3+LaxTg8Yvygf1ihxaFSC7veddldcNgc+vdoLGa8A3WKMCvXLyqtIk+yrhUmA4ihm88Xy46MlIQC1dc/5QCQTBV5kDKjTc2xUtdtHAMaxkH81HRssRhRU1cfO3IEDICvv5VHwxipu6qb1G156iVSTu2xUs8xFgOi0ZJ2Lugj7fz92wIaxorFk9kk7n/yX4rhzi1bcP9Tt5Xc/1khq1i/GscApwAwInDVzmGgv183FKj3PD34fqTEY1Xu2VOAnovC9aioruz35nHirWMAfPSlwxW93+icvU5v5bwuQEovxogiPvfqgGHfevPb/NZmXaOOzl8KBcZiQCoFRhTx9bfzEGLFtEXy9hvHgHMGTU0HgAnDqre3F2FZrLm5uRm9vUotmrfffhvRaBSf/exnDdvavHkzVq5ciZUrV2JwsIJRziQ2biz+m4pmXnedUpBzCrxWcsL20K1DGLp1aEbI21MFPV6OIAon5PwW1S5Cx8js9FiZ4cEtCC3A58/4vP49OgXPiBnMyvVLLq1C1yc9b478uuTzwJtvwu7xSaHAkCtUcv2TTsCXlV1/WdusWxkKVNfdsAOQfP90bOoxqI7ZRFJvww5IxAFGEEmZch6rtjZprZa3o25bjrXP9SrW92ueLc9P2rADku+dEUQIG+/GeHYcQXepqKTe8/R+7ljJXCrioNJzUU3dApLZJP7+meLvNkGo6Nml2l0+p0/aHVkOUvgRAL7/fencS9dYB3rzoB4qo3oSeV0m2G0Tgfzdd2m2v2EHZDdueUyYvC4IAr7zne/gvvvuK1t23bp12L17N3bv3o25c+dOtOupB/3yo6CimmYEOS0Y4mQT35zNHisz12pPTEO8loI+Rycg+f9Dt37Rc029g3R96uzU9uao17fDh+HMiQqPlfr6J52ANyu7/jJvmDoUKK/bOAas3Qs46G2gJVIsP1YQUvbkgbV7yB9XwXrx5FG8p/TI6ypBZr121u6F5LVqHAOu3csoxnPtPkbh1VKDzquQvwLuPMA88ghOSXthY0pfsXrPU6B+fkkosKJ1khLYC+ehmjVW7OvD/9kRlebvzIkVvd+qIa9LHivVOuGm11inb715UDkfPbSwLUjn0vANxRX3nicPOB79nxLBbnp9nZNpWC1YsABR2a6Rnp4eLFhQ3DI9NjaG/fv34+Mf/zgWLlyI119/HVddddWHgwDa1lZUSafQEtWcIq/Vhxknm/jmyeCxkhM56++tR/299Zpk80qhda0YMOiKd0lt7z22V9+w0hKnnSbMuvVLTzB461Ztb466rCii+aXdEseKdbMl1z/pBGpFd/FZlYcCPcpQoLzuhh0kVKaA1nqqccyVJ6G2knlt3076F8VSHpnG/LTakXut7v6LHU7Vi9kFO+5+RXnMaXNKmmya88oL2PBnaEJv7bvpijtKQoEVrZOUY1U4D9WssWf87Ndg1B9AFbzfJkReNyt2XYDe/NatWEf4Uxqg8+dzPEL3/qdGf0UP3abLN8Ftd2tf3zIoa1hdcMEF6OjowNGjR5HJZPD444/jqquukn5nWRZDQ0Po7OxEZ2cnLrroIjzzzDNYuXJlZSM5EfHaa6XpXrRENSdJSHM2YSaFP6vBiS65oCZyDqeGMZwaNk1aNQK9Vm67WzqmJvy+Fn0Nyxo1EoQD2uK004RZt37pCQYfPFhqWOmIBge6+pDOpSW+jPpZFb1ubLjgluKzauCxonWDriAu7il4mlT9laynGscckHm65PPq6CD9J5OEquGUCWhqzE+rHU8euKSH7GL9YrwZ9qzyY9qezeFvjzeTfH4g5bZ8fgse/uuH4ba7NefFZDL4SJfqo1x1TtRr399eeG3RSCyc04rWSXkoUFaXSmWYWWPr93XAmav+/UY1n7yOKjhWZsWuC6DzoxIuc31zsfmvNuPBzz6Ib33kW5JxRb2G8vnzeR7OXbtL+mNUgt3fOP8bWNXLlN63ZVDWsHI4HPjJT36CK664AmeeeSa+9KUv4eyzz8Ydd9yBZ555prLeTja89BLRVUmlpk1IczZhJoU/K0WNtwZuu/uElVzQE+mkKEdaLYevnvNVuB3uYtoPVdupXApNQR2xXLk47YoVVY+hGsy69Yue6+99j/x/82by/3/+59JQIC27dSvwta+Rf3/yk/jg328Dn+cVcgHyZ/XCxZ/Ap5ouLbajJq+r5BbWLF2DT5/2abz/wuPViRQb/fl//6/opdGbn4k/y2MiOm/uRO3BTs3faw924t0b3kXIHZLWqjVL16Ap2ITgux2Kss6NDvzpg5fwD3edr3uZNNc+p5PISCSTinNqep1Ukddp3e6bu+F3+rHvun1l19gtW76FW//wPUAU8WbPLqx8aEVF7zeq+VSxjpXDq7heoiDAdhcDQcgb9r1m6Rpcv/J6AMAdl90hzW9x3WJ89ZyvQrxTxOv/8DpWzl8pnTtRFImi/NtvK67bsp+dh72xPYr+WtlWbN1yc8Xrl8NMoSuvvBJXXnml4thGOalbhpdfftlUxycFXngB+OhHicichVmPxXWEZ9UYaJzpoZRgqkVlj44eRcgd0k2irJcf7kTArFy/olGSbqu7lGBeArn6Os/D7vWD53h95XCfTykSKieve1hNgdAoZ5BAeCJQEbanEnM8c5AX8lIOQEEU0DfWV/Kx4XP60J/oN8wTqIuJzEded9486TBNSRTlomXHJN+h53F4KldeLxjjTpuzOrkF2ZjpzkK/y29YP8pFsbh2sUIZPxovCqqqjbyskIXdZieJr2XQMgajXBSn1pxqah5yWMrreojFgG99C1i1aqZHYuEEQKQ9gvZj7fjolo8qBAL1RDOnYzxyPhVjIgNAuReb0Xz29hMOlV4bDJhpnb+FMujuBi65pGgwaXl0KKjSOACk03B6/YpQYAm83lLDShYKVHusgMKLziglS7VQhb+mEnIDBQCOJY5J4sFyUMPKSHVdF5SAbnS9ytXVOBfhUNjUh5XcyHE7qlNen5BAqAxeh9dUG93xblwSvkSRE7Gb65buN69T2Y4ktaDuz1naX1nFex1YhpUeNm4k2ipGGlYWZgUof2k8S5R55QKBeqKZ0zEeOZ+qnMeoHGm1nAjonv49WNa4TFe8VoQ4bfO3YALRqNKwMvKANDcDfX2ET8rzcPqDJaFABdQeKwMdKwDI5DMYSg5JHKVJBQ1/TYPHCiAfJ9QzovfS9Tq8iCVihnkCdcGywMAA+XelkRIVeV1v3EZIZpOS9IHbXnkSZurl9DoryxUopbSRwaxxFo1HSwwrI4+VJLVgor9qPwgsw0oL8m3ITz5pSSnMcmjxl9QCgcDEeUwTGY8aVFgWAOq8dWVJq+XEBPf0EzkFShjV2tI8XfO3UAb5PFmzLrpI6bHSMzw8HqCmhnxI8jyc3gD4HK/vsfL5CO+UwoC8DgC9XC8aA40loZdJgdtNdIgGBqbFsKJ5+wD9l64UCqzGsAqFyDWrxvtm4L2Tj9sIqWxqQqHAqnIF5lKaH2s+p6+scSaKInq4HlwSvkThkYtyxWvjc/oURPp0Lq25a1BdDiDeMMtjNVmQyyxYUgqzHpVwk6YjebTZPoZuHcLDVz2MT57yybKk1XJignv792J5E5FTWLN0ja6H7ERKnj1rEYsB9fXAaaeRl7Rsl5kuKM+K5+H0BYjHyizHSi23oAoFyl9yU4KJGCMVIhwKS54fvZfuhEKBLEvmUo2RqEFel8bNmjOskrnqQ4F8jocgCnDb3ZMSCjTTxmByEH6XH4trF6M/0Y+8kIcoigqPFQ0p0h3deqFAdX/pXBpxPo6GQIOpechhGVZqUG+VXLDOEgCd1aiEdDsdAqeVJOn+zKLP4I8f/BE5QXvrd7k2W9gWDIwPIJlNopVtNVXewgwjGiWGkt9P+FBDQ8YeK6BoWKXTcPtCSGVTGMuMmedYyUKBao+V/CU3JZiIMVIh5AaKXijQ5/SRUGC15PVq52JAfJcbhEZQcKwqDAXS0DHDMHDb3cjms8gL5XUKdDlWGpwnNei95Xa4UeutRX+iHyOpEbgdbkn13ml3gmEYZAWSLkcvFKjmdPVwPZgfnK8p8loOlmGlRoUiZRY+/NDiFckFAuWQi2ZO53jkkPOpXup8CYlMAq42l+G4Nl2+CU6bU3HM5/ThysVXYumDS3E8fRynPHBKZYmXLcwMurulZLaSwWTGY9XdDfA8XP4QxrPj8Dq82uE7rV2BhbY9Dg9yQk4RJp+yHYEULEvGPk0eK+qV1ZuX1+mdGHm92rkYkddZ8+R1yneiHiuz2n3y0LG0q88Ez0rO65LDjMeqO14kqdNwp5YnUd6WUShQ3l80Xv19axlWalQoUmbhww+5SB9Avmy2fH4LHvrcQ2BQuhtvqonsdDwuu8swSbc6O7vRuNYsXYNFtYtQ76sHADSHmnH1eVdj676tGEgOlMzrZBN4nVWIRoGWwguhpaVoWBl5QWg5nofLR770dT0uao6VzBvGMEyJ16panopp0FDgdJHXTXCshpJD1ZPXJ+Kx0gsFhsLo4XrKGklyjpWNscFpc5ZwSfWgDh2bDQcacqzKiIxGuShaQuReD7PEK6cVepa3ZRQKlBuCE7lvLcNKjT17iBF1/vmWAKgFCVSkb+C7A3Danfjbs/4W84PzcVHzRYoQGcVUE7nXLF0Dv9OPge8N6CbpriS7PcdziHJRdN7UidWLVuO+T9+HbR3bDOufTAKvswo0FAgUPVZmQ4E8D8bjgcvu0ve4GOhYAaVpbaacYzXNoUBqoBiFAgEDw9QIEyWvj44CiQQQCCh+8rv88Lv8GEwaJw9Xh+Uq4VlR4jqFWcNqIhwruXFLPVZaoWd5W2Z3BVYrtQBYhpU29u4FluvkPbMwqzHXPxdn1J+BV7pfwfaO7Vi9aHVVWeQniuEkkVigO/8q6V/r+IsfvIiLmy+G3+XH6kWrsf3w9hmZl4VJgNqw6ijkuHSXvkwkhMPABx8ADgdgs8Hj8Oh7XNQcK5XmklrLaso5VqEQMSimIRToc/okDtXg+KBmtgEa1qqavD46Wp2RGAySa+H3A/bSEK4ZnlWJYVUBz4rmCaQw43HS6pPCjI6V3PihYVotg0jell4oUN3fRLTXLMNKC3v2AMt08p5ZmPVoDjbjC49/Afe/cT8e3P2glKtKDREiHBsdYO5mJp13dXjkMBbXLTYUBjVDMKeioH/zq7/B7r7diLRHkBWyeHTfo1I+QLPtWjhBoDas9u8v/6KmBljB+HLb3eZCgenCdnyZ5pI6FDgtHiv531OMcCiM13teR0OgAQ5bafISyWNVbShQ/nclcDrJtdGpa2ZnYCqXUvCdKpFcoHkCKcwKfBrpWJXjaMnvLRqm7Y53l6xR8rYMQ4EyQ3AiHitTKW1mHfbsAa6+eqZHYeEERKQ9gm0d25DOk8WmP9EvEdm1uAh5keyKofwkAJMSMusY6cCi2kWGZTZdvgnrnl2nWNzkBHPKwaK/j6ZHsfbptWAYRldOwSKonwRQk9fffbe8N6epiXihamoAkBCQqVCgBlE65A5JocDxzDiS2STm+uZWPZ2yoP1Pg8cKIAbKzuhO3Q8MalhVTV6X/11NfZ26ZtTXJxIKpHkCKUxzrLL6HCtT5HXqsSpwrNwOtybHylQoMKcMBVrk9clCLkcWonPPnemRWDgBsf7F9ZJRRZEVsgi6gppcKzkmk3d1eOQwFtcuNiyjJpjbYMN/ffa/DDlYWsKnFBZB/SQAzwPHjwONhXyWLS1E+LOcB8ThABYskDxPhqFAuWGlwd2S5wuMclE0h5pNpVyqGtPssWoJtWBndKeuN2NCHKuJzoVldeuaUV+faCiwGvJ6tRyrnJDDscQxLAgtAGDMsZJLN/A53tSuQPmOw0phGVZqHDxIUjwEgzM9EgsnIPS++EZSI+i8uVNzl6CZ+pXCjMcKUBLMz208V5FQtJKxMGAsgvrJgJ4eYP58okYOEGOJYcy9qMNhRShQ1+Mi51hp7DZk3UWR0CnnVwHTHwpkw3gr9pbuvLwOL1x2l+bLuywm6rFiWUOPlVEoUBRFpLIpRVjO4/BURF6X3zOVyC1Uw7GKjcVQ76uXZG8aA40YTg7rJsaWc6zK5QrkeA45IYcaT03Z8WvBMqzU2LPHIq5b0EU53lI51/Fk8ZM6hjvKeqzUoKT0asZi8apOEsj5VQDgcgENDeZe1HLDyuE29lhRjpVGsmB5Wpsp51cB0x8KDIWRyWd05+Vz+qoLAwITNxJDoao5Vnyeh8vuUghiuh1u0xyreDpe8a5AURQrSjEjh/restvsaAo2ocZbUxLqU8gt5MtzrOgHQbWeVsuwAoja+mWXEXX1V14B3nzTUlq3oIlywphG4p0MGIWAKCWOM3czEsm9/t561N9brzimRXw/PHLYlMdKDgfjwL2v3gvb3TbU31uPoeRQSRkt4VOLV3UCgK5R+/YV1yr1b/39QHs78brLf29oIPp85da0mhqguxtP/OmneHfgXdy14y7tTRdjY4TH1d8PHD1K+iy0HWmP4Ge7f4b1L61H/b31+Kdt/4RH9z06taK5NEtGIjE17atwcOggAODm528umVekPYINf9qAoeRQdXOmRtHtt1f3DnK5gD//WbPu27G38UbPG7rrTeAekspIPm6tUCBdt2x32xRr2f+2/y+u/9310jGfgxhWWuUp0rk03A53ibp5pD2Cu3bchZ+8+RNpjOr+/vqxv8au3l2KY8cSxzAwPlDSDx0LUCCvqwyvSHsEX/7Nl/GX7r+g/t56XPLwJTg0fKjq+9YirwNEVf2VV8jfzz1HFqq2NuCnP53pkVk4wSDnJ9HdJ5su3yQdl//eFe+CnbFLBHa6y64r3iWRxCmfiZYZTg1LfekR36nUAhXzNINIewT3vX6flNZB3g9FnbcOD6x+wHB+FmYIdI1aswZ47z3l+iRfv3bvBgYHlb9zHElSXG5Na2+HOD6OoX+9Cfxqg00XP/0pEU1uayNjGR4G2toQue4SxWYI+T022Zs3FPjNb8jf3//+lK/ZkfYI7nvtPgBQiO5SyOdf1Zx9hY+yd96p7h105AgxqlR1I+0RrH9pvbSmmF1v1KFA9YYXrbWM1l/VvApZIYsn3ntC95xohQHVfajvI63+9MZA+5GH+dQesnL9VXPfMqJZvfpJxsqVK7F79+6Z6FqJWAxYuJAsFDZbMZ2N10t0XSgJ1IKFKrHw/oXoindNuJ1WthWdN3fijZ43cOO2G7F7nfnnx8wYaPtTiRPmuZ8gpnUesRghoedk+R7p+iSKwKmnEtkDm60oaCz/PRwmXh2jNU22DiYdwKk3AcdkNFPp3ojFdPu74LY67BZ7DKcy6fdYLAaccgoh7U/Dmq33HNGNK3q/mZ5zLEY4ckDl84nFdK91NWtQK9uK8xrPw9pla/H5Mz5fcTshdwg2xobj6eOabXfe3IloPIpLHr4E0W8XQ5STtV7K+7n9xdvhd/qx/mPrccef7oCdsePOj99puj/ajtnn3goF/tu/FVPYCAIhegJWfkALk4bJIqzTdjpGOrC4rjJ+lZkxWMKfJyg2blQaVUBxfWprK/4mz3Eq/50S2Y3WNNlxmwhs2KH8Wbo35LlUVf1d86yxUaVoZ7LQ1kYMu8IYpnrNNhLNnRRB3bY2okcFVD4fg2tdzXnvjneXhAIraYfjOU2jSt6OWjer2rHqgbZVomMlCwVOxdo4ew2rWAy46CJg61blcfqQZjLAli0W18rChDFZxG8RIurvrce6Z9fh8f2PVxT/NzMGi6B+AiIWAx55pPR4JgM8/DBZo+RGl3z9or9ns8VjWmtaLEaOFz4wPXlg7V6gYaxYpIVtKSmn7u/afYyijhYm9R5Tj2ca1myjzStmBHkNQedT7npVUbea897CtpSEAitpZ45nDkIubRI/bUcrFDiZ9whtS61jJQ8FTsXaOHsNq7Y24I03isRHLVheKwuTAC1Cu9PmhNPmrLit4dSw9OVVSbJnI1I9YBHUT1i0temvUZlMacL4cr9rrWlyL1QBcq+VdG9olJPDBTvufqU0lQrFpN9jWuOZ4jXbaPNKuY0tZTGR+ZSpW+75V4OO221X7grcdPkmeOzKHXxaa5nP6cNVp1+FCxdcaHhOtAyrcmPV2mBTbtONOqWNfFfgVKyNs9OwotZ9OWQyJCGzBQsTABXqbAqQvGKtbCu2fH6LlEgZAOwMeSHVeeuk/H/0mBHMio6qxUJpPwwYS/jzRMZrrxW9EGoIgqGho/m71pr22mslBpgnD1zSoxKF1Sgnhz2bw98eb56+e0xrPFO8ZqufI/m8jH4zhYnMp0xd+dgA4/VGPm63QxkKXLN0Db654pvS/+latuGyDXDanIp5f6z1Y2hmm7H5rzZL8hNzfXMV50QrnY3WWhV0BRX9PfS5hwBA6m/L57fg4b9+WPfcGymvT8naKM4QVqxYMVNdi+L114uiw0Foly6XKN5ww8yNxcKsQTafFX2bfCKX5kRRFMVvPvNN8Sdv/MSwDnMXI+IuGP5h7mKmY/iTghl97icR0zqPBx8UxXXriv8//3xRfOON4v8/9SlR3LZt+sZjYdbgO89/R/zhqz9UHLtv531i4J6AuPbptdKxJw48IV712FWKcr9855fil3/9ZVEURfHrT35dDNwTEP/z9f9UlHnm4DPi5375ubLjeKPnDXHFQ8VnrmO4Q1x4/0LT8/jV/l+JX/zVF0VRFMWv/uarYuSdiOm6cph97mefx4p6qygvweJSWZgmOGwOnDPvHOw7tg8AsKd/D5Y1Gif7trhRFkpEP8NhckzvdwsWJgkeh6dExyoaj+Ki5osUYqNaCvtyL1GUK60D6Kuuq6FWja9U0d+M8vpkYvYZVrfdVszITmFxqSxME5Y3Lsfe/r3ICTkcGDyA8xrPMyxvcaMsGBpWomgZVhamDFrK61EuilXhVYq8g1oJi+U78aLxQp0qDauGQAOOp49LRl6liv6KXIE6SZgnE7PPsHruudJjFpfKwjRhWeMy7IntwcGhg2gONSPgChiWt7hRFgwNq+PHyRb7acqTZ2F2wW13l+QKjHJRXNx8MaJcFGJhV2iU0098LIgCergeUidealip5Ra0YGNsmB+cjx6OSHpMxGPF57RT2kwmZpfyeixGVIgBSwDUwoxgeeNybH5rM/bEyocBKSgx1sIsRXc3EQilaGkhabcAYmC1WKFgC1MDrVBgd7wbZ887Gw6bA6PpUdR6a9Ed7y7xIFFjZnB8EAFXAKfXnV6iB5XKpUzvVmxhW9Ad78ZptachykWxdN5S0/OQ5wHUy004mZhdHqvvfrfIrbLCfxZmAEsbluLg0EHs6t2F5Y1Wsm8LZSAIQG8v0NxcPCb3WFlhQAtTCHUoMJPPYDg5jKZAE1rYFskDZcSxomHCBaEF6E/0Iy8U5UPMhgIBJc9KK/RoBLncghUKnCxQMdDHHy8es0jrFmYATx18Clkhi5+8+RP8+LUfT11iWgsfDgwMkDCfR/aFLTesurstw8rClEEdCuzletEYaITdZkc4FEZ3vBs5IYeB8QHMD85X1KVeomic8KFcdhfqfHWIJWJSmYoNq4Ihp+UhM8J0hwJnh2FFxUCnWUzOggU5aLLPnEC8pgPJAdMCnxZmKbQ8UvPnk0TL2azlsbIwpVArr8s9RdSD1DfWh3n+eXDalSKh1Esk51/JvVyAeY4VAIRZmcdqIhwrlfL6VODDb1gZiYFapHUL04j1L66XHm4KswKfFmYptAwnhwOYN4+ECC3DysIUQh0KpN4noGDoxKOKY3JIoUCZEaSWTUhlzXOsqIdsjB9DJp9BrbfW9DzkOxTTubQVCpww2tqKysUuF3DDDcWM7KII7Nkzs+OzMGswKUlaLcwuqInrFC0txKiyyOsWphBaSZjVRpL8mBxepxfpXBpd8a6iMVYwjiiSOfOhwBa2BVEuKnnNGIYxPQ+X3YVsPouckLNCgRMG9VbRXFsWr8rCDGLCSVotzD7oeaQoz8ryWFmYQmiFAhVhPZmho4aNscHtcKNjpKMYPmTDJaFA0x6rMh4yIzAMI3G+rFDgRGGJgVo4gTDhJK0WZh+MDKvu7tIdgxYsTCLUuQLlwpwKQ0eH7+R1ePH+8Pu6oUCtXIF6qPHUICtkcWDwQEX8KgoaDrRCgRPFs8+WHrN4VRZmCBNO0mph9sHIsNq9GwgGiSafBQtTALddg2NVMGqaQ83oHetVhPrUoF4iumNQTkAHKuNYMQyDcCiMV6OvVm1YjWfGLYHQCcESA7VwAsIS+7RQEYwMq507rTCghSmF2+HW3RXocXjAulns7tuNDR/boFnf5/ShKdgk7RjU2hVo1rACiGG2M7oTn1n0mYrn4nV6wfEcbIwNdpu94vqV4MPrsbrjjiK3ygr/WbBg4WRDNkt0rObPL/2tpYV8PFrEdQtTCLny+nhmHMlsEvW+eun3FrYFsUTM0GMl5181+BswkhqR2qzUsGoJkf6q4aX6nD6MpkennO/me+gAACAASURBVF8FmDSsnn/+eSxZsgSLFi3CD37wg5Lff/SjH+Gss87Cueeei8svvxxdXV2TPtCKEIsBjz5a/L9FWrdgYdbipFq/YjHgssvIWrV3L8AwwNBQaTnqqXrzTWtdszAliLRH8Mmtn0THSAfq761H84+bkc6lccoDpyDSHkGkPYIDgwcAABf+/MISPb5IewTvDb2H13tex8L7FyLSHsHj7z4OQRTg3eRF/b31ODR8COc8eI70e7nxPPHeEwCAa56+pmL9P5/Th9HU6JTzqwAThlU+n8eNN96I7du348CBA3jsscdw4MABRZnly5dj9+7deOedd/DFL34Rt95665QN2BTa2oqpaygsr5UFC7MOJ9361dYGvPIK+fuee8hHoda6NXcuSb4ci1nrmoVJBxUz7h3rBQAMp4ZxPH0cANAV78Lap9fi2t9eK2lDdce7FWLHtH4mnympkxfzECFiODUMQRQgQkRXvMtQLJm2F+fjAIBYIlaxuLLX4cVoenTK+VWACcNq165dWLRoEU499VS4XC585StfwW9/+9v/v727j66qOtA//iQEqqC8qImkCTHQEMh7IBdiii+QGNRCg0BUWKHldTJauwSsimvGpTgWZOi4FFzOuDKDSisljswLFITlEFERQb0SLTSFAiY1b4MREoe3kLf9++P+EhKSQBJ2cnMu389aLLznnLvPPneT7ZN99t2nxTGTJk1S//6e4bxbb71VJSUl3VPbjtq7t/Uq60xaB646juq/GpeHaWiQ1q2Ttm71bG9rtP348Qtr8TEaD8vaWsy4udqG2qbQ1Kj5Ysdtvb+t97T3/o7Up7OLKzeOWPWKW4GlpaUa1myCZGhoqEpLS9s9ft26dbr33nvb3JeTkyOXyyWXy6WKioouVLeD3n5bCgnxdFAsBgpctRzVfz3//IVfCM+fv/QD459/3nObsL39wBXo6qLFje+70vdf6fa2NM6x6hW3Ajvjrbfektvt1hNPPNHm/uzsbLndbrndbgUGBto8dUvbt0v33HOh4wGAy/Bq/9U4WlXTxm/0F88RbT6y1dZ+4Ap1ddHixvdd6fuvdHtbmuZY9YZbgSEhISouvvD1yJKSEoWEhLQ6bufOnVqxYoW2bNmiH/yg+yvervJy6bnnpFtv9V4dAPQKjum/mo9WtaX5qFRbxzJqBYvaWsy4ub7+fdWvT78W25ovdtzW+9t6T3vv70h9Oru4cuMcq15xK3DcuHE6cuSICgsLVVNTo9zcXGVkZLQ4Jj8/X3/7t3+rLVu2KCgoqNsq2yHPPCNVVkr79nm3HgC8zjH91969bY9WNWo+R7StY5lDCosuXsz4xmtv1I3X3ti0sPEb972h16e93u5ix20thnzxey4u81KLJdtYXLl/3/46ee5kj9wK9DPGmMsd9O6772rJkiWqr6/XggUL9Pd///d65pln5HK5lJGRobvuuksHDhxQcHCwJCksLExbtmy5ZJkul0tut9vOVTQqL5fCwz2dDIuCAr1Ot/zcX4Zj+i9JWrFCOn1aeuEF+2UDV7HnPnhO249u18AfDNR7P3uvS2V09Oe+Qyuv/+QnP9FPfvKTFtv+4R/+oem/d+7c2cnqdZPnn2+9KOirr3q3TgC8yjH9l+RZaT0+3tu1AHxO4+T1wAHdOL/7//OdldcbJ3Q2BismdAJwmm++YTV1oBtc2/fa3rPcgmMwoROA07X3bEAAV6RpuYXe8K1Ax2BCJwCnI1gB3aJ/3/6qa6gjWHVKfr60c6d0++0sCgrAef7v/zwPXh4yxNs1AXzOtQHXShK3AjstP19KTPR2LQCg8xpHq1jYGLCucR0sx6287nX5+dKYMd6uBQB0XnExE9eBbtIUrLgV2ElffkmwAuBMzK8Cuk1jsOJWYGecPSsVFkrR0d6uCQB0HsEK6DbX9vXMseJWYGccOCCNGiX1a/9ZRADQaxGsgG7DrcCu+PBDzyKhLAgKwIm++YZgBXQTbgV2xfr10rffsiAoAGdi8jrQbfhWYGeVl0t//rNn3SoeYwPAaYyRSkoYsQK6SeNIFbcCO+qJJzwdk8RjbAA4z4kT0jXXSAMGeLsmgE/y9/PXNQHXMGLVIeXl0saNF17z8GUATsPEdaDb9e/b38fnWB0+fOXhp7xcio3l4csAelZb/Vd5uXTnndJXX3n+br6/cV9727780nMrkF8IgW6x4cAGfV/9vTI2Zij85XBtOLCh287lvWB1+vSVh5/nnpNOnmy9nYcvA+hObfVfzz8vffyxlJXl+bv5/sZ97W17/XVPX8YvhIB1Gw5sUPYfslVv6mVk9Nfv/6rsP2R3W7jyM6ZxclLPcvn5yX3ttdLXX0tDh3a+gPJy6ZZbPA8tvZJyAPQYl8slt9vt7WpcsVb9V3m551Zeff2Fgxr3GyMNHy6dP99y24gRUnW15O9/4aHx9GWAdeEvh+uv3/+11fZbBt2ioiVFHS6no/2Xd+dYXcktu+efl+rqrrwcAOiK5v3O8uUtQ1Xz/c8/f2FfW9ua/25LXwZY983333Rq+5Xy7oiV1LXf0MrLL/y214jf9IBez6dGrCRPv7N3r5Sc7BmRutg1/3+ibPO+qq1tzdGXAVZdXSNWUtd+Q2s+WnUl5QDAlaiv98ypuni0qlFNjefP5bZdXCZ9GWDNirQVTQuENurft79WpK3olvN5P1h1ZaL53r2tgxUT1gH0tJoa6dix1v1Ro4aG1t9abmvbxWXSlwHWZMVlKeenObpl0C3yk59uGXSLcn6ao6y4rG45n/eCVVKSFBEhbd8uDRzYua8Z5+dLkZHSF19cmPRpjGc7AHS3m2+WVq709DvnzkkrVkjLll3oiyIjpYKCC69dLmnwYOnddy9sy8z0rMHXvA+jLwO6RVZcloqWFKnh2QYVLSnqtlAleXvE6sEHpaeeav015Mv5+mupqkpKTOy+ugFAe/r18zw0udHFC3wOG+bZ1nx/SkrrbSwKCvgc7wartDTPYnoNDZ51XFJSPCNXbS2013zb3Xd7/tvf+3cyAVyF+vVrGZK++aZ1sGoMXufPe9aoGjfu0u8B4BMCvHr2d96R/Pw8Q9/nz0v79nlGroy5sNDen//cetvRo551YQDAGy4OVsXFUljYhdfNR6xKS6XgYM+6ex995NlWUyN99530wx/2XJ0B9AjvBavaWs8z/RpXe2j8+1/+xRO2GhqkP/2p/W27d3tGsvhKMoCe1pFbgXv3XtgXFtYybJWVeeZpBXj3d1sA9nnvXlp5edvfjGmcvNnW9uYaGvhKMgDvCAjwrEN1+rTnz/nz0g03XNgfFnYhRDXe8mt+e5D5VYDP8u6zAttby+XiENVW2Kqp8Yx48dBSAN4QGuoJSI0hyc/vwr7mo1ON+4cN8zxo2RiCFeDDvBesoqM9HczDD3uG1buChfQAeEtjeGprEnrj6FTzEDVggNS/v2duFRPXAZ/l/a/V7d176VWIL4WF9AB4S+PtvosnrkvS9dd7fmE8ebLl6FRjGGvrPQB8gvdnTrIQHgAnagxJxrQ9+tRWiGq+7a67era+AHqE90esAMCJmoekywWrtkasuBUI+CSCFQB0xeVCUliYZx2+6mrpxhsvvOebbwhWgA/z/q1AAHCi5hPU2xux+uQTz7cHG78xGBbmWQj59GkpMLBn6wugRzBiBQBd0ThiVVJy6WB18Yrse/d6whaP5AJ8Ej/ZANAVAwdKfft6vv13/fWt9w8bJlVUtF6R/eJtAHxKh4LVjh07NGrUKEVERGjVqlWt9p8/f14PPvigIiIilJycrKKiItv1BIAu6db+a+hQz7IvbS1U3Bie3n//wv6QEM/fBQUsbgz4qMsGq/r6ej3yyCPavn27CgoKtHHjRhUUFLQ4Zt26dRoyZIiOHj2qpUuXatmyZd1WYQDoqG7vv86e9fxpa6Hi0FDP38XFF/b36ydde61n1IrFjQGfdNlg9dlnnykiIkIjRoxQv379NGvWLG3evLnFMZs3b9bcuXMlSZmZmcrLy5Np63l/ANCDurX/Ki/3PExZavvxWpWVnr+NubC/vNzzLcHm2wD4lMt+K7C0tFTDms0HCA0N1aefftruMQEBARo0aJBOnDihm266qcVxOTk5ysnJkSQdPHhQLpfrii+gN6ioqFCgD33Dx5euh2vpXXp6mkC39l8JCRceJF9dLcXHt5yo/s03nm8DGnNhf3NtvcdLfOHfViOupXfyhWvpaP/Vo8stZGdnKzs7W5Lkcrnkdrt78vTdxpeuRfKt6+FaYIuv9l+Sb10P19I7+dK1XM5lbwWGhISouPEp7ZJKSkoU0jgBs41j6urq9P333+vGxgXxAMBL6L8A9LTLBqtx48bpyJEjKiwsVE1NjXJzc5WRkdHimIyMDK1fv16StGnTJqWmpsqvcUE8APAS+i8APa3P8uXLl1/qAH9/f40cOVJz5szRK6+8ojlz5mjmzJl65plndOrUKY0aNUrx8fHasGGD/u7v/k5ffvmlXnvtNQ0ZMuSyJ09KSrJ1HV7nS9ci+db1cC1XL/qvjvOl6+FaeidfupZL8TN8fQ8AAMAKVl4HAACwhGAFAABgiVeC1eUeMdGbFRcXa9KkSYqOjlZMTIzWrFkjSTp58qTS09M1cuRIpaenq7JxcUAHqK+v15gxYzR16lRJUmFhoZKTkxUREaEHH3xQNTU1Xq5hx1RVVSkzM1OjR49WVFSU9u7d69h2eemllxQTE6PY2FjNnj1b1dXVjm0XX0P/1bv4Sv8l0Yf5ih4PVh15xERvFhAQoBdffFEFBQXat2+fXn31VRUUFGjVqlVKS0vTkSNHlJaW5qgOd82aNYqKimp6vWzZMi1dulRHjx7VkCFDtG7dOi/WruMWL16se+65R4cOHdJXX32lqKgoR7ZLaWmp1q5dK7fbrYMHD6q+vl65ubmObRdfQv/V+/hK/yXRh/kM08M++eQTM3ny5KbXK1euNCtXruzpaliTkZFh3nvvPRMZGWnKysqMMcaUlZWZyMhIL9esY4qLi01qaqrJy8szU6ZMMQ0NDebGG280tbW1xpjW7dVbVVVVmfDwcNPQ0NBiuxPbpaSkxISGhpoTJ06Y2tpaM2XKFLNjxw5Htouvof/qXXyl/zKGPsyX9PiIVVuPmCgtLe3palhRVFSk/Px8JScn6/jx4woODpYkDR06VMePH/dy7TpmyZIlWr16tfz9Pf8UTpw4ocGDBysgwLMov1Pap7CwUIGBgZo/f77GjBmjRYsW6cyZM45sl5CQED3++OMKCwtTcHCwBg0apKSkJEe2i6+h/+pdfKX/kujDfAmT17vo9OnTmjlzpl5++WUNHDiwxT4/Pz9HLDC4detWBQUF+cTaInV1ddq/f78efvhh5efna8CAAa2GzJ3SLpWVldq8ebMKCwtVVlamM2fOaMeOHd6uFnwI/VfvQx/mO3o8WHXkERO9XW1trWbOnKmsrCzNmDFDknTzzTervLxcklReXq6goCBvVrFD9uzZoy1btig8PFyzZs3S+++/r8WLF6uqqkp1dXWSnNM+oaGhCg0NVXJysiQpMzNT+/fvd2S77Ny5U8OHD1dgYKD69u2rGTNmaM+ePY5sF19D/9V7+FL/JdGH+ZIeD1YdecREb2aM0cKFCxUVFaXHHnusaXvzx2KsX79e06ZN81YVO+yFF15QSUmJioqKlJubq9TUVG3YsEGTJk3Spk2bJDnnWoYOHaphw4bp8OHDkqS8vDxFR0c7sl3CwsK0b98+nT17VsaYpmtxYrv4Gvqv3sOX+i+JPsyneGNi17Zt28zIkSPNiBEjzK9//WtvVKHLdu/ebSSZuLg4k5CQYBISEsy2bdvMd999Z1JTU01ERIRJS0szJ06c8HZVO2XXrl1mypQpxhhjjh07ZsaNG2d+9KMfmczMTFNdXe3l2nVMfn6+SUpKMnFxcWbatGnm5MmTjm2XZ555xowaNcrExMSYOXPmmOrqase2i6+h/+p9fKH/MoY+zFfwSBsAAABLmLwOAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEsIVgAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwhGAFAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYEmAt0580003KTw83FunB+AFRUVF+u6777xdDQDoNl4LVuHh4XK73d46PQAvcLlc3q4CAHQrbgUCAABYQrACAACwhGAFAABgidfmWF0JY4zq6upkjPF2VQC0wc/PTwEBAfLz8/N2VQCgRzkyWNXV1cnf31/+/v503EAvY4xRQ0OD6urq1LdvX29XBwB6lCNvBRpjCFVAL+Xn5yd/f39GlAFclRwZrCQRqoBejJ9PAFcrxwYrAACA3oZgBc2bN0+bNm2yXu7KlSub/ruoqEixsbGXfU9FRYWSk5M1ZswY7d6923qdeoM333xTv/zlLyVJr732mn7729+2e+wHH3ygTz75pN39W7Zs0apVqyR1rR2bt5Ek/fjHP+7U+wEALRGs0G0u/p92R+Tl5SkuLk75+fm6/fbbW+yrr6+3VbVe46GHHtLPf/7zdvdfKljV1dUpIyNDTz31VJfPf3EbXSrEAQAuj2DVBWfOnNGUKVOUkJCg2NhYvf3225KkL774QnfeeaeSkpJ09913q7y8vGl7QkKCEhIS9MQTTzSN3DQfuZCkqVOn6oMPPpAkvffee0pJSdHYsWN1//336/Tp05I8jwJ69tlnNXbsWMXFxenQoUOSpNOnT2v+/PmKi4tTfHy8/uM//uOS5bSnvWuYOHGili1bpvHjxysyMrJpNOns2bN64IEHFB0drenTpys5OVlut1tPPfWUzp07p8TERGVlZUnyBKO/+Zu/UUxMjCZPnqxz5861OPeXX36pJ598Ups3b1ZiYqLOnTun6667Tr/61a+UkJCgvXv39rrP+PXXX9eSJUuayv/Xf/1XLV26tNXn+sYbbygyMlLjx4/Xnj17mrYvX75c//RP/yRJWrt2raKjoxUfH69Zs2apqKhIr732ml566SUlJiZq9+7dmjdvnh566CElJyfrySefbHV9O3fulMvlUmRkpLZu3XrJz6CtNrruuuskeb4g0vg5xsXFNf0b/+CDDzRx4kRlZmZq9OjRysrKYpI6ADRnvCQpKanL7z1//nyL18/uetZouaz9eXbXs5c8/6ZNm8yiRYuaXldVVZmamhqTkpJivv32W2OMMbm5uWb+/PnGGGPi4uLMhx9+aIwx5vHHHzcxMTHGGGPeeOMN88gjjzSVM2XKFLNr1y5TUVFhbr/9dnP69GljjDGrVq0yzz33nDHGmFtuucWsXbvWGGPMq6++ahYuXGiMMebJJ580ixcvbirr5MmTlyynublz55p33nnnktdw5513mscee8wYY8y2bdtMWlqaMcaY3/zmNyY7O9sYY8yBAwdMnz59zOeff26MMWbAgAFN5ygsLDR9+vQx+fn5xhhj7r//fvO73/2uVV0u/kwkmbffftsYY3rlZ3zq1CkzYsQIU1NTY4wxJiUlxfzxj39scU1lZWVm2LBh5ttvvzXnz583P/7xj5vq9Oyzz5rf/OY3xhhjgoODTXV1tTHGmMrKylb7G9tqypQppq6urtX1zZ0719x9992mvr7e/OUvfzEhISHm3Llz7X4GF7dR89ebNm0yd911l6mrqzP/+7//a4YNG2bKysrMrl27zMCBA01xcbGpr683t956q9m9e3erdjSm9c+pMVf2cw8ATuDIdawutnzici2fuLzHzhcXF6df/epXWrZsmaZOnarbb79dBw8e1MGDB5Weni7JMzoTHBysqqoqVVVV6Y477pAk/exnP9P27dsvWf6+fftUUFCgCRMmSJJqamqUkpLStH/GjBmSpKSkJP3nf/6nJM9IRW5ubtMxQ4YM0datWy9ZzsUOHz7c5jW0dd6ioiJJ0scff6zFixdLkmJjYxUfH99u+cOHD1diYmKrMi6lT58+mjlz5iXr583PWJJSU1O1detWRUVFqba2VnFxcS3O9emnn2rixIkKDAyUJD344IP6y1/+0qpO8fHxysrK0n333af77ruv3brff//96tOnT5v7HnjgAfn7+2vkyJEaMWJE02hbZ3388ceaPXu2+vTpo5tvvll33nmnPv/8cw0cOFDjx49XaGioJCkxMVFFRUW67bbbunQeAPA1PhGselpkZKT279+vd999V08//bTS0tI0ffp0xcTEaO/evS2OraqqarecgIAANTQ0NL2urq6W5LkNk56ero0bN7b5vh/84AeSPKGjrq6u3fIvV05bx7d1DZ09b3sa399YxsW3AttyzTXXNIWI9urnzc9YkhYtWqSVK1dq9OjRmj9//mWvqT3btm3TRx99pD/84Q9asWKFDhw40OZxAwYMaLeMi5c5aFwBva3PoKsubseu/FsAAF/FHKsuKCsrU//+/TVnzhw98cQT2r9/v0aNGqWKioqm/+nX1tbqT3/6kwYPHqzBgwfr448/liRt2LChqZzw8HB9+eWXamhoUHFxsT777DNJ0q233qo9e/bo6NGjkjxzutoa4WguPT1dr776atPrysrKTpfT3jVcyoQJE/Tv//7vkqSCgoIWYaBv376qra295Ps7ozd+xpKUnJys4uJi/f73v9fs2bNbvS85OVkffvihTpw4odraWr3zzjutjmms36RJk/SP//iP+v7773X69Gldf/31OnXqVIc/o3feeUcNDQ06duyYvv76a40aNardz0Bqv41uv/12vf3226qvr1dFRYU++ugjjR8/vsP1AICrFcGqCw4cOKDx48crMTFRzz33nJ5++mn169dPmzZt0rJly5SQkKDExMSmb1i98cYbeuSRR5SYmNhiou+ECRM0fPhwRUdH69FHH9XYsWMlSYGBgXrzzTc1e/ZsxcfHKyUl5bK3dJ5++mlVVlYqNjZWCQkJ2rVrV6fLudQ1tOcXv/iFKioqFB0draeffloxMTEaNGiQJCk7O7vp9pYNvfEzbvTAAw9owoQJTbcHmwsODtby5cuVkpKiCRMmKCoqqtUx9fX1mjNnjuLi4jRmzBg9+uijGjx4sH7605/qv/7rv5omr19OWFiYxo8fr3vvvVevvfaarrnmmnY/A6n9Npo+fbri4+OVkJCg1NRUrV69WkOHDr3s+QHgaudnjHe+0uNyueR2u7v03pqaGvXr189yjXpGUVGRpk6dqoMHD3q7KlbU19ertrZW11xzjY4dO6a77rpLhw8f9mr7eOMznjp1qpYuXaq0tLQeO2dv19bP6ZX83AOAE3R6xGrBggUKCgpqc7HHF198UX5+fvruu++sVA6939mzZ3XbbbcpISFB06dP1z//8z87NvR2RVVVlSIjI3XttdcSqgAAnR+x+uijj3Tdddfp5z//eYsRgeLiYi1atEiHDh3SF198oZtuuumS5VytI1bA1YIRKwBXo06PWN1xxx264YYbWm1funSpVq9e3WMPX/XSHUwAHcDPJ4CrlZXJ65s3b1ZISIgSEhIueVxOTo5cLpdcLpcqKiq6fD4/Pz81NDTQeQO9kDFGDQ0NPfZLFgD0Jle8jtXZs2e1cuVKvffee5c9Njs7W9nZ2ZI8twS6KiAgQHV1dT757DjAFzSunwUAV5sr7vmOHTumwsLCptGqkpISjR07Vp999lm3fT3bz89Pffv27ZayAQAAuuqKg1VcXJy+/fbbptfh4eFyu92XnbwOAADgazo9x2r27NlKSUnR4cOHFRoaqnXr1nVHvQAAAByn0yNWl3vuXEcerAsAAOCLeKQNAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEsIVgAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwhGAFAABgSaeC1YIFCxQUFKTY2NimbU888YRGjx6t+Ph4TZ8+XVVVVdYrCQAA4ASdClbz5s3Tjh07WmxLT0/XwYMH9cc//lGRkZF64YUXrFYQAADAKToVrO644w7dcMMNLbZNnjxZAQEBkqRbb71VJSUl9moHAADgIFbnWL3++uu69957292fk5Mjl8sll8uliooKm6cGAADwOmvBasWKFQoICFBWVla7x2RnZ8vtdsvtdiswMNDWqQEAAHqFABuFvPnmm9q6davy8vLk5+dno0gAAADHueJgtWPHDq1evVoffvih+vfvb6NOAAAAjtSpW4GzZ89WSkqKDh8+rNDQUK1bt06//OUvderUKaWnpysxMVEPPfRQd9UVAACgV+vUiNXGjRtbbVu4cKG1ygAAADgZK68DAABYQrACAACwhGAFAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEsIVgAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWdDpYLViwQEFBQYqNjW3advLkSaWnp2vkyJFKT09XZWWl1UoCAAA4QaeD1bx587Rjx44W21atWqW0tDQdOXJEaWlpWrVqlbUKAgAAOEWng9Udd9yhG264ocW2zZs3a+7cuZKkuXPn6r//+7/t1A4AAMBBAmwUcvz4cQUHB0uShg4dquPHj7d5XE5OjnJyciRJFRUVNk4NAADQa1ifvO7n5yc/P78292VnZ8vtdsvtdiswMND2qQEAALzKSrC6l+/RkgAADVJJREFU+eabVV5eLkkqLy9XUFCQjWIBAAAcxUqwysjI0Pr16yVJ69ev17Rp02wUCwAA4CidDlazZ89WSkqKDh8+rNDQUK1bt05PPfWU/ud//kcjR47Uzp079dRTT3VHXQEAAHq1Tk9e37hxY5vb8/LyrrgyAAAATsbK6wAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwhGAFAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCXWgtVLL72kmJgYxcbGavbs2aqurrZVNAAAgCNYCValpaVau3at3G63Dh48qPr6euXm5tooGgAAwDGsjVjV1dXp3Llzqqur09mzZ/XDH/7QVtEAAACOYCVYhYSE6PHHH1dYWJiCg4M1aNAgTZ48udVxOTk5crlccrlcqqiosHFqAACAXsNKsKqsrNTmzZtVWFiosrIynTlzRm+99Var47Kzs+V2u+V2uxUYGGjj1AAAAL2GlWC1c+dODR8+XIGBgerbt69mzJihTz75xEbRAAAAjmElWIWFhWnfvn06e/asjDHKy8tTVFSUjaIBAAAcw0qwSk5OVmZmpsaOHau4uDg1NDQoOzvbRtEAAACO4WeMMd44scvlktvt9sapAXgJP/cAfB0rrwMAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwhGAFAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEsIVgAAAJYQrAAAACyxFqyqqqqUmZmp0aNHKyoqSnv37rVVNAAAgCME2Cpo8eLFuueee7Rp0ybV1NTo7NmztooGAABwBCvB6vvvv9dHH32kN998U5LUr18/9evXz0bRAAAAjmHlVmBhYaECAwM1f/58jRkzRosWLdKZM2daHZeTkyOXyyWXy6WKigobpwYAAOg1rASruro67d+/Xw8//LDy8/M1YMAArVq1qtVx2dnZcrvdcrvdCgwMtHFqAACAXsNKsAoNDVVoaKiSk5MlSZmZmdq/f7+NogEAABzDSrAaOnSohg0bpsOHD0uS8vLyFB0dbaNoAAAAx7D2rcBXXnlFWVlZqqmp0YgRI/TGG2/YKhoAAMARrAWrxMREud1uW8UBAAA4DiuvAwAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEsIVgAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwhGAFAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAllgNVvX19RozZoymTp1qs1gAAABHsBqs1qxZo6ioKJtFAgAAOIa1YFVSUqJt27Zp0aJFtooEAABwFGvBasmSJVq9erX8/dsvMicnRy6XSy6XSxUVFbZODQAA0CtYCVZbt25VUFCQkpKSLnlcdna23G633G63AgMDbZwaAACg17ASrPbs2aMtW7YoPDxcs2bN0vvvv685c+bYKBoAAMAxrASrF154QSUlJSoqKlJubq5SU1P11ltv2SgaAADAMVjHCgAAwJIA2wVOnDhREydOtF0sAABAr8eIFQAAgCUEKwAAAEsIVgAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwhGAFAABgCcEKAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYImVYFVcXKxJkyYpOjpaMTExWrNmjY1iAQAAHCXASiEBAXrxxRc1duxYnTp1SklJSUpPT1d0dLSN4gEAABzByohVcHCwxo4dK0m6/vrrFRUVpdLSUhtFAwAAOIaVEavmioqKlJ+fr+Tk5Fb7cnJylJOTI0mqqKiwfWoAAACvsjp5/fTp05o5c6ZefvllDRw4sNX+7Oxsud1uud1uBQYG2jw1AACA11kLVrW1tZo5c6aysrI0Y8YMW8UCAAA4hpVgZYzRwoULFRUVpccee8xGkQAAAI5jJVjt2bNHv/vd7/T+++8rMTFRiYmJevfdd20UDQAA4BhWJq/fdtttMsbYKAoAAMCxWHkdAADAEoIVAACAJQQrAAAASwhWAAAAlhCsAAAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEsIVgAAAJYQrAAAACwhWAEAAFhCsAIAALCEYAUAAGAJwQoAAMASghUAAIAlBCsAAABLCFYAAACWEKwAAAAsIVgBAABYQrACAACwxFqw2rFjh0aNGqWIiAitWrXKVrEAAACOYSVY1dfX65FHHtH27dtVUFCgjRs3qqCgwEbRAAAAjmElWH322WeKiIjQiBEj1K9fP82aNUubN2+2UTQAAIBjBNgopLS0VMOGDWt6HRoaqk8//bTVcTk5OcrJyZEkHTx4UC6Xy8bpva6iokKBgYHeroYVvnItvnIdkm9dy6FDh7xdBQDoVlaCVUdlZ2crOztbkuRyueR2u3vy9N2Ga+l9fOU6JN+7FgDwZVZuBYaEhKi4uLjpdUlJiUJCQmwUDQAA4BhWgtW4ceN05MgRFRYWqqamRrm5ucrIyLBRNAAAgGP0Wb58+fIrLcTf318jR47UnDlz9Morr2jOnDmaOXPmZd+XlJR0pafuNbiW3sdXrkPiWgDAKfyMMcbblQAAAPAFrLwOAABgCcEKAADAEq8EK6c+/qa4uFiTJk1SdHS0YmJitGbNGknSyZMnlZ6erpEjRyo9PV2VlZVermnH1dfXa8yYMZo6daokqbCwUMnJyYqIiNCDDz6ompoaL9ewY6qqqpSZmanRo0crKipKe/fudWS7vPTSS4qJiVFsbKxmz56t6upqx7TJggULFBQUpNjY2KZt7bWBMUaPPvqoIiIiFB8fr/3793ur2gBgVY8HKyc//iYgIEAvvviiCgoKtG/fPr366qsqKCjQqlWrlJaWpiNHjigtLc1RYXHNmjWKiopqer1s2TItXbpUR48e1ZAhQ7Ru3Tov1q7jFi9erHvuuUeHDh3SV199paioKMe1S2lpqdauXSu3262DBw+qvr5eubm5jmmTefPmaceOHS22tdcG27dv15EjR3TkyBHl5OTo4Ycf9kaVAcA+08M++eQTM3ny5KbXK1euNCtXruzpaliRkZFh3nvvPRMZGWnKysqMMcaUlZWZyMhIL9esY4qLi01qaqrJy8szU6ZMMQ0NDebGG280tbW1xpjWbdVbVVVVmfDwcNPQ0NBiu9PapaSkxISGhpoTJ06Y2tpaM2XKFLNjxw5HtUlhYaGJiYlpet1eG2RnZ5vf//73bR4HAE7W4yNWbT3+prS0tKerccWKioqUn5+v5ORkHT9+XMHBwZKkoUOH6vjx416uXccsWbJEq1evlr+/55/BiRMnNHjwYAUEeBbkd0rbFBYWKjAwUPPnz9eYMWO0aNEinTlzxnHtEhISoscff1xhYWEKDg7WoEGDlJSU5Mg2adReG/hKPwAAF2PyehecPn1aM2fO1Msvv6yBAwe22Ofn5yc/Pz8v1azjtm7dqqCgIJ9YU6iurk779+/Xww8/rPz8fA0YMKDVbT8ntEtlZaU2b96swsJClZWV6cyZM61urTmZE9oAAK5Ujwcrpz/+pra2VjNnzlRWVpZmzJghSbr55ptVXl4uSSovL1dQUJA3q9ghe/bs0ZYtWxQeHq5Zs2bp/fff1+LFi1VVVaW6ujpJzmmb0NBQhYaGKjk5WZKUmZmp/fv3O65ddu7cqeHDhyswMFB9+/bVjBkztGfPHke2SaP22sDp/QAAtKfHg5WTH39jjNHChQsVFRWlxx57rGl7RkaG1q9fL0lav369pk2b5q0qdtgLL7ygkpISFRUVKTc3V6mpqdqwYYMmTZqkTZs2SXLOtQwdOlTDhg3T4cOHJUl5eXmKjo52XLuEhYVp3759Onv2rIwxTdfhxDZp1F4bZGRk6Le//a2MMdq3b58GDRrUdMsQABzNGxO7tm3bZkaOHGlGjBhhfv3rX3ujCl2ye/duI8nExcWZhIQEk5CQYLZt22a+++47k5qaaiIiIkxaWpo5ceKEt6vaKbt27TJTpkwxxhhz7NgxM27cOPOjH/3IZGZmmurqai/XrmPy8/NNUlKSiYuLM9OmTTMnT550ZLs888wzZtSoUSYmJsbMmTPHVFdXO6ZNZs2aZYYOHWoCAgJMSEiI+bd/+7d226ChocH84he/MCNGjDCxsbHm888/93LtAcAOHmkDAABgCZPXAQAALCFYAQAAWEKwAgAAsIRgBQAAYAnBCgAAwBKCFQAAgCUEKwAAAEv+H26Kn4cnkqwEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Variable 3: terminal flowering\n", + "obs.plot(\"Intensity\", 2)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## HSCM re-estimation" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# Discard state variable\n", + "seq1v = seq.select_variable([2, 3, 4], True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "nb_states = 5\n", + "init_file = base_path + os.sep + \"seq1v_\" + str(nb_states) + \"s_LR_init.hsmc\"" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "from openalea.sequence_analysis import Estimate\n", + "from openalea.sequence_analysis import HiddenSemiMarkov" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Conversion dos2unix file if needed\n", + "try:\n", + " hmsc_init = HiddenSemiMarkov(init_file)\n", + "except:\n", + " dos2unix(init_file, init_file)\n", + "hmsc_init = HiddenSemiMarkov(init_file)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Estimate HSCM with default initialization\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Left-right model" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "0.900252 0.0997281 1e-05 1e-05 0 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 0.33353 1e-05 0.66645 1e-05 \n", + "0 0 0.246779 0.500003 0.253218 \n", + "0 0 0 1e-05 0.99999 \n", + "0 0 0 0 1 \n", + "0 0 0 0 1 \n", + "\n", + "transient class: state 0\n", + "transient class: state 1\n", + "transient class: state 2\n", + "transient class: state 3\n", + "recurrent class: state 4 (absorbing state)\n", + "\n", + "probability of no-occurrence of state 0: 0.0997481\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 9\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "probability of no-occurrence of state 1: 0.600004\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 21.185 variance: 414.804 standard deviation: 20.3667\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 4\n", + "mean: 7 variance: 24.6667 standard deviation: 4.96655\n", + "\n", + "probability of no-occurrence of state 2: 0.90126\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 42.7108 variance: 414.291 standard deviation: 20.3541\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 1\n", + "mean: 30 variance: 0 standard deviation: 0\n", + "\n", + "probability of no-occurrence of state 3: 0.200012\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 32.1872 variance: 438.525 standard deviation: 20.941\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 36.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 179.184 variance: 7074.62 standard deviation: 84.1108\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 2\n", + "mean: 29 variance: 32 standard deviation: 5.65685\n", + "\n", + "probability of leaving state 0: 0.0349796\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 249\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "probability of leaving state 1: 0.0451669\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 85\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "probability of leaving state 2: 0.333333\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "probability of leaving state 3: 0.00553306\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 500\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 140\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 6 PARAMETER : 1.38965 PROBABILITY : 0.0579558\n", + "mean: 28.5881 variance: 389.747 standard deviation: 19.742\n", + "coefficient of skewness: 1.69735 coefficient of kurtosis: 4.3202\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 9\n", + "mean: 28.6667 variance: 439.25 standard deviation: 20.9583\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 11 PARAMETER : 3.47785 PROBABILITY : 0.237916\n", + "mean: 22.1401 variance: 46.8238 standard deviation: 6.84279\n", + "coefficient of skewness: 1.08235 coefficient of kurtosis: 1.74656\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 22.25 variance: 62.25 standard deviation: 7.88987\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 3 SUP_BOUND : 4 PROBABILITY : 0\n", + "mean: 3 variance: 0 standard deviation: 0\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 1\n", + "mean: 3 variance: 0 standard deviation: 0\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 64 PARAMETER : 5.24353 PROBABILITY : 0.0429885\n", + "mean: 180.732 variance: 2715.42 standard deviation: 52.1097\n", + "coefficient of skewness: 0.873621 coefficient of kurtosis: 1.14464\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 0\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 8\n", + "mean: 63.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "absorption probability of state 4: 1\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 2\n", + "mean: 71 variance: 32 standard deviation: 5.65685\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.900253 variance: 0.0897979 standard deviation: 0.299663\n", + "coefficient of skewness: -2.67135 coefficient of kurtosis: 5.13612\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.9 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: -3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.397442 variance: 0.239482 standard deviation: 0.489369\n", + "coefficient of skewness: 0.419144 coefficient of kurtosis: -1.82432\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.4 variance: 0.266667 standard deviation: 0.516398\n", + "coefficient of skewness: 0.484123 coefficient of kurtosis: -1.95\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.0963897 variance: 0.0870987 standard deviation: 0.295125\n", + "coefficient of skewness: 2.73518 coefficient of kurtosis: 5.48123\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 0.790159 variance: 0.165808 standard deviation: 0.407195\n", + "coefficient of skewness: -1.42516 coefficient of kurtosis: 0.0310716\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 0.196045 variance: 0.157611 standard deviation: 0.397003\n", + "coefficient of skewness: 1.53125 coefficient of kurtosis: 0.344731\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.2 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: 1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 25.6055 variance: 400.175 standard deviation: 20.0044\n", + "coefficient of skewness: 1.22439 coefficient of kurtosis: 1.65642\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 25.8 variance: 472.622 standard deviation: 21.7399\n", + "coefficient of skewness: 0.719323 coefficient of kurtosis: -1.27249\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 8.73412 variance: 134.435 standard deviation: 11.5946\n", + "coefficient of skewness: 0.895227 coefficient of kurtosis: -0.433344\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 8.9 variance: 152.767 standard deviation: 12.3599\n", + "coefficient of skewness: 0.996808 coefficient of kurtosis: -0.987263\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 0.288765 variance: 0.782368 standard deviation: 0.884516\n", + "coefficient of skewness: 2.73779 coefficient of kurtosis: 5.49728\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.3 variance: 0.9 standard deviation: 0.948683\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 54.2895 variance: 1073.79 standard deviation: 32.7687\n", + "coefficient of skewness: -0.689373 coefficient of kurtosis: -1.02092\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 50.8 variance: 929.289 standard deviation: 30.4842\n", + "coefficient of skewness: -0.913914 coefficient of kurtosis: -1.00596\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 11.0821 variance: 576.344 standard deviation: 24.0072\n", + "coefficient of skewness: 1.89686 coefficient of kurtosis: 1.97136\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 14.2 variance: 899.733 standard deviation: 29.9956\n", + "coefficient of skewness: 1.79631 coefficient of kurtosis: -0.0129807\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.373\n", + "OUTPUT 1 : 0.3209\n", + "OUTPUT 2 : 0.2047\n", + "OUTPUT 3 : 0.0856\n", + "OUTPUT 4 : 0.0158\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2624\n", + "OUTPUT 1 : 0.512\n", + "OUTPUT 2 : 0.2143\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0113\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1602\n", + "OUTPUT 1 : 0.0315\n", + "OUTPUT 2 : 0.2343\n", + "OUTPUT 3 : 0.5738\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2118\n", + "OUTPUT 1 : 0.4285\n", + "OUTPUT 2 : 0.2467\n", + "OUTPUT 3 : 0.1128\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.37307 0.320988 0.204747 0.0856092 0.0155848 \n", + "1 0.262485 0.512029 0.214399 1e-05 0.0110767 \n", + "2 0.99996 1e-05 1e-05 1e-05 1e-05 \n", + "3 0.160279 0.0315353 0.234306 0.573869 1e-05 \n", + "4 0.211869 0.428512 0.246796 0.112812 1e-05 \n", + "\n", + "theoretical weights: 0.256054 0.0873431 0.00288765 0.542894 0.110821\n", + "\n", + "log-likelihood: -1394.05 (normalized: -1.39405)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 1.69704\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 1.70699 critical probability: 0.789447\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.258 0.089 0.003 0.508 0.142\n", + "\n", + "log-likelihood: -1393.2 (normalized: -1.3932)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.000822734\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.000822714 critical probability: 1\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 1.78547 variance: 5.11887 standard deviation: 2.26249\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 2.04538 variance: 8.57475 standard deviation: 2.92827\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 3.82346 variance: 17.6613 standard deviation: 4.20253\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 12.0826 variance: 147.8 standard deviation: 12.1573\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 26.0706 variance: 5519.76 standard deviation: 74.2951\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 5.05809 variance: 24.2594 standard deviation: 4.92538\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 8.39139 variance: 257.032 standard deviation: 16.0322\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.33411 variance: 14.3995 standard deviation: 3.79466\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.13606 variance: 8.63834 standard deviation: 2.9391\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 29.8874 variance: 8523.38 standard deviation: 92.3221\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.29483 variance: 0.434466 standard deviation: 0.65914\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.46325 variance: 0.853172 standard deviation: 0.923673\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.2966 variance: 0.374029 standard deviation: 0.611579\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.2241 variance: 2.86203 standard deviation: 1.69175\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01402 variance: 0.0138247 standard deviation: 0.117578\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.991 variance: 12.1005 standard deviation: 3.47858\n", + "coefficient of skewness: 0.173224 coefficient of kurtosis: -0.045584\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 12.289 variance: 51.532 standard deviation: 7.17858\n", + "coefficient of skewness: 0.733401 coefficient of kurtosis: -0.655465\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 17.4949 variance: 8.48847 standard deviation: 2.9135\n", + "coefficient of skewness: 0.0268775 coefficient of kurtosis: -0.0323519\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 16.6298 variance: 39.2819 standard deviation: 6.26753\n", + "coefficient of skewness: -0.467843 coefficient of kurtosis: -0.795518\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.489383 variance: 0.563337 standard deviation: 0.750558\n", + "coefficient of skewness: 1.7372 coefficient of kurtosis: 3.62197\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.1834 variance: 36.2786 standard deviation: 6.02318\n", + "coefficient of skewness: 0.5122 coefficient of kurtosis: 0.276166\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 19.152 variance: 178.251 standard deviation: 13.3511\n", + "coefficient of skewness: 0.897434 coefficient of kurtosis: -0.415304\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 22.5706 variance: 17.8842 standard deviation: 4.22898\n", + "coefficient of skewness: 0.132517 coefficient of kurtosis: -0.00361517\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 34.5974 variance: 277.854 standard deviation: 16.6689\n", + "coefficient of skewness: -0.54201 coefficient of kurtosis: -1.00324\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.496457 variance: 0.586887 standard deviation: 0.766085\n", + "coefficient of skewness: 1.7775 coefficient of kurtosis: 3.84913\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.200693 _ 0.517819 _ \n", + "_ _ 0.737475 0.593766 0.145199 \n", + "_ _ _ _ 0.788091 \n", + "_ _ _ _ 0.461057 \n", + "_ _ _ _ _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9922\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0077\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9774\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0112\n", + "OUTPUT 3 : 0.0114\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.253\n", + "OUTPUT 1 : 0.1474\n", + "OUTPUT 2 : 0.2811\n", + "OUTPUT 3 : 0.3185\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9858\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0141\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.99222 1e-05 0.00775961 1e-05 \n", + "1 0.97746 1e-05 0.0112647 0.0112651 \n", + "2 0.99997 1e-05 1e-05 1e-05 \n", + "3 0.253013 0.147432 0.281103 0.318452 \n", + "4 0.985878 1e-05 0.0141021 1e-05 \n", + "\n", + "theoretical weights: 0.256054 0.0873431 0.00288765 0.542894 0.110821\n", + "\n", + "log-likelihood: -1073.5 (normalized: -1.0735)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 2.61361\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 2.59627 critical probability: 0.458144\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.258 0.089 0.003 0.508 0.142\n", + "\n", + "log-likelihood: -1072.2 (normalized: -1.0722)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.00110573\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.00110591 critical probability: 0.99999\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.00914921 variance: 0.00906551 standard deviation: 0.095213\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 39.255 variance: 1227.05 standard deviation: 35.0293\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 39.2914 variance: 1663.74 standard deviation: 40.789\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 34.424 variance: 1006.11 standard deviation: 31.7192\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.2965 variance: 6.69682 standard deviation: 2.58782\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.74852 variance: 162.583 standard deviation: 12.7508\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 5.0793 variance: 166.113 standard deviation: 12.8885\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.20649 variance: 67.7003 standard deviation: 8.22802\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 3.55873 variance: 168.953 standard deviation: 12.9982\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.16995 variance: 0.193917 standard deviation: 0.44036\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.37961 variance: 0.515853 standard deviation: 0.718229\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.45603 variance: 0.640529 standard deviation: 0.80033\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 11.6377 variance: 37.0881 standard deviation: 6.09\n", + "coefficient of skewness: -0.358174 coefficient of kurtosis: -0.998784\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.84159 variance: 21.3091 standard deviation: 4.61618\n", + "coefficient of skewness: -0.155882 coefficient of kurtosis: -0.982288\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 11.4802 variance: 44.0422 standard deviation: 6.63643\n", + "coefficient of skewness: -0.42045 coefficient of kurtosis: -1.00445\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 11.9602 variance: 54.2515 standard deviation: 7.36556\n", + "coefficient of skewness: -0.484581 coefficient of kurtosis: -1.03118\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 58.8938 variance: 587.115 standard deviation: 24.2305\n", + "coefficient of skewness: 0.636788 coefficient of kurtosis: -1.03049\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 8.00446 variance: 30.1612 standard deviation: 5.49192\n", + "coefficient of skewness: -0.0797906 coefficient of kurtosis: -0.928734\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 15.7143 variance: 89.2172 standard deviation: 9.44548\n", + "coefficient of skewness: -0.348204 coefficient of kurtosis: -1.01049\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 17.3874 variance: 119.125 standard deviation: 10.9144\n", + "coefficient of skewness: -0.417377 coefficient of kurtosis: -1.03107\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.0147602 _ 0.739208 _ \n", + "_ _ 0.0225098 0.724448 0.0112551 \n", + "_ _ _ _ 0.0140921 \n", + "_ _ _ _ 0.732865 \n", + "_ _ _ _ _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8897\n", + "OUTPUT 1 : 0.1103\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3457\n", + "OUTPUT 1 : 0.6543\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2424\n", + "OUTPUT 1 : 0.7576\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8652\n", + "OUTPUT 1 : 0.1348\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.889777 0.110223 \n", + "1 0.345704 0.654296 \n", + "2 0.99999 1e-05 \n", + "3 0.242406 0.757594 \n", + "4 0.865235 0.134765 \n", + "\n", + "theoretical weights: 0.256054 0.0873431 0.00288765 0.542894 0.110821\n", + "\n", + "log-likelihood: -693.834 (normalized: -0.693834)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 1.69765\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 1.69825 critical probability: 0.192516\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.258 0.089 0.003 0.508 0.142\n", + "\n", + "log-likelihood: -692.985 (normalized: -0.692985)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.000451244\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.000451248 critical probability: 0.983052\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.288469 variance: 0.799016 standard deviation: 0.893877\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 6.45382 variance: 44.1849 standard deviation: 6.64717\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.65422 variance: 8.02699 standard deviation: 2.83319\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.58158 variance: 3.37319 standard deviation: 1.83662\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.21154 variance: 10.6718 standard deviation: 3.26677\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.62073 variance: 10.8924 standard deviation: 3.30036\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.4164 variance: 11.1767 standard deviation: 3.34316\n", + "coefficient of skewness: -0.012518 coefficient of kurtosis: -0.0959775\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 16.2104 variance: 11.8336 standard deviation: 3.44001\n", + "coefficient of skewness: -0.02167 coefficient of kurtosis: -0.108697\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 48.8401 variance: 329.018 standard deviation: 18.1388\n", + "coefficient of skewness: 0.56199 coefficient of kurtosis: -0.933792\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 51.1599 variance: 329.018 standard deviation: 18.1388\n", + "coefficient of skewness: -0.56199 coefficient of kurtosis: -0.933792\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.544073 _ 0.647372 _ \n", + "_ _ 0.654286 0.103298 0.519531 \n", + "_ _ _ _ 0.134755 \n", + "_ _ _ _ 0.62283 \n", + "_ _ _ _ _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2425.07 (normalized: -2.42507)\n", + "\n", + "state sequence entropy: 7.01163 (normalized: 0.00701163)\n", + "\n", + "log-likelihood of the observed sequences: -2422.07 (normalized: -2.42207)\n", + "\n", + "39 free parameters 2 * penalyzed log-likelihood (AIC): -4922.13\n", + "\n", + "39 free parameters 2 * penalyzed log-likelihood (AICc): -4925.38\n", + "\n", + "39 free parameters 2 * penalyzed log-likelihood (BIC): -5113.53\n", + "\n", + "39 free parameters 2 * penalyzed log-likelihood (BICc): -5028.9\n", + "\n", + "39 free parameters 2 * penalyzed log-likelihood (ICL): -5127.56\n", + "\n", + "39 free parameters 2 * penalyzed log-likelihood (ICLc): -5042.93\n", + "\n" + ] + } + ], + "source": [ + "hsmc1 = Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"LeftRight\", Nbiteration=300) \n", + "print(hsmc1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Irreducible model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot model and data characteristics. \n", + "Syntax: hsmc1.extract(int type, int variable, int value) \n", + "types correspond to SELF_TRANSITION , OBSERVATION , INTENSITY , FIRST_OCCURRENCE , RECURRENCE_TIME , SOJOURN_TIME , INITIAL_RUN , FINAL_RUN , NB_RUN , NB_OCCURRENCE , COUNTING , LENGTH , SEQUENCE_CUMUL , SEQUENCE_MEAN" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAJCCAYAAADky0LWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xmc1vP+//HHVRNptaVSKo6kfTHJ0kYrUkokpUiScMgRHccSfZFjyXKyhJQ9tCDLSbQqalTo2P0KOfFNKimpaeb3x/t7okOa5jMzn+u65nG/3bo1NTPX59lIPXt/3p/XO5Gbm5uLJEmS8qVE3AEkSZJSmWVKkiQpAsuUJElSBJYpSZKkCCxTkiRJEVimJEmSIrBMSZIkRWCZkiRJisAyJUmSFEFGUV5s//33p1atWkV5SUmSpHxZsWIF33333S4/rkjLVK1atcjKyirKS0qSJOVLZmZmnj7O23ySJEkRWKYkSZIisExJkiRFUKR7piRJKkhbt25l5cqVbN68Oe4oSmGlS5emevXqlCpVKl+fb5mSJKWslStXUr58eWrVqkUikYg7jlJQbm4ua9asYeXKlRx88MH5eg1v80mSUtbmzZvZb7/9LFLKt0QiwX777RdpddMyJUlKaRYpRRX195BlSpIkKQLLlCRJBWjEiBHcdtttXHvttcyYMWOnHzd16lQ++OCDnb7//vvv59FHHwWgbdu2uzX0et26ddx7773bf/zvf/+bnj175vnztXssU5Kk4mXVKmjTBr75plAvc8MNN9C+ffudvv+PylR2djaDBw+mX79++br2f5epAw88kOeeey5fr6Vds0xJkoqXkSNh3rzwfQG58cYbOeyww2jZsiUff/wxAGefffb2AjN8+HDq1atHo0aNuPzyy5k/fz4vvPACw4YNo0mTJnz++ee0bduWSy+9lMzMTO66667tK1z/8dhjj9GkSRMaNGjAwoULAX7zMQ0aNGDFihUMHz6czz//nCZNmjBs2DBWrFhBgwYNgLBp/5xzzqFhw4Y0bdqUmTNnAjB+/Hh69OhB586dqV27NldccUWBfX3SnaMRJEnFx6pV8MgjkJMTvr/mGqhSJdJLvvPOOzz99NMsXbqU7OxsmjVrxhFHHLH9/WvWrGHKlCl89NFHJBIJ1q1bx957703Xrl3p0qXLDrfftmzZsv123ogRI3a4zqZNm1i6dClz5sxhwIABLFu2bKeZRo0axbJly1i6dCkQDuz9jzFjxpBIJHj//ff56KOP6NixI5988gkAS5cuZcmSJey5557UqVOHiy++mIMOOijS16c4cGVKkpQ+Eok//nbggfCfR+B/+gmqVt315+zC3Llz6d69O2XKlKFChQp07dp1h/dXrFiR0qVLc+655zJ58mTKlCmz09fq1avXTt/Xu3dvAFq3bs0PP/zAunXr8vAF+a158+bRt29fAA4//HBq1qy5vUy1a9due9569erxxRdf5OsaxY1lSpKUPnJzd/7t3/+G0qV3/Pi99gqrVX/0eRFlZGSwcOFCevbsybRp0+jcufNOP7Zs2bI7fd9/P76fSCTIyMggJydn+89FnQS/5557bn+7ZMmSZGdnR3q94sIyJUkqHkaODLf3fm3btsh7p1q3bs3UqVP56aef2LBhAy+++OIO7//xxx9Zv349J554IqNHj+bdd98FoHz58mzYsCHP15k4cSIQVpYqVqxIxYoVqVWrFosXLwZg8eLFLF++fJev3apVK5544gkAPvnkE7788kvq1Kmze79o7cA9U5Kk4mHBAtiyZcef27IF5s+P9LLNmjWjV69eNG7cmAMOOIDmzZvv8P4NGzbQrVs3Nm/eTG5uLnfccQcAZ5xxBueddx533313np60K126NE2bNmXr1q2MGzcOgFNPPZVHH32U+vXr06JFCw477DAA9ttvP4499lgaNGjACSecwIUXXrj9dYYMGcIFF1xAw4YNycjIYPz48TusSGn3JXJzC2ANM48yMzN3a06GJEl/5MMPP6Ru3bpxx1Aa+L3fS3ntLd7mkyRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJiuDuu++mbt269OnTJ+4ohaZWrVp89913ABxzzDF/+LE33XTTH77/xBNPZN26dTscvpxXs2bNYv6v5oLdf//9PProo7v1GoXBoZ2SJEVw7733MmPGDKpXr77Dz2dnZ5ORkX5/zc7fxZDTm266iauuuuo3P5+bm0tubi4vv/wyQL7OFpw1axblypXbXugGDx68269RGFyZkiQpnwYPHsz/+3//jxNOOIHRo0czYsQIzjrrLI499ljOOusstm3bxrBhw2jevDmNGjXigQceAEKxuOiii6hTpw7t27fnxBNP3D4F/derQFlZWbRt2xaAjRs3MmDAAI488kiaNm3K888/D8D48ePp0aMHnTt3pnbt2lxxxRXb87366qs0a9aMxo0b065dO3JycqhduzarV68GICcnh0MPPXT7j/9jzZo1dOzYkfr16zNw4EB+Pd+7XLlyAKxatYrWrVvTpEkTGjRowNy5cxk+fDg//fQTTZo0oU+fPqxYsYI6derQr18/GjRowFdffbXDry87O5s+ffpQt25devbsyaZNm3b6NVixYgX3338/o0ePpkmTJsydO5cRI0Zw2223AbB06VKOOuooGjVqRPfu3Vm7di0Abdu25corr+TII4/ksMMOY+7cuQXxn34HlilJkvLp/vvv58ADD2TmzJkMHToUgA8++IAZM2bw1FNP8fDDD1OxYkUWLVrEokWLePDBB1m+fDlTpkzh448/5oMPPuDRRx/d5WoPwI033sjxxx/PwoULmTlzJsOGDWPjxo1AKBITJ07k/fffZ+LEiXz11VesXr2a8847j0mTJvHuu+/y7LPPUqJECfr27bv9bL4ZM2bQuHFjKlWqtMO1rr/+elq2bMm//vUvunfvzpdffvmbPE8++SSdOnVi6dKlvPvuuzRp0oRRo0ax1157sXTp0u3X+PTTTxkyZAj/+te/qFmz5g6v8fHHHzNkyBA+/PBDKlSowL333rvTX3+tWrUYPHgwQ4cOZenSpbRq1WqH9/fr149bbrmF9957j4YNG3L99ddvf192djYLFy7kzjvv3OHnC0r6rT9KkoqtEbNGcP3sgvvL8ro21zGi7Yjd+pyuXbuy1157ATB9+nTee++97atO69ev59NPP2XOnDn07t2bkiVLcuCBB3L88cfv8nWnT5/OCy+8sH0lZvPmzdtLTrt27ahYsSIA9erV44svvmDt2rW0bt2agw8+GIB9990XgAEDBtCtWzcuvfRSxo0bxznnnPOba82ZM4fJkycDcNJJJ7HPPvv85mOaN2/OgAED2Lp1K6eccgpNmjT53dw1a9bkqKOO+t33HXTQQRx77LEA9O3bl7vvvpvLL798l1+L/7Z+/XrWrVtHmzZtAOjfvz+nnXba9vf36NEDgCOOOIIVK1bs9uvvimVKkpQ2RrQdsdvlp6CVLVt2+9u5ubncc889dOrUaYeP+c++od+TkZFBTk4OEArTr19r0qRJ1KlTZ4ePf/vtt3c4qLhkyZJkZ2fv9PUPOuggKleuzBtvvMHChQu3ryDtrtatWzNnzhxeeuklzj77bC677DL69ev3m4/79dfjvyUSid/98c6+Bvn1n6/Prr42+eVtPkmSCkmnTp2477772Lp1KwCffPIJGzdupHXr1kycOJFt27axatUqZs6cuf1zatWqxTvvvAPApEmTdnite+65Z/v+pSVLlvzhtY866ijmzJnD8uXLAfj++++3v2/gwIH07duX0047jZIlS/7mc1u3bs2TTz4JwCuvvLJ9/9GvffHFF1SuXJnzzjuPgQMHsnjxYgBKlSq1/de7K19++SULFiwAwm3Dli1b/uHXoHz58mzYsOE3r1OxYkX22Wef7fuhHnvsse2rVEXBMiVJUiEZOHAg9erVo1mzZjRo0IDzzz+f7OxsunfvTu3atalXrx79+vXj6KOP3v451113HZdccgmZmZk7FJ1rrrmGrVu30qhRI+rXr88111zzh9euVKkSY8eOpUePHjRu3JhevXptf1/Xrl358ccff/cW338yzJkzh/r16zN58mRq1Kjxm4+ZNWsWjRs3pmnTpkycOJFLLrkEgEGDBtGoUaM8jYqoU6cOY8aMoW7duqxdu5YLLrjgD78GJ598MlOmTNm+Af3XJkyYwLBhw2jUqBFLly7l2muv3eX1C0oi99db9AtZZmYmWVlZRXU5SVKa+/DDD6lbt27cMSI7++yz6dKlCz179iyS62VlZTF06NBCebItVf3e76W89hb3TEmSVIyMGjWK++67L997pfRblilJkmI2fvz4IrvW8OHDGT58eJFdrzhwz5QkKaUV4W4Vpamov4csU5KklFW6dGnWrFljoVK+5ebmsmbNGkqXLp3v1/A2nyQpZVWvXp2VK1f+5jgUaXeULl36N2cr7g7LlCQpZZUqVWr7hG8pLt7mkyRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTEmSJEVgmZIkSYrAMiVJkhSBZUqSJCkCy5QkSVIElilJkqQILFOSJEkRWKYkSZIisExJkiRFYJmSJEmKwDIlSZIUgWVKkiQpAsuUJElSBJYpSZKkCCxTkiRJEVimJEmSIrBMSZIkRWCZkiRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTEmSJEVgmZIkSYrAMiVJkhSBZUqSJCkCy5QkSVIElilJkqQILFOSJEkRWKYkSZIisExJkiRFYJmSJEmKIE9lavTo0dSvX58GDRrQu3dvNm/ezPLly2nRogWHHnoovXr1YsuWLYWdVZIkKensskx9/fXX3H333WRlZbFs2TK2bdvG008/zZVXXsnQoUP57LPP2GeffXj44YeLIq8kSVJSydPKVHZ2Nj/99BPZ2dls2rSJqlWr8sYbb9CzZ08A+vfvz9SpUws1qCRJUjLaZZmqVq0al19+OTVq1KBq1apUrFiRI444gr333puMjAwAqlevztdff/27nz927FgyMzPJzMxk9erVBZtekiQpZrssU2vXruX5559n+fLl/Pvf/2bjxo28+uqreb7AoEGDyMrKIisri0qVKkUKK0mSlGwydvUBM2bM4OCDD95ehHr06MGbb77JunXryM7OJiMjg5UrV1KtWrVCDytJkpRsdrkyVaNGDd566y02bdpEbm4ur7/+OvXq1eO4447jueeeA2DChAl069at0MNKkiQlm12WqRYtWtCzZ0+aNWtGw4YNycnJYdCgQdxyyy3ccccdHHrooaxZs4Zzzz23KPJKkiQllURubm5uUV0sMzOTrKysorqcJElSvuW1tzgBXZIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTEmSJEVgmZIkSYrAMiVJkhSBZUqSJCkCy5QkSVIElilJkqQILFOSJEkRWKYkSZIisExJkiRFYJmSJEmKwDIlSZIUgWVKkiQpAsuUJElSBJYpSZKkCCxTkiRJEVimJEmSIrBMSZIkRWCZkiRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTEmSJEVgmZIkSYrAMiVJkhSBZUqSJCkCy5QkSVIElilJkqQILFOSJEkRWKYkSZIisExJkiRFYJmSJEmKwDIlSZIUgWVKkiQpAsuUJElSBJYpSZKkCCxTkiRJEVimJEmSIrBMSZIkRWCZkiRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTEmSJEVgmZIkSYrAMiVJkhSBZUqSJCkCy5QkSVIElilJkqQILFOSJEkRWKYkSZIisExJkiRFYJmSJEmKwDIlSZIUgWVKkiQpAsuUJElSBJYpSZKkCCxTkiRJEVimJEmSIrBMSZIkRWCZkiRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTEmSJEVgmZIkSYrAMiVJkhSBZUqSJCkCy5QkSVIElilJkqQILFOSJEkRWKYkSZIisExJkiRFYJmSJEmKwDIlSZIUgWVKkiQpAsuUJElSBJYpSZKkCCxTkiRJEVimJEmSIrBMSZIkRWCZkiRJisAyJUmSFIFlSpIkKQLLlCRJUgSWKUmSpAgsU5IkSRFYpiRJkiKwTCn5rFoFbdrAN9/EnUSSpF2yTCn5jBwJ8+aF7yVJSnKWKSWXVavgkUcgJyd87+qUJCnJWaaUXEaOhC1bwttbt7o6JUlKepYpJY9Vq+Chh8KqFEB2dvixq1OSpCSWpzK1bt06evbsyeGHH07dunVZsGAB33//PR06dKB27dp06NCBtWvXFnZWpbuLLw6rUb+2ZQucf348eSRJyoM8lalLLrmEzp0789FHH/Huu+9St25dRo0aRbt27fj0009p164do0aNKuysSmerV8MLL/z++156Cd56q2jzSJKUR7ssU+vXr2fOnDmce+65AOyxxx7svffePP/88/Tv3x+A/v37M3Xq1MJNqvSVnQ1nnAGXXw65uZCbS2IE29/mhRegWzd47724k0qS9Bu7LFPLly+nUqVKnHPOOTRt2pSBAweyceNGvv32W6pWrQpAlSpV+Pbbb3/388eOHUtmZiaZmZmsXr26YNMrPVx1FZQsufPN5ieeCPfcA507w6efFm02SZJ2YZdlKjs7m8WLF3PBBRewZMkSypYt+5tbeolEgkQi8bufP2jQILKyssjKyqJSpUoFk1rp49lnw7enngqFamdOPx1uuAE6dICvviq6fJIk7cIuy1T16tWpXr06LVq0AKBnz54sXryYypUrs2rVKgBWrVrFAQccULhJlX7+9S8YMgQmTYL99tv1xw8cCH/+cyhU//u/hZ9PkqQ82GWZqlKlCgcddBAff/wxAK+//jr16tWja9euTJgwAYAJEybQrVu3wk2q9LJ+PXTvDrfdBs2a5f3zLrsMevWCTp1g3brCyydJUh5l5OWD7rnnHvr06cOWLVs45JBDeOSRR8jJyeH000/n4YcfpmbNmjzzzDOFnVXpIicH+vWDjh3h/x5i2C0jRoQydtJJMH06lC1b4BElScqrPJWpJk2akJWV9Zuff/311ws8kIqBm26C774Le6XyI5GAO+4It/26d4cXX4Q99yzYjJIk5ZET0FW0XnkF7rsvFKk99sj/65QoAQ8+CBUrQu/eYbyCJEkxsEyp6Hz+OZx9NkycCAceGP31SpaExx+HTZtgwIBfjqGRJKkIWaZUNDZtgh494JproGXLgnvdPfeEyZNh+XK45JIw5FOSpCJkmVLhy82F886Dxo3hwgsL/vXLlIFp02D+/FDWJEkqQnnagC5Fcs898MEH8OabYfN4YahYEV59FVq3Dm8PG1Y415Ek6b9YplS45syBG28MBxWXKVO416pUCWbMgFatoEIFOP/8wr2eJElYplSYvv46HGD86KNw8MFFc81q1eC116BNm1CoevcumutKkooty5QKx88/Q8+ecNFFYVp5UfrTn8Itv/btoVw5OPnkor2+JKlYcQO6CsfQoVClCgwfHs/1GzQIwzzPPRdmzowngySpWLBMqeA98gi8/jpMmBCGa8aleXN45plwlt/bb8eXQ5KU1ixTKljvvANXXAFTpoQ9S3Fr2zaUu27d4P33404jSUpDlikVnO++g1NPhfvvh3r14k7zi5NOgrvugs6d4bPP4k4jSUozbkBXwcjODk/unXFGKFTJplcv+OEH6NAhjGs46KC4E0mS0oRlSgXj6qvDQM7/+Z+4k+zceeftWKgOOCDuRJKkNGCZUnSTJsHTT0NWFmQk+W+pv/wF1q8P4xpmzoS99447kSQpxblnStF88AEMHhwK1f77x50mb66/PkxJ79IFNm6MO40kKcVZppR/69dD9+5w661wxBFxp8m7RALuvBNq14YePcKAUUmS8skypfzJyYH+/aFdOzj77LjT7L4SJeDBB6F8eTjzzLCBXpKkfLBMKX9GjYJvvw0rPKkqIwOeeAJ+/BEGDgwFUZKk3WSZ0u775z9hzBh47jnYY4+400Sz554weXKYP3XppZCbG3ciSVKKsUxp9yxfDv36haf3qlWLO03BKFsWXnoJ5s2Da6+NO40kKcUk+XPsSiqbNoUN23/7W3gaLp1UrAivvgqtW4e3L7887kSSpBRhmVLe5OaGEQj168PFF8edpnAccADMmBGKYsWKYcinJEm7YJlS3owZA++9B/Pnh9EC6ap6dXjtNWjTJjzpd8YZcSeSJCU5y5R2bd48GDkSFiyAMmXiTlP4Dj003PLr0CEUqpNOijuRJCmJuQFdf+zf/w6HBI8fD4ccEneaotOwIbzwApxzDsyaFXcaSVISs0xp57ZsgdNOgwsugBNOiDtN0TvySHjmGTj9dFi4MO40kqQkZZnSzg0dCpUqwVVXxZ0kPm3bwrhx0LUrLFsWdxpJUhKyTOn3jR8fnmybMCEcvVKcdekCo0dD587w+edxp5EkJRk3oOu3Fi+GYcNg9uwwIkDQuzds2BA2pc+ZE576kyQJy5T+23ffhcGc990H9erFnSa5DBoE69f/UqgqVYo7kSQpCVim9Itt28IKTK9e0LNn3GmS07BhoVB16gQzZ7pyJ0lyz5R+5eqrw6TzG2+MO0lyGzkSWrYMe6k2bYo7jSQpZpYpBZMmwVNPhW8ZLlj+oUQC7rwT/vSncEv055/jTiRJipFlSvDhh+Hcveeecx9QXpUoAQ89FCbC9+kD2dlxJ5IkxcQyVdz98AN07w5//ztkZsadJrVkZISVvB9+CIci5+TEnUiSFAPLVHGWkwP9+8Nxx4VjU7T79twTpkyBTz6Byy4Le84kScWKZao4u+UW+OabsP9H+Ve2LLz0UpjLNWJE3GkkSUXMncbF1fTpcM89sGhRWF1RNHvvDf/8J7RuHcYlXHZZ3IkkSUXEMlUcLV8OZ50Fzz4L1arFnSZ9HHAAvPYatGoFFSrAwIFxJ5IkFQHLVHGzaVN4nP+qq8IqigrWQQeFQtW2LZQvHwagSpLSmmWqOMnNDSMQ6tWDP/857jTpq3ZteOWVcOxMuXJw0klxJ5IkFSI3oBcn994L774LY8eGwZMqPI0awfPPw9lnh43pkqS0ZZkqLt58E264ASZPDk+fqfAddRRMnAinnQZZWXGnkSQVEstUcbBqFZx+OowfH45AUdE5/vgwKb1LF/jXv+JOI0kqBO6ZSndbtoSVkcGD4YQT4k5TPHXtCj/+CJ06wZw5cMghcSeSJBUgy1S6+8tfYN994W9/iztJ8XbmmbBhA7RvD3PnOpJCktKIZSqdPfpoGCS5aFE4mFfxOv98WL8+POU3e7aHSktSmrBMpaslS8Kq1MyZYSK3ksMVV8C6ddC5M7zxhv9tJCkNuFyRjtasCYM5x4yBBg3iTqP/duONcPTRcPLJYYiqJCmlWabSzbZtYX9Oz57hCT4ln0QC7r4batWCU08NDwlIklKWZSrdXHstbN0KN98cdxL9kRIlYNw4KF0a+vYNJViSlJIsU+lkyhR4/PEwKDLD7XBJLyMDnn4a1q6FQYMgJyfuRJKkfLBMpYuPPgpPiz33nE+JpZI994SpU+HDD8MDA7m5cSeSJO0my1Q62LABuncPt/aaN487jXZX2bLw8svhycvrr487jSRpN3kvKNXl5obDdFu3hnPPjTuN8mvvvcNMsNatw7iEoUPjTiRJyiPLVKr7+99h5Up48sm4kyiqypXhtdd+KVQDBsSdSJKUB5apVPbaa3DXXbBwYdh7o9RXowZMnw5t20L58uFcRUlSUrNMpaoVK+Css8LTYNWrx51GBemww+DVV8OxM+XKeUC1JCU5N6Cnop9+CsMer7wyrGAo/TRqBM8/D/37w5w5caeRJP0By1Sqyc2FCy4IqxeXXhp3GhWmo46Cp54K0+yzsuJOI0naCctUqrn/fnjnHXjooXAsidJbu3bw4IPQpQt88EHcaSRJv8M9U6lk/ny47rrwfdmycadRUenWLcwS69gx3PI75JC4E0mSfsUylSq++SYcXPzII3DooXGnUVHr2xd++CFsSp87Fw48MO5EkqT/Y5lKBVu3hkfkzzsPTjop7jSKy5AhvxSq2bNh//3jTiRJwj1TqeHyy8OE7GuuiTuJ4jZ8OHTtCp07h2IlSYqdK1PJ7vHHw7ltixZBCbuvgJtuCkXq5JPhlVegTJm4E0lSsebfzsls6dJwRtvkyWFlSoLwFOc994Rp6T17wpYtcSeSpGLNMpWsvv8eevQIf2k2bBh3GiWbEiVg3DjYY48wCX/btrgTSVKxZZlKRtu2wZlnQvfucMYZcadRsipVKhwntGYNDB4cBrpKkoqcZSoZjRgBP/8Mt9wSdxIlu9KlYepUWLYsPKhgoZKkImeZSjZTp8KECTBxImT4fIDyoFy58JDCjBkwcmTcaSSp2PFv62Ty8ccwaBBMmwYHHBB3GqWSffaB6dOhVSuoWBEuuSTuRJJUbFimksWGDWGP1E03wZFHxp1Gqahy5bA61aoVlC8PAwbEnUiSigXLVDLIzYVzzoGWLWHgwLjTKJXVqAGvvQZt24ZCddppcSeSpLRnmUoGt94KX30FTzwRdxKlg8MOC3uoOnUKhapz57gTSVJacwN63GbMgNGj4bnnYM89406jdNGkCUyZAv36hYORJUmFxjIVpy++gL594ckn4aCD4k6jdHPMMeH31qmnwuLFcaeRpLRlmYrLTz+FCedXXAHHHRd3GqWr9u1h7Fg46ST48MO400hSWnLPVBxyc2HIEKhdO5y9JxWmU04JT4t27Ahz5sDBB8edSJLSimUqDg88AFlZ8NZb4dBaqbCddRb88ENYqZo7Fw48MO5EkpQ2LFNFbcECuPZaePNNKFs27jQqTi68ENavDytUs2fDfvvFnUiS0oJ7porSN9/A6afDuHHhFp9U1P7617B/qnPnsFIlSYrMMlVUtm4NRercc6FLl7jTqLhKJGDUKMjMhK5dw4MQkqRILFNFZdiwMEDx2mvjTqLiLpGAMWOgWrUwIX3LlrgTSVKlJlLwAAAgAElEQVRKs0wVhSeeCIcXP/44lPBLriRQogSMHw8lS4bBntu2xZ1IklKWf7MXtnffhUsvhcmTYZ994k4j/aJUKZg4EVavhsGDw8gOSdJus0wVpu+/D4M5774bGjWKO430W6VLw9Sp8P774Va0hUqSdptlqrBs2wZ9+kC3btC7d9xppJ0rXz4cjDx9Otx4Y9xpJCnlOGeqsFx/fXhS6pZb4k4i7dq++4Yy1aoVVKgAf/5z3IkkKWVYpgrDCy/AI4+EKeelSsWdRsqbKlVgxoxfCtXZZ8edSJJSgmWqoH3yCQwcCC++CJUrx51G2j01a8Jrr4XDt8uXh1NPjTuRJCU9y1RB+vFH6N4d/ud/oEWLuNNI+VOnTthD1akTlCsXvpck7ZQb0AtKbi4MGABHHw3nnRd3GimaJk1gypRwQPK8eXGnkaSkZpkqKLffDsuXwz/+ESZMS6numGPCwNkePWDx4rjTSFLSskwVhDfeCGVq0qQwt0dKFx06wP33h8ORP/oo7jSSlJTcMxXVl1+GeVJPPAE1asSdRip4PXrAhg3QsSPMmQO1asWdSJKSimUqis2bw9NOf/kLHH983GmkwtO/fyhU7dvD3LlQtWrciSQpaVim8is3Fy68EA4+OJQpKd1ddBGsXx9WqGbPDoM+JUmWqXx78EF46y14+203nKv4uOqqUKhOOCEM+CxfPu5EkhQ7N6Dnx1tvwdVXh0fHy5WLO41UdBKJcERSkybQtWs4MkmSijnL1O769ls47TR46CE47LC400hFL5GAe+8Nx8+cfjps3Rp3IkmKlWVqd2zdCr16wTnnhH+VS8VVyZLw6KPh7X79YNu2ePNIUowsU7vjyiuhTBm47rq4k0jxK1UKnnkmrNYOGRIeypCkYsgylVdPPQXPPw+PPx7+VS4J9tor/H+xdGn4x4aFSlIxlOcytW3bNpo2bUqXLl0AWL58OS1atODQQw+lV69ebNmypdBCxu699+DPf4bJk30cXPpv5cvDK6+EbzfdFHcaSSpyeS5Td911F3Xr1t3+4yuvvJKhQ4fy2Wefsc8++/Dwww8XSsDYrV0bJkDfeSc0bhx3Gik57bsvTJ8O48fDPffEnUaSilSeytTKlSt56aWXGDhwIAC5ubm88cYb9OzZE4D+/fszderUwksZl5wc6NsXunQJR8ZI2rmqVeG11+DWW2HChLjTSFKRydPQzksvvZS///3vbNiwAYA1a9aw9957k5ERPr169ep8/fXXhZcyLjfcEI7QuPXWuJNIqaFWrbBCddxx4fZfjx5xJ5KkQrfLlalp06ZxwAEHcMQRR+TrAmPHjiUzM5PMzExWr16dr9eIxbRp8PDD4WmlUqXiTiOljsMPh5degsGDw0qVJKW5Xa5Mvfnmm7zwwgu8/PLLbN68mR9++IFLLrmEdevWkZ2dTUZGBitXrqRatWq/+/mDBg1i0KBBAGRmZhZs+sLy6acwYEB4SqlKlbjTSKmnWbPwwEaPHuGkgGOPjTuRJBWaXa5M3XzzzaxcuZIVK1bw9NNPc/zxx/PEE09w3HHH8dxzzwEwYcIEunXrVuhhi8SPP4a/AG64AY4+Ou40Uupq2RIeeyz8/7RkSdxpJKnQ5HvO1C233MIdd9zBoYceypo1azj33HMLMlc8cnNh4EBo3hzOPz/uNFLq69QpHD1z0knw0Udxp5GkQpGnDej/0bZtW9q2bQvAIYccwsKFCwsjU3xGj4bPPoN588L5Y5KiO/XU8CBHx44wdy7UrBl3IkkqULtVptLazJnhqb2334bSpeNOI6WXs8+GH36A9u1DoXIvoqQ0YpkC+OorOPPMcFRMjRpxp5HS05//DOvXQ4cOMHu2pwlIShuezbd5c7gNcdll0K5d3Gmk9Hb11WEf1Yknhlt/kpQGLFMXXxz2cFx+edxJpPSXSITb6Y0awSmnhH/MSFKKK95l6sEHYf58GDfODedSUUkk4L77oFIlOP102Lo17kSSFEnxLVNvvw1/+1sYLFi+fNxppOKlZMkwgyonJ2xOz8mJO5Ek5VvxLFPffgunnRZWpurUiTuNVDyVKgXPPgtffw0XXhjmvElSCip+ZSo7G3r1gv79IV2mtkupaq+94IUX4J13YPhwC5WklFT8ytSVV4Y/wEeMiDuJJIAKFeCVV8LhyKNGxZ1GknZb8Zoz9fTTMHUqLFoU9mxISg777QevvQatWoVydeGFcSeSpDwrPmXq/ffDGIQZMxwWKCWjqlVDoWrdOhSqs86KO5Ek5UnxKFPr1kH37uHsvcaN404jaWcOPhimT4fjj4dy5cL/t5KU5NK/TOXkQN++4dT6vn3jTiNpV+rWDfunOncOhapDh7gTSdIfSv8N6CNHhgNWb7st7iSS8qpZM5g0KZyZOX9+3Gkk6Q+ld5maNi3MknrmmTDTRlLqaNUqDPbs3h3efTfuNJK0U+lbpj77DAYMCEMBq1SJO42k/OjcGcaMgRNOgE8+iTuNJP2u9NwztXFj+Nfs9dfD0UfHnUZSFD17woYNYe/U3LlQo0bciSRpB+lXpnJzYeBAyMyEwYPjTiOpIJxzTtj72L59KFSVK8edSJK2S78ydeed4XbAvHnhdHpJ6eGSS2D9eujYEWbNgn32iTuRJAHpVqZmzYJbboG33w5HxkhKL9dcEwrViSeGAZ/lysWdSJLSaAP6ypXQu3d4+qdmzbjTSCoMiUQYc1K/fjiofPNmWLUK2rSBb76JO52kYio9ytTPP8Opp8KllzrgT0p3iQQ88ADsvz+ccUZ40GTevDBTTpJikB5l6s9/hoMOgiuuiDuJpKJQsmRYhf7hB3jooXDSwSOPuDolKRapX6YeegjmzAl/kLrhXCo+9tgDDj00FCmAbdtcnZIUi9QuUwsXwlVXwZQpUL583GkkFaVVq8LqVG5u+PGWLfDww65OSSpyqVum/vd/4bTTwt6Jww+PO42kojZy5C+rUv/x88/Qr188eSQVW6lZprKzw8bTvn3DpHNJxc+CBWE16r/Nng2XXQZbtxZ9JknFUmqWqb/+NRxcfMMNcSeRFJclS8ItvtxcEiPY/jarVsGHH4Zp6d9+G3dKScVA6pWpZ56BSZPgySfDEz2S9Gv77gvTpkHbtuFYqfnz404kKc2lVplatgwuvDCUqf32izuNpGRVsmSYP3XffWErwJgxv2xUl6QCljplat066NED7rgDmjaNO42kVNClS1iZGjs2bEzftCnuRJLSUGqUqZyc8Adhp05w1llxp5GUSv70p7BZPTcXjjkGPv887kSS0kxqlKkbb4Tvv4fbb487iaRUVKZMmEk1cGAoVC+/HHciSWkk+cvUyy+HWVLPPhsmHktSfiQScNFFMHkyDBoEI0b8dk6VJOVDcpepzz+Hc86BiROhatW400hKB8ceC1lZ8MYbcPLJYdVbkiJI3jK1cWN4Cufaa8MffpJUUKpUgddfhzp1oHlzWLo07kSSUlhylqnc3LAM37QpDBkSdxpJ6ahUqfB08I03QocOYU+VJOVDRtwBftfdd8MHH4RHmhOJuNNISmdnnAENGoTRK2+9BaNHuz9T0m5JvpWp2bPhppvCJtG99oo7jaTioEEDWLQIvv46TE7/+uu4E0lKIclVpr7+Gnr3DsvtBx8cdxpJxUnFiuEfcV26hH1Us2fHnUhSikieMvXzz9CzJ1x8MXTsGHcaScVRiRJw1VUwfjz06hX2VHkMjaRdSJ4ydemlYfzB8OFxJ5FU3HXsCG+/HQ5UP+MM+PHHuBNJSmLJUabGjYOZM8O/Bt1wLikZ1KwJ8+ZBuXLQogV8/HHciSQlqfjLVFZWWI2aMgUqVIg7jST9onRpePjhsHLeqlX4c0qS/ku8ZWr1ajj11HBcTN26sUaRpJ067zyYNi2Uqr/+FbZtizuRpCQSX5nKzg5P7vXpEyadS1IyO/LIsJK+aBF07hz+MShJxFmmrroqPDkzcmRsESRpt1SqBK++CpmZ4duiRXEnkpQE4ilTzz4bvj31FJQsGUsEScqXjAy4+Wa480448UR48MG4E0mKWdGXqX/9K5y3N2kS7LdfkV9ekgpE9+4wd244fmbgQNi8Oe5EkmJStGXqo4/g5JPhttugWbMivbQkFbjDD4eFC+GHH6BlS/jii7gTSYpB0ZapjRuhbFno379ILytJhaZcOZg4MTxQ06IFvPZa3IkkFbGiv833+efwzTdFfllJKjSJBPzlL/D00+EfizffDDk5caeSVESKvkxt2+YTfJLSU9u24bbfCy9Ajx6wfn3ciSQVgaIvU1u2wCOPuDolKT1Vrw6zZ0O1atC8OSxbFnciSYUsntEIrk5JSmd77AFjxsDVV8Nxx4U9VZLSVkYsV92yBebPj+XSklRk+vWDRo3CsVlvvw233AKlSsWdSlIBK9KVqXeqArm54duSJUV5aUmKR5MmYVL6Rx9B+/ZucZDSULwHHUtScbDvvuGg5OOOC8fQuDIvpRXLlCQVhRIlYMQIeOABOOUU+Mc/wiq9pJRnmZKkonTSSbBgQTjTr18/2LQp7kSSIrJMSVJR+9OfQqECOProMMxYUsqyTElSHMqUgUcfhfPOC4Vq2rS4E0nKJ8uUJMUlkYCLLoKpU2HwYLjuOo+hkVKQZUqS4nbMMZCVBbNmQZcu8P33cSeStBssU5KUDKpUgRkz4PDDw/iEpUvjTiQpjyxTkpQsSpWCO+6Am26CDh3CnipJSS+e42QkSTt3xhnQsCF07x6OoRk9Opz3JykpuTIlScmofv1wDM3XX0ObNuF7SUnJMiVJyapiRZg8Gbp2hebNwwZ1SUnHMiVJyaxECfjrX2HChHD77/bbPYZGSjKWKUlKBR06hP1TTz0FvXrBhg1xJ5L0fyxTkpQqataEefOgQgVo0QI+/jjuRJKwTElSaildGh56CC67DFq2DHuqJMXKMiVJqWjgQHj5ZRg6FIYPh+zsuBNJxZZlSpJSVfPm4RiarCzo3BlWr447kVQsWaYkKZVVqgT//CcceWQ4hmbhwrgTScWOZUqSUl3JkuEImjvvhJNOggcfjDuRVKxYpiQpXXTvHp72u/POsKdq8+a4E0nFgmVKktJJnTphHtWGDeFpvxUr4k4kpT3LlCSlm3Ll4Omn4cwz4aijYPr0uBNJac0yJUnpKJEIs6gmToSzzw57qnJy4k4lpSXLlCSlszZtYNEimDYNevSA9evjTiSlHcuUJKW7atVg1iyoXj3Mplq2LO5EUlqxTElScbDHHvCPf8DVV8Nxx4U9VZIKREbcASRJRahfP2jUCE49NTz19/e/Q6lScaeSUporU5JU3DRpEo6g+eQTaNcOvvkm7kRSSrNMSVJxtM8+8OKLoUxlZsKbb8adSEpZlilJKq5KlIDrroOxY8P09HvugdzcuFNJKccyJUnF3YknwoIF8PDDcNZZsGlT3ImklGKZkiTBn/4E8+eH1aqjj4bPPos7kZQyLFOSpKBMGZgwAQYNgmOOCYM+Je2SZUqS9ItEAi68EKZOhQsugGuvhW3b4k4lJTXLlCTpt445JhxDM3s2dOkC338fdyIpaVmmJEm/r0oVmDED6tUL4xOWLIk7kZSULFOSpJ0rVQpuvx1uvhk6dgx7qiTtwDIlSdq1Xr3CYck33QRDhsDPP8edSEoalilJUt7Urw8LF8KqVdCmDaxcGXciKSlYpiRJeVexIkyaBKecAs2bw8yZcSeSYmeZkiTtnhIlYPhweOwx6N0bbrvNY2hUrFmmJEn50759uO03cWLYU7VhQ9yJpFhYpiRJ+VejBsydG27/tWgBH30UdyKpyFmmJEnRlC4NDz4Il10GrVvD5MlxJ5KKlGVKklQwBg6El1+GoUPhyishOzvuRFKRsExJkgpOZia88w4sXgydOsHq1XEnkgqdZUqSVLD23x9efTXsocrMDJvUpTRmmZIkFbySJcO09LvuCgcljx3r+ASlrV2Wqa+++orjjjuOevXqUb9+fe666y4Avv/+ezp06EDt2rXp0KEDa9euLfSwkqQUc8opMG9eKFUDB8JPP8WdSCpwuyxTGRkZ3H777XzwwQe89dZbjBkzhg8++IBRo0bRrl07Pv30U9q1a8eoUaOKIq8kKdUcdhi8/Tb8+CO0bAkrVsSdSCpQuyxTVatWpVmzZgCUL1+eunXr8vXXX/P888/Tv39/APr378/UqVMLN6kkKXWVKwdPPw19+4a9VNOnx51IKjC7tWdqxYoVLFmyhBYtWvDtt99StWpVAKpUqcK3335bKAElSWkikQhjE555Bs4+G268EXJy4k4lRZbnMvXjjz9y6qmncuedd1KhQoUd3pdIJEgkEr/7eWPHjiUzM5PMzMxoSSVJ6aFNG1i0CF56Cbp3h3Xr4k4kRZKnMrV161ZOPfVU+vTpQ48ePQCoXLkyq1atAmDVqlUccMABv/u5gwYNIisri6ysrAKKLElKedWqwaxZcNBB0Lw5LFsWdyIp33ZZpnJzczn33HOpW7cul1122faf79q1KxMmTABgwoQJdOvWrfBSSpLSzx57wD/+AddeC8cdB089FXciKV8ydvUBb775Jo899hgNGzakSZMmANx0000MHz6c008/nYcffpiaNWvyzDPPFHpYSVIaOussaNQIevQIT/3deiuUKhV3KinPdlmmWrZsSe5OBq29/vrrBR5IklQMNW4MWVnhab/jjw+b1P/vIScp2TkBXZKUHPbZB158Edq3D/uo3nwz7kRSnlimJEnJo0QJuO66cPxMjx5w990eQ6OkZ5mSJCWfE0+EBQtg3Lhw62/jxrgTSTtlmZIkJadDDoH588OhyUcfDZ99Fnci6XdZpiRJyatMGZgwAQYPhmOOCXuqpCRjmZIkJbdEAoYMgeefD99fcw1s2xZ3Kmk7y5QkKTUcfXQYnzB3LnTpAt9/H3ciCbBMSZJSSeXKMGMG1KsHRxwBixfHnUiyTEmSUkxGBtx+O9xyC3TqBOPHx51IxZxlSpKUmk4/HWbPhlGj4IIL4Oef406kYsoyJUlKXfXqwcKF8O230KYNrFwZdyIVQ5YpSVJqq1ABJk2C7t3DMTQzZ8adSMWMZUqSlPoSCbjySnjsMejdG2691WNoVGQsU5Kk9NG+fbjt98wzcNppsGFD3IlUDFimJEnppUaNMItq333hyCPho4/iTqQ0Z5mSJKWf0qVh7Fi4/HJo1SrsqVq1KmxS/+abuNMpzWTEHUCSpEJz7rnQuDH07An77APvvQcjR8KYMXEnUxpxZUqSlN4yM2HatFCkcnJg3DhXp1SgLFOSpPR3771hcjrA5s1hc3pOTryZlDYsU5Kk9LZqFTzyCGzZ8svPvfkmHHssfPZZfLmUNixTkqT0NnLkb1ehSpWCkiXhqKNg9GjYti2ebEoLlilJUnpbsGDHVSkIP964MbxvypTwxJ8jFJRPlilJUnpbsiRMQ8/NJTGC7W+zZAnUrg2zZsGZZ0LLlvD3v0N2dsyBlWosU5Kk4q1ECbjoIli0CP75TzjmGFi2LO5USiGWKUmSAA4+GGbMCLOp2raFG2+ErVvjTqUUYJmSJOk/Egk4/3xYvBjmzIEWLeDdd+NOpSRnmZIk6b/VqAGvvhpu/7VvDyNG/HYTu/R/LFOSJP2eRAIGDIClSyErC5o3h3feiTuVkpBlSpKkP1KtGrz4IgwbBieeCFddBT//HHcqJRHLlCRJu5JIQN++Yf/URx9B06bw9ttxp1KSsExJkpRXVarApElw3XXQrVtYrfrpp7hTKWaWKUmSdkciAb16wfvvw5dfQpMm4aw/FVuWKUmS8qNSJZg4EW6+GU47DS69NBxRo2LHMiVJUhQ9eoRVqu++g8aNw/E0KlYsU5IkRbXffvD44zB6dNiofuGFsGFD3KlURCxTkiQVlJNPDuf6/fQTNGwYjqdR2rNMSZJUkPbeG8aNg/vvD0M/zzsP1q+PO5UKkWVKkqTC0LlzWKUqUSKsUr3yStyJVEgsU5IkFZYKFeCBB+CRR2DIEDj7bFi7Nu5UKmCWKUmSClu7duGJv3LloEEDeOGFuBOpAFmmJEkqCuXKwT/+AU8+CZddBn36wJo1cadSAbBMSZJUlNq0gffeg8qVw16qSZPiTqSILFOSJBW1MmXgjjvguefgb38LE9T/93/jTqV8skxJkhSXY46BJUvgkEOgUSN46inIzY07lXaTZUqSpDjttRfcckvYlP4//wPdu8OqVXGn0m6wTEmSlAyOPBIWLw5P+zVuDI8+6ipVirBMSZKULPbcM6xOvfoq3H47dOkCK1fGnUq7YJmSJCnZNGsGixaF1aqmTeHhh12lSmKWKUmSktEee8B118Hrr8O994bjab74Iu5U+h2WKUmSklmjRvD229C2LWRmwn33QU5O3Kn0K5YpSZKSXUYG/PWvMHs2TJgA7dvD//t/cafS/7FMSZKUKurVgzffhBNPDPup7r7bVaokYJmSJCmVlCwJl18O8+fDM8+E42k+/TTuVMWaZUqSpFR02GHhtl/PnnD00WGUwrZtcacqlixTkiSlqpIl4ZJLwgb1F1+Eli3hww/jTlXsWKYkSUp1f/oTvPEGnHUWtGoFo0ZBdnbcqYoNy5QkSemgRAkYMgSyssJsqqOOgvffjztVsWCZkiQpndSqBdOnw+DBcPzxcMMNsHVr3KnSmmVKkqR0k0jAwIHh4OS33oLmzWHJkrhTpS3LlCRJ6eqgg+Cll2DoUOjUCa65Bn7+Oe5UaccyJUlSOkskoH9/WLoU3nsPjjgiHKKsAmOZkiSpODjwQJg6Fa66Crp0geHDYfPmuFOlBcuUJEnFRSIBZ54ZVqg++wyaNoUFC+JOlfIsU5IkFTeVK8Nzz8HIkdCjB/zlL7BpU9ypUpZlSpKk4qpnzzCLatUqaNwY5syJO1FKskxJklSc7b8/PPkk3HYb9O4NF18MP/4Yd6qUYpmSJEnQrVtYpfrhB2jUKBxPozyxTEmSpGDffWHCBLjnnjBOYfDgUK70hyxTkiRpRyedBMuWhcOSGzaEf/4z7kRJzTIlSZJ+q2JFeOghePBBOP98OPdcWLcu7lRJyTIlSZJ2rmPHsJdqzz2hQQOYNi3uREnHMiVJkv5Y+fJw773w2GNwySVw1lnw/fdxp0oalilJkpQ3xx0Xpqfvu29YpZoyJe5EScEyJUmS8q5sWbjrLnjmGbjySjjjDFi9Ou5UsbJMSZKk3deyJSxdCtWrh7lUzz4bd6LYWKYkSVL+lCkTJqdPmQLXXhuOp/n227hTFTnLlCRJiuaoo2DJEqhdO6xSPfEE5ObGnarIWKYkSVJ0pUvDzTfDSy/BqFHheJp//zvuVEXCMiVJkgpOZia88w40bQpNmsD48Wm/SmWZkiRJBWuPPeD662H69PDk30knwVdfxZ2q0FimJElS4WjSBBYuhGOOgWbNwtE0abhKZZmSJEmFp1QpuPpqmDkTxo4Nx9OsWBF3qgJlmZIkSYWvQQNYsADatw/7qsaMgZycuFMVCMuUJEkqGhkZYWr6vHnw+ONw/PHw+edxp4rMMiVJkorW4YeHQtWtG7RoAXfeCdu2xZ0q3yxTkiSp6JUsCUOHhlt/kydD69bw8cdxp8oXy5QkSYpP7dowaxb07h3O+7v11pRbpbJMSZKkeJUoARddFMYovPpqGKXwwQdxp8ozy5QkSUoOBx8MM2bAgAHQpg3cdBNs3Rp3ql2yTEmSpOSRSMD554cjaWbPDocov/de3Kn+kGVKkiQlnxo1wi2/Cy8Ms6lGjIAtW+JO9bssU5IkKTklEuGW35IlkJUFzZvD4sVxp/oNy5QkSUpu1arBiy/CsGFwwgnwt7/Bzz/HnWo7y5QkSUp+iQT07QvvvgsffhgOTl64MO5UgGVKkiSlkipVYNIkuPZa6NoVrrgCfvop1kiWKUmSlFoSCejVC95/H774Apo0gfnzY4tjmZIkSampUiWYOBFuvhl69gzH02zcWOQxLFOSJCm19egRVqlWr4bGjcN8qiJkmZIkSalvv/3g8cdh9Gjo0yfMp/rxxyK5tGVKkiSlj5NPhmXLwqb0hg3D8TSFzDIlSZLSy957w7hxcN99YejnoEGwfn2hXc4yJUmS0lPnzmGVKpEIq1Svvlool7FMSZKk9FWhAjzwADzyCFxwAZxzDqxdW6CXsExJkqT0165deOKvbNmwSvXiiwX20pYpSZJUPJQrB//4BzzxRJhJ1acPrFkT+WUtU5IkqXhp8//bu3+QttYwjuO/oFhaohUHiyQKFVGTiAZN/FPES4YgiDgYEEVwUMji5trB1S7FgFPAoThooQXlggqCg+ASpEqRgDgoVQlUuAgqiiHkDuVKoZYec4wn5n4/W+DkPb/hITy85815/pK+fpVevfqxS/X5s6nlTDVTq6urqqurU01NjaampkwFAQAAeDQvXkjv30ufPklv30oDA9L37xktlXEzlUqlND4+rpWVFcXjcc3Pzysej2e6HAAAwON780ba3pZev5YaG6WFBSmdlhIJaW/P0BKFmd47FouppqZG1dXVkqTBwUEtLS3J7XZnuiQAAMDje/5cevdOCoV+/Nvv40fp5UvDb1DPeGfq5ORElZWVt5+dTqdOTk4yXQ4AAMBara3Sly9SVZX04YPhr2W8M2VUNBpVNBqVJD3755l8Pl+2b4k8UHVaJd/f1AqMoV5gFLUCQ759k2w2HabThi7PuJlyOBw6Ojq6/Xx8fCyHw/HLdeFwWOFwWJLk8/m0tbWV6S3xP0Kt4D6oFxhFrSAbMn7M5/f7tb+/r4ODA93c3GhhYUF9fX0PmQ0AACDnZbwzVVhYqJmZGXV3dyuVSml0dFQej+chswEAAOQ8U2emenp61NPTY/j6/x73AX9CreA+qBcYRa0gG2zptMHTVQAAAPgF42QAAABMeJRmirEzMGp0dFTl5eVqaGiwOgpy3NHRkQKBgNxutzwejyKRiNWRkMOur6/V2tqqpqYmeTweTXr/72oAAAHcSURBVE5OWh0JeSTrj/lSqZRqa2u1trYmp9Mpv9+v+fl53pSOO21sbMhut2tkZES7u7tWx0EOSyQSSiQSam5u1vn5uVpaWrS4uMhvC+6UTqd1eXkpu92uZDKpzs5ORSIRtbe3Wx0NeSDrO1M/j50pKiq6HTsD3KWrq0tlZWVWx8ATUFFRoebmZklScXGxXC4XUxjwWzabTXa7XZKUTCaVTCZls9ksToV8kfVmirEzALLt8PBQ29vbamtrszoKclgqlZLX61V5ebmCwSD1ggfDAXQAT9rFxYVCoZCmp6dVUlJidRzksIKCAu3s7Oj4+FixWIyjBHgwWW+mjI6dAYD7SiaTCoVCGh4eVn9/v9Vx8ESUlpYqEAhodXXV6ijIE1lvphg7AyAb0um0xsbG5HK5NDExYXUc5LjT01OdnZ1Jkq6urrS2tqb6+nqLUyFfZL2Z+nnsjMvl0sDAAGNn8FtDQ0Pq6OjQ3t6enE6nZmdnrY6EHLW5uam5uTmtr6/L6/XK6/VqeXnZ6ljIUYlEQoFAQI2NjfL7/QoGg+rt7bU6FvIEb0AHAAAwgQPoAAAAJtBMAQAAmEAzBQAAYALNFAAAgAk0UwAAACbQTAEAAJhAMwUAAGACzRQAAIAJ/wLRFxHWrqjzcAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Type 1: emission distribution, Variable 1: lateral shoot type, State 4\n", + "hsmc1.extract(1, 1, 4).plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# hsmc1.extract(2, 1, 4).plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX+//HXUdxK0yxRA9fBhUVEPG6jgxlR5hTmkuGYS2iM1pTlLydnMU0nZZzStKxkxhL9VjqlgdVIpo7jnp2EypwMDVKQzFDMNQHv3x/XeJREgcPBA4f38/HgIfdZP5zsze11X9fnslmWZSEiIl6rhqcLEBGRiqWgFxHxcgp6EREvp6AXEfFyCnoRES+noBcR8XIKehERL6egFxHxcgp6EREv5+PpAgBuvvlmWrdu7ekyRESqlMzMTH744YcSH1cpgr5169Y4HA5PlyEiUqXY7fZSPU5DNyIiXk5BLyLi5RT0IiJerlKM0Yt4q/z8fLKysjh79qynS5EqrG7duvj7+1OrVi2Xnq+gF6lAWVlZNGjQgNatW2Oz2TxdjlRBlmWRm5tLVlYWbdq0cek1NHQjUoHOnj3LTTfdpJAXl9lsNm666aZy/atQQS9SwRTyUl7l/TukoBcR8XIKepFqZvr06Tz33HM8/fTTrFu37oqPS0pKYs+ePVe8/9VXX2Xp0qUA3HrrrWVa9JiXl8fLL7/sPD506BBDhw4t9fOlbEoM+tjYWHx9fQkJCbnsvueffx6bzeZcgmtZFo899hgBAQGEhoaya9cu91cs4u1ycqBvX/juuwp9mxkzZnD77bdf8f6rBX1BQQHjx49n1KhRLr33z4P+lltu4Z133nHptaRkJQb9mDFjSElJuez2gwcPsnbtWlq2bOm8bc2aNaSnp5Oenk5CQgITJkxwb7Ui1cHMmbBli/nTTZ599lnat29Pnz592Lt3L2D+374QrlOmTCEoKIjQ0FCefPJJtm3bxurVq5k8eTJhYWHs37+fW2+9lccffxy73c78+fOd/zK4YNmyZYSFhRESEsLOnTsBLntMSEgImZmZTJkyhf379xMWFsbkyZPJzMx0nkyePXuWBx98kE6dOtGlSxf+/e9/A7BkyRIGDx5M//79adeuHb///e/d9vl4uxKnV0ZERJCZmXnZ7U888QRz5sxh4MCBztuSk5MZNWoUNpuNnj17kpeXR05ODs2bN3dr0SJeKycHXn8dzp83f06dCs2aleslP/30U5YvX05aWhoFBQWEh4fTtWtX5/25ubm8++67fPXVV9hsNvLy8mjUqBHR0dHcfffdRYZUzp075xyimT59epH3OX36NGlpaWzatInY2Fh27959xZri4+PZvXs3aWlpAEUyZuHChdhsNr744gu++uor7rjjDr7++msA0tLSSE1NpU6dOnTo0IFHH32UFi1alOvzqQ5cGqNPTk7Gz8+Pzp07F7k9Ozu7yIfu7+9PdnZ2sa+RkJCA3W7Hbrdz5MgRV8oQqXpstqt/3XILXJhGd+YMNG9e8nNKsHnzZgYNGsR1113HDTfcQHR0dJH7GzZsSN26dRk7diyrVq3iuuuuu+Jr3X///Ve8b/jw4YA5Ofzxxx/Jy8srxQdyuS1btvDAAw8A0LFjR1q1auUM+sjISGe9QUFBfPvtty69R3VT5qA/ffo0s2bNYsaMGeV647i4OBwOBw6HgyZNmpTrtUSqDMu68tehQ1C3btHH16tnzvKv9rxy8vHxYefOnQwdOpT333+f/v37X/Gx119//RXv+/kUQJvNho+PD+fPn3feVt4VwnXq1HF+X7NmTQoKCsr1etVFmYN+//79ZGRk0LlzZ1q3bk1WVhbh4eF89913+Pn5cfDgQedjs7Ky8PPzc2vBIl5r5kwzZHOpwsJyj9VHRESQlJTEmTNnOHHiBO+9916R+0+ePMnx48cZMGAA8+bN47PPPgOgQYMGnDhxotTvs2LFCsCckTds2JCGDRvSunVr56SMXbt2kZGRUeJr/+pXv+KNN94A4Ouvv+bAgQN06NChbD+0FFHmFgidOnXi+++/dx5f6CV/8803Ex0dzUsvvURMTAwff/wxDRs21Pi8SGlt3w7nzhW97dw52LatXC8bHh7O/fffT+fOnfH19aVbt25F7j9x4gQDBw7k7NmzWJbF3LlzAYiJieGhhx5iwYIFpZoRU7duXbp06UJ+fj6vvfYaAEOGDGHp0qUEBwfTo0cP2rdvD8BNN91E7969CQkJ4a677uKRRx5xvs7DDz/MhAkT6NSpEz4+PixZsqTImby4wCpBTEyM1axZM8vHx8fy8/Oz/vGPfxS5v1WrVtaRI0csy7Ks8+fPWw8//LDVtm1bKyQkxPrkk09KennLsiyra9eupXqcSFWzZ88eT5cgXqK4v0ulzc4Sz+jfeuutq95/6dVym83GwoULy/3LR0RE3EcrY0VEvJyCXkTEyynoRUS8nIJeRMTLKehFRLycgl7Eyy1YsIDAwEBGjBjh6VIqTOvWrZ1ddH/5y19e9bGzZs266v0DBgwgLy+vSKO10tq4cSPbLln3cGkrZ0/SnrEiXu7ll19m3bp1+Pv7F7m9oKAAHx/vi4BtJSwwmzVrFn/84x8vu92yLCzL4l//+heAS716Nm7cSP369Z2/bMaPH1/m16gIOqMX8WLjx4/nm2++4a677mLevHlMnz6dkSNH0rt3b0aOHElhYSGTJ0+mW7duhIaGsmjRIsCE3u9+9zs6dOjA7bffzoABA5yrYy89e3Y4HNx6660AnDp1itjYWLp3706XLl1ITk4Grt5eOCUlhfDwcDp37kxkZCTnz5+nXbt2zkaH58+fJyAg4LLGh7m5udxxxx0EBwczbtw4rEt6/tSvXx+AnJwcIiIinK2TN2/ezJQpUzhz5gxhYWGMGDGCzMxMOnTowKhRowgJCeHgwYNFfr6CggJGjBhBYGAgQ4cO5fTp01f8DDIzM3n11VeZN28eYWFhbN68uUib5rS0NHr27EloaCiDBg3i2LFjgNm05amnnqJ79+60b9+ezZs3u+M/fVHuXLnlKq2MFW9VGVbGXrp6fdq0aVZ4eLh1+vRpy7Isa9GiRdbMmTMty7Kss2fPWl27drW++eYba+XKldbtt99uFRQUWNnZ2VbDhg2tt99++7LX++STT6y+fftalmVZf/jDH6xly5ZZlmVZx44ds9q1a2edPHnSev311602bdpYeXl51pkzZ6yWLVtaBw4csL7//nvL39/f+uabbyzLsqzc3FzLsixr+vTp1rx58yzLsqwPP/zQGjx48GU/06OPPmo988wzlmVZ1vvvv28Bzpquv/56y7Is67nnnrP+8pe/WJZlWQUFBdaPP/5Y5H7LsqyMjAzLZrNZ27dvv+zzysjIsABry5YtlmVZ1oMPPmj97W9/u+pnMG3aNOdjfn7cqVMna+PGjZZlWdbUqVOtiRMnWpZlWX379rUmTZpkWZZlffDBB1ZkZGSx/x0rdGWsiLjP9I3TeeY/z7jt9ab1ncb0W6eX6TnR0dHUq1cPgLVr1/L55587z9aPHz9Oeno6mzZtYvjw4dSsWZNbbrmF2267rcTXXbt2LatXr3aewZ49e5YDBw4AF9sLA872wseOHSMiIoI2bdoA0LhxY8Dsajdw4EAef/xxXnvtNR588MHL3mvTpk2sWrUKgF//+tfceOONlz2mW7duxMbGkp+fz7333ktYWFixdbdq1YqePXsWe1+LFi3o3bs3AA888AALFizgySefLPGz+Lnjx4+Tl5dH3759ARg9ejT33Xef8/7BgwcD0LVr12L3/ygvBb3INTT91ullDmZ3u7TVsGVZvPjii9x5551FHnNhnLo4l7YevrTtsGVZrFy58rJOkx9//HGZ2gu3aNGCpk2bsmHDBnbu3OnsZFlWERERbNq0iQ8++IAxY8YwadKkYrc+LGvrZbjyZ+CqC59PRbVe1hi9SDV255138sorr5Cfnw+YtsCnTp0iIiKCFStWUFhYSE5OjnM7PzDj059++ikAK1euLPJaL774onO8PDU19arv3bNnTzZt2uRsXXz06FHnfePGjeOBBx7gvvvuo2bNmpc9NyIigjfffBMwW5heGO++1LfffkvTpk156KGHGDdunLNdcq1atZw/b0kOHDjA9u3bAXjzzTfp06fPVT+DK7VfbtiwITfeeKNz/H3ZsmXOs/trQUEvUo2NGzeOoKAgwsPDCQkJ4be//S0FBQUMGjSIdu3aERQUxKhRo+jVq5fzOdOmTWPixInY7fYiITx16lTy8/MJDQ0lODiYqVOnXvW9mzRpQkJCAoMHD6Zz585Fdq+Kjo7m5MmTxQ7bXKhh06ZNBAcHs2rVqiJ7V1+wceNGOnfuTJcuXVixYgUTJ04EzKZHoaGhpZpu2qFDBxYuXEhgYCDHjh1z7oN9pc/gnnvu4d1333VejL1UYmIikydPJjQ0lLS0NJ5++ukS399dbJblhi1qyslutzv3oRTxJv/9738JDAz0dBnlNmbMmMv2j61IDoeDJ554omJmoFRRxf1dKm12aoxeRCqV+Ph4XnnlFZfH5uVyCnoRKdGSJUuu2XtNmTKFKVOmXLP3qw40Ri9SwSrB6KhUceX9O6SgF6lAdevWJTc3V2EvLrMsi9zcXOrWrevya2joRqQC+fv7k5WVddkSfpGyqFu37mW9ispCQS9SgWrVquVc+SniKSUO3cTGxuLr61ukXefkyZPp2LGjsznPpV3eZs+eTUBAAB06dODDDz+smKpFRKTUSgz6MWPGkJKSUuS2qKgodu/ezeeff0779u2ZPXs2AHv27GH58uV8+eWXpKSk8PDDD1NYWFgxlYuISKmUGPQRERHOZkMX3HHHHc4+1j179iQrKwuA5ORkYmJiqFOnDm3atCEgIICdO3dWQNkiIlJa5Z5189prr3HXXXcBkJ2dTYsWLZz3+fv7k52dXezzEhISsNvt2O12XagSEalA5Qr6Z599Fh8fH5e2KIuLi8PhcOBwOGjSpEl5yhARkatwedbNkiVLeP/991m/fr2zdaefnx8HDx50PiYrKws/P7/yVykiIi5z6Yw+JSWFOXPmsHr1aq677jrn7dHR0SxfvpyffvqJjIwM0tPT6d69u9uKFRGRsivxjH748OFs3LiRH374AX9/f5555hlmz57NTz/9RFRUFGAuyL766qsEBwczbNgwgoKC8PHxYeHChcX2khYRkWtHbYpFRKqo0manet2IiHg5Bb2IiJdT0IuIeDkFvYiIl1PQi4h4OQW9iIiXU9CLiHg5Bb2IiJdT0IuIeDkFvYiIl1PQi4h4OQW9iIiXU9CLiHg5Bb2IiJdT0IuIeDkFvYiIl1PQi4h4OQW9iIiXU9CLiHg5Bb2IiJcrMehjY2Px9fUlJCTEedvRo0eJioqiXbt2REVFcezYMQAsy+Kxxx4jICCA0NBQdu3aVXGVi4hIqZQY9GPGjCElJaXIbfHx8URGRpKenk5kZCTx8fEArFmzhvT0dNLT00lISGDChAkVU7WIiJRaiUEfERFB48aNi9yWnJzM6NGjARg9ejRJSUnO20eNGoXNZqNnz57k5eWRk5NTAWWLiEhpuTRGf/jwYZo3bw5As2bNOHz4MADZ2dm0aNHC+Th/f3+ys7OLfY2EhATsdjt2u50jR464UoaIiJRCuS/G2mw2bDZbmZ8XFxeHw+HA4XDQpEmT8pYhIiJX4FLQN23a1Dkkk5OTg6+vLwB+fn4cPHjQ+bisrCz8/PzcUKaIiLjKpaCPjo4mMTERgMTERAYOHOi8fenSpViWxY4dO2jYsKFziOeq9u6F775zpRQRESlBiUE/fPhwevXqxd69e/H392fx4sVMmTKFjz76iHbt2rFu3TqmTJkCwIABA2jbti0BAQE89NBDvPzyy6Wr4uRJmDmzXD+IiIgUz2ZZluXpIuw2G47ateHTT+GS+foiInJldrsdh8NR4uN8rkEtpZOfD127Qps20Ls39OljvgICwIWLvSIiYlSeFgiWBTVrwsKFEB4OH30Et90GzZrB4MEwdy7s3Gl+IYiISKlVnjN6gMJCWLXKhP0jj5jbDhyArVthyxZITIT9+6Fbt4tn/D17QsOGnq1bRKQSq1xBf+4cbNtW9LaWLc3X8OHmOC8PduwwwT97NjgcZnjnQvD37g2XLNoSEanuKsXFWNstNqxDLpZx7hykpprg37LFnP3Xq1c0+IODzbCQiIgXKe3F2Kof9D9nWZCeXjT4v/8eevW6GPzdu5tfBiIiVVj1DfrifP/9xXH+rVvhiy8gNPRi8PfuDWrDICJVjIL+ak6fNjN4LgT/9u1mdo+mdYpIFaKgL4vCQti9+2Lwb95sxv4vDf4uXaBWLc/VKCLyMwr68rp0WueWLfDNN2C3Xwz+Xr3ghhs8XaWIVGMKene7dFrnli2mXcMvfnEx+Pv0AX9/T1cpItWIgr6ilTSts08fM62zRuVZfCwi3kVBf62VNK2zTx+zolfTOkXETRT0lYGmdYpIBVLQV0YXpnVeCP8L0zovBL+mdYpIGSjoq4IL0zovnd3z009Fg1/TOkXkChT0VVVx0zq7dbsY/CVN68zJgZgYWLHC/GtBRLyWgt5bFDetMyCg6GKuS6d1PvwwLFoE48ebds8i4rUU9N6quGmd111ngr9TJ5g+3Qz/1Ktn/jWgs3oRr1XaoNck76qmdm3o0QP+3/+Dd9+Fw4dh7VqIjDQbs/z0k3lcfj7MmOHZWkWkUihX0M+bN4/g4GBCQkIYPnw4Z8+eJSMjgx49ehAQEMD999/PuXPn3FWrFMdmg/bt4a67IDPz4u0FBfDqq/DOOx4rTUQqB5eDPjs7mwULFuBwONi9ezeFhYUsX76cp556iieeeIJ9+/Zx4403snjxYnfWK1cycyacP1/0tpo1Ydw4c7a/Y4dn6hIRjyvXGX1BQQFnzpyhoKCA06dP07x5czZs2MDQoUMBGD16NElJSW4pVEqwfbsZv79UQQG0bg2/+Q0MGwb33AOffeaR8kTEc1wOej8/P5588klatmxJ8+bNadiwIV27dqVRo0b4+JitaP39/cnOznZbsXIVqammDYNlYZuO83vS0mDsWPj6a4iKgv79zfTLvXs9XbGIXCMuB/2xY8dITk4mIyODQ4cOcerUKVJSUkr9/ISEBOx2O3a73dUSpCzq1oXHHoN9+6BzZzMtMzYWvv3W05WJSAVzOejXrVtHmzZtaNKkCbVq1WLw4MFs3bqVvLw8CgoKAMjKysLPz6/Y58fFxeFwOEo1NUjc6Prr4Q9/MA3YbrkFwsPh0Ufhu+88XZmIVBCXg75ly5bs2LGD06dPY1kW69evJygoiH79+vHO/2Z6JCYmMnDgQLcVK27UqBH85S/w3/+aFgvBwTBlChw96unKRMTNXA76Hj16MHToUMLDw+nUqRPnz58nLi6Ov/71r8ydO5eAgAByc3MZO3asO+sVd/P1hblzzUXaY8fMVM2ZM+HECU9XJiJuopWxXsj2jA1rmouf5/79ZnXt2rXw+9+blgrqoS9SKWllrLjmF7+AZctg/XrTXqFdO7PwSgvfRKosBb0ULyQEVq0ybRbefRc6doSlS01rZRGpUhT0cnXdusGHH8KSJfD3v5sdslauNHP0RaRKUNBL6UREwKZN8NxzMGsW2O2QkqLAF6kCFPRSejabaZ7mcMAf/wiTJl38BSAilZaCXsrOZoMhQ8xm5w89BGPGmNYKWvwmUikp6MV1NWvCqFHw1Vdw773ma/Bg+PJLT1cmIpdQ0Ev51a5tti5MTzc7Xd12G4wcaebki4jHKejFferVMztfpaeb+fc9ephfAFlZnq5MpFpT0Iv73XADPP20aYXcqJHpljlpEhw54unKRKolBb1UnJtugvh42L3b7GHbsSNMnQp5eZ6uTKRaUdBLxWveHF58ET79FLKzzbDO7Nlw6pSnKxOpFhT0cu20bg2vvQZbtphumQEBsGAB/PSTpysT8WoKern2OnSA5cthzRr46CPTGnnxYrPHrYi4nYJePCcsDN57z4T+G29AUJD5/vx5T1cm4lUU9OJ5vXrBhg3wyivwwgvQpQusXq0+OiJuoqCXyiMyErZvN1sc/vnP5hfA+vWerkqkylPQS+Vis8E990BaGjz+OEyYYFbabt/u6cpEqiwFvVRONWpATAzs2QMjRpjv77nHzNYRkTJR0Evl5uMDY8fC119DVJTpkhkTY1bdikiplCvo8/LyGDp0KB07diQwMJDt27dz9OhRoqKiaNeuHVFRURw7dsxdtUp1VqcOPPYY7NtnZuv86lcQGwvffuvpykQqvXIF/cSJE+nfvz9fffUVn332GYGBgcTHxxMZGUl6ejqRkZHEx8e7q1YRuP56mDLFnOH7+UF4ODz6KHz3nacrE6m0XA7648ePs2nTJsaOHQtA7dq1adSoEcnJyYwePRqA0aNHk5SU5J5KRS7VqBHMnGl64deuDcHB8NRTkJvr6cpEKh2Xgz4jI4MmTZrw4IMP0qVLF8aNG8epU6c4fPgwzZs3B6BZs2YcPnzYbcWKXKZJE3j+eXOR9vhxs+p2xgw4ccLTlYlUGi4HfUFBAbt27WLChAmkpqZy/fXXXzZMY7PZsNlsxT4/ISEBu92O3W53tQSRi/z94dVX4eOPTT/8gADzC+DMGU9XJuJxLge9v78//v7+9OjRA4ChQ4eya9cumjZtSk5ODgA5OTn4+voW+/y4uDgcDgcO7TMq7vSLX8CyZWal7bZtplPmK6/AuXOerkzEY1wO+mbNmtGiRQv2/m+a2/r16wkKCiI6OprExEQAEhMTGThwoHsqFSmL4GBYuRKSkiA52fTCX7oUCgs9XZnINWezLNcbiqSlpTFu3DjOnTtH27Ztef311zl//jzDhg3jwIEDtGrVin/+8580btz46kXcYsM6pL4m7mJ7xoY1TZ9nEZs2wZ/+ZC7WzphhNjGvoWUkUrXZ7fZSjYqUK+jdRUHvXgr6K7As+PBDE/hgeur072/aLohUQaUNep3SSPVhs5lgdzjgj380G5lHRJizfREvpqCX6sdmgyFD4IsvIC4OxoyBO+80vwBEvJCCXqqvmjVh5Eiz6GrQILj3XjN2/+WXFx+TkwN9+2rlrVRpCnqR2rVh/Hgz/75PH9MWeeRI2L/frL7dssX8KVJFKehFLqhXDyZNMo3T2reHbt0gIcFsbfj66zqrlypLQS/ycw0awNSpZijngnPnzK5XIlWQgl6kODk58NZbFxdYFRbC4sUm7E+f9mxtImWkoBcpzsyZZsjmUrVqmfBv394M6eTne6Y2kTJS0IsUZ/v2y/vj5OfDDTfAu+/CihUQEgJvv20WYolUYgp6keKkppoAtyxs03F+T2qquUi7fj289BLEx0P37uZYpJJS0Iu4KioKPvkEJk820zOjouDTTz1dlchlFPQi5VGjBgwbBnv2wNChEB1tjr/+2tOViTgp6EXcoVYt+O1vzaKrLl2gd29zln/okKcrE1HQi7jVddfBH/4Ae/eaC7edOpnjvDxPVybVmIJepCI0bgxz5pi9bH/4wUzJnDNHWxuKRyjoRSqSvz/8/e+mFfLHH5vA/8c/oKDA05VJNaKgF7kWOnY0WxuuXAlvvmnm4K9cqTn4ck0o6EWupQtz7hcsgGefhR49zEbmIhVIQS9yrdlscMcdZqOTSZPM5id33gm7dnm6MvFSCnoRT6lRA2Ji4L//NZ0y777bHO/b5+nKxMuUO+gLCwvp0qULd999NwAZGRn06NGDgIAA7r//fs79vF+IiBRVqxZMmGDm4IeGQs+e5jgnx9OViZcod9DPnz+fwMBA5/FTTz3FE088wb59+7jxxhtZvHhxed9CpHq4/nqzafneveb7kBD40580B1/KrVxBn5WVxQcffMC4ceMAsCyLDRs2MHToUABGjx5NUlJS+asUqU5uugmeew7S0syuVu3bm2PNwRcXlSvoH3/8cebMmUONGuZlcnNzadSoET4+PgD4+/uTnZ1d/ipFqqMWLcxmJxs3wrZtJvAXL9YcfCkzl4P+/fffx9fXl65du7r0/ISEBOx2O3a73dUSRKqHoCBYtcr0vl+2zLRVWLVKc/Cl1FwO+q1bt7J69Wpat25NTEwMGzZsYOLEieTl5VHwvzOOrKws/Pz8in1+XFwcDocDh8Phagki1UvPnvDvf8O8eTBjBvTqZc72RUrgctDPnj2brKwsMjMzWb58ObfddhtvvPEG/fr145133gEgMTGRgQMHuq1YkWrPZoP+/c2c+4kTYexYc5ya6unKpBJz+zz6v/71r8ydO5eAgAByc3MZO3asu99CRGrUgOHDzRz8e+6BAQPgN7+B/fs9XZlUQm4J+ltvvZX3338fgLZt27Jz50727dvH22+/TZ06ddzxFiJSnNq14ZFHzBz8oCDTUuGRR8xsHZH/0cpYEW9Qvz78+c/w1VdQty4EB5vj48c9XZlUAgp6EW9y883w/PNmzD4720zJnDsXzp71dGXiQQp6EW/UsiW8/rrpjLlpkwn811/XHPxqSkEv4s2CgyEpCVasgCVLTC+dpCTNwa9mFPQi1cGFOffPPQfTpsEvfwn/+Y+nq5JrREEvUl3YbGYaZmoq/O538OCD5vizzzxdmVQwBb1IdVOjBowYYWboDBhgFlw98AB8842nK5MKoqAXqa5q1zZn9l9/bS7Wdu8Ojz4Khw97ujJxMwW9SHXXoAE8/bRZZevjYxZePf00/PijpysTN1HQi4jRpIlpmLZrFxw4AO3amWPNwa/yFPQiUlSrVmYq5vr1ZqZOhw7muLDQw4WJqxT0IlK8kBBIToY33zQbnnTuDKtXaw5+FaSgF5Gr693brK6Njzd72PbpA5s3e7oqKQMFvYiUzGaDu+82+9iOHw+jRpnjzz/3dGVSCgp6ESm9mjVh5EgzB/+OO8zXyJGQkeHpyuQqFPQiUnZ16sBjj5k++AEB0K2bOf7+e09XJsVQ0IuI6xo0ML1z9uwxwzuBgeZYc/ArFQW9iJSfry/Mnw+ffmqGcdq3N8c//eTpygQFvYi4U+vWsHQpfPQRrFtn5uAvXWrm4OfkQN++2ubQAxT0IuJ+nTrBe+/B//0fLFoEYWEwdixs2QIjIXMRAAAIaklEQVQzZ3q6umrH5aA/ePAg/fr1IygoiODgYObPnw/A0aNHiYqKol27dkRFRXHs2DG3FSsiVUyfPibcn3wSUlLg/Hn4+99h+3ZPV1atuBz0Pj4+PP/88+zZs4cdO3awcOFC9uzZQ3x8PJGRkaSnpxMZGUl8fLw76xWRqsZmg48/hlq1zHFhIURGmrP+qVPNuL5W21Yol4O+efPmhIeHA9CgQQMCAwPJzs4mOTmZ0aNHAzB69GiSkpLcU6mIVE05OWa/2nPnzPH58+bPWbPMxdqYGNNf57HHzB632tfW7dwyRp+ZmUlqaio9evTg8OHDNG/eHIBmzZpxWL2tRaq3mTMvhvsFhYVmKGfOHNMPf80aaNoUfv978+fo0fDuu3D6tGdq9jLlDvqTJ08yZMgQXnjhBW644YYi99lsNmw2W7HPS0hIwG63Y7fby1uCiFRm27dfPJu/4Nw52LbNfG+zmU3M//QncDhMm4Vu3eCll6BZM7j3XtM9Mzf3mpfuLcoV9Pn5+QwZMoQRI0YwePBgAJo2bUpOTg4AOTk5+Pr6FvvcuLg4HA4HDoejPCWISGWXmmrG4C0L23Sc35OaWvzjW7QwO1+tXw+ZmTBkiJnB07Yt9Otn5ud/++01/AGqPpeD3rIsxo4dS2BgIJMmTXLeHh0dTWJiIgCJiYkMHDiw/FWKSPXUuLHppbNypRnrf+IJs5m53Q7h4TBjhmmspou5V+Xj6hO3bt3KsmXL6NSpE2FhYQDMmjWLKVOmMGzYMBYvXkyrVq345z//6bZiRaQau+46iI42XwUFsHUrJCWZ45o1zRDPvffCL39pjsXJ5aDv06cP1hV+i65fv97lgkRESuTjY1bZ9u0Lc+eas/ykJLO5+aFDJvzvvRduvx3q1vV0tR6nlbEiUrXZbGbl7fTp5kLujh3m4u7f/mZm8Nx3H7zxBuTlebpSj1HQi4h3advWjOX/5z+wbx/cdResWAEtW5r++S+/DNnZnq7ymlLQi4j3atIEYmPNXreHDsFvf2ume3bqBD16wOzZZhMVL+fyGL2ISJVSv76ZqjlkCOTnmzP+pCQzjl+/vhnTHzTIzOGv4V3nwN7104iIlEatWibgX3oJDh6EZcvMTJ3YWPD3hwkTYO3ayxd6VVEKehGp3mw2cxb/7LPw5ZewcSO0aWMu7jZtCr/5Dbz9Npw44elKXaagFxG5VPv2pufOtm1mi8S+feG118DPD379a/jHP6CK9fBS0IuIXEnz5uYC7po1Zohn5MiLO2f16QPPPw/793u6yhLpYqyISGk0bGhaKsfEmPbKGzaYi7m9e5vZPRcu5nbpYoaDKhGd0YuIlFWdOmZ+/qJFZtrmokUm/O+//2Jv/X//u9L01lfQi4iUR40apr9Ocb31mzUzvfWTkjzaW19BLyLiLpf21v/kE9OK+ee99RMTr3lvfQW9iEhFudBbf926i731V6++2Ft/wYJr0ltfQS8ici1c2lv/u+9MP560tKK99b/4okJ662vWjYjItVavXvG99e+552Jv/UGDoFcvt/TW1xm9iIgnXeitP28eZGSYM/4GDcyQzy23wLhx8MEHcPZs0efl5MDevaV6CwW9iEhlcaXe+nPmmIu5990Hb75peuvPnAknT5bqZRX0IiKVVZs2F3vrp6ebufvLl5vGa4sWlfplFPQiIlXBpb31Y2LK1EpZQS8iUpXk5JitEcuw6rbCgj4lJYUOHToQEBBAfHx8Rb2NiEj1MnMmnD9fpqdUSNAXFhbyyCOPsGbNGvbs2cNbb73Fnj17KuKtRESql+3by7whSoUE/c6dOwkICKBt27bUrl2bmJgYkpOTK+KtRESql9RUs6jKsqBr11I9pUKCPjs7mxYtWjiP/f39ya5mu66LiFQWHlsZm5CQQEJCAgB1jtbBbrd7qhSv0/JIS+zv6fN0F32e7qPP0r0yMzNL9bgKCXo/Pz8OHjzoPM7KysLPz6/IY+Li4oiLiwPAbrfjcDgqopRqSZ+ne+nzdB99lp5RIUM33bp1Iz09nYyMDM6dO8fy5cuJjo6uiLcSEZESVMgZvY+PDy+99BJ33nknhYWFxMbGEhwcXBFvJSIiJaiwMfoBAwYwYMCAUj32whCOuIc+T/fS5+k++iw9w2ZZFdD8WEREKg21QBAR8XIeD3q1SnCf2NhYfH19CQkJ8XQpVd7Bgwfp168fQUFBBAcHM3/+fE+XVKWdPXuW7t2707lzZ4KDg5k2bZqnS6pWPDp0U1hYSPv27fnoo4/w9/enW7duvPXWWwQFBXmqpCpt06ZN1K9fn1GjRrF7925Pl1Ol5eTkkJOTQ3h4OCdOnKBr164kJSXp76aLLMvi1KlT1K9fn/z8fPr06cP8+fPp2bOnp0urFjx6Rq9WCe4VERFB48aNPV2GV2jevDnh4eEANGjQgMDAQK3uLgebzUb9+vUByM/PJz8/H5vN5uGqqg+PBr1aJUhVkJmZSWpqKj169PB0KVVaYWEhYWFh+Pr6EhUVpc/zGvL4GL1IZXby5EmGDBnCCy+8wA033ODpcqq0mjVrkpaWRlZWFjt37tTw4jXk0aAvTasEEU/Jz89nyJAhjBgxgsGDB3u6HK/RqFEj+vXrR0pKiqdLqTY8GvRqlSCVlWVZjB07lsDAQCZNmuTpcqq8I0eOkJeXB8CZM2f46KOP6Nixo4erqj48GvSXtkoIDAxk2LBhapVQDsOHD6dXr17s3bsXf39/Fi9e7OmSqqytW7eybNkyNmzYQFhYGGFhYfzrX//ydFlVVk5ODv369SM0NJRu3boRFRXF3Xff7emyqg2tjBUR8XK6GCsi4uUU9CIiXk5BLyLi5RT0IiJeTkEvIuLlFPQiIl5OQS8i4uUU9CIiXu7/A1I4vx5lZvnHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX+//HXEVxyXyaQxCSTDDBFxC0NNSRNHRiXXLLE0Chbvpa/MZlpSstGac+sxpivGjmVOi1om4WaoWYRCTV9ncxKMuyMEYq5Edv9++NKRtw4LIcbDu/n48FDPdv98Vbf3lz3dX0uh2VZFiIiUu81srsAERGpGQp0EREPoUAXEfEQCnQREQ+hQBcR8RAKdBERD6FAFxHxEAp0EREPoUAXEfEQ3rV5sN/97ncEBATU5iFFROq97Oxsfv755wpfV2Gg7969m0mTJpX9+rvvvuPBBx9k2rRpTJo0iezsbAICAli7di3t2rU772cFBASQkZHhQvkiInJSeHi4S6+rcMile/fuZGVlkZWVxWeffUbz5s0ZO3YsiYmJREZGsmfPHiIjI0lMTKx20SIiUnWVGkPftGkTl156KV26dGHdunXExsYCEBsbS0pKilsKFBER11Qq0FevXs2UKVMAOHDgAH5+fgB07NiRAwcO1Hx1IiLiMpdvihYWFrJ+/XoWL158xnMOhwOHw3HW9yUlJZGUlARAbm5uFcsUqduKiorIycmhoKDA7lKkHmvWrBn+/v40bty4Su93OdDfffddwsLC8PX1BcDX1xen04mfnx9OpxMfH5+zvi8+Pp74+HjA9YF9kfomJyeHVq1aERAQcM6LG5HzsSyLvLw8cnJyuOSSS6r0GS4Pubzyyitlwy0A0dHRJCcnA5CcnExMTEyVChDxBAUFBXTo0EFhLlXmcDjo0KFDtb7LcynQjx07RmpqKuPGjSt7LCEhgdTUVAIDA9m4cSMJCQlVLkLEEyjMpbqq+3fIpSGXFi1akJeXV+6xDh06sGnTpmodXEREao6W/ot4oAULFvDYY49x//33s3HjxnO+LiUlhV27dp3z+WXLlvHiiy8CMHTo0EotDMzPz+e5554r+/WPP/7IhAkTXH6/VJ4CXcQuTicMGQL/+Y/bDvHggw8yfPjwcz5/vkAvLi7m1ltvZdq0aVU69umBftFFF/Hqq69W6bPENQp0EbssXAjbtpkfa8Bf//pXLrvsMgYPHszu3bsBmD59elmIJiQkEBwcTM+ePfnjH//IRx99xPr165k7dy6hoaF8++23DB06lLvuuovw8HCWLFlSdqV/0qpVqwgNDaVHjx6kp6cDnPGaHj16kJ2dTUJCAt9++y2hoaHMnTuX7OxsevToAZibyDfddBNXXHEFvXv35oMPPgDghRdeYNy4cYwcOZLAwEDuueeeGjk3DUWtNucSkd84nbByJZSWmh/vuw86dqzyx3322WesXr2arKwsiouLCQsLo0+fPmXP5+Xl8cYbb/DVV1/hcDjIz8+nbdu2REdHM2bMmHJDIYWFhWVDKwsWLCh3nOPHj5OVlUVaWhpxcXF8+eWX56wpMTGRL7/8kqysLMA0mDrp2WefxeFw8K9//YuvvvqKa665hq+//hqArKwsMjMzadq0Kd27d+fOO++kc+fOVT43DYmu0EXcweE4/9dFF8HJ6WknToCfX8XvOY+tW7cyduxYmjdvTuvWrYmOji73fJs2bWjWrBkzZszg9ddfp3nz5uf8rFOb8Z3u5NTliIgIfvnlF/Lz8108IeVt27aNG264AYDLL7+cLl26lAV6ZGRkWb3BwcF8//33VTpGQ6RAF3EHyzr3148/QrNm5V9/wQXmqv1876sGb29v0tPTmTBhAm+99RYjR44852tbtGhxzudOn1bncDjw9vamtLS07LHqrpZt2rRp2c+9vLwoLi6u1uc1JAp0kdq2cKEZajlVSUm1xtIjIiJISUnhxIkTHDlyhDfffLPc80ePHuXw4cOMGjWKJ598ks8//xyAVq1aceTIEZePs2bNGsBcYbdp04Y2bdoQEBDAzp07Adi5cyd79+6t8LOvuuoqXnrpJQC+/vpr9u3bR/fu3Sv3m5YzaAxdpLbt2AGFheUfKyyEjz6q8keGhYUxadIkevXqhY+PD3379i33/JEjR4iJiaGgoADLsnjiiScAmDx5MjfffDNPP/20SzNQmjVrRu/evSkqKmLFihUAjB8/nhdffJGQkBD69+/PZZddBpi1KoMGDaJHjx5ce+213H777WWfc9tttzFr1iyuuOIKvL29eeGFF8pdmUvVOCyrmt/LVUJ4eLg2uBCP9O9//5ugoCC7yxAPcLa/S65mp4ZcREQ8hAJdRMRDKNBFRDyEAl1ExEMo0EVEPIQCXUTEQyjQRTzE008/TVBQEFOnTrW7FLcJCAjg559/BuDKK68872sXLVp03udHjRpFfn5+uaZhrtqyZQsfnbJu4NQ2w3bSwiIRD/Hcc8+xceNG/P39yz1eXFyMt7fn/VP/qIKFWIsWLeLPf/7zGY9bloVlWbzzzjsAVepHs2XLFlq2bFn2n8qtt95a6c9wB12hi3iAW2+9le+++45rr72WJ598kgULFnDjjTcyaNAgbrzxRkpKSpg7dy59+/alZ8+ePP/884AJtzvuuIPu3bszfPhwRo0aVbZi9NSr4YyMDIYOHQqYLSnj4uLo168fvXv3Zt26dcD5W99u2LCBsLAwevXqRWRkJKWlpQQGBpKbmwtAaWkp3bp1K/v1SXl5eVxzzTWEhIQwc+ZMTl0H2bJlSwCcTicRERFlbX23bt1KQkICJ06cIDQ0lKlTp5KdnU337t2ZNm0aPXr04Icffij3+ysuLmbq1KkEBQUxYcIEjh8/fs5zkJ2dzbJly3jyyScJDQ1l69at5VoIZ2VlMWDAAHr27MnYsWM5dOgQYDYImTdvHv369eOyyy5j69atNfFHX55Vi/r06VObhxOpNbt27bK7BKtLly5Wbm6uZVmWNX/+fCssLMw6fvy4ZVmW9fzzz1sLFy60LMuyCgoKrD59+ljfffed9dprr1nDhw+3iouLrf3791tt2rSx/vnPf57xeZ9++qk1ZMgQy7Is609/+pO1atUqy7Is69ChQ1ZgYKB19OhRa+XKldYll1xi5efnWydOnLAuvvhia9++fdZPP/1k+fv7W999951lWZaVl5dnWZZlLViwwHryyScty7Ks9957zxo3btwZv6c777zTeuCBByzLsqy33nrLAspqatGihWVZlvXYY49ZDz30kGVZllVcXGz98ssv5Z63LMvau3ev5XA4rB07dpxxvvbu3WsB1rZt2yzLsqybbrrJevTRR897DubPn1/2mtN/fcUVV1hbtmyxLMuy7rvvPmv27NmWZVnWkCFDrDlz5liWZVlvv/22FRkZedY/x7P9XXI1Oz3v+zCROmDBlgU88OEDNfZ584fMZ8HQBZV6T3R0NBdccAEA77//Pl988UXZ1ffhw4fZs2cPaWlpTJkyBS8vLy666CKuvvrqCj/3/fffZ/369WVXpAUFBezbtw/4b+tboKz17aFDh4iIiOCSSy4BoH379gDExcURExPDXXfdxYoVK7jpppvOOFZaWhqvv/46AKNHj6Zdu3ZnvKZv377ExcVRVFTEH/7wB0JDQ89ad5cuXRgwYMBZn+vcuTODBg0C4IYbbuDpp5/mj3/8Y4Xn4nSHDx8mPz+fIUOGABAbG8t1111X9vy4ceMA6NOnT7n+8DVFgS7iBguGLqh0ANe0U9vgWpbF0qVLGTFiRLnXnBxHPptT2+Ke2hLXsixee+21M7ojfvLJJ5Vqfdu5c2d8fX3ZvHkz6enpZd0XKysiIoK0tDTefvttpk+fzpw5c866bV5l2wLDuc9BVZ08P+5qC6wxdJEGYMSIEfztb3+jqKgIMC1rjx07RkREBGvWrKGkpASn01m2FRyY8ePPPvsMgNdee63cZy1durRsPDszM/O8xx4wYABpaWllbXUPHjxY9tzMmTO54YYbuO666/Dy8jrjvREREbz88ssAvPvuu2Xj0af6/vvv8fX15eabb2bmzJllrXwbN25c9vutyL59+9ixYwcAL7/8MoMHDz7vOThXa+A2bdrQrl27svHxVatWlV2t1waXAj0/P58JEyZw+eWXExQUxI4dOzh48CBRUVEEBgYSFRV11hMtInXDzJkzCQ4OJiwsjB49enDLLbdQXFzM2LFjCQwMJDg4mGnTpjFw4MCy98yfP5/Zs2cTHh5eLmzvu+8+ioqK6NmzJyEhIdx3333nPfaFF15IUlIS48aNo1evXuV2RIqOjubo0aNnHW45WUNaWhohISG8/vrrXHzxxWe8ZsuWLfTq1YvevXuzZs0aZs+eDUB8fDw9e/Z0aRpn9+7defbZZwkKCuLQoUPMmjXrvOfg97//PW+88UbZTdFTJScnM3fuXHr27ElWVhb3339/hcevKS61z42NjeWqq65i5syZFBYWcvz4cRYtWkT79u1JSEggMTGRQ4cO8fDDD5/3c9Q+VzyVp7TPnT59+hl7jLpTRkYGd999t3tmfNRTbm2fe/jwYdLS0pgxYwYATZo0oW3btqxbt47Y2FjABH5KSkpVaheRBioxMZHx48ezePFiu0vxGBVeoWdlZREfH09wcDCff/45ffr0YcmSJXTq1KlsQr5lWbRr1+6sE/STkpJISkoCIDc3Vxu+ikfylCt0sZ9br9CLi4vZuXMns2bNIjMzkxYtWpCYmFjuNQ6H44y7xCfFx8eTkZFBRkYGF154YYUFidRXLoxeipxXdf8OVRjo/v7++Pv7079/fwAmTJjAzp078fX1xel0Amallo+PT7UKEanPmjVrRl5enkJdqsyyLPLy8mjWrFmVP6PCeegdO3akc+fO7N69m+7du7Np0yaCg4MJDg4mOTmZhIQEkpOTiYmJqXIRIvWdv78/OTk5ZyxdF6mMZs2andGLpzJcWli0dOlSpk6dSmFhIV27dmXlypWUlpYyceJEli9fTpcuXVi7dm2VixCp7xo3bly2ElLELi4Femho6FkH5Ddt2lTjBYmISNVopaiIiIdQoIuIeAgFuoiIh1Cgi4h4CAW6iIiHUKCLiHgIBbqIiIdQoIuIeAgFuoiIh1Cgi4h4CAW6iIiHUKCLiHgIBbqIiIdQoIuIeAgFuoiIh1Cgi4h4CAW6iIiHUKCLiHgIBbqIiIdQoIuIeAgFuoiIh/B25UUBAQG0atUKLy8vvL29ycjI4ODBg0yaNIns7GwCAgJYu3Yt7dq1c3e9IiJyDi5foX/wwQdkZWWRkZEBQGJiIpGRkezZs4fIyEgSExPdVqSIiFSsykMu69atIzY2FoDY2FhSUlJqrCgREak8lwLd4XBwzTXX0KdPH5KSkgA4cOAAfn5+AHTs2JEDBw64r0oREamQS2Po27Zto1OnTvz0009ERUVx+eWXl3ve4XDgcDjO+t6kpKSy/wRyc3OrWa6IiJyLS1fonTp1AsDHx4exY8eSnp6Or68vTqcTAKfTiY+Pz1nfGx8fT0ZGBhkZGVx44YU1VLaIiJyuwkA/duwYR44cKfv5+++/T48ePYiOjiY5ORmA5ORkYmJi3FupiIicV4VDLgcOHGDs2LEAFBcXc/311zNy5Ej69u3LxIkTWb58OV26dGHt2rVuL1ZERM6twkDv2rUrn3/++RmPd+jQgU2bNrmlKBERqTytFBUR8RAKdBERD6FAFxHxEAp0EREPoUAXEfEQCvT6yumEIUPgP/+xuxIRqSMU6PXVwoWwbZv5UUQEBXr99OOPsGIFlJbCypW6ShcRQIFe//z6K0RGmh8BSkp0lS4igAK9fnE6YdAg+Prr/z5WWKirdBEBFOj1xyefQN++0KgReJ/WseHXX+GBB+ypS0TqDAV6fbByJfz+9/Dcc1BUZK7KT1VaCmvWQHGxPfWJSJ2gQK/Liorgf/4HEhPhww8hOhoyM8GywLJwLMD8/PhxGDAAJk06M+xFpMFQoNdVublwzTXw7bdmuCUo6NyvveACeOMNE+5jx0JBQe3VKSJ1hgK9LsrMNOPlAwfC+vXQtm3F72na1Ay7tGkDY8bAsWPur1NE6hQFel3zyivmyvyRR2DRIvDycv29jRvDqlVw8cUwciT88ov76hSROkeBXleUlMC8eXDvvbBxI0ycWLXP8fKC//1f6NkThg+Hgwdrtk4RqbMU6HXBoUMwejRkZMCnn0KvXtX7vEaN4JlnICICrr7ajMeLiMdToNvt//7PjJcHBcF770GHDjXzuQ4HPPqomRkzZIhZlCQiHq3CPUXFjVJS4Oab4fHHYdq0mv98hwMefNDMgomIgE2bzPi6iHgkBbodSktN0K5YAe++C+Hh7j3en/5kQn3IEDM+f+ml7j2eiNjC5SGXkpISevfuzZgxYwDYu3cv/fv3p1u3bkyaNIlCLWhxzS+/mLniGzea8XJ3h/lJd90FCQkwdCh89VXtHFNEapXLgb5kyRKCTlncMm/ePO6++26++eYb2rVrx/Lly91SoEf5+muzotPPDzZvBl/f2j3+LbfAQw+ZG6VffFG7xxYRt3Mp0HNycnj77beZOXMmAJZlsXnzZiZMmABAbGwsKSkp7qvSE7z7LgweDLNnw7Jl0KSJPXXExsJTT5m57hkZ9tQgIm7h0hj6XXfdxSOPPMKRI0cAyMvLo23btnj/1vXP39+f/fv3u6/K+syy4OGH4emn4fXXTajbbeJEs7J01ChzY/bKK+2uSERqQIVX6G+99RY+Pj706dOnSgdISkoiPDyc8PBwchvafOhjx2DyZBPk6el1I8xPiokxq0r/8Af44AO7qxGRGlBhoG/fvp3169cTEBDA5MmT2bx5M7NnzyY/P5/i39q15uTk0KlTp7O+Pz4+noyMDDIyMrjwwgtrtvq6LDvbbEbRrBmkpYG/v90VnWnECFi71nRp3LDB7mpEpJoqDPTFixeTk5NDdnY2q1ev5uqrr+all15i2LBhvPrqqwAkJycTExPj9mLrjc2bzc3Pm26CF14woV5XDR0K69aZefC6DyJSr1V5pejDDz/ME088Qbdu3cjLy2PGjBk1WVf9ZFmwZAlcfz289JK5Aepw2F1VxQYONDdtb73VdGwUkXqpUguLhg4dytChQwHo2rUr6enp7qipfiooMIGYmQk7dsAll9hdUeX06QOpqWYY5sQJmD7d7opEpJK0UrQm5OTAuHEmxD/6CFq0sLuiqrniCnODdPhwE+qzZtldkYhUgppzVdf27dCvnwn01avrb5if1L272e7ukUfgySftrkZEKkFX6NWRlAR/+QskJ8O119pdTc3p2tXMzImMNPuV3nuv3RWJiAsU6FVRWGhueH74IWzbBpddZndFNa9zZ/P7Gz7chPpDD9WPG7wiDZgCvbIOHIAJE6B9e/j4Y2jd2u6K3MfPD7ZsMW0CTpwwbX4V6iJ1lsbQKyMjw2xGcfXV8MYbnh3mJ114oZlXv3073Habaf0rInWSAt1Vq1aZcfIlS+CBB8w2bw1Fu3ZmSuP//R/ExZn9T0WkzmlAqVRFxcUwZ44J8S1bTC/zhqh1a7P4aP9+mDoViorsrkhETqNAP5+8PBg50lyZfvophITYXZG9WrSAN9+Eo0fhuuvg11/trkhETqFAP5cvvjDj5WFh8M47ZthBTF+a118Hb2/TsfH4cbsrEpHfKNDP5p//NHOwH3rILLDx8rK7orqlSROziOp3v4PRo80Vu4jYToF+qpISs4hm7lx47z3TZEvOztvbLKjq1s1Mazx82O6KRBo8BfpJ+flmCGH7djNeHhZmd0V1n5cXPP+82eg6MtLccxAR2yjQAf79b+jf3zTXSk01c6/FNY0amamckZEwbJhZeCUitlCgv/kmDBkC8+bB0qXQuLHdFdU/DgckJsL48eZcan9ZEVs03KX/paWwaBEsWwbr15sdhqTqHA6YPx8uuAAiImDTJggIsLsqkQalYQb6kSNmA4cffzTj5X5+dlfkOe65B5o3N1fqGzdCYKDdFYk0GA1vyOXbb82Wa+3amZWfCvOad8cdcN99Zkx91y67qxFpMBpWoKemwpVXmiZTf/87NG1qd0Wea+ZMePhhc7M0K8vuakQahIYx5GJZpvXr44/D2rVmOEDcb+pUs7J0xAhz87lfP7srEvFonh/oJ07AzTebqYmffAIXX2x3RQ3L+PEm1MeMgddeg6uusrsiEY/l2UMu+/bB4MHmCn3rVoW5XUaPhpdfNuG+caPd1Yh4rAoDvaCggH79+tGrVy9CQkKYP38+AHv37qV///5069aNSZMmUVhY6PZiKyUtzSwWuv56+Mc/zMwLsc/w4eYK/frr4e237a5GxCNVGOhNmzZl8+bNfP7552RlZbFhwwY+/vhj5s2bx913380333xDu3btWL58eW3UWzHLgmefNe1dk5Ph//0/bZtWV1x1lRlLj4sz4S4iNarCQHc4HLRs2RKAoqIiioqKcDgcbN68mQkTJgAQGxtLSkqKeyt1xa+/mvHyZcvgo49M0yipW/r3N43P7rgDXnrJ7mpEPIpLY+glJSWEhobi4+NDVFQUl156KW3btsXb29xT9ff3Z7/dy71//BGGDoVDh2DHDrj0UnvrkXMLDTVj6ffcA3XlOzsRD+BSoHt5eZGVlUVOTg7p6el89dVXLh8gKSmJ8PBwwsPDyc3NrXKh5/Xxx2ZK3OjRppf5b99RSB0WEmIWdj34IDzzjN3ViHiESk1bbNu2LcOGDWPHjh3k5+dTXFyMt7c3OTk5dOrU6azviY+PJz4+HoDw8PDqV3y6FSsgIcFc6f3+9zX/+eI+gYHw4Ydm8dGJE6YPvYhUWYVX6Lm5ueTn5wNw4sQJUlNTCQoKYtiwYbz66qsAJCcnExMT495KT1dUBHfeaVYjpqUpzOurgADz57d8udmI27Lsrkik3qrwCt3pdBIbG0tJSQmlpaVMnDiRMWPGEBwczOTJk/nLX/5C7969mTFjRm3Ua+TmmlksLVqYxUJt29besaXmdepkrtSjosyV+uLFmpkkUgUVBnrPnj3JzMw84/GuXbuSnp7ulqLOa+dOGDfOLCt/8EHt9+kpfH3hgw/MzKTjx+Gpp8zmGSLisvr1L+aVV0xfkEcfhb/+VWHuaTp0MH3UMzLgllvMHq8i4rL6EeglJWaK2733mn/w111nd0XiLm3bwvvvwzffmJ71xcV2VyRSb9T9QD94EEaNMkMtn34KPXvaXZG4W8uWpj1Abi5Mngx1ra2ESB1VtwP9yy/N/PKQENiwwXxLLg1D8+awbp25Qh8/HgoK7K5IpM6ru4H+xhtmx5v774cnngBvz+/0K6dp2tQsFGve3ExLPXbM7opE6rS6F+ilpWaz4dmz4d13Ydo0uysSOzVubFrvduoE115r9oMVkbOqW4H+yy8wdixs3mzGy92xslTqHy8vsyI4JMTMVT90yO6KROqkuhPoX39tOvFddJGZyeLra3dFUpc0agTPPWc2+L76anPDVETKqRuB/s47Zmehu++Gv/0NmjSxuyKpixwOcz9l1CjTWdPptLsikTrF3juNlmV6sSxdam6CDhpkazlSDzgcZlFZ8+Zms+9Nm6BzZ7urEqkT7Av0Y8fMzjV790J6urnpJeKqe++FCy4wob5xI3TtandFIrazZ8hl71648krzDzItTWEuVTNnjmm5O2QI7N5tdzUitqvdQN+9G1591dzYiouDlSuhWbNaLUE8zKxZpknbsGHwr3/ZXY2IrWp3yOXoUTOv/K23zEwFkZpw003mwiAqytxgDwuzuyIRW9T+GLplQXBwrR9WPNyUKSbUR440LQMGDrS7IpFaV/tj6KWlsHBhrR9WGoCxYyE5GaKjzX6lIg1M7Qd6YaEZO//Pf2r90NIAXHstrFljWiy/957d1YjUKntmuZSU6Cpd3OfqqyElBW68Edavt7sakVpjzzz0wkL46CNbDi0NxKBBpqf6mDGm9e7EiXZXJOJ2tRron/kBP2pXd6klffua3Y9GjjShrs6d4uHUZFw8W69epntnVBScOGH2KhXxUBWOof/www8MGzaM4OBgQkJCWLJkCQAHDx4kKiqKwMBAoqKiOKSWplJXBQWZWS+LF8NTT9ldjYjbVBjo3t7ePP744+zatYuPP/6YZ599ll27dpGYmEhkZCR79uwhMjKSxMTE2qhXpGq6dYMPP4RnnjHBLuKBKgx0Pz8/wn5bedeqVSuCgoLYv38/69atIzY2FoDY2FhSUlLcW6lIdXXpYnoHvfgi3HefWeQm4kEqNW0xOzubzMxM+vfvz4EDB/Dz8wOgY8eOHDhwwC0FitSoiy4yV+rr15vGXgp18SAuB/rRo0cZP348Tz31FK1bty73nMPhwOFwnPV9SUlJhIeHE67t5KSu8PGBDz4wwX7HHbB/v+nYqMVuUs+5FOhFRUWMHz+eqVOnMm7cOAB8fX1x/rZjjNPpxMfH56zvjY+PJyMjg4yMjBoqWaQGtG9v+qh//jlERsK2bVrsJvVehYFuWRYzZswgKCiIOXPmlD0eHR1NcnIyAMnJycTExLivShF3aNMGXngB9uwxPYZWrNBVutRrFQb69u3bWbVqFZs3byY0NJTQ0FDeeecdEhISSE1NJTAwkI0bN5KQkFAb9YrUrCeeAO/flmMUFEB8vL31iFSDw7Jq766Q4yIHllaK1hjHAw6s+TqfVeZ0mq3rCgrKPx4XZ/a5bd7cnrpEThMeHu7SsLU9zblE6oKFC81Qy6maNDFTG/v0Ad33kXpGgS4N144dplHcqQoLoWVLmD8fRo82oV9cbE99IpWkQJeGKzPTzEO3LBwLKPs5mZkweTLs3Albt8LgwfD113ZXK1IhBbrIuXTqBBs2wA03mHa8f/ubFiJJnaZAFzmfRo3M4qNt28xOW6NHm5upInWQAl3EFd27w/bt0K8fhIbCq6/aXZHIGRToIq5q3BgWLIA334R77zVb3OXn212VSBkFukhl9etnbpi2bv3fDTRE6gAFukhVtGgBzz4LSUlma7s5c85coCRSyxToItUxYoRp8JWTYxYjZWbaXZE0YAp0kerq0AHWrIE//9kE/KJFWowktlCgi9QEhwOmToXPPoNNmyB00UUOAAAI00lEQVQiAr791u6qpIFRoIvUpM6dITUVJk2CAQPg73/XYiSpNQp0kZrWqBHMnm12RFq2DKKj1WddaoUCXcRdgoNNA7BevcxipNdft7si8XAKdBF3atIEHnoI3ngD5s2D6dPh8GG7qxIPpUAXqQ0DB5opjc2amav1Dz+0uyLxQAp0kdrSsqUZU3/mGbj+epg7V4uRpEYp0EVq2+jRZjHSd99B377m5yI1QIEuYoff/c50bJw7F6Ki4OGHoaTE7qqknlOgi9jF4TB9YD791GykMXQo7N1rd1VSjynQRezWpYtZXTp2rOnkuGKFFiNJlVQY6HFxcfj4+NCjR4+yxw4ePEhUVBSBgYFERUVx6NAhtxYp4vEaNTIdGz/4AJ5+Gv7wB/jpJ7urknqmwkCfPn06GzZsKPdYYmIikZGR7Nmzh8jISBITE91WoEiD0qMHfPKJWZTUqxesX293RVKPVBjoERERtG/fvtxj69atIzY2FoDY2FhSUlLcU51IQ9S0KSxebG6a3n03zJwJR47YXZXUA1UaQz9w4AB+fn4AdOzYkQMHDpzztUlJSYSHhxMeHl61CkUaqkGDICvL3Dzt1ctsVC1yHtW+KepwOHA4HOd8Pj4+noyMDDIyMqp7KJGGp1Ur07HxqafguusgIQF+/dXuqqSOqlKg+/r64nQ6AXA6nfj4+NRoUSJymuhoswDpq6+gf3/48ku7K5I6qEqBHh0dTXJyMgDJycnExMTUaFEichY+PqbJ1+zZMGwYPPaYFiNJORUG+pQpUxg4cCC7d+/G39+f5cuXk5CQQGpqKoGBgWzcuJGEhITaqFVEHA646SZITzczYCIj4fvv7a5K6gjvil7wyiuvnPXxTZs21XgxIuKiSy4xc9YffxzCw83V+rRpJvClwdJKUZH6yssL7rkHNm40wT5hAvz8s91ViY0U6CL1Xa9eph/MpZdCz57w9tt2VyQ2UaCLeIKmTeGRR2D1arjjDrjlFjh61O6qpJYp0EU8SUSEmd5YWGh2RvroI7srklqkQBfxNK1bw8qV8OijMH483HuvCXjxeAp0EU81dqxpHfDFFzBgAOzaZXdF4mYKdBFP5utr5qvfdhsMGWJaCJSW2l2VuIkCXcTTORymY+PHH8M//2m2vNu3z+6qxA0U6CINxaWXQloaDB9uFiP94x/aGcnDKNBFGhIvL/jTn+C990zP9UmTIC/P7qqkhijQRRqi3r3hs8+gc2ezGOm0XcmkflKgizRUzZqZlgH/+IdZiHTbbXDsmN1VSTUo0EUaumHDzGKko0fNlfsnn9hdkVSRAl1EoG1bePFFWLQIYmLg/vuhqMjuqqSSFOgi8l8TJkBmJmRkwMCBZockqTcU6CJSnp+f6dg4cyZcdRUsXarFSPWEAl1EzuRwwK23muZeL70EI0fC/v12VyUVUKCLyLkFBsK2baaLY1gYnGMHM6kbFOgicn7e3vCXv8A778CDD8KUKXDwoN1VyVko0EXENX36wM6d4ONjdklKTbW7oobB6YTdu116qQJdRFx3wQWwZInptz5jBtx5Jxw/bndVnm3hQpd3n/KuznE2bNjA7NmzKSkpYebMmSQkJFTn40Skvhg+3CxGuuMOM7a+ahX07Wt3VXVHURGcOHHm1/HjlXs8L88MdbmoyoFeUlLC7bffTmpqKv7+/vTt25fo6GiCg4Or+pEiUp+0a2dmwKxZA2PGwO23w5//DLm5MHmyebxjR7urNIqLqxeslX3cssx3M6d+NW9+5mNne7x9+/8+/vLL0KiRy9NGqxzo6enpdOvWja5duwIwefJk1q1bp0AXaWgmTYLBgyEuDgYNMm16t20zQwXPPnv295SU1E6wnny8tLTywXryq127yr2+eXNo3Lj659XphFmzzH9GLqpyoO/fv5/OnTuX/drf359P1ANCpGHq1Ml0bFy82OxhCrBsmQn2k1fHp4ZucXHlg/Xk423bVv7Kt3FjM7e+Plm4sNILuqo1hu6KpKQkkpKSAGh6sCnh4eHuPmSDcXHuxYS/qfNZE3Qua8i+fSY4Lct8OZ1w8cX/HUqoSFERHD5svhq6XbvKNvfOdvEtVQ70Tp068cMPP5T9Oicnh06dOp3xuvj4eOLj4wEIDw8nIyOjqoeU0+h81hydy5ql82mPKk9b7Nu3L3v27GHv3r0UFhayevVqoqOja7I2ERGphCpfoXt7e/PMM88wYsQISkpKiIuLIyQkpCZrExGRSqjWGPqoUaMYNWqUy68/OfQiNUPns+boXNYsnU97OCxL236LiHgCLf0XEfEQtRLoGzZsoHv37nTr1o3ExMTaOKTHiouLw8fHhx49ethdikf44YcfGDZsGMHBwYSEhLBkyRK7S6rXCgoK6NevH7169SIkJIT58+fbXVKD4vYhl5KSEi677LJyLQJeeeUVrSitorS0NFq2bMm0adP48ssv7S6n3nM6nTidTsLCwjhy5Ah9+vQhJSVFfz+ryLIsjh07RsuWLSkqKmLw4MEsWbKEAQMG2F1ag+D2K/RTWwQ0adKkrEWAVE1ERATtXVmgIS7x8/MjLCwMgFatWhEUFMR+7cxTZQ6Hg5YtWwJQVFREUVERjvq2QrMec3ugn61FgP7BSF2UnZ1NZmYm/fv3t7uUeq2kpITQ0FB8fHyIiorS+axFuikqAhw9epTx48fz1FNP0bp1a7vLqde8vLzIysoiJyeH9PR0DQ3WIrcHuqstAkTsUlRUxPjx45k6dSrjxo2zuxyP0bZtW4YNG8aGDRvsLqXBcHugq0WA1GWWZTFjxgyCgoKYM2eO3eXUe7m5ueTn5wNw4sQJUlNTufzyy22uquFwe6Cf2iIgKCiIiRMnqkVANUyZMoWBAweye/du/P39Wb58ud0l1Wvbt29n1apVbN68mdDQUEJDQ3mnEjvESHlOp5Nhw4bRs2dP+vbtS1RUFGPGjLG7rAZDK0VFRDyEboqKiHgIBbqIiIdQoIuIeAgFuoiIh1Cgi4h4CAW6iIiHUKCLiHgIBbqIiIf4/3HjSNMuwJHVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAGuJJREFUeJzt3XtUlXW+x/HPThqpMEqLUrHQlRcuwgY2alODkrdyHAvtZpoXvEyNmY0nJ20tg7LM6abmVMo5qUU3T2nWdDFrmQdNy6HEpuVknZQUo8kcSVE5Av7OH3vYSQh7A3vvh2fv92stV+F+9u/58gs/Pf728/y+DmOMEQDANs6wugAAQNMQ3ABgMwQ3ANgMwQ0ANkNwA4DNENwAYDMENwDYDMENADZDcAOAzUQEYtALLrhAcXFxgRgaAEJSSUmJfvzxR5+ODUhwx8XFqaioKBBDA0BIcrlcPh/LUgkA2AzBDQA2Q3ADgM0EZI0bCFVVVVUqLS1VZWWl1aXApiIjIxUbG6szzzyz2WMQ3EATlJaWql27doqLi5PD4bC6HNiMMUYHDx5UaWmpunbt2uxxWCoBmqCyslIdOnQgtNEsDodDHTp0aPHf2AhuoIkIbbSEP35+CG4AsBmCG7CxvLw8PfbYY7rvvvv0wQcfNHjc2rVrtXPnzgZfX7p0qZ5//nlJ0oABA5r0AF15ebmefvppz9ffffedrr/+ep/fj6YjuIFAKyuT+veXvv8+YKd44IEHNGjQoAZfbyy4q6urddttt2ncuHHNOvcvg7tTp0567bXXmjUWfENwA4E2b560ebP7n37w0EMPqUePHrryyiu1a9cuSdKECRM8YTl79mwlJCQoOTlZd999t7Zs2aI333xTs2bNktPp1DfffKMBAwborrvuksvl0uLFiz1X7rUKCgrkdDqVlJSkbdu2SVK9Y5KSklRSUqLZs2frm2++kdPp1KxZs1RSUqKkpCRJ7g9zJ06cqN69eys1NVUffvihJGnlypUaOXKkrr76anXv3l1/+tOf/DI34YLbAYFAKiuTVqyQTp50/3PuXOnii5s93KeffqpXXnlFxcXFqq6uVlpamtLT0z2vHzx4UK+//rq+/PJLORwOlZeX67zzztOIESM0fPjwOksYJ06c8CyJ5OXl1TnPsWPHVFxcrMLCQuXk5OiLL75osKYFCxboiy++UHFxsST3Zkm1nnrqKTkcDv3973/Xl19+qSFDhuirr76SJBUXF2v79u1q27atevbsqenTp6tLly7NnptwwhU30BIOR+O/OnWSam/9On5c6tjR+3sasWnTJmVnZ+vss8/WueeeqxEjRtR5PTo6WpGRkZo0aZLWrFmjs88+u8GxbrrppgZfGz16tCQpMzNThw8fVnl5uY8TUtfmzZs1duxYSVKvXr106aWXeoJ74MCBnnoTEhL07bffNusc4YjgBlrCmIZ/ffedFBlZ9/izznJfhTf2vhaIiIjQtm3bdP311+utt97S1Vdf3eCx55xzToOv/fKWNYfDoYiICJ08edLzey29F7lt27aef2/Tpo2qq6tbNF448Sm44+Li1Lt3bzmdziZtPQiEtXnz3Eskp6qpadFad2ZmptauXavjx4/ryJEj+utf/1rn9YqKCv30008aNmyYFi5cqB07dkiS2rVrpyNHjvh8nlWrVklyXzFHR0crOjpacXFx+uyzzyRJn332mfbs2eN17N/85jd68cUXJUlfffWV9u7dq549ezbtm0Y9Pq9xf/jhh7rgggsCWQsQWrZulU6cqPt7J05IW7Y0e8i0tDTddNNNSklJUUxMjDIyMuq8fuTIEV177bWqrKyUMUZPPPGEJOnmm2/WlClT9OSTT/p0x0dkZKRSU1NVVVWl5cuXS5JGjRql559/XomJierbt6969OghSerQoYOuuOIKJSUl6ZprrtG0adM84/zhD3/Q7bffrt69eysiIkIrV66sc6WN5nEY4/3vZrWNEXwNbpfLRSMFhKR//OMfio+Pt7oM2Nzpfo6akps+LZU4HA4NGTJE6enpys/Pb3qVAAC/8WmpZPPmzercubN++OEHDR48WL169VJmZmadY/Lz8z2hfuDAAf9XCgCQ5OMVd+fOnSVJMTExys7O9tyQf6qpU6eqqKhIRUVFuvDCC/1bJQDAw2twHz161POJ8dGjR7V+/XrPU1EAgODzulTyz3/+U9nZ2ZLcexrccsstjd4bCgAILK/B3a1bN8+9oAAA6/HkJGAzTz75pOLj4zVmzBirSwmYuLg4/fjjj5KkX//6140eO3/+/EZfHzZsmMrLy+tsfuWrjRs3assp992fuv2tldhkCrCZp59+Wh988IFiY2Pr/H51dbUiIkLvj/QWLw8szZ8/X/fee2+93zfGyBijd955R5Katd/Kxo0bFRUV5fmfx2233dbkMQKBK27ARm677Tbt3r1b11xzjRYuXKi8vDzdeuutuuKKK3TrrbeqpqZGs2bNUkZGhpKTk7Vs2TJJ7hC744471LNnTw0aNEjDhg3zPEF56tVtUVGRBgwYIMl9M0JOTo769Omj1NRUvfHGG5Ia35J13bp1SktLU0pKigYOHKiTJ0+qe/funluET548qcsuu6zeLcMHDx7UkCFDlJiYqMmTJ+vU5wKjoqIkSWVlZcrMzPRsN7tp0ybNnj1bx48fl9Pp1JgxY1RSUqKePXtq3LhxSkpK0r59++p8f9XV1RozZozi4+N1/fXX69ixYw3OQUlJiZYuXaqFCxfK6XRq06ZNdba2LS4uVr9+/ZScnKzs7GwdOnRIkrsRxT333KM+ffqoR48e2rRpkz/+09dlAiA9PT0QwwKW27lzp9UlmEsvvdQcOHDAGGNMbm6uSUtLM8eOHTPGGLNs2TIzb948Y4wxlZWVJj093ezevdusXr3aDBo0yFRXV5v9+/eb6Oho8+qrr9Yb729/+5vp37+/McaYOXPmmIKCAmOMMYcOHTLdu3c3FRUVZsWKFaZr166mvLzcHD9+3FxyySVm79695ocffjCxsbFm9+7dxhhjDh48aIwxJi8vzyxcuNAYY8x7771nRo4cWe97mj59urn//vuNMca89dZbRpKnpnPOOccYY8xjjz1mHnzwQWOMMdXV1ebw4cN1XjfGmD179hiHw2G2bt1ab7727NljJJnNmzcbY4yZOHGiefTRRxudg9zcXM8xv/y6d+/eZuPGjcYYY+bOnWtmzJhhjDGmf//+ZubMmcYYY95++20zcODAet/v6X6OmpKboff3KiCI8jbm6f7/ud9v4+X2z1XegLwmvWfEiBE666yzJEnr16/X559/7rma/umnn/T111+rsLBQo0ePVps2bdSpUyddddVVXsddv3693nzzTc8VZmVlpfbu3Svp5y1ZJXm2ZD106JAyMzPVtWtXSVL79u0lSTk5Obr22mt11113afny5Zo4cWK9cxUWFmrNmjWSpN/+9rc6//zz6x2TkZGhnJwcVVVV6brrrpPT6Txt3Zdeeqn69et32te6dOmiK664QpI0duxYPfnkk7r77ru9zsUv/fTTTyovL1f//v0lSePHj9cNN9zgeX3kyJGSpPT09Dr7k/sLwQ20QN6AvCYHrb+duj2rMUZLlizR0KFD6xxTu857Oqdu13rqVq3GGK1evbrebn6ffPJJk7Zk7dKliy666CJt2LBB27Zt8+wW2FSZmZkqLCzU22+/rQkTJmjmzJmnbbfW1O1qpYbnoLlq5ydQ29Wyxg2EkKFDh+qZZ55RVVWVJPdWqkePHlVmZqZWrVqlmpoalZWVeVqISe713U8//VSStHr16jpjLVmyxLPevH379kbP3a9fPxUWFnq2e/3Xv/7leW3y5MkaO3asbrjhBrVp06beezMzM/XSSy9Jkt59913PevGpvv32W1100UWaMmWKJk+e7Nli9swzz/R8v97s3btXW7dulSS99NJLuvLKKxudg4a2rI2Ojtb555/vWb8uKCjwXH0HA8ENhJDJkycrISFBaWlpSkpK0u9//3tVV1crOztb3bt3V0JCgsaNG6fLL7/c857c3FzNmDFDLperTqjOnTtXVVVVSk5OVmJioubOndvouS+88ELl5+dr5MiRSklJqdNhZ8SIEaqoqDjtMkltDYWFhUpMTNSaNWt0ySWX1Dtm48aNSklJUWpqqlatWqUZM2ZIcm+3kZyc7NPtkT179tRTTz2l+Ph4HTp0SLfffnujc/C73/1Or7/+uufDyVM999xzmjVrlpKTk1VcXKz77rvP6/n9xadtXZuKbV0RqkJlW9cJEybU60EZSEVFRfrjH/8YmDssbKil27qyxg0goBYsWKBnnnmm2WvbqI/gBsLQypUrg3au2bNna/bs2UE7XzhgjRtoogCsLiKM+OPnh+AGmiAyMlIHDx4kvNEsxhgdPHhQkZGRLRqHpRKgCWJjY1VaWkqXJzRbZGRkvX1mmorgBprgzDPP9DwZCFiFpRIAsBmCGwBshuAGAJshuAHAZghuALAZghsAbIbgBgCbIbgBwGYIbgCwGYIbAGyG4AYAmyG4AcBmCG4AsBmCGwBshuAGAJshuAHAZnwO7pqaGqWmpmr48OGBrAcA4IXPwb148WLFx8cHshYAgA98Cu7S0lK9/fbbmjx5cqDrAQB44VNw33XXXXrkkUd0xhksiQOA1bwm8VtvvaWYmBilp6c3elx+fr5cLpdcLhcdsAEggBzGGNPYAXPmzFFBQYEiIiJUWVmpw4cPa+TIkXrhhRcafI/L5VJRUZHfiwWAUNWU3PR6xf3www+rtLRUJSUleuWVV3TVVVc1GtoAgMBi0RoAbCaiKQcPGDBAAwYMCFApAABfcMUNADZDcAOAzRDcAGAzBDcA2AzBDQA2Q3ADgM0Q3ABgMwQ3ANgMwQ0ANkNwA4DNENwAYDMENwDYDMENADZDcAOAzRDcAGAzBDcA2AzBDQA2Q3ADgM0Q3ABgMwQ3ANgMwQ0ANkNwA4DNENwAYDMENwDYDMENADZDcAOAzRDcAGAzBDcA2AzBDQA2Q3ADgM0Q3ABgM16Du7KyUn369FFKSooSExOVm5vrfdRdu6Tvv/dHfQCAX/Aa3G3bttWGDRu0Y8cOFRcXa926dfr4448bf1NFhTRvnr9qBACcwmtwOxwORUVFSZKqqqpUVVUlh8PhfeQVK7jqBoAA8GmNu6amRk6nUzExMRo8eLD69u1b75j8/Hy5XC65XK7aN3HVDQAB4DDGGF8PLi8vV3Z2tpYsWaKkpKQGj3M5HCqSpLPOknbvli6+2A+lAkDocrlcKioq8unYJt1Vct555ykrK0vr1q3z7Q1cdQOA33kN7gMHDqi8vFySdPz4cb3//vvq1auXb6OfOCFt2dKiAgEAdUV4O6CsrEzjx49XTU2NTp48qRtvvFHDhw9v9D2fdpT0WZmUmiotWeKvWgEA8iG4k5OTtX379qaPfPHF0rJl0q23SsXFUnR0c+oDAPxCYJ+cHDFCGjJEmj49oKcBgHAS+Efen3hC+uQTadWqgJ8KAMJB4IP7nHOkF190X3Xv2xfw0wFAqAvOJlMulzRjhjR+vHTyZFBOCQChKni7A86eLVVVuZdOAADNFrzgbtNGKiiQHnnEfZcJAKBZgrsfd1yc+4r7lluk48eDemoACBXBb6QwZoyUnCzdc0/QTw0AoSD4we1wSM88I73xhuTrnicAAA9rWpedf760cqU0aZJ04IAlJQCAXVnXczIry71sMmWK5PvOsgAQ9qxtFjxvnvTtt9J//ZelZQCAnVgb3G3bup+qnDNH+uorS0sBALuwNrglKSFBysuTxo51P6ADAGiU9cEtSdOmSRdcID3wgNWVAECr1zqC2+GQli93r3Vv3mx1NQDQqrWO4JbqNl44fNjqagCg1Wo9wS3ReAEAfNC6glty72Wydav03/9tdSUA0Cq1vuCubbxwxx1SaanV1QBAq9P6gluSMjJovAAADWidwS25Gy/83//ReAEAfqH1Bndt44U//1nascPqagCg1Wi9wS1JXbvSeAEAfqF1B7fkfhS+d28aLwDAv7X+4K5tvLB2LY0XAEB2CG7J3XjhuedovAAAsktwSzReAIB/s09wSzReAADZLbhrGy/ce6/09ddWVwMAlvAa3Pv27VNWVpYSEhKUmJioxYsXB6OuhiUkSLm57mUTGi8ACENegzsiIkKPP/64du7cqY8//lhPPfWUdu7cGYzaGjZtmtShA40XAIQlr8HdsWNHpaWlSZLatWun+Ph47d+/P+CFNcrhkFaskP7zP6WPPrK2FgAIsiatcZeUlGj79u3q27dvoOrxHY0XAIQpn4O7oqJCo0aN0qJFi3TuuefWez0/P18ul0sul8uvBTbq2mulQYNovAAgrDiM8X5TdFVVlYYPH66hQ4dq5syZ3gft5JD5Lkj3Wh89KqWmSg8+KN14Y3DOCQB+5nK5VFRU5NOxXq+4jTGaNGmS4uPjfQrtoKPxAoAw4zW4P/roIxUUFGjDhg1yOp1yOp165513glGb7zIypDvvpPECgLDg01JJkwcN5lJJrZoaqX9/KTtb+o//CO65AaCF/LpUYhu1jRcWLKDxAoCQFjrBLbkbLzz+OI0XAIS00ApuyX1fd1KSu2clAISg0Atuh0NaulR6/XXpvfesrgYA/C70gltyN15YuVLKyaHxAoCQE5rBLUlXXeVe6546lcYLAEJK6Aa35H6acs8e6dlnra4EAPwmtIO7tvHCnDk0XgAQMkI7uCUpMVG67z5p7FgaLwAICaEf3JJ7H5P27d09KwHA5sIjuB0OaflyKT+fxgsAbC88gluSOnak8QKAkBA+wS393HjhzjutrgQAmi28gluSnnhC2rJFevVVqysBgGYJv+COipJeeMHdKZ7GCwBsKPyCW5L69KHxAgDbCs/glty7B1ZWSgsXWl0JADRJ+AZ3RIR7yYTGCwBsJnyDW/q58cKYMTReAGAb4R3ckvu+7oQEGi8AsA2Cm8YLAGyG4Jbc+5jUNl748UerqwGARhHctWobL0yZQuMFAK0awX0qGi8AsAGC+1Q0XgBgAwT3L9F4AUArR3Cfzh13uDvF03gBQCtEcJ+OwyGtWOFuvLBli9XVAEAdBHdDOnZ03989diyNFwC0KgR3Y667Tho4kMYLAFoVgtubhQtpvACgVfEa3Dk5OYqJiVFSUlIw6ml9ahsv3HEHjRcAtApeg3vChAlat25dMGppvfr0cQf3hAk0XgBgOa/BnZmZqfbt2wejltZtzhz31q+LFlldCYAwF+GvgfLz85Wfn++v4Vqf2sYLffq4P7BMSbG6IgBhym8fTk6dOlVFRUUqKiry15CtT9eu0mOP0XgBgKW4q6Spxo1zN16YM8fqSgCEKYK7qWobL6xeLa1fb3U1AMKQ1+AePXq0Lr/8cu3atUuxsbF6li1Pf268MHEijRcABJ3DGP93DXB0csh8FwbNCO6+W/rmG2nNGveVOAA0k8vl8vkzQpZKWuKhh6Tdu6Xly62uBEAYIbhbom1b6aWX3B3iabwAIEgI7pZKTJTmzqXxAoCgIbj9obbxwoMPWl0JgDBAcPvDGWe4Gy8sW0bjBQABR3D7C40XAAQJwe1PtY0XZsywuhIAIYzg9reFC6XNm6XXXrO6EgAhiuD2t9rGC9Om0XgBQEAQ3IHQty+NFwAEDMEdKDReABAgBHegRERIBQXSww9LO3ZYXQ2AEEJwB1K3bj83XqistLoaACGC4A60ceOk+Hj3fiYA4AcEd6A5HO4nKmm8AMBPCO5goPECAD8iuINl4EDp5pulqVMl//euABBGCO5gmj/f3TGHxgsAWoDgDqa2baUXX5TuuUf63/+1uhoANkVwB1tSEo0XALQIwW2F6dOl6GgaLwBoFoLbCrWNF5YulbZutboaADZDcFulU6efGy8cOWJ1NQBshOC2Una2lJUl3Xmn1ZUAsBGC22qLFkmbNtF4AYDPCG6rRUW5bxGcNk3av9/qagDYAMHdGvTt6w7u8eNpvADAK4K7tbj3XunYMWnxYqsrAdDKEdytRUSEu1fl/PnS559bXQ2AVozgbk26dZMefZTGCwAa5VNwr1u3Tj179tRll12mBQsWBLqm8DZ+vNSrF40XADTIa3DX1NRo2rRpevfdd7Vz5069/PLL2rlzZzBqC08Oh/vBnNWrpZdflvr3l77/3uqqQkNZGfPpT8yn/5SVSbt2+Xy41+Detm2bLrvsMnXr1k2/+tWvdPPNN+uNN95oUY3wokMH9yPxU6ZImzdL8+ZZXVFomDeP+fQn5tN/5s2TKip8PjzC2wH79+9Xly5dPF/Hxsbqk08+aV5x8F1ionud++RJ9xX4rl1SZKTVVdlXZaX04YfMp78wn/5TO5dN4DW4fZWfn6/8/HxJUtt/tZXL5fLX0OFp796f7+k2xn2nySWXWFuTne3d+3PnIeaz5ZhP//n3XJY04S1eg7tz587at2+f5+vS0lJ17ty53nFTp07V1KlTJUkul0tFRUVNKAMNYS79i/n0L+bTGl7XuDMyMvT1119rz549OnHihF555RWNGDEiGLUBAE7D6xV3RESE/vKXv2jo0KGqqalRTk6OEhMTg1EbAOA0fFrjHjZsmIYNG+bzoLVLJmg55tK/mE//Yj6t4TCm9hMGAIAd8Mg7ANiMX4ObR+P9JycnRzExMUpKSrK6lJCwb98+ZWVlKSEhQYmJiVrMLozNVllZqT59+iglJUWJiYnKzc21uqSw47elkpqaGvXo0UPvv/++YmNjlZGRoZdfflkJCQn+GD7sFBYWKioqSuPGjdMXX3xhdTm2V1ZWprKyMqWlpenIkSNKT0/X2rVr+flsBmOMjh49qqioKFVVVenKK6/U4sWL1a9fP6tLCxt+u+Lm0Xj/yszMVPv27a0uI2R07NhRaWlpkqR27dopPj5e++k41CwOh0NRUVGSpKqqKlVVVcnhcFhcVXjxW3Cf7tF4/mCgNSopKdH27dvVt29fq0uxrZqaGjmdTsXExGjw4MHMZZDx4STCSkVFhUaNGqVFixbp3HPPtboc22rTpo2Ki4tVWlqqbdu2sZwXZH4Lbl8fjQesUlVVpVGjRmnMmDEaOXKk1eWEhPPOO09ZWVlat26d1aWEFb8FN4/GozUzxmjSpEmKj4/XzJkzrS7H1g4cOKDy8nJJ0vHjx/X++++rV69eFlcVXvwW3Kc+Gh8fH68bb7yRR+NbYPTo0br88su1a9cuxcbG6tlnn7W6JFv76KOPVFBQoA0bNsjpdMrpdOqdd96xuixbKisrU1ZWlpKTk5WRkaHBgwdr+PDhVpcVVnhyEgBshg8nAcBmCG4AsBmCGwBshuAGAJshuAHAZghuALAZghsAbIbgBgCb+X/Dp0cDNVnemwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1NX+x/HXCKWZissVJSC1UGMRRxzFynCl0gxvai5XE0XlZpZbevVWJmVXaXVJy/hdM7RSyxLMLbdMM5VGxTLT0CQZIi+plJYo4Pn9cXKUXNhm+A7D5/l4+AiHme98ZsL3fDnfcz7HpJRSCCGEcFtVjC5ACCGEc0nQCyGEm5OgF0IINydBL4QQbk6CXggh3JwEvRBCuLliB31BQQGtWrWiR48eAAwZMoQmTZpgNpsxm82kpqYCoJRi9OjRBAQEEBoayp49e5xTuRBCiGLxLO4dZ8+eTWBgIL/99pv9tpdffpk+ffoUut/atWtJS0sjLS2NXbt2MXLkSHbt2uW4ioUQQpRIsc7obTYbq1evZvjw4UXeNzk5mcGDB2MymWjXrh05OTlkZWWVuVAhhBClU6wz+rFjx/LSSy9x+vTpQrc//fTTPP/883Tp0oX4+HiqVq1KZmYm/v7+9vv4+fmRmZmJj49PoccmJCSQkJAAwMGDB7njjjvK+lqEEKJSSU9P55dffinyfkUG/apVq/D29qZ169Zs2bLFfvuMGTNo2LAh58+fJzY2lhdffJFnn3222AXGxsYSGxsLgMViwWq1FvuxQgghdHYWR5FDN9u3b2flypU0btyY/v37s3nzZgYNGoSPjw8mk4mqVasydOhQUlJSAPD19SUjI8P+eJvNhq+vbylfhhBCiLIqMuhnzJiBzWYjPT2dpUuX0rlzZ9599137uLtSiqSkJEJCQgCIiopi0aJFKKXYuXMnXl5eVwzbCCGEKD/FnnXzVwMHDiQ7OxulFGazmfnz5wPQvXt31qxZQ0BAANWrV2fhwoUOK1YIIUTJmVyhTbGM0Qt3lZeXh81mIzc31+hSRAVWrVo1/Pz8uOGGGwrdXtzsLPUZvRCiaDabjZo1a9K4cWNMJpPR5YgKSCnFiRMnsNlsNGnSpFTHkBYIQjhRbm4u9erVk5AXpWYymahXr16ZfiuUoBfCySTkRVmV9WdIgl4IIdycBL0QlUxcXByvvPIKzz77LBs3brzm/ZKSkjhw4MA1vz9//nwWLVoEQMeOHUs0oSInJ4c33njD/veffvrpir5ZwnEk6IVwNVlZ0KED/PyzU5/m+eefp2vXrtf8/vWCPj8/n0cffZTBgweX6rn/GvS33HILy5cvL9WxRNEk6IVwNdOmwRdf6P86yH/+8x+aNWtG+/btOXToEKBbjV8M18mTJxMUFERoaCgTJkzgyy+/ZOXKlUycOBGz2cyRI0fo2LEjY8eOxWKxMHv2bPtvBhctXrwYs9lMSEiIfaX8X+8TEhJCeno6kydP5siRI5jNZiZOnEh6erp90WVubi5Dhw6lRYsWtGrVis8++wyAd955h169enH//ffTtGlT/vWvfzns/XF3Mr1SCFeSlQULF8KFC/q/U6ZAw4ZlOuTu3btZunQpqamp5OfnExYWRuvWre3fP3HiBCtWrODgwYOYTCZycnKoXbs2UVFR9OjRo9CQyvnz5+1DNHFxcYWe548//iA1NZWtW7cSExPD/v37r1lTfHw8+/fvt+9jkZ6ebv/evHnzMJlMfPPNNxw8eJB7772X77//HoDU1FT27t1L1apVad68OU888UShJori6uSMXojyZDJd/88tt8DFaXRnz4KPT9GPKcK2bdt46KGHqF69OrVq1SIqKqrQ9728vKhWrRrDhg3j448/pnr16tc8Vr9+/a75vQEDBgAQERHBb7/9Rk5OTjHekCt98cUXDBo0CIA77riDRo0a2YO+S5cu9nqDgoL48ccfS/UclY0EvRDlSalr//npJ6hWrfD9b7pJn+Vf73Fl5OnpSUpKCn369GHVqlXcf//917zvzTfffM3v/XUKoMlkwtPTkwsXLthvK+sK4apVq9q/9vDwID8/v0zHqywk6IVwFdOm6SGbyxUUlHmsPiIigqSkJM6ePcvp06f55JNPCn3/zJkz/Prrr3Tv3p2ZM2eyb98+AGrWrHnFHhTXs2zZMkCfkXt5eeHl5UXjxo3t24nu2bOHo0ePFnnse+65h/feew+A77//nmPHjtG8efOSvWhRiIzRC+EqduyA8+cL33b+PHz5ZZkOGxYWRr9+/WjZsiXe3t60adOm0PdPnz5Nz549yc3NRSnFa6+9BkD//v0ZMWIEc+bMKdaMmGrVqtGqVSvy8vJ4++23AejduzeLFi0iODiY8PBwmjVrBkC9evW4++67CQkJoVu3bowaNcp+nMcee4yRI0fSokULPD09eeeddwqdyYuSk6ZmQjjRd999R2BgoNFlCDdwtZ+l4manDN0IIYSbk6AXQgg3V+ygLygooFWrVvTo0QOAo0ePEh4eTkBAAP369eP8n2OL586do1+/fgQEBBAeHl5ofqwQQojyV+ygnz17dqHxoUmTJjFu3DgOHz5MnTp1WLBgAQALFiygTp06HD58mHHjxjFp0iTHVy2EEKLYihX0NpuN1atXM3z4cEA3wt+8ebN9xVx0dDRJSUkAJCcnEx0dDUCfPn3YtGkTLnC9VwghKq1iBf3YsWN56aWXqFJF3/3EiRPUrl0bT089O9PPz4/MzEwAMjMz7UuSPT098fLy4sSJE1ccMyEhAYvFgsViITs72yEvRgghxJWKDPpVq1bh7e1dqDeGI8TGxmK1WrFardSvX9+hxxZCXDJnzhwCAwMZOHCg0aU4TePGjfnll18AuOuuu6573+nTp1/3+927dycnJ6dQo7Xi2rJlC19etu7h8lbORipywdT27dtZuXIla9asITc3l99++40xY8aQk5NDfn4+np6e2Gw2fH19AfD19SUjIwM/Pz/y8/P59ddfqVevntNfiBDi6t544w02btyIn59fodsv/vt1N18WscBs+vTpPPXUU1fcrpRCKcWaNWsAStWrZ8uWLdSoUcP+YfPoo4+W+BjOUOQZ/YwZM7DZbKSnp7N06VI6d+7Me++9R6dOneyr5RITE+nZsycAUVFRJCYmArB8+XI6d+4sW6kJYZBHH32UH374gW7dujFz5kzi4uJ45JFHuPvuu3nkkUcoKChg4sSJtGnThtDQUN566y1Ah97jjz9O8+bN6dq1K927d7f/e7/87NlqtdKxY0cAfv/9d2JiYmjbti2tWrUiOTkZuH574XXr1hEWFkbLli3p0qULFy5coGnTpvbh3AsXLhAQEHDF8O6JEye49957CQ4OZvjw4YWuA9aoUQOArKwsIiIi7K2Tt23bxuTJkzl79ixms5mBAweSnp5O8+bNGTx4MCEhIWRkZBR6ffn5+QwcOJDAwED69OnDH3/8cc33ID09nfnz5zNz5kzMZjPbtm0r1KY5NTWVdu3aERoaykMPPcSpU6cAvWnLpEmTaNu2Lc2aNWPbtm2O+F9fmCqBzz77TD3wwANKKaWOHDmi2rRpo26//XbVp08flZubq5RS6uzZs6pPnz7q9ttvV23atFFHjhwp8ritW7cuSRlCVBgHDhwwugTVqFEjlZ2drZRSaurUqSosLEz98ccfSiml3nrrLTVt2jSllFK5ubmqdevW6ocfflAfffSR6tq1q8rPz1eZmZnKy8tLffjhh1cc76uvvlIdOnRQSin173//Wy1evFgppdSpU6dU06ZN1ZkzZ9TChQtVkyZNVE5Ojjp79qy69dZb1bFjx9T//vc/5efnp3744QellFInTpxQSikVFxenZs6cqZRS6tNPP1W9evW64jU98cQT6rnnnlNKKbVq1SoF2Gu6+eablVJKvfLKK+qFF15QSimVn5+vfvvtt0LfV0qpo0ePKpPJpHbs2HHF+3X06FEFqC+++EIppdTQoUPVyy+/fN33YOrUqfb7/PXvLVq0UFu2bFFKKTVlyhQ1ZswYpZRSHTp0UOPHj1dKKbV69WrVpUuXq/5/vNrPUnGzs0S/t3Xs2NH+6X3bbbfZNxe4XLVq1fjwww8d8BEkhPuJ2xLHc58/57DjTe0wlbiOcSV6TFRUFDfddBMA69ev5+uvv7afrf/666+kpaWxdetWBgwYgIeHB7fccgudO3cu8rjr169n5cqV9jPY3Nxcjh07BlxqLwzY2wufOnWKiIgImjRpAkDdunUBiImJoWfPnowdO5a3336boUOHXvFcW7du5eOPPwbggQceoE6dOlfcp02bNsTExJCXl8ff//53zGbzVetu1KgR7dq1u+r3/P39ufvuuwEYNGgQc+bMYcKECUW+F3/166+/kpOTQ4cOHQA9U/Hhhx+2f79Xr14AtG7d2ilrj9xvgE4IFxbXMa7Ewexol7caVkrx+uuvc9999xW6z8Vx6qu5vPXw5W2HlVJ89NFHV3Sa3LVrV4naC/v7+9OgQQM2b95MSkqKvZNlSUVERLB161ZWr17NkCFDGD9+/FW3Pixp62W49ntQWhffH2e1XpYWCEJUYvfddx9vvvkmeXl5gG4L/PvvvxMREcGyZcsoKCggKyvLvp0f6PHp3bt3A/DRRx8VOtbrr79uHy/fu3fvdZ+7Xbt2bN261d66+OTJk/bvDR8+nEGDBvHwww/j4eFxxWMjIiJ4//33AVi7dq19vPtyP/74Iw0aNGDEiBEMHz7c3i75hhtusL/eohw7dowdO3YA8P7779O+ffvrvgfXar/s5eVFnTp17OPvixcvtp/dlwcJeiEqseHDhxMUFERYWBghISH885//JD8/n4ceeoimTZsSFBTE4MGDufPOO+2PmTp1KmPGjMFisRQK4SlTppCXl0doaCjBwcFMmTLlus9dv359EhIS6NWrFy1btiy0e1VUVBRnzpy56rDNxRq2bt1KcHAwH3/8MbfeeusV99myZQstW7akVatWLFu2jDFjxgB6andoaGixpps2b96cefPmERgYyKlTpxg5cuR134MHH3yQFStW2C/GXi4xMZGJEycSGhpKamoqzz77bJHP7yjSplgIJ3KXNsVDhgy5Yv9YZ7JarYwbN845M1AqqLK0KZYxeiGES4mPj+fNN98s9di8uJIEvRCiSO+88065PdfkyZOZPHlyuT1fZSBj9EI4mQuMjooKrqw/QxL0QjhRtWrVOHHihIS9KDWlFCdOnKBatWqlPoYM3QjhRH5+fthsNunQKsqkWrVqV/QqKgkJeiGc6IYbbrCv/BTCKDJ0I4QQbk6CXggh3JwEvRBCuDkJeiGEcHMS9EII4eYk6IUQws0VGfS5ubm0bduWli1bEhwczNSpUwHd5KhJkyaYzWbMZjOpqamAntw/evRoAgICCA0NtbcGFUIIYYwi59FXrVqVzZs3U6NGDfLy8mjfvj3dunUD4OWXX76im93atWtJS0sjLS2NXbt2MXLkSHbt2uWc6oUQQhSpyDN6k8lk32w3Ly+PvLy86272nZyczODBgzGZTLRr146cnByysrIcV7EQQogSKdYYfUFBAWazGW9vbyIjIwkPDwfg6aefJjQ0lHHjxnHu3DkAMjMz8ff3tz/Wz8+PzMzMK46ZkJCAxWLBYrHI8nAhhHCiYgW9h4cHqamp2Gw2UlJS2L9/PzNmzODgwYN89dVXnDx5khdffLFETxwbG4vVasVqtVK/fv1SFS+EEKJoJZp1U7t2bTp16sS6devw8fHBZDJRtWpVhg4dSkpKCgC+vr5kZGTYH2Oz2fD19XVs1UIIIYqtyKDPzs4mJycHgLNnz7JhwwbuuOMO+7i7UoqkpCRCQkIAvdfjokWLUEqxc+dOvLy88PHxceJLEEIIcT1FzrrJysoiOjqagoICLly4QN++fenRowedO3cmOzsbpRRms5n58+cD0L17d9asWUNAQADVq1dn4cKFTn8RQgghrk02BxdCiAqquNkpK2OFEMLNSdALIYSbk6AXQgg3J0EvhBBuToJeCCHcnAS9EEK4OQl6IYRwcxL0Qgjh5iTohRDCzUnQCyGEm5OgF0IINydBL4QQbk6CXggh3JwEvRBCuDkJeiGEcHNFBn1ubi5t27alZcuWBAcHM3XqVACOHj1KeHg4AQEB9OvXj/PnzwNw7tw5+vXrR0BAAOHh4aSnpzv1BQghhLi+IoO+atWqbN68mX379pGamsq6devYuXMnkyZNYty4cRw+fJg6deqwYMECABYsWECdOnU4fPgw48aNY9KkSU5/EUIIIa6tyKA3mUzUqFEDgLy8PPLy8jCZTGzevJk+ffoAEB0dTVJSEgDJyclER0cD0KdPHzZt2oQLbGIlhBCVVrHG6AsKCjCbzXh7exMZGcntt99O7dq18fTUW876+fmRmZkJQGZmJv7+/gB4enri5eXFiRMnrjhmQkICFosFi8VCdna2o16PEEKIvyhW0Ht4eJCamorNZiMlJYWDBw+W+YljY2OxWq1YrVbq169f5uMJIVxcVhZ06AA//2x0JZVOiWbd1K5dm06dOrFjxw5ycnLIz88HwGaz4evrC4Cvry8ZGRkA5Ofn8+uvv1KvXj0Hly2EqHCmTYMvvtD/FeWqyKDPzs4mJycHgLNnz7JhwwYCAwPp1KkTy5cvByAxMZGePXsCEBUVRWJiIgDLly+nc+fOmEwmZ9UvhKgIsrLg7bfhwgVYuFDO6suZZ1F3yMrKIjo6moKCAi5cuEDfvn3p0aMHQUFB9O/fn2eeeYZWrVoxbNgwAIYNG8YjjzxCQEAAdevWZenSpU5/EUIIFzdxIpw7p7/Oz9dn9fPmGVtTJWJSLjAlxmKxYLVajS5DCOEMO3bAXXcVvu2mm+CHH6BhQ2NqchPFzU5ZGSuEcJ4jR+Dee8HDo/Dt58/LWH05kqAXQjjH4cPQqRPUrg0FBYW/V1AAW7caU1clJEEvhHC8w4ehc2d45hnIyAClQClMceivx4+H8HCjq6w0JOiFEI6VlnYp5GNjr36fqVNhzRpISSnf2iopCXohhONcDPkpU64d8gC1asGLL8KoUVcO6wiHk6AXQjjG99/rkJ86FUaMKPr+gwZB1ap6fr1wKgl6IUTZXQz5uDgYPrx4jzGZYO5cPcRz8qRTy6vsJOiFEGVz6JAO+eefhz8XThab2Qx9+uihHuE0EvRCiNI7dAi6dNFz4mNiSneMadNg+XLYu9extQk7CXohROkcPKjP5F94AYYOLf1x6tbVx3j8cT31UjicBL0QouQOHtRn8tOnw5AhZT9eTIxeLfvuu2U/lriCBL0QomS+++5SyP+5m1yZeXjoC7OTJsFvvznmmMJOgl4IUXwHDkDXrjBjhuNC/qLwcOjWDZ57zrHHFRL0Qohiuhjy8fEweLBzniM+HhYvhm+/dc7xKykJeiFE0b79Vof8Sy/BI48473nq14dnn4XRo+XCrAMVGfQZGRl06tSJoKAggoODmT17NgBxcXH4+vpiNpsxm82sWbPG/pgZM2YQEBBA8+bN+fTTT51XvRDC+b79FiIj4eWX9WpWZ3v0UfjlFz3lUjhEkTtMeXp68uqrrxIWFsbp06dp3bo1kZGRAIwbN44JEyYUuv+BAwdYunQp3377LT/99BNdu3bl+++/x+Ov/aiFEK5v/37dT/6VV+Af/yif5/T01BdmBw6E7t3h5pvL53ndWJFn9D4+PoSFhQFQs2ZNAgMDyczMvOb9k5OT6d+/P1WrVqVJkyYEBASQIh3qhKh49u/XZ/LlGfIX3XMPRETAf/5Tvs/rpko0Rp+ens7evXsJ/7OP9Ny5cwkNDSUmJoZTp04BkJmZib+/v/0xfn5+V/1gSEhIwGKxYLFYyM7OLstrEEI42jff6JB/7bXyD/mLXnoJEhJ0Hx1RJsUO+jNnztC7d29mzZpFrVq1GDlyJEeOHCE1NRUfHx+efPLJEj1xbGwsVqsVq9VK/fr1S1y4EMJJvv5aD9fMnAkDBhhXxy23wOTJMGaMXJgto2IFfV5eHr1792bgwIH06tULgAYNGuDh4UGVKlUYMWKEfXjG19eXjIwM+2NtNhu+vr5OKF0I4XBffw333QezZkH//kZXo2ffpKfDJ58YXUmFVmTQK6UYNmwYgYGBjB8/3n57VlaW/esVK1YQEhICQFRUFEuXLuXcuXMcPXqUtLQ02rZt64TShRAOtW+fPpOfPRv69TO6Gu3GG2HOHBg7Fs6eNbqaCqvIWTfbt29n8eLFtGjRArPZDMD06dNZsmQJqampmEwmGjduzFtvvQVAcHAwffv2JSgoCE9PT+bNmyczboRwdfv26TP511+Hhx82uprCIiMhLExP73z2WaOrqZBMShk/+GWxWLBarUaXIUTllJoK999fLiFves6EmlqKyPnxRx32u3dD48YOr6uiKm52yspYISqzvXt1yM+d63pn8pdr1AjGjYPLho9F8UnQC1FZ7d2rm4jNm6d3eXJ1Eyboi8Wy2r7EJOiFqIz27NFn8m+8Ab17G11N8VSrpi8Ujx6te9eLYpOgF6Ky2bNHn8nPnw9/TpeuMB54AJo109M/RbFJ0AtRmezefSnkH3rI6GpKZ9YsvWr2Oq1YRGES9EJUFlarbhL21lsVN+QBbr8dRo6EiRONrqTCkKAXojKwWvWwR0IC/P3vRldTdv/+N2zfDlu2GF1JhSBBL4S7++orHfL/93/Qs6fR1ThG9eq64doTT0BentHVuDwJeiHcWUqKDvn//heiooyuxrF69YKGDfXMIXFdEvRCuKuUFOjRAxYsgAcfNLoaxzOZdB+cF16A48eNrsalSdAL4Y527dIh//bb7hnyFwUGwpAhup2xuCYJeiHczc6dOtwXLtRh7+6mTIH162HHDqMrcVkS9EK4k5079Vj8O+/osfnKoFYtPa/+8cehoMDoalySBL0Q7mLHjksh37270dWUr3/8Q28i/t//Gl2JS5KgF8IdfPmlnjqZmFj5Qh70hdm5c3W/+hMnjK7G5RQZ9BkZGXTq1ImgoCCCg4OZPXs2ACdPniQyMpKmTZsSGRlp3xxcKcXo0aMJCAggNDSUPXv2OPcVCFHZffmlXgS1aJFub1BZhYbqnbGeecboSlxOkUHv6enJq6++yoEDB9i5cyfz5s3jwIEDxMfH06VLF9LS0ujSpQvx8fEArF27lrS0NNLS0khISGDkyJFOfxFCVFrbt+uQX7xYd6Os7J5/Hlas0I3bhF2RQe/j40NYWBgANWvWJDAwkMzMTJKTk4mOjgYgOjqapKQkAJKTkxk8eDAmk4l27dqRk5NTaH9ZIYSDfPGF7lmzeLHeBlBA7dowfbq+MHvhgtHVuIwSjdGnp6ezd+9ewsPDOX78OD4+PgA0bNiQ438uWMjMzMTf39/+GD8/PzKv0mUuISEBi8WCxWIhOzu7LK9BiMrniy/0ytB335WQ/6shQ/Tsm8WLja7EZRQ76M+cOUPv3r2ZNWsWtWrVKvQ9k8mEyWQq0RPHxsZitVqxWq3Ur1+/RI8VolLbtk2fyb/3Htx7r9HVuJ4qVfSF2cmTISfH6GpcQrGCPi8vj969ezNw4EB6/blRQYMGDexDMllZWXh7ewPg6+tLRkaG/bE2mw1fX19H1y1E5bR1qz6TX7IEIiONrsZ1tWmjF43FxRldiUsoMuiVUgwbNozAwEDGX7Yxb1RUFImJiQAkJibS88+ueFFRUSxatAilFDt37sTLy8s+xCOEKIOtW/W2f0uWQNeuRlfj+qZPh/ffh2++MboSw3kWdYft27ezePFiWrRogdlsBmD69OlMnjyZvn37smDBAho1asQHH3wAQPfu3VmzZg0BAQFUr16dhQsXOvcVCFEZfP653sB76VLo0sXoaiqGv/1Nn9E/8QR89pmea19JmZRSyugiLBYLVqvV6DKEcE1btsDDD8OyZdC5s9HVlInpORNqajlGTkEBWCwwaRL0719+z1tOipudsjJWCFfmRiFvCA8PfWF2wgQ4c8boagwjQS+Eq/rsMx3yH3wgIV8Wd9+t378XXjC6EsNI0AvhijZvhr594cMPoVMno6up+F58UW/AcuiQ0ZUYQoJeCFezaZPu2bJ8OXTsaHQ17sHHB556CkaPBuMvS5Y7CXohXMmmTfqi4fLl0KGD0dW4l8cfB5sNkpONrqTcSdAL4So2boQBA+CjjyTkneGGG+D112HcODh71uhqypUEvRCuYMMGvXnGRx9BRITR1bivzp2hbVs9Zl+JSNALYbT162HgQPj4Y7jnHqOrcX+vvKKnXP7wg9GVlBsJeiGMtH49DBqke6i3b290NZWDvz88+aQewqkkJOiFMMqnn14K+bvvNrqaymX8eDhwANasMbqSciFBL4QR1q2DRx6BpCQJeSNUrQpz5sCYMXDunNHVOJ0EvRDlbd06GDxYT/O76y6jq6m8unWDoCB47TWjK3E6CXohytPatZdC/s47ja5GzJypL85etoeGO5KgF6K8rFkD0dGwcqWEvKu47Ta9kGrCBKMrcSoJeiHKw+rVei/TTz6Bdu2MrkZcbtIkSEnR/YXcVJFBHxMTg7e3NyEhIfbb4uLi8PX1xWw2YzabWXPZlesZM2YQEBBA8+bN+fTTT51TtRAVyapVMHSoDvnwcKOrEX9VvboewnniCcjLM7oapygy6IcMGcK6deuuuH3cuHGkpqaSmppK9+7dAThw4ABLly7l22+/Zd26dTz22GMUFBQ4vmohKopVq2DYMP1fCXnX1bOnnl8/d67RlThFkUEfERFB3bp1i3Ww5ORk+vfvT9WqVWnSpAkBAQGkpKSUuUghKqRPPrkU8m3bGl2NuB6TCWbP1vvM/vyz0dU4XKnH6OfOnUtoaCgxMTGcOnUKgMzMTPz9/e338fPzIzMz86qPT0hIwGKxYLFYyM7OLm0ZQrim5GQYPlyHfJs2RlcjiqN5c/3BPGmS0ZU4XKmCfuTIkRw5coTU1FR8fHx48sknS3yM2NhYrFYrVquV+vXrl6YMIVxTcjLExuoLsBLyFcszz+iLstu3G12JQ5Uq6Bs0aICHhwdVqlRhxIgR9uEZX19fMi6bj2qz2fD19XVMpUJUBElJOuTXrNGbUouKpUYNePllPeXSja4vliros7LsPzwOAAASXUlEQVSy7F+vWLHCPiMnKiqKpUuXcu7cOY4ePUpaWhptZWxSVBYrVsA//6lDvnVro6sRpdWvH3h5wVtvGV2Jw3gWdYcBAwawZcsWfvnlF/z8/HjuuefYsmULqampmEwmGjduzFt/viHBwcH07duXoKAgPD09mTdvHh4eHk5/EUIY7uOPYeRIvfI1LMzoakRZmEx6g5IuXfTm7G4wtGxSyvgNFC0WC1ar1egyhCidjz6Cxx6TkC8G03Mm1FTDI6d4xo6FP/6AhASjK7mm4manrIwVoiw++ghGjdKNyiTk3UtcnJ4i+9VXRldSZhL0QpTW8uWXQr5VK6OrEY5WuzbMmKEvzF64YHQ1ZSJBL0RpfPihDoB168BsNroa4SyDB0OVKvDOO0ZXUiYS9EKU1Acf6L4on34qIe/uqlTRbRGeegr+XBhaEUnQC1ESy5bB6NE65Fu2NLoaUR5at4aHHoKpU42upNQk6IUormXL9EyM9esl5CubF17Q//+//troSkpFgl6I68nKgg4dYP78SyEfGmp0VaK81asHzz+vr8sYPyO9xCTohbieadNg2zYYP16HfIsWRlckjDJ8OPz+OyxZYnQlJSZBL8S1ZGXBf/+rz+AuXHCLFZKiDDw89IXZf/0LTp82upoSkaAX4mpsNrjnnks7Dimlz+5F5XbnnRAZWeF+FiTohbjcuXMQH6/H4X/88dLt58/DwoVuuSmFKKH4eP2z8N13RldSbBL0Qlz06ac64L/8Erp103OoL1dQUOHO5IQTNGig+9aPHl1hLsxK0AuRnq7nSY8aBa+9BitXwoED+iz+cufP6w8BIUaN0r/dffyx0ZUUiwS9qLzOntVT5iwW/Wf/fnjgAf29vXv12ZpSmOKwf83evUZWLFyFp6duZTx+vO5w6eIk6EXlo5Q+aw8O1gtg9uyBp5+GatWMrkxUJB07wl136cZnLq7IoI+JicHb29u+ixTAyZMniYyMpGnTpkRGRto3B1dKMXr0aAICAggNDWXPnj3Oq1yI0khL02ftkybpHYSWL4dbbzW6KlFRvfwyvPkmHD5sdCXXVWTQDxkyhHXr1hW6LT4+ni5dupCWlkaXLl2Ij48HYO3ataSlpZGWlkZCQgIjR450TtVClNTvv+uz9jvvhM6dYd8+PU1OiLLw84OJE2HcOKMrua4igz4iIoK6desWui05OZno6GgAoqOjSUpKst8+ePBgTCYT7dq1Iycnp9D+skKUO6V0S+HAQH3Rdd8+mDABbrzR6MqEuxg3Dr7/HlatMrqSaypyz9irOX78OD4+PgA0bNiQ48ePA5CZmYm/v7/9fn5+fmRmZtrve7mEhAQS/tyiKzs7uzRlCHF9332n2wn/73+weLHuWSOEo914o74w+9hj0LWrS17rKfPFWJPJhMlkKvHjYmNjsVqtWK1W6svScuFIv/2mz9ojIiAqSl9slZAXznTvvXoNxquvGl3JVZUq6Bs0aGAfksnKysLb2xsAX19fMjIy7Pez2Wz4+vo6oEwhikEpeO89PUxz8qSeLjl6tJ4KJ4SzvfYazJwJx44ZXckVShX0UVFRJCYmApCYmEjPnj3tty9atAilFDt37sTLy+uqwzZCONy+ffqs/bXX9Ibdb7+tVzAKUV4aN9YnFk8+aXQlVygy6AcMGMCdd97JoUOH8PPzY8GCBUyePJkNGzbQtGlTNm7cyOTJkwHo3r07t912GwEBAYwYMYI33njD6S9AVHI5OXocPjISBg6ElBRo187oqkRlNXEi7N4NGzcaXUkhRf5Ou+QavZc3bdp0xW0mk4l58+aVvSohinLhgt6w+amn4O9/1xde69UzuipR2d10E8yapU8+9u1zmdldrrEy9tAh6Qoois9q1fPhExJg9Wq9+5OEvHAVDz4ITZrAnDlGV2LnGkF/5ox0BRRF++UX+Oc/9T+kkSN1g7HWrY2uSojCTCaYPVu3M/7pJ6OrAVwl6EF6fYtrKyjQZ+1BQXqO8nffwZAhV7YRFsJVNG0KsbF6NyoX4Dr/Us6d060/K0h/Z1FOduyANm3g/ff1Ba7Zs6F2baOrEqJoTz8NW7fqPwZznaC/cAFWrIBmzeDFF13mVx5hkOPH9Vl7nz568dPnn+sFKUJUFDffDK+8oi/M5ucbWorrBD3ADTdAixa6E1xIiO4y+OGH+mxfVA75+fqsPSQEvL3h4EH4xz/0uKcQFc3DD8Pf/qaHHg3kWkF//jwcPQr/93+QkQEDBug3yM9Pfyru3i1DO+7s88+hVSv45BP96+5LL0HNmkZXJUTpmUy6D87zz+ueSwZxiaDf7cOVO/jcfDMMGgSbNsFXX0H9+vrTsWVLvczYwDdNOFhmpj5rHzwY4uJgwwbdxkAIdxAUBI88otd8GMQlgr5IjRvDs8/qIZ05c/RChObN9UKZ5GTIyzO6QlEa58/rs/aWLeG22/Q+rb17yzCNcD9Tp8KaNXrltgEqRtBfVKWK3r7rnXd046CoKH2xw89P7934zTdGVyiKa/16fXH1889h50544QX9W5wQ7qhWLT3JZNQoPfGknFWsoL9czZoQEwPbtsH27VC9OnTvrhfQzJ2ruxcK1/Pjj/qs/dFH9TZsq1dDQIDRVQnhfIMGQdWquuFeOau4QX+5gAB9RpierlejffmlHgp4+GH965LBU5sEkJurVz+HhYHZrIdpHnzQ6KqEKD8mkz4JfeaZcj8RdY+gv8jDQ3cxfP99Hfpdu+qr3Y0aweTJeqqeKH+rVkFwsL7Qvns3TJnikrvwCOF0ZrP+jXbKlHJ9WvcK+svVrq37ouzcqWdxKKU3hb7YDOvXX42u0P0dOQI9euj+3G+8AR9/rC+sC1GZTZsGy5dfmmFYDtw36C8XFKQvhBw7pn9t2rBBn+UPHKiX1RtwccSt/fGHPmMJD9fb+X3zDdx3n9FVCeEa6tbVQ82PP15u64IqR9Bf5Ol5abXtkSN6g4pJk/RZ5pQp+jZRekrp3Z0CA/VU2NRU3dTJRXpyC+EyYmL09OJ33y2XpytT0Ddu3JgWLVpgNpuxWCwAnDx5ksjISJo2bUpkZCSnTp1ySKEOV6/epdW2q1bpVsl33qnPQBcu1H8XxXfwoD5rnzoVEhNhyRI97VUIcSUPD31hdtIkvZm9k5X5jP6zzz4jNTUVq9UKQHx8PF26dCEtLY0uXboQHx9f5iKdLjRUr7a12fR8/KQk8PfXTbU+/1yGdq7n9Gl91t6+vZ7eunevXusghLi+8HDo1g2ee87pT+XwoZvk5GSio6MBiI6OJikpydFP4Tw33nhpte3Bg/oD4PHHdW/p55/Xc8CFppQ+aw8M1O0o9u+HsWN1YzohRPHEx8PixfDtt059mjIFvclk4t5776V169YkJCQAcPz4cXx8fABo2LAhx48fv+pjExISsFgs9iEfl9OggT67//prWLZMh1nr1nrK5rvv6guOldU33+iz9pde0u/NO+9Aw4ZGVyVExVO/vm7vMnq0cy/MqjKw2WxKKaWOHz+uQkND1eeff668vLwK3ad27dpFHgefMpVRfs6eVWrZMqW6dVOqTh2lhg9Xavt2pS5cMLqy8nHqlFKjRytVv75Sb7yhVH6+0RWVC+IqyM9nBSDv5VXk5SkVGqrUBx+U+KGtW7cu1v3KdEbv6+sLgLe3Nw899BApKSk0aNCArKwsALKysvD29i77p5GrqFYN+vbVq22/+QZuv11fPb/jDpgxQ3dhdEcXLuiz9sBAOHtWr2odOVJfUBJClI2np74w++ST8PvvTnmKUgf977//zunTp+1fr1+/npCQEKKiokhMTAQgMTGRnj17OqZSV+Prq1fbfvedDsGjR/WmKd266eGM3FyjK3SM3bvh7rvhzTdh5Uq92OxvfzO6KiHcyz336Bl/06c75fClDvrjx4/Tvn17WrZsSdu2bXnggQe4//77mTx5Mhs2bKBp06Zs3LiRyZMnO7Je12MyXVpta7PpxkX//a+eWjhqlO6lXxE3SzlxQp+1P/AADB9+ae9WIYRzvPQSvPUWpKU5/NCepX3gbbfdxr59+664vV69emzatKlMRVVY1avr1bYDB+oZOosWQf/+cNNNMHSo/hBo0MDoKq+voEB/UD37rB6m+u47qFPH6KqEcH+33KJHCcaM0V1dHbgvQ+VaGVueGjXSq20PH9Z9Xvbv12P5UVF6E/Tz542u8Eo7d+q5ve++q/vFv/66hLwQ5Wn0aD0M/MknDj2sBL2zmUyXVttmZECvXjBrlh7aGTtW75ZltP/9T19U7tVL17R1q971SQhRvm68Ue+iN3asnvjgIBL05alGjUurbXfs0LvOREXpHu1z5sAvv5RvPfn5+nmDg3WjpYMH9fCSbOUnhHEiI3UmvPyyww4pQW+U22/Xq22PHtUXYVJS9AYqffro3jvO3ixl61b9w5ScrD94XnlFf/AIIYz36qswe7beV8MBJOiNVqXKpdW2P/4I996rp1j5++seMgcOOPb5fvpJXyweNEhfQ9i4UbdxFkK4jkaNYNw4vTrfASToXYmXF8TG6q0QP/vs0odAeDjMnw85OaU/9vnz+qw9NFT/EB04oLdalGEaIVzThAm6Bcunn5b5UBL0ruqOO3TDo2PHIC4ONm/WffMHDNAzYgoKin+sjRv1xdVNm/SHyPTp+nqBEMJ1Vaumh29Gjy7zLD0Jelfn6alX237wAfzwg24H/NRTOvSffvrKxRVZWdChA/z8s/6Q6NMHRozQHxpr1kCzZoa8DCFEKTzwgP43O2tWmQ4jQV+R1K2rV9tarTq0c3N18LdvDwsW6N7w06bBF19Az57QqpVuy3DggP67DNMIUfHMmqUnbJShl5YEfUXVooW+Mm+z6Yu2q1bp/jsJCboJmdUKa9fqHZ9uusnoaoUQpXX77bodycSJpT6EBH1Fd8MNl1bb9u596XZPT72lnxCi4vv3v2H7dj0VuhQk6N1FVhYsXXrpIu3583o17s8/G1uXEKLsqleH117TO96VYo2NBL27mDbtyr1tCwr07UKIiq9XL72T27x5JX6oBL272LHjyilY58/r6ZRCiIrPZNItS154Aa6xReu1SNC7i717dd97pTDFYf+avXuNrkwI4SiBgbpfVgn3+XBa0K9bt47mzZsTEBBAfHy8s55GCCEqlylT9KLJTz6BQ4eK9RCnBH1BQQGjRo1i7dq1HDhwgCVLlnDA0T1bhBCiMqpVS8+rj4mBM2eK9RCnBH1KSgoBAQHcdttt3HjjjfTv35/k5GRnPJUQQlQ+nTrByZPFvnuptxK8nszMTPz9/e1/9/PzY9euXYXuk5CQQEJCAgBVT1bFYrE4o5RK6dbsW7F8Iu+no8j76TjyXjrIsWOgFOnFvLtTgr44YmNjiY2NBcBisWC1Wo0qxe3I++lY8n46jryXxnDK0I2vry8ZGRn2v9tsNnx9fZ3xVEIIIYrglKBv06YNaWlpHD16lPPnz7N06VKioqKc8VRCCCGK4JShG09PT+bOnct9991HQUEBMTExBAcHX/P+F4dwhGPI++lY8n46jryXxjAppZTRRQghhHAeWRkrhBBuToJeCCHcnOFBL60SHCcmJgZvb29CQkKMLqXCy8jIoFOnTgQFBREcHMzs2bONLqlCy83NpW3btrRs2ZLg4GCmTp1qdEmViqFj9AUFBTRr1owNGzbg5+dHmzZtWLJkCUFBQUaVVKFt3bqVGjVqMHjwYPbv3290ORVaVlYWWVlZhIWFcfr0aVq3bk1SUpL8bJaSUorff/+dGjVqkJeXR/v27Zk9ezbt2rUzurRKwdAzemmV4FgRERHUrVvX6DLcgo+PD2FhYQDUrFmTwMBAMsuwZ2dlZzKZqFGjBgB5eXnk5eVhkj2My42hQX+1Vgnyj0m4mvT0dPbu3Ut4eLjRpVRoBQUFmM1mvL29iYyMlPezHBk+Ri+EKztz5gy9e/dm1qxZ1KpVy+hyKjQPDw9SU1Ox2WykpKTI8GI5MjTopVWCcGV5eXn07t2bgQMH0qtXL6PLcRu1a9emU6dOrFu3zuhSKg1Dg15aJQhXpZRi2LBhBAYGMn78eKPLqfCys7PJyckB4OzZs2zYsIE77rjD4KoqD0OD/vJWCYGBgfTt2/e6rRLE9Q0YMIA777yTQ4cO4efnx4IFC4wuqcLavn07ixcvZvPmzZjNZsxmM2vWrDG6rAorKyuLTp06ERoaSps2bYiMjKRHjx5Gl1VpSAsEIYRwc3IxVggh3JwEvRBCuDkJeiGEcHMS9EII4eYk6IUQws1J0AshhJuToBdCCDf3/48GKZYFFEekAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjvX+x/HXzVhihGQf65mhmWHMiiL7nji2cMjYmmg5JA71OzKh0iq0yEmSigohW1nSINIwlCMiBqPJYRhZm+36/fGtiSwzZu57rrnveT8fDw/m3q6Py3i7fK/v9/N1WJZlISIibq+Q3QWIiIhzKNBFRDyEAl1ExEMo0EVEPIQCXUTEQyjQRUQ8hAJdRMRDKNBFRDyEAl1ExEN45eXBbr/9dmrWrJmXhxQRcXvx8fGcPHkyy9flaaDXrFmT2NjYvDykiIjbCw8Pz9brNOQiIuIhFOgiIh5CgS4i4iHydAxdxFOlpqaSkJDApUuX7C5F3Fjx4sXx8fGhSJEiOXq/Al3ECRISEihVqhQ1a9bE4XDYXY64IcuySEpKIiEhgVq1auXoMzTkIuIEly5doly5cgpzyTGHw0G5cuVy9b88BbqIkyjMJbdy+z2kQBcR8RAKdBEPFB0dzUsvvcRTTz3F2rVrr/u6JUuWsGfPnus+P3PmTN577z0AWrRocVMLA5OTk3njjTcyv/7555/p2bNntt8vN0+BLmKXxERo3hx++cVlh5g4cSJt2rS57vM3CvS0tDSGDRvGgAEDcnTsvwZ6lSpVWLhwYY4+S7JHgS5il0mTYNMm87MTPPPMM9SpU4emTZuyb98+AAYOHJgZouPGjSMgIICgoCBGjx7N119/zbJlyxgzZgzBwcH89NNPtGjRgpEjRxIeHs60adMyr/T/MG/ePIKDg6lXrx7btm0DuOo19erVIz4+nnHjxvHTTz8RHBzMmDFjiI+Pp169eoC5iTxo0CDq169PSEgIX375JQDvvvsu3bt3p0OHDvj5+fGvf/3LKeemoNC0RRE7JCbCnDmQkWF+Hj8eKlXK8cdt376dBQsWsHPnTtLS0ggNDSUsLCzz+aSkJD799FP27t2Lw+EgOTmZMmXK0KVLFzp37nzFUEhKSkrm0Ep0dPQVx7lw4QI7d+4kJiaGwYMHs3v37uvWNGXKFHbv3s3OnTsB02DqD6+//joOh4Pvv/+evXv30q5dO3788UcAdu7cSVxcHMWKFaNu3bo8+uijVKtWLcfnpiDRFbqIKzgcN/5RpQr8MT3t4kWoXDnr99zAxo0b6datGyVKlODWW2+lS5cuVzxfunRpihcvzpAhQ1i8eDElSpS47mf17t37us/17dsXgGbNmvHrr7+SnJyczRNypU2bNtG/f38A7rjjDmrUqJEZ6K1bt86sNyAggMOHD+foGAWRAl3EFSzr+j9+/hmKF7/y9bfcYq7ab/S+XPDy8mLbtm307NmT5cuX06FDh+u+tmTJktd97q/T6hwOB15eXmRkZGQ+ltvVssWKFcv8deHChUlLS8vV5xUkCnSRvDZpkhlquVx6eq7G0ps1a8aSJUu4ePEiZ8+e5bPPPrvi+XPnznHmzBk6derE1KlT2bVrFwClSpXi7Nmz2T7ORx99BJgr7NKlS1O6dGlq1qzJjh07ANixYweHDh3K8rPvvvtuPvjgAwB+/PFHjhw5Qt26dW/uNy1X0Ri6SF7bsgVSUq58LCUFvv46xx8ZGhpK7969adCgARUqVCAiIuKK58+ePUvXrl25dOkSlmXxyiuvANCnTx8eeOABpk+fnq0ZKMWLFyckJITU1FTeeecdAHr06MF7771HYGAgjRo1ok6dOgCUK1eOJk2aUK9ePTp27MjDDz+c+TkPPfQQw4cPp379+nh5efHuu+9ecWUuOeOwrFz+X+4mhIeHa4ML8Ug//PAD/v7+dpchHuBa30vZzU4NuYiIeAgFuoiIh1Cgi4h4CAW6iIiHUKCLiHgIBbqIiIdQoIt4iOnTp+Pv70+/fv3sLsVlatasycmTJwG46667bvjaZ5999obPd+rUieTk5CuahmXXhg0b+PqydQOXtxm2kxYWiXiIN954g7Vr1+Lj43PF42lpaXh5ed5f9a+zWIj17LPP8uSTT171uGVZWJbFypUrAXLUj2bDhg14e3tn/qMybNiwm/4MV9AVuogHGDZsGAcPHqRjx45MnTqV6Oho7r//fpo0acL9999Peno6Y8aMISIigqCgIN566y3AhNsjjzxC3bp1adOmDZ06dcpcMXr51XBsbCwtWrQA4Pz58wwePJiGDRsSEhLC0qVLgRu3vl29ejWhoaE0aNCA1q1bk5GRgZ+fHydOnAAgIyMDX1/fzK//kJSURLt27QgMDGTo0KFcvg7S29sbgMTERJo1a5bZ1nfjxo2MGzeOixcvEhwcTL9+/YiPj6du3boMGDCAevXqcfTo0St+f2lpafTr1w9/f3969uzJhQsXrnsO4uPjmTlzJlOnTiU4OJiNGzde0UJ4586dNG7cmKCgILp168bp06cBs0HI2LFjadiwIXXq1GHjxo3O+KO/kpWHwsLC8vJwInlmz549dpdg1ahRwzpx4oRlWZY1YcIEKzQ01Lpw4YJlWZb11ltvWZMmTbIsy7IuXbpkhYWFWQcPHrQWLVpktWnTxkpLS7OOHTtmlS5d2vrkk0+u+rxvv/3Wat68uWVZlvXEE09Y8+bNsyzLsk6fPm35+flZ586ds+bMmWPVqlXLSk5Oti5evGhVr17dOnLkiPW///3P8vHxsQ4ePGhZlmUlJSVZlmVZ0dHR1tSpUy3LsqzPP//c6t69+1W/p0cffdR6+umnLcuyrOXLl1tAZk0lS5a0LMuyXnrpJWvy5MmWZVlWWlqa9euvv17xvGVZ1qFDhyyHw2Ft2bLlqvN16NAhC7A2bdpkWZZlDRo0yHrxxRdveA4mTJiQ+Zq/fl2/fn1rw4YNlmVZ1vjx460RI0ZYlmVZzZs3t0aNGmVZlmWtWLHCat269TX/HK/1vZTd7PS8/4eJ5APRG6J5+qunnfZ5E5pPILpF9E29p0uXLtxyyy0AfPHFF3z33XeZV99nzpxh//79xMTE0LdvXwoXLkyVKlVo1apVlp/7xRdfsGzZsswr0kuXLnHkyBHgz9a3QGbr29OnT9OsWTNq1aoFwG233QbA4MGD6dq1KyNHjuSdd95h0KBBVx0rJiaGxYsXA3DPPfdQtmzZq14TERHB4MGDSU1N5e9//zvBwcHXrLtGjRo0btz4ms9Vq1aNJk2aANC/f3+mT5/O6NGjszwXf3XmzBmSk5Np3rw5AJGRkfTq1Svz+e7duwMQFhZ2RX94Z8lWoE+dOpW3334bh8NB/fr1mTNnDomJifTp04ekpCTCwsKYN28eRYsWdXqBIu4oukX0TQews13eBteyLGbMmEH79u2veM0f48jXcnlb3Mtb4lqWxaJFi67qjvjNN9/cVOvbatWqUbFiRdavX8+2bdsyuy/erGbNmhETE8OKFSsYOHAgo0aNuua2eTfbFhiufw5y6o/z46q2wFmOoR87dozp06cTGxvL7t27SU9PZ8GCBYwdO5bHHnuMAwcOULZsWWbPnu304kTEOdq3b8+bb75JamoqYFrWnj9/nmbNmvHRRx+Rnp5OYmJi5lZwYMaPt2/fDsCiRYuu+KwZM2ZkjmfHxcXd8NiNGzcmJiYms63uqVOnMp8bOnQo/fv3p1evXhQuXPiq9zZr1owPP/wQgFWrVmWOR1/u8OHDVKxYkQceeIChQ4dmtvItUqRI5u83K0eOHGHLli0AfPjhhzRt2vSG5+B6rYFLly5N2bJlM8fH582bl3m1nheydVM0LS2NixcvkpaWxoULF6hcuTLr16/P3LYqMjKSJUuWuLRQEcm5oUOHEhAQQGhoKPXq1ePBBx8kLS2Nbt264efnR0BAAAMGDODOO+/MfM+ECRMYMWIE4eHhV4Tt+PHjSU1NJSgoiMDAQMaPH3/DY5cvX55Zs2bRvXt3GjRocMWOSF26dOHcuXPXHG75o4aYmBgCAwNZvHgx1atXv+o1GzZsoEGDBoSEhPDRRx8xYsQIAKKioggKCsrWNM66devy+uuv4+/vz+nTpxk+fPgNz8G9997Lp59+mnlT9HJz585lzJgxBAUFsXPnTp566qksj+802Rlof/XVV62SJUtat99+u/WPf/zDOnHihPW3v/0t8/kjR45YgYGBWX6OboqKp8oPN0WdITIyMvOmaF749ttvraZNm+bZ8dxBbm6KZnmFfvr0aZYuXcqhQ4f4+eefOX/+PKtXr872PxizZs0iPDyc8PDwq6YkiUjBNWXKFHr06MFzzz1ndykeI8ubomvXrqVWrVqUL18eMHdpN2/eTHJycuaChYSEBKpWrXrN90dFRREVFQWYJu0ikn+9++67eXascePGMW7cuDw7XkGQ5RV69erV2bp1KxcuXMCyLNatW0dAQAAtW7bMnAI1d+5cunbt6vJiRfIzK+82/xIPldvvoSwDvVGjRvTs2ZPQ0FDq169PRkYGUVFRPP/887zyyiv4+vqSlJTEkCFDclWIiDsrXrw4SUlJCnXJMcuySEpKonjx4jn+DO0pKuIEqampJCQkOGWushRcxYsXx8fHhyJFilzxeHazUytFRZygSJEimSshReyi5lwiIh5CgS4i4iEU6CIiHkKBLiLiIRToIiIeQoEuIuIhFOgiIh5CgS4i4iEU6CIiHkKBLiLiIRToIiIeQoEuIuIhFOgiIh5CgS4i4iEU6CIiHkKBLiLiIRToIiIeQoEuIuIhFOgiIh5CgS4i4iEU6CIiHkKBLiLiIRToIiIeQoEuIuIhFOgiIh5CgS4i4iEU6CIiHkKBLiLiIRToIiIeQoEuIuIhFOgiIh5CgS4i4iEU6CIiHkKBLiLiIRToIiIeQoHurhIToXlz+OUXuysRkXwiW4GenJxMz549ueOOO/D392fLli2cOnWKtm3b4ufnR9u2bTl9+rSra5XLTZoEmzaZn0VEyGagjxgxgg4dOrB371527dqFv78/U6ZMoXXr1uzfv5/WrVszZcoUV9cqfzhwAP7zH8jIgDlzdJUuIkA2Av3MmTPExMQwZMgQAIoWLUqZMmVYunQpkZGRAERGRrJkyRLXVipGQgI0bgzp6ebr1FRdpYsIkI1AP3ToEOXLl2fQoEGEhIQwdOhQzp8/z/Hjx6lcuTIAlSpV4vjx4y4vtsCLjYWICDhzBizLPJaWBm+9BfHxtpYmIvbLMtDT0tLYsWMHw4cPJy4ujpIlS141vOJwOHA4HNd8/6xZswgPDyc8PJwTJ044p+qCaOFC6NgRgoOh0F/+2CwLwsLgu+/sqU1E8oUsA93HxwcfHx8aNWoEQM+ePdmxYwcVK1YkMTERgMTERCpUqHDN90dFRREbG0tsbCzly5d3YukFhGXBs8/CqFHwxRdmvDwl5crXZGSAtze0bg1Tp5qvRaTAyTLQK1WqRLVq1di3bx8A69atIyAggC5dujB37lwA5s6dS9euXV1baUH0228QGQmLF8PWrRASAnFxJuQtC0c0mb/m8GH45hv45BPo0AF+/tnu6kUkj3ll50UzZsygX79+pKSkULt2bebMmUNGRgb33Xcfs2fPpkaNGnz88ceurrVgOXkSunWDChUgJgZKlMj6PbVrm9c+8wyEhsKbb5rPEJECIVuBHhwcTGxs7FWPr1u3zukFCfDDD9C5M/TuDZMnXz1mfiNeXjBhArRrB/37w8qVZhjG29t19YpIvqCVovnNmjVmBehTT5mx85sJ88vdeSfs3GlmwYSGwrffOrdOEcl3FOj5yZtvwv33mxktv8/xz5VSpczCo2eeMVf8zzzz5/x1EfE4CvT8ID0dRo6EadPMcv5mzZz7+b16wfbtsG4dtGihOesiHkqBbrdff4UuXWD3btiyBXx9XXMcHx9Yu9Ycq2FD+OAD1xxHRGyjQLfT4cPQpAlUqwarVkHZsq49XqFCMGYMfP65GX7p1w+Sk117TBHJMwp0u2zdam5cDhlixs6LFMm7Y4eEmDYCZcqYlacxMXl3bBFxGQW6HRYsgHvvhVmzzNj5ddomuFSJEvD66/Daa2Z65P/9n2n0JSJuS4GelywLnn4axo41Nyg7d7a7IlPDzp3mx113wY8/2l2RiOSQAj2vXLpkxqxXrjRL9IOC7K7oTxUrwvLlMGiQGdP/z3/+7OYoIm5DgZ4Xjh+HVq3M9MQNG6BSJbsruprDAQ89BF99BW+8YVoGnDxpd1UichMU6K62e7fZkKJNG5g/H265xe6KbiwgwNyw9fODBg1Mh0cRcQsKdFdatcpcmU+eDBMn5nwZf14rVgxefBHmzTOzcEaONENGIpKvuUnCuKEZM2DwYPj0UzN27o5atYJdu+DYMbNT0vff212RiNyAAt3Z0tLgkUdg5kz4+mtzk9Gd3XYbfPwxPP64Cfhp07SBhkg+pUB3pjNn4J574MABE+a1atldkXM4HDBwoBlbX7DAbIX3+25VIpJ/KNCd5eBBM4/bz89MASxd2u6KnO9vf4ONG80K15AQWLLE7opE5DIKdGfYvNkMrQwfblZeemVr3xD35OUF0dFmW7xRoyAqCs6ft7sqEUGBnnvvv2/mbM+ZY8bOC4q77jKrS3/7zWygcY0drUQkbynQcyojA8aPNz/WrzcbMxc0t94Kc+fCpEnQqZPZYUkbaIjYRoGeExcvQt++ph/LN99AvXp2V2Sv++4zG2isWQMtW5q2wCKS5xToN+uXX8yuP15e5sq8QgW7K8ofqlUzG2h07mzmrM+fb3dFIgWOAv1m7NoFjRqZqYnvvw/Fi9tdUf5SuDD861+werXpKtm/v5nKKSJ5QoGeXcuXm34szz8PTz1lTw9zdxEaCjt2mDH24GAz1VFEXE6BnhXLgqlTzfS8zz6DPn3srsg9lChhujZOn27G2P/9b22gIeJiCvQbSU2FYcPMlMQtW0zXRLk5994LcXHmir1JE9i/3+6KRDyWAv16Tp82S9wTEmDTJqhRw+6K3FelSrBiBQwYYOavv/22NtAQcQEF+rUcOGCWt9evD8uWmbFgyR2Hwyy82rDBdKLs0QOSkuyuSsSjKND/KiYGmjY1PcCnTjUzN8R5AgNh2zaoXdtsoLFmjd0ViXgMBfrl3n0XevY0GzsMG2Z3NZ6rWDF46SVzvgcPNj1htIGGSK4p0MEs43/iCbOE/auvoG1buysqGNq0Mf1gjhyBhg3Ndn0ikmMK9PPnoVcvc+Pzm2/A39/uigqWcuXgk0/MEFfLlmaao26YiuRIwQ70n3+G5s3B29ssW7/9drsrKpgcDjP0smULfPihafT1yy92VyXidgpuoO/YYZbx9+hhxnKLFbO7IvH1NatKIyLMBhrLltldkYhbKZiBvmQJtG8Pr75qxs61jD//KFIEJk6EhQthxAhzc1obaIhkS8EKdMuCF18086FXrTJX55I/NWlibpheuGB6w2zfbndFIvlewQn0lBQYOtSM0W7dCuHhdlckWSldGt57z1yxd+wIU6ZoAw2RGygYgX7qlBliOXnSjNH6+NhdkdyM3r3NFnerV0OrVmaao4hcJduBnp6eTkhICJ07dwbg0KFDNGrUCF9fX3r37k1KSorLisyVH380TbUiIszGxt7edlckOVG9utkhqmNH87+rBQvsrkgk38l2oE+bNg3/y+Zojx07lscee4wDBw5QtmxZZs+e7ZICc+XLL+Huu2HsWHjhBS3jd3eFC8O4ceb+R3Q03H+/NtAQuUy2Aj0hIYEVK1YwdOhQACzLYv369fTs2ROAyMhIlixZ4roqc+Ltt03v8gULYMgQu6sRZwoLMzdJvb3NBhqbNtldkUi+kK1AHzlyJC+88AKFCpmXJyUlUaZMGby8vADw8fHh2LFjrqvyZqSnw5gx5op840az+lA8T8mS8OabMG2a6b8zfrw20JACL8tAX758ORUqVCAsLCxHB5g1axbh4eGEh4dz4sSJHH1Gtp07B927mxtoW7dCnTquPZ7Yr0sXM70xNtZ0yTxwwO6KRGyTZaBv3ryZZcuWUbNmTfr06cP69esZMWIEycnJpKWlAWZIpmrVqtd8f1RUFLGxscTGxlK+fHnnVn+5hAQzXn777fD553Dbba47luQvlSrBypVmU+o774TZs9UPRgqkLAP9ueeeIyEhgfj4eBYsWECrVq344IMPaNmyJQsXLgRg7ty5dO3a1eXFXldsrJnJ0q+fGTsvWtS+WsQeDgc8+qi5ET59uhmG0QYaUsDkeB76888/zyuvvIKvry9JSUkMsevG48KFZirba6/B6NFaxl/Q1atnumbWqGE20Fi71u6KRPKM1828uEWLFrRo0QKA2rVrs23bNlfUlD2WZVYOvvkmfPGFaeYkAlC8OLzyivmHfuBAszDp2WfVgE08nnuuFP3tN/MXddEic/NTYS7X0rYt7NoFhw6ZDTT++1+7KxJxKfcL9JMnzU43586Z/T+rVLG7IsnPypUz//D/85/QooXZoFo3TMVDuVeg//CDufl5991ml5sSJeyuSNyBw2EWl339tdkv9p57tIGGeCT3CfQ1a8wV1vjxZjy0kPuULvmEnx9s3mxWmoaEwGefmccTE83OVQp5cXM3dVPUNjNnmt4dn3wCzZrZXY24syJFzGbg7dubXjArV0JammkfMGkSvP663RWK5Fj+vsxNT4fHHjM7C23apDAX52na1Kww/d//zEKkjAyYM0dX6eLW8m+gnz0LXbvC99+bzYN9fe2uSDxN6dJQseKfXTh/+w0ef9zemkRyIX8G+uHDZgsyHx/TKrVsWbsrEk+UmGiuyn9vYUFGhtnRql8/OHrU3tpEciD/BfrWraYfx+DBZtFQkSJ2VySeatIkE+KXK1oU9u41bXlHjjRDMiJuIn8F+oIFcO+9MGuW+cukZfziSlu2mL1mL5eSYkL+v/8189X9/eHf/4bkZHtqFLkJ+SPQLQueftrsLLRuHfy+zZ2IS8XFme89y8IRTeaviYszHRynTYMdO8zQjJ8fPPccnD9vd9Ui12V/oF+6ZMYsV640TZWCguyuSORPNWqYWTCbNpk2Ar6+ZrXpb7/ZXZnIVewN9OPHzS7u6emwYYO5KhLJj+rWNUOCq1aZfvt16sA77/x5Q1UkH7Av0HfvNsv427SB+fPhlltsK0Uk24KDYfly8z373nsQGAgff3z1zVURG9gT6KtWmSvzyZNh4kQt4xf3c9ddZjON116DF1+E0FBYsUKNv8RWeZuk+/bBM8+YKYmffmrGzkXclcNhWvRu2wYTJpib+k2bwldf2V2ZFFB5G+jnzsHLL5uud02a5OmhRVzG4YBu3cxN0+HDzQVLu3bw7bd2VyYFTN6PdVy8qPFy8UyFC5uNqn/4Abp3NyHfvbs21pA8k/eBnpFhVuiJeKqiRWHYMNi/3/xPtGVL09nxp5/srkw8XN4HekqKutpJwXDLLabZ14EDZv56w4ZmSObYMbsrEw9lz/SS9HRdpUvBceut5qbpvn3g7Q3168Po0WY7RREnsifQU1LMjVGRguT2280Ux9274cIFs1gpOhp+/dXuysRD5Gmgb6/Mlf0yRAqiKlXgjTfMLJiDB81wzIsvmpAXyQWt6BGxS+3aZrXpl1+attF+fqZl9F87QIpkkwJdxG6BgbBoESxZYn7ccYcJ+vR0uysTN6NAF8kvIiJM4685c8yeAEFBsHix2glItinQRfKb5s1h40Yzrj5p0p9Br2CXLCjQRfIjhwM6dYLt202PmBEjoEUL05dd5DoU6CL5WaFC0KuXmeo4cKBpaHfPPZolJtekQBdxB15eMGgQ/PgjdOxort7vu89saC3yOwW6iDspVgweecS0EwgNhbvvNt0dDx+2uzLJBxToIu6oZEkYN840AKta1YT7o4+qR1IBp0AXcWdlypiZMD/8YIZlAgLgiSfg1Cm7KxMbKNBFPEGFCjB1qtlkIynJbGI9eTKcPWt3ZZKHFOginqRaNbMoacsW2LPHtBN49VW4dMnuyiQPKNBFPJGfH3z4IXzxhekV4+cH//kPpKbaXZm4kAJdxJMFBcHSpfDJJ7BggRljnz/f7BwmHifLQD969CgtW7YkICCAwMBApk2bBsCpU6do27Ytfn5+tG3bltOnT7u8WBHJocaNYd06mDkTpk2D4GD47DO1E/AwWQa6l5cXL7/8Mnv27GHr1q28/vrr7NmzhylTptC6dWv2799P69atmTJlSl7UKyK50bq1GV+fPBmefBLuvBPWr7e7KnGSLAO9cuXKhIaGAlCqVCn8/f05duwYS5cuJTIyEoDIyEiWLFni2kpFxDkcDujSxcyIGTECHnwQ2rSBb76xuzLJpZsaQ4+PjycuLo5GjRpx/PhxKleuDEClSpU4fvy4SwoUERcpVAj69jWzYXr3hp49oWtX+P57uyuTHMp2oJ87d44ePXrw6quvcuutt17xnMPhwOFwXPN9s2bNIjw8nPDw8NxVKiKuUaQIPPCAWXXasiW0bWuagB04YHdlcpOyFeipqan06NGDfv360b17dwAqVqxIYmIiAImJiVSoUOGa742KiiI2NpbY2FgnlSwiLlG8OIwcaYLd39/cSI2KgqNH7a5MsinLQLcsiyFDhuDv78+oUaMyH+/SpQtz584FYO7cuXTt2tV1VYpI3ilVCv79b9PZsVw5MyNm1Cg4ccLuyiQLWQb65s2bmTdvHuvXryc4OJjg4GBWrlzJuHHjWLNmDX5+fqxdu5Zx48blRb0iklduuw2ee870Yk9NNXudjh8Pycl2VybX4ZXVC5o2bYp1nbmq69atc3pBIpLPVK4MM2bA44/DxIlm1eno0aaNb8mSdlcnl9FKURHJnpo14Z13zH6n27ebYH/tNfjtN7srk98p0EXk5txxB3z8MaxYAatWQd268O67kJZmnk9MNBtdqzd7nlOgi0jOhISYUH//fXPlXr++6RkzcaLZzHrSJLsrLHAU6CKSO02bwldfmTa9kyfDW2+Z5l9z5ugqPY8p0EUk9xwOaN8e7roLChc2j128aFaf/vqrvbUVIAp0EXGOxMQrx9IBtm6F6tXhscfg0CHbSisoFOgi4hyTJl3dZ71wYdOKv9lcAAAHDElEQVQIrEgRiIiA7t3NLBm17XUJBbqIOMeWLZCScuVjKSmm2dcLL0B8vGnfO2SICff337/69ZIrCnQRcY64OHPlbVk4osn8NXFx5nlvb3j4Ydi7F6KjzU3TWrXgmWfg5EkbC/ccCnQRyVuFCkHnzmYHpZUr4aefzCKlBx80rXwlxxToImKfBg3MHPa9e6FKFWjVCjp0gNWrNc6eAwp0EbFfxYowYYIZZ+/dG8aOhcBAmDULLlywuzq3oUAXkfyjeHEYNAh27jR9YpYvNz1k/u//4Ngxu6vL9xToIpL/OBxm+GXZMti8Gc6cgXr1oH9/0xhMrkmBLiL52x9dHQ8eNGPu3brB3XfD4sWQnm53dfmKAl1E3EPZsjBmjAn2Rx+FF18EX1+YOlXtBX6nQBcR9+LlBffdZxYyzZ8P33xjxtlHjjRhX4Ap0EXEfTVuDAsWwK5dUKwYNGxohmRiYgrktEcFuoi4v2rV4PnnzbTHtm1h6FAID4d58wpUewEFuoh4Dm9veOghs1Bp4kSYO9cMx0yeXCDaCyjQRcTzFCoE99wDa9eaVaeHDpnZMlFR8N//2l2dyyjQRcSzBQXB7Nmwbx/4+ECbNmYzjtWrr2736+YU6CJSMFSoAE89ZcbZ+/b9s73AW295THsBBbqIFCzFisHAgaa9wBtvmI2ua9SAJ590+/YCCnQRKZgcDmjZ0rQX+PprOHvWtBfo1w9iY+2uLkcU6CIifn4wY4a5eRoSAj16QNOmsGiRW7UXUKCLiPyhTBkYPdpsujFiBLz8smkv8MorpkFYPqdAFxH5Ky8v6NXLDMUsWADffmu2yxsxwoR9PqVAFxG5kUaNTM+YXbvgllvM1926wVdf5bv2Agp0EZHsqFYNpkyBw4ehXTuzSCksDN57L9+0F1Cgi4jcjJIlYfhw+OEHmDTJ9Iv5o73AiRO2lqZAFxHJiT/aC6xZA59/bhYs1akDDzwAu3fbU5ItRxUR8ST168Pbb5v2AtWqmY6P7drBqlV52l5AgS4i4iyXtxfo1w+eeMK0F5g5E86fd/nhFegiIs5WrBhERkJcHLz5prlSr1nTBLwL2wso0EVEXMXhgBYtYOlSs2Xe+fNmeOYf/zBz251MgS4ikhd8fWH6dLPvaVgY9OwJTZrAwoWQluaUQ+Qq0FevXk3dunXx9fVlypQpTilIRMSjlSkDjz9uVpw+9hhMnWrC/uWXc91eIMeBnp6ezsMPP8yqVavYs2cP8+fPZ8+ePbkqRkSkwPDyMlfpmzfDxx/D9u2mvcA//3lle4HERDN7JhtyHOjbtm3D19eX2rVrU7RoUfr06cPSpUtz+nEiIgVXw4bw4Yfw3Xdm4VLjxvD3v8OGDWZv1HPnsvUxOQ70Y8eOUa1atcyvfXx8OObmzeFFRGzl4wPPPWemPXboAEOHmh2VssnLdZUZs2bNYtasWQAUO1WM8PBwVx+ywKh+ojrhn+l8OoPOpXPpfDrJr78CEJ/Nl+c40KtWrcrRo0czv05ISKBq1apXvS4qKoqoqCgAwsPDiXXTnUDyI51P59G5dC6dT3vkeMglIiKC/fv3c+jQIVJSUliwYAFdunRxZm0iInITcnyF7uXlxWuvvUb79u1JT09n8ODBBAYGOrM2ERG5CbkaQ+/UqROdOnXK9uv/GHoR59D5dB6dS+fS+bSHw7Ly2ZYbIiKSI1r6LyLiIfIk0NUiwHkGDx5MhQoVqFevnt2leISjR4/SsmVLAgICCAwMZNq0aXaX5NYuXbpEw4YNadCgAYGBgUyYMMHukgoUlw+5pKenU6dOHdasWYOPjw8RERHMnz+fgIAAVx7WY8XExODt7c2AAQPYbdOuKJ4kMTGRxMREQkNDOXv2LGFhYSxZskTfnzlkWRbnz5/H29ub1NRUmjZtyrRp02jcuLHdpRUILr9CV4sA52rWrBm33Xab3WV4jMqVKxMaGgpAqVKl8Pf314rnXHA4HHh7ewOQmppKamoqDofD5qoKDpcHuloEiLuIj48nLi6ORo0a2V2KW0tPTyc4OJgKFSrQtm1bnc88pJuiIsC5c+fo0aMHr776Krfeeqvd5bi1woULs3PnThISEti2bZuGBvOQywM9uy0CROySmppKjx496NevH927d7e7HI9RpkwZWrZsyerVq+0upcBweaCrRYDkZ5ZlMWTIEPz9/Rk1apTd5bi9EydOkJycDMDFixdZs2YNd9xxh81VFRwuD/TLWwT4+/tz3333qUVALvTt25c777yTffv24ePjw+zZs+0uya1t3ryZefPmsX79eoKDgwkODmblypV2l+W2EhMTadmyJUFBQURERNC2bVs6d+5sd1kFhlaKioh4CN0UFRHxEAp0EREPoUAXEfEQCnQREQ+hQBcR8RAKdBERD6FAFxHxEAp0EREP8f8P7Rc8rXlUOwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# All emission distributions for variable 1\n", + "plt.figure(1)\n", + "for i in range(5):\n", + " plt.subplot(3,3, i+1)\n", + " hsmc1.extract(1, 1, i).plot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TODO: states 3 and 4 are swapped?" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPWh//H3kChg2S3BkGDABjALYUgGgoVGYogL14ZCZBMlEJYKrqBU7tOyeL2FtNriFsXcggKtBGVLrwUUi/yQymIq8VZTMCpIEiLKEgQkmuX7++OUKZFlsk1OZvJ5PQ9PYObMOZ9Jwicn33PO9ziMMQYREfFbLewOICIi3qWiFxHxcyp6ERE/p6IXEfFzKnoRET+nohcR8XMqehERP6eiFxHxcyp6ERE/F2h3AIAf/vCHdO/e3e4YIiI+5eDBgxw9etTjck2i6Lt3705ubq7dMUREfIrL5arRchq6ERHxcyp6ERE/p6IXEfFzTWKMXsRflZeXU1RURFlZmd1RxIe1atWK0NBQrrjiijq9XkUv4kVFRUW0bduW7t2743A47I4jPsgYw7FjxygqKqJHjx51WoeGbkS8qKysjKuvvlolL3XmcDi4+uqr6/VboYpexMtU8lJf9f0eUtGLiPg5Fb1IM7NgwQKefPJJ5s2bx1tvvXXJ5TZs2EB+fv4ln1+yZAkrVqwAYMiQIbW66LG0tJTnn3/e/e/Dhw9zxx131Pj1UjsqepGmpqQEbrwRvvjCq5v5r//6L4YOHXrJ5y9X9BUVFdxzzz1MmDChTtv+ftF37dqVNWvW1Gld4pmKXqSpefxx2LHD+thAfv3rX9OrVy8GDx7M/v37AZg4caK7XOfMmUNkZCQxMTE88sgjvPvuu/z5z39m9uzZOJ1OPv30U4YMGcJDDz2Ey+Xi6aefdv9mcM7KlStxOp1ER0ezZ88egAuWiY6O5uDBg8yZM4dPP/0Up9PJ7NmzOXjwINHR0YB1AHvSpEn06dOHfv368fbbbwPw8ssvM3LkSG699VZ69uzJL37xiwb7/Pg7nV4p0pSUlMBLL0FVlfVx7ly45pp6rfLvf/872dnZ5OXlUVFRQWxsLHFxce7njx07xvr169m3bx8Oh4PS0lI6dOhASkoKt99+e7Uhle+++849RLNgwYJq2/nmm2/Iy8tj+/btpKen8+GHH14yU0ZGBh9++CF5eXmANTnXOZmZmTgcDv7xj3+wb98+br75Zj7++GMA8vLy2Lt3Ly1btqR3797cf//9dOvWrV6fn+ZAe/QijcnhuPyfrl3h3Gl0Z89CcLDn13jwzjvvMGLECK666iratWtHSkpKtefbt29Pq1atmDx5MuvWreOqq6665LrGjBlzyefGjRsHQEJCAl9//TWlpaU1+IRcaMeOHdx1110AXH/99YSFhbmLPikpyZ03MjKSzz//vE7baG5U9CKNyZhL/zl8GFq1qr5869bWXv7lXldPgYGB7NmzhzvuuIPXX3+dW2+99ZLL/uAHP7jkc98/BdDhcBAYGEhVVZX7sfpeIdyyZUv33wMCAqioqKjX+poLFb1IU/H449aQzfkqK+s9Vp+QkMCGDRs4e/Ysp06d4n//93+rPX/69GlOnjzJsGHDWLx4MR988AEAbdu25dSpUzXezurVqwFrj7x9+/a0b9+e7t278/777wPw/vvvc+DAAY/r/slPfsKf/vQnAD7++GMOHTpE7969a/empRqN0Ys0FTt3wnffVX/su+/g3XfrtdrY2FjGjBlD3759CQoKon///tWeP3XqFMOHD6esrAxjDL///e8BGDt2LFOnTuWZZ56p0RkxrVq1ol+/fpSXl7Ns2TIAUlNTWbFiBVFRUcTHx9OrVy8Arr76agYNGkR0dDS33XYb9957r3s9M2bMYPr06fTp04fAwEBefvnlanvyUnsOYxrgd796crlcuvGI+KV//vOfRERE2B1D/MDFvpdq2p0auhER8XMqehERP+ex6MvKyhgwYAB9+/YlKiqK+fPnA9bFFj169MDpdOJ0Ot3nwxpjeOCBBwgPDycmJsZ9IEZEROzh8WBsy5Yt2bp1K23atKG8vJzBgwdz2223AfDEE09cMD/Fpk2bKCgooKCggN27dzN9+nR2797tnfQiIuKRxz16h8NBmzZtAOtuOeXl5ZedMjMnJ4cJEybgcDgYOHAgpaWllJSUNFxiERGplRqN0VdWVuJ0OgkKCiI5OZn4+HgAfvnLXxITE8PMmTP59ttvASguLq52SXJoaCjFxcVeiC4iIjVRo6IPCAggLy+PoqIi9uzZw4cffsiiRYvYt28f7733HsePH+c3v/lNrTaclZWFy+XC5XLx1Vdf1Sm8iHj2zDPPEBERwfjx4+2O4jXdu3fn6NGjAPz4xz++7LILFy687PPDhg2jtLS02kRrNbVt2zbePe+6h/OncrZTrc666dChA4mJiWzevJng4GAcDgctW7Zk0qRJ7tnqQkJCKCwsdL+mqKiIkJCQC9Y1bdo0cnNzyc3NpXPnzvV8GyJyKc8//zxbtmxxX216jr9OH/CuhwvMLlX0xhiqqqrYuHEjHTp0qNO2v1/09ZnKuSF5LPqvvvrKPTnR2bNn2bJlC9dff7173N0Yw4YNG9w/+VJSUlixYgXGGHbt2kX79u0JDg724lsQkUu55557+Oyzz7jttttYvHgxCxYs4O6772bQoEHcfffdVFZWMnv2bPr3709MTAwvvvgiYP2/vu++++jduzdDhw5l2LBh7qtjz997zs3NZciQIQCcOXOG9PR0BgwYQL9+/cjJyQEuP73w5s2biY2NpW/fviQlJVFVVUXPnj3dv+VXVVURHh5+wW/9x44d4+abbyYqKoopU6Zw/nWf544plpSUkJCQ4J46+Z133mHOnDmcPXsWp9PJ+PHjOXjwIL1792bChAlER0dTWFhY7f1VVFQwfvx4IiIiuOOOO/jmm28u+Tk4ePAgS5YsYfHixTidTt55551q0zTn5eUxcOBAYmJiGDFiBCdOnACsm7Y8+uijDBgwgF69evHOO+80xJe+OuPBBx98YJxOp+nTp4+Jiooyjz32mDHGmMTERBMdHW2ioqLM+PHjzalTp4wxxlRVVZkZM2aY6667zkRHR5v33nvP0yZMXFycx2VEfFF+fr7dEUxYWJj56quvjDHGzJ8/38TGxppvvvnGGGPMiy++aB5//HFjjDFlZWUmLi7OfPbZZ2bt2rVm6NChpqKiwhQXF5v27dub11577YL1vffee+bGG280xhjzn//5n2blypXGGGNOnDhhevbsaU6fPm1eeukl06NHD1NaWmrOnj1rrr32WnPo0CHz5ZdfmtDQUPPZZ58ZY4w5duyYMcaYBQsWmMWLFxtjjHnjjTfMyJEjL3hP999/v7uLXn/9dQO4M/3gBz8wxhjz5JNPmv/+7/82xhhTUVFhvv7662rPG2PMgQMHjMPhMDt37rzg83XgwAEDmB07dhhjjJk0aZJ54oknLvs5mD9/vnuZ7/+7T58+Ztu2bcYYY+bOnWsefPBBY4wxN954o5k1a5Yxxpi//OUvJikp6aJfx4t9L9W0Oz2eXhkTE8PevXsveHzr1q0XXd7hcJCZmVnfnz8ifmnBtgU89v8ea7D1zb9xPguGLKjVa1JSUmjdujUAb775Jv/3f//n3ls/efIkBQUFbN++nXHjxhEQEEDXrl256aabPK73zTff5M9//rN7D7asrIxDhw4B/55eGHBPL3zixAkSEhLo0aMHAJ06dQIgPT2d4cOH89BDD7Fs2TImTZp0wba2b9/OunXrAPiP//gPOnbseMEy/fv3Jz09nfLycn72s5/hdDovmjssLIyBAwde9Llu3boxaNAgAO666y6eeeYZHnnkEY+fi+87efIkpaWl3HjjjQCkpaUxatQo9/MjR44EIC4urtrc/A1Fk5qJNKIFQxbUupgb2vlTDRtjePbZZ7nllluqLbNx48ZLvv78qYfPn3bYGMPatWsvmGly9+7dtZpeuFu3bnTp0oWtW7eyZ8+eC44t1FRCQgLbt2/nL3/5CxMnTmTWrFkXHS+v7dTLcOnPQV2d+/x4a+plTYEg0ozdcsstvPDCC5SXlwPWtMBnzpwhISGB1atXU1lZSUlJift2fmCNT//9738HYO3atdXW9eyzz7rHyy82EnC+gQMHsn37dvfUxcePH3c/N2XKFO666y5GjRpFQEDABa9NSEjglVdeAayLNM+Nd5/v888/p0uXLkydOpUpU6a4r9K/4oor3O/Xk0OHDrFz504AXnnlFQYPHnzZz8Glpl9u3749HTt2dI+/r1y50r133xhU9CLN2JQpU4iMjCQ2Npbo6Gh+/vOfU1FRwYgRI+jZsyeRkZFMmDCBG264wf2a+fPn8+CDD+JyuaqV8Ny5cykvLycmJoaoqCjmzp172W137tyZrKwsRo4cSd++favdvSolJYXTp09fdNjmXIbt27cTFRXFunXruPbaay9YZtu2bfTt25d+/fqxevVqHnzwQcA64y8mJqZGp5v27t2bzMxMIiIiOHHiBNOnT7/s5+CnP/0p69evdx+MPd/y5cuZPXs2MTEx5OXlMW/ePI/bbyiapljEi/xlmuKJEydecP9Yb8rNzWXmzJneOQPFR9VnmmKN0YtIk5KRkcELL7xQ57F5uZCKXkQ8evnllxttW3PmzGHOnDmNtr3mQGP0Il7WBEZHxcfV93tIRS/iRa1ateLYsWMqe6kzYwzHjh2jVatWdV6Hhm5EvCg0NJSioiJN3Cf10qpVK0JDQ+v8ehW9iBddccUV7is/ReyioRsRET+nohcR8XMqehERP6eiFxHxcyp6ERE/p6IXEfFzKnoRET+nohcR8XMqehERP+ex6MvKyhgwYAB9+/YlKiqK+fPnA3DgwAHi4+MJDw9nzJgxfPfddwB8++23jBkzhvDwcOLj471y/0MREak5j0XfsmVLtm7dygcffEBeXh6bN29m165dPProo8ycOZNPPvmEjh07snTpUgCWLl1Kx44d+eSTT5g5cyaPPvqo19+EiIhcmseidzgctGnTBoDy8nLKy8txOBxs3brVfbeZtLQ0NmzYAEBOTg5paWkA3HHHHfz1r3/VzH0iIjaq0Rh9ZWUlTqeToKAgkpOT+dGPfkSHDh0IDLTmRAsNDaW4uBiA4uJiunXrBlh3Sm/fvj3Hjh3zUnwREfGkRkUfEBBAXl4eRUVF7Nmzh3379tV7w1lZWbhcLlwul6ZwFRHxolqdddOhQwcSExPZuXMnpaWlVFRUAFBUVERISAgAISEhFBYWAlBRUcHJkye5+uqrL1jXtGnTyM3NJTc3l86dO9f3fYiIyCV4LPqvvvqK0tJSAM6ePcuWLVuIiIggMTGRNWvWALB8+XKGDx8OQEpKCsuXLwdgzZo13HTTTTgcDm/lFxERDzzeeKSkpIS0tDQqKyupqqpi9OjR3H777URGRjJ27Fh+9atf0a9fPyZPngzA5MmTufvuuwkPD6dTp05kZ2d7/U2IiMilOUwTOCXG5XKRm5trdwwREZ9S0+7UlbEiIn5ORS8i4udU9CIifk5FLyLi51T0IiJ+TkUvIuLnVPQiIn5ORS8i4udU9CIifk5FLyLi51T0IiJ+TkUvIuLnVPQiIn5ORS8i4udU9CIifk5FLyLi55pG0e/fD198YXcKERG/1DSK/vRpePxxu1OIiPglj0VfWFhIYmIikZGRREVF8fTTTwOwYMECQkJCcDqdOJ1ONm7c6H7NokWLCA8Pp3fv3rzxxhs1S/LSS9qrFxHxAo83Bw8MDOR3v/sdsbGxnDp1iri4OJKTkwGYOXMmjzzySLXl8/Pzyc7O5qOPPuLw4cMMHTqUjz/+mICAgMtvqLzc2qvPzKz7uxERkQt43KMPDg4mNjYWgLZt2xIREUFxcfEll8/JyWHs2LG0bNmSHj16EB4ezp49ezwnqaiApUu1Vy8i0sBqNUZ/8OBB9u7dS3x8PADPPfccMTExpKenc+LECQCKi4vp1q2b+zWhoaGX/cFQzbffwi9/WZtIIiLiQY2L/vTp06SmpvLUU0/Rrl07pk+fzqeffkpeXh7BwcE8/PDDtdpwVlYWLpcLl8tV/YnXXoPKylqtS0RELq1GRV9eXk5qairjx49n5MiRAHTp0oWAgABatGjB1KlT3cMzISEhFBYWul9bVFRESEjIBeucNm0aubm55Obm8vdgwBhrnN7lgnnzGuCtiYgI1KDojTFMnjyZiIgIZs2a5X68pKTE/ff169cTHR0NQEpKCtnZ2Xz77bccOHCAgoICBgwYULM0gYGwejX88Y+wfn0t34qIiFyMx7Nu/va3v7Fy5Ur69OmD0+kEYOHChaxatYq8vDwcDgfdu3fnxRdfBCAqKorRo0cTGRlJYGAgmZmZns+4OV/nzrB2LQwbBtdfDxERdXtnIiICgMMYY2wP0dWBOfy9GC+9BL/5DezZA+3a2RNMRKQJc7lc5ObmelyuaVwZezGTJkFiIqSlQVWV3WlERHxW0y16gKefhiNHYNEiu5OIiPgsj2P0trrySlizBvr3h7g4uPVWuxOJiPicpr1HD9C1q3UmTloafPaZ3WlERHxO0y96gMGDYe5cGDECzpyxO42IiE/xjaIHuPdecDph6lTr4ioREakR3yl6hwOWLIF9+6yDtCIiUiNN+2Ds97VuDevWwcCB1t79kCF2JxIRafJ8Z4/+nO7dYeVKGDcOzptTR0RELs73ih4gORkeeghSU6GszO40IiJNmm8WPcAvfgFhYXD//XYnERFp0ny36B0OWLYM3n0XsrLsTiMi0mT51sHY72vb1prOePBgiImxDtKKiEg1vrtHf06vXvCHP8CoUda8OCIiUo3vFz1ASgqkp1tlX15udxoRkSbFP4oeYP58ayhn9my7k4iINCn+U/QtWli3IHz9deujiIgAvn4w9vs6doQNG6wblkRHW1fPiog0c/6zR39OdDQ89xyMHAnHj9udRkTEdh6LvrCwkMTERCIjI4mKiuLpf00odvz4cZKTk+nZsyfJycmcOHECAGMMDzzwAOHh4cTExPD+++979x1czJgxVtGPGweVlY2/fRGRJsRj0QcGBvK73/2O/Px8du3aRWZmJvn5+WRkZJCUlERBQQFJSUlkZGQAsGnTJgoKCigoKCArK4vp06d7/U1cVEYGVFRY89iLiDRjHos+ODiY2NhYANq2bUtERATFxcXk5OSQlpYGQFpaGhs2bAAgJyeHCRMm4HA4GDhwIKWlpZSUlHjxLVxCYCBkZ8Of/mTNeCki0kzVaoz+4MGD7N27l/j4eI4cOUJwcDAA11xzDUf+dbFScXEx3bp1c78mNDSU4uLiBoxcC507w9q18POfwz//aU8GERGb1bjoT58+TWpqKk899RTt2rWr9pzD4cDhcNRqw1lZWbhcLlwuV61eV2suF/z2t9ZtCL/+2rvbEhFpgmpU9OXl5aSmpjJ+/HhGjhwJQJcuXdxDMiUlJQQFBQEQEhJC4XnzxBcVFRESEnLBOqdNm0Zubi65ubn1fhMeTZoEN90EEyZAVZX3tyci0oR4LHpjDJMnTyYiIoJZs2a5H09JSWH58uUALF++nOHDh7sfX7FiBcYYdu3aRfv27d1DPLZ66in48ktYtMjuJCIijcphzOXvtL1jxw5+8pOf0KdPH1q0sH4uLFy4kPj4eEaPHs2hQ4cICwvj1VdfpVOnThhjuO+++9i8eTNXXXUVL730ksfhGUdXB+ZwI9zw+/Bh6N/fmgTtttu8vz0RES9yuVw1GhXxWPSNodGKHmDHDuvOVO++Cz/6UeNsU0TEC2pa9P53Zawngwdb59aPGAFnztidRkTE65pf0QPcey/06wdTp4L9v9CIiHhV8yx6hwOWLIH9+62DtCIifsy/Zq+sjdatrStm4+OtvfshQ+xOJCLiFc1zj/6csDBr7vo774Tzzv0XEfEnzbvoAYYOhYcess7EKSuzO42ISINT0YN1+8GwMLjvPh2cFRG/o6IH6+DssmWwcyf8z//YnUZEpEE134Ox39e2Laxfb51nHxMDAwfanUhEpEFoj/58vXrB0qUwahR88YXdaUREGoSK/vt++lNIT4fRo6G83O40IiL1pqK/mPnzoV07eOQRu5OIiNSbiv5iWrSwzq/fuNH6KCLiw3Qw9lI6dLAOziYmQlSUdfWsiIgP0h795URHQ2amdTHVsWN2pxERqRMVvSejR1tFf+edUFlpdxoRkVpT0dfEokVQUWHNYy8i4mNU9DURGAjZ2fDKK9aMlyIiPkRFX1OdO8OaNfDzn0N+vt1pRERqzGPRp6enExQURHR0tPuxBQsWEBISgtPpxOl0snHjRvdzixYtIjw8nN69e/PGG294J7VdXC747W+t2xCePGl3GhGRGvFY9BMnTmTz5s0XPD5z5kzy8vLIy8tj2LBhAOTn55Odnc1HH33E5s2bmTFjBpX+dgBz0iRISoK0NKiqsjuNiIhHHos+ISGBTp061WhlOTk5jB07lpYtW9KjRw/Cw8PZs2dPvUM2OU89BV99BQsX2p1ERMSjOo/RP/fcc8TExJCens6JEycAKC4uplu3bu5lQkNDKS4uvujrs7KycLlcuFyuukawz5VXwmuvwQsvwKZNdqcREbmsOhX99OnT+fTTT8nLyyM4OJiHH3641uuYNm0aubm55Obm1iWC/bp2hdWrYeJE+PRTu9OIiFxSnYq+S5cuBAQE0KJFC6ZOneoengkJCaHwvHuvFhUVERIS0jBJm6LBg2HePOvg7JkzdqcREbmoOhV9SUmJ++/r1693n5GTkpJCdnY23377LQcOHKCgoIABAwY0TNKmasYMiI2FKVN0G0IRaZI8Tmo2btw4tm3bxtGjRwkNDeWxxx5j27Zt5OXl4XA46N69Oy+++CIAUVFRjB49msjISAIDA8nMzCQgIMDrb8JWDoc1Vj94sHWQduZMuxOJiFTjMMb+3VBHVwfmsO0x6ufzzyE+Hlatsma8FBHxMpfLVaPjnLoytqGEhVlz1995J5x3nEJExG4q+oY0dKg1dJOaCmVldqcREQFU9A1v9mzo3h3uu08HZ0WkSVDRNzSHA5Ytg507ISvL7jQiIrqVoFe0aWPdhnDwYOjbFwYOtDuRiDRj2qP3ll69rD37UaPgiy/sTiMizZiK3ptuvx0mT7ZuR1hebncaEWmmVPTeNm8etGsHjzxidxIRaaZU9N7WooV1fv3GjdZHEZFGpoOxjaFDB+vgbGIiREVBv352JxKRZkR79I0lOhoyM2HkSDh2zO40ItKMqOgb0+jRcMcdMG4c+NstFkWkyVLRN7ZFi6x7zf7qV3YnEZFmQkXf2AIDrRkuV62CtWvtTiMizYCK3g6dO1slf889kJ9vdxoR8XMqervExcETT1i3ITx50u40IuLHVPR2mjjRmtp4wgRr3F5ExAtU9HZbvBiOHoWFC+1OIiJ+ymPRp6enExQU5L4BOMDx48dJTk6mZ8+eJCcnc+LECQCMMTzwwAOEh4cTExPD+++/773k/uLKK+G112DJEti0ye40IuKHPBb9xIkT2bx5c7XHMjIySEpKoqCggKSkJDIyMgDYtGkTBQUFFBQUkJWVxfTp072T2t907QqrV0NaGnzyid1pRMTPeCz6hIQEOnXqVO2xnJwc0tLSAEhLS2PDhg3uxydMmIDD4WDgwIGUlpZSUlLihdh+aNAgmD/funL2zBm704iIH6nTGP2RI0cIDg4G4JprruHIkSMAFBcX061bN/dyoaGhFBcXN0DMZmLGDIiNhSlTdBtCEWkw9T4Y63A4cDgctX5dVlYWLpcLl8tV3wj+w+GAF16Ajz+2DtKKiDSAOhV9ly5d3EMyJSUlBAUFARASEkJhYaF7uaKiIkJCQi66jmnTppGbm0tubm5dIviv1q1h3Tr47W/h7bftTiMifqBORZ+SksLy5csBWL58OcOHD3c/vmLFCowx7Nq1i/bt27uHeKQWwsKsuevvvBPO+8EpIlIXHot+3Lhx3HDDDezfv5/Q0FCWLl3KnDlz2LJlCz179uStt95izpw5AAwbNozrrruO8PBwpk6dyvPPP+/1N+C3hg6FWbOsg7NlZXanEREf5jDG/qN+jq4OzGHbYzQ9xsCYMdC2LfzhD9YYvojIv7hcrhoNf+vK2KbM4YBly2D3bsjKsjuNiPgo3UqwqWvTxroN4aBBEBMDN9xgdyIR8THao/cFPXtae/ajRsEXX9idRkR8jIreV9x+u3Uh1ahRUF5udxoR8SEqel8ybx506AAPP2x3EhHxISp6X9KiBaxcac1yuXKl3WlExEfoYKyv6dDBOjibmAjR0dCvn92JRKSJ0x69L4qOhsxM62KqY8fsTiMiTZyK3leNHm0dmB03Dior7U4jIk2Yit6XLVxo3Wv2V7+yO4mINGEqel8WGAjZ2bBqFaxda3caEWmiVPS+7oc/tEr+nnsgP9/uNCLSBKno/UFcHDzxBPzsZ3DypN1pRKSJUdH7i4kTITkZJkywxu1FRP5FRe9PFi+Go0fh17+2O4mINCEqen9y5ZXw2muwZAls3Gh3GhFpIlT0/qZrV3j1VWso55NP7E4jIk2Ait4fDRoECxZYV86eOWN3GhGxmYreX02fbp2NM3mydUtCEWm26lX03bt3p0+fPjidTlwuFwDHjx8nOTmZnj17kpyczIkTJxokqNSSwwHPPw8FBdZBWhFptuq9R//222+Tl5fnvkFtRkYGSUlJFBQUkJSUREZGRr1DSh21bg3r1lnn2L/9tt1pRMQmDT50k5OTQ1paGgBpaWls2LChoTchtREWBn/8I9x5Jxw6ZHcaEbFBvYre4XBw8803ExcXR1ZWFgBHjhwhODgYgGuuuYYjR45c9LVZWVm4XC73kI94UVISzJoFqalQVmZ3GhFpZA5j6n6krri4mJCQEL788kuSk5N59tlnSUlJobS01L1Mx44dPY7TO7o6MId1wNCrjIGxY6FNG/jDH6wxfBHxaS6Xyz1sfjn12qMPCQkBICgoiBEjRrBnzx66dOlCSUkJACUlJQQFBdVnE9JQHA5YuhR274YXX7Q7jYg0ojoX/ZkzZzh16pT772+++SbR0dGkpKRjo2XqAAAFeUlEQVSwfPlyAJYvX87w4cMbJqnUX5s21m0I582DnTvtTiMijaTO94w9cuQII0aMAKCiooI777yTW2+9lf79+zN69GiWLl1KWFgYr776aoOFlQbQsycsW2bdoeq99+Caa+xOJCJeVq8x+gYLoTH6xvfYY/DWW/DXv1pz5IiIz2mUMXrxYXPnQocO8PDDdicRES9T0TdXLVrAypXwxhuwYoXdaUTEi+o8Ri9+oEMH68rZxESIjobYWLsTiYgXaI++uYuOhsxM62Kqo0ftTiMiXqCiF+sMnFGjYNw4qKy0O42INDAVvVgWLrSunv3lL+1OIiINTEUvlsBAyM62/qxZY3caEWlAKnr5tx/+ENautW5akp9vdxoRaSAqeqkuLg6efBJGjICTJ+1OIyINQEUvF0pLg+RkuPtuqKqyO42I1JOKXi7u97+H48fh17+2O4mI1JOKXi7uyivhtdesKY03brQ7jYjUg4peLi04GF59FSZOhE8+sTuNiNSRil4u78c/hgULrIOzp0/bnUZE6kBFL55Nnw4uF0yZYl1UJSI+RUUvnjkc8Pzz1vDN739vdxoRqSXNXik107q1dTFVfDz06wc33WR3IhGpIe3RS82FhcErr8D48XDokN1pRKSGvFb0mzdvpnfv3oSHh5ORkeGtzUhju+km665UqalQVmZ3GqmPkhK48Ub44gu7k4iXeaXoKysruffee9m0aRP5+fmsWrWKfM2d4j8efhiuuw5mzIDDh1UWvurxx2HHDuuj+J6SEti/v0aLemWMfs+ePYSHh3PdddcBMHbsWHJycoiMjPTG5qSxORywdCnccIM1h/25ssjMbNwcVVXWn8rKun+sz2t9eZ1nz8IHH1hnUb3wAuzcCa1aQUCAdZtJb35sjG009rZa2DAK/vjjNT7l2StFX1xcTLdu3dz/Dg0NZffu3d7YlNilTRvrqtlBg6x/L1kC//gHXHFF45Ud2P+fvaHWFRhoXY3cWPmffBI++gjKy61t9+gBs2Y1/g+o8vKm90OwLtuAxv3hUl4O77xT4/+utp11k5WVRVZWFgAtj7fE5XLZFUXq6tAha+/eGOvPvn1w7bUXX9bh+Pd/gqbs3G8J/qy83PqhfO6aiPJyWL/eOn32iivszdYYfO17saLiwucOHQJjOFjDVXml6ENCQigsLHT/u6ioiJCQkGrLTJs2jWnTpgHgcrnIzc31RhRpBPr6+S597ZoHrwws9e/fn4KCAg4cOMB3331HdnY2KSkp3tiUiIh44JU9+sDAQJ577jluueUWKisrSU9PJyoqyhubEhERD7w2Rj9s2DCGDRtWo2XPDeGIb9LXz3fpa9c8OIzRLFUiIv5MUyCIiPg524teUyX4rvT0dIKCgoiOjrY7itRSYWEhiYmJREZGEhUVxdNPP213JPEiW4duKisr6dWrF1u2bCE0NJT+/fuzatUqXUHrI7Zv306bNm2YMGECH374od1xpBZKSkooKSkhNjaWU6dOERcXx4YNG/R/z0/Zukd//lQJV155pXuqBPENCQkJdOrUye4YUgfBwcHExsYC0LZtWyIiIiguLrY5lXiLrUV/sakS9M0m0rgOHjzI3r17iY+PtzuKeIntY/QiYp/Tp0+TmprKU089Rbt27eyOI15ia9HXZKoEEfGO8vJyUlNTGT9+PCNHjrQ7jniRrUWvqRJE7GGMYfLkyURERDBr1iy744iX2Vr050+VEBERwejRozVVgg8ZN24cN9xwA/v37yc0NJSlS5faHUlq6G9/+xsrV65k69atOJ1OnE4nGzdutDuWeImujBUR8XM6GCsi4udU9CIifk5FLyLi51T0IiJ+TkUvIuLnVPQiIn5ORS8i4udU9CIifu7/A1eu2vH44l3sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPWh//H3YEBQkEVZQgIBbwCzELIMBgoNYIgK14YCAUxBAiFGcClLoXKflsVSIS4FsUUx9wJGqgZZBC9SrNXyAxTljkJ7KYpRQiEhogTCHslyfn+c65RIIGEWzszk83qePCEzZ875ZBI/nnzPOd9jMwzDQEREAlYjqwOIiIh3qehFRAKcil5EJMCp6EVEApyKXkQkwKnoRUQCnIpeRCTAqehFRAKcil5EJMAFWR0A4LbbbqNLly5WxxAR8SuHDh3i+PHjdS7nE0XfpUsXHA6H1TFERPyK3W6v13IauhERCXAqehGRAKeiFxEJcD4xRi8SqCoqKigqKqK8vNzqKOLHmjZtSmhoKI0bN3bp9Sp6ES8qKiqiRYsWdOnSBZvNZnUc8UOGYVBaWkpRURFdu3Z1aR0auhHxovLycm699VaVvLjMZrNx6623uvVXoYpexMtU8uIud3+HVPQiIgFORS/SwMyfP59nn32WuXPn8pe//OWKy23cuJH9+/df8fnly5fzyiuvADBw4MBruuixrKyMF154wfn10aNHSUtLq/fr5dqo6EV8TUkJDBgAX3/t1c385je/YfDgwVd8/mpFX1lZyeTJkxk/frxL2/5h0Xfs2JF169a5tC6pm4pexNcsWAA7d5qfPeTJJ5+ke/fu9O/fnwMHDgAwYcIEZ7nOnj2byMhIYmJimDlzJh9++CFvvfUWs2bNIjY2lq+++oqBAwcybdo07HY7S5cudf5l8L3Vq1cTGxtLdHQ0u3fvBrhsmejoaA4dOsTs2bP56quviI2NZdasWRw6dIjo6GjAPIA9ceJEevbsSVxcHH/9618BePnllxkxYgT33nsv3bp145e//KXH3p9Ap9MrRXxJSQmsWgXV1ebnOXOgQwe3VvnJJ5+Qn5/P3r17qaysJD4+noSEBOfzpaWlvPnmm3z++efYbDbKyspo1aoVqamp3HfffTWGVC5evOgcopk/f36N7Zw/f569e/eyfft2MjMz2bdv3xUz5eTksG/fPvbu3QuYk3N9b9myZdhsNv73f/+Xzz//nLvvvpsvvvgCgL1797Jnzx5uvPFGevTowWOPPUanTp3cen8aAu3Ri1xPNtvVPzp2hO9Po7twAYKD635NHXbs2MHw4cO56aabuOWWW0hNTa3xfMuWLWnatCmTJk1iw4YN3HTTTVdc15gxY674XHp6OgBJSUmcPn2asrKyerwhl9u5cyfjxo0D4I477iAsLMxZ9MnJyc68kZGR/POf/3RpGw2Nil7kejKMK38cPQpNm9Zcvlkzcy//aq9zU1BQELt37yYtLY3Nmzdz7733XnHZm2+++YrP/fAUQJvNRlBQENXV1c7H3L1C+MYbb3T++4YbbqCystKt9TUUKnoRX7FggTlkc6mqKrfH6pOSkti4cSMXLlzgzJkz/Pd//3eN58+ePcupU6cYOnQoS5Ys4W9/+xsALVq04MyZM/Xezpo1awBzj7xly5a0bNmSLl268OmnnwLw6aefUlhYWOe6f/zjH/Pqq68C8MUXX3D48GF69Ohxbd+01KAxehFfsWsXXLxY87GLF+HDD91abXx8PGPGjKFXr160a9eO3r1713j+zJkzDBs2jPLycgzDYPHixQDcf//9PPjggzz//PP1OiOmadOmxMXFUVFRwcqVKwEYOXIkr7zyClFRUSQmJtK9e3cAbr31Vvr160d0dDRDhgzhkUceca7n4YcfZsqUKfTs2ZOgoCBefvnlGnvycu1shuGBv/3cZLfbdeMRCUifffYZERERVseQAFDb71J9u1NDNyIiAa7Oos/MzKRdu3bOc1wBZs2axR133EFMTAzDhw+vcXR90aJFhIeH06NHD9555x3vpBYRkXqrs+gnTJjA1q1bazyWkpLCvn37+Pvf/0737t1ZtGgRAPv37yc/P59//OMfbN26lYcffpiqqirvJBcRkXqps+iTkpJo06ZNjcfuvvtugoLM47h9+vShqKgIgE2bNnH//fdz44030rVrV8LDw51XyImIiDXcHqNfuXIlQ4YMAaC4uLjGVWqhoaEUFxfX+rrc3Fzsdjt2u51vv/3W3RgiInIFbhX9k08+SVBQEGPHjr3m12ZnZ+NwOHA4HLRt29adGCIichUuF/3LL7/M5s2befXVV51XxIWEhHDkyBHnMkVFRYSEhLifUkRc9vzzzxMREeHSDpm/6NKlC8ePHwfgRz/60VWXXbhw4VWfHzp0KGVlZTUmWquvbdu28eEl1z1cOpWzlVwq+q1bt/L000/z1ltv1ZgXIzU1lfz8fL777jsKCwspKCjgzjvv9FhYEbl2L7zwAu+++67zatPvBer0AR/WcYHZlYreMAyqq6vZsmULrVq1cmnbPyx6d6Zy9qQ6iz49PZ2+ffty4MABQkNDWbFiBY8++ihnzpwhJSWF2NhYJk+eDEBUVBSjR48mMjKSe++9l2XLlnHDDTd4/ZsQkdpNnjyZgwcPMmTIEJYsWcL8+fN54IEH6NevHw888ABVVVXMmjWL3r17ExMTw0svvQSYpffoo4/So0cPBg8ezNChQ51Xx1669+xwOBg4cCAA586dIzMzkzvvvJO4uDg2bdoEXH164a1btxIfH0+vXr1ITk6murqabt26OY/bVVdXEx4eftlxvNLSUu6++26ioqLIysri0us+mzdvDkBJSQlJSUnOqZN37NjB7NmzuXDhArGxsYwdO5ZDhw7Ro0cPxo8fT3R0NEeOHKnx/VVWVjJ27FgiIiJIS0vj/PnzV3wPDh06xPLly1myZAmxsbHs2LGjxjTNe/fupU+fPs7T0k+ePAmYN215/PHHufPOO+nevTs7duzwxI++JsMHJCQkWB1BxCv2799vdQQjLCzM+Pbbbw3DMIx58+YZ8fHxxvnz5w3DMIyXXnrJWLBggWEYhlFeXm4kJCQYBw8eNNavX28MHjzYqKysNIqLi42WLVsaa9euvWx9//M//2MMGDDAMAzD+I//+A9j9erVhmEYxsmTJ41u3boZZ8+eNVatWmV07drVKCsrMy5cuGB07tzZOHz4sPHNN98YoaGhxsGDBw3DMIzS0lLDMAxj/vz5xpIlSwzDMIx33nnHGDFixGXf02OPPWY88cQThmEYxubNmw3Amenmm282DMMwnn32WeO3v/2tYRiGUVlZaZw+fbrG84ZhGIWFhYbNZjN27dp12ftVWFhoAMbOnTsNwzCMiRMnGs8888xV34N58+Y5l/nh1z179jS2bdtmGIZhzJkzx5g6daphGIYxYMAAY8aMGYZhGMbbb79tJCcn1/pzrO13qb7dqbluRK6j+dvm88T/e8Jj65s3YB7zB86/ptekpqbSrFkzAP785z/z97//3bm3furUKQoKCti+fTvp6enccMMNdOzYkbvuuqvO9f75z3/mrbfecu7BlpeXc/jwYeBf0wsDzumFT548SVJSEl27dgVwnsadmZnJsGHDmDZtGitXrmTixImXbWv79u1s2LABgH//93+ndevWly3Tu3dvMjMzqaio4Kc//SmxsbG15g4LC6NPnz61PtepUyf69esHwLhx43j++eeZOXNmne/FD506dYqysjIGDBgAQEZGBqNGjXI+P2LECAASEhJqzM3vKSp6keto/sD511zMnnbpVMOGYfD73/+ee+65p8YyW7ZsueLrL516+NJphw3DYP369ZfNNPnxxx9f0/TCnTp1on379rz//vvs3r37smML9ZWUlMT27dt5++23mTBhAjNmzKh1vPxap16GK78Hrvr+/fHW1Mua60akAbvnnnt48cUXqaioAMxpgc+dO0dSUhJr1qyhqqqKkpIS5+38wByf/uSTTwBYv359jXX9/ve/d46X79mz56rb7tOnD9u3b3dOXXzixAnnc1lZWYwbN45Ro0bVepwvKSmJ1157DYA//elPzvHuS/3zn/+kffv2PPjgg2RlZTmnS27cuLHz+63L4cOH2bVrFwCvvfYa/fv3v+p7cKXpl1u2bEnr1q2d4++rV6927t1fDyp6kQYsKyuLyMhI4uPjiY6O5qGHHqKyspLhw4fTrVs3IiMjGT9+PH379nW+Zt68eUydOhW73V6jhOfMmUNFRQUxMTFERUUxZ86cq267bdu25ObmMmLECHr16lXj7lWpqamcPXu21mGb7zNs376dqKgoNmzYQOfOnS9bZtu2bfTq1Yu4uDjWrFnD1KlTAfManpiYmHqdbtqjRw+WLVtGREQEJ0+eZMqUKVd9D37yk5/w5ptvOg/GXiovL49Zs2YRExPD3r17mTt3bp3b9xRNUyziRYEyTfGECRMuu3+sNzkcDqZPn+6dM1D8lDvTFGuMXkR8Sk5ODi+++KLLY/NyORW9iNTp5Zdfvm7bmj17NrNnz75u22sINEYv4mU+MDoqfs7d3yEVvYgXNW3alNLSUpW9uMwwDEpLS2natKnL69DQjYgXhYaGUlRUpKm4xS1NmzYlNDTU5der6EW8qHHjxs4rP0WsoqEbEZEAp6IXEQlwKnoRkQCnohcRCXAqehGRAKeiFxEJcCp6EZEAp6IXEQlwKnoRkQCnohcRCXAqehGRAKeiFxEJcHUWfWZmJu3atSM6Otr52IkTJ0hJSaFbt26kpKQ4b8xrGAY///nPCQ8PJyYmxnkzXhERsU6dRT9hwgS2bt1a47GcnBySk5MpKCggOTmZnJwcwLwbe0FBAQUFBeTm5jpvpCsiItaps+iTkpJo06ZNjcc2bdpERkYGABkZGWzcuNH5+Pjx47HZbPTp04eysjJKSkq8EFtEROrLpTH6Y8eOERwcDECHDh04duwYAMXFxXTq1Mm5XGhoKMXFxR6IKSIirnL7xiM2mw2bzXbNr8vNzSU3NxdAd98REfEil/bo27dv7xySKSkpoV27dgCEhIRw5MgR53JFRUWEhITUuo7s7GwcDgcOh4O2bdu6EkNEROrBpaJPTU0lLy8PgLy8PIYNG+Z8/JVXXsEwDD766CNatmzpHOIRERFr1Dl0k56ezrZt2zh+/DihoaE88cQTzJ49m9GjR7NixQrCwsJ44403ABg6dChbtmwhPDycm266iVWrVnn9GxARkauzGYZhWB3CbrfjcDisjiEi4lfq2526MlZEJMCp6EVEApyKXkQkwKnoRUQCnIpeRCTAqehFRAKcil5EJMCp6EVEApyKXkQkwKnoRUQCnIpeRCTAqehFRAKcil5EJMD5RtEfOABff211ChGRgOQbRX/2LCxYYHUKEZGA5BtFD7BqlfbqRUS8wHeKvqJCe/UiIl7gO0VfWQkrVmivXkTEw3yn6AG++w5+9SurU4iIBBTfKnqAtWuhqsrqFCIiAcMniv6TYMAwzHF6ux3mzrU6kohIwPCJoncKCoI1a+CPf4Q337Q6jYhIQPCtogdo2xbWr4eHHoLPPrM6jYiI3/O9ogdz+Oapp2D4cDh92uo0IiJ+za2iX7JkCVFRUURHR5Oenk55eTmFhYUkJiYSHh7OmDFjuHjxomsrnzgRBg2CjAyornYnpohIg+Zy0RcXF/P888/jcDjYt28fVVVV5Ofn8/jjjzN9+nS+/PJLWrduzYoVK1xPt3QpHDsGixa5vg4RkQbOrT36yspKLly4QGVlJefPnyc4OJj333+ftLQ0ADIyMti4caPrG2jSBNatgxdegK1b3YkqItJguVz0ISEhzJw5k86dOxMcHEzLli1JSEigVatWBAUFARAaGkpxcXGtr8/NzcVut2O326++oY4dzTNxMjLg4EFX44qINFguF/3JkyfZtGkThYWFHD16lHPnzrH1Gva6s7OzcTgcOByOuhfu3x/mzDEPzp4752pkEZEGyeWi/8tf/kLXrl1p27YtjRs3ZsSIEXzwwQeUlZVRWVkJQFFRESEhIZ5J+sgjEBsLDz5oXlwlIiL14nLRd+7cmY8++ojz589jGAbvvfcekZGRDBo0iHXr1gGQl5fHsGHDPJPUZoPly+Hzz82DtCIiUi8uF31iYiJpaWnEx8fTs2dPqquryc7O5qmnnmLx4sWEh4dTWlrKpEmTPJe2WTPYsAFycmDbNs+tV0QkgNkMw/pxEFtHG8bRa4jx7rswfjzs3g2dOnkvmIiID7Pb7fU6zumbV8bWJSUFpk2DkSOhvNzqNCIiPs0/ix7gl7+EsDB47DGrk4iI+DT/LXqbDVauhA8/hNxcq9OIiPisIKsDuKVFC3M64/79ISYG+vSxOpGIiM/x3z3673XvDv/1XzBqlDkvjoiI1OD/RQ+QmgqZmWbZV1RYnUZExKcERtEDzJtnDuXMmmV1EhERnxI4Rd+okXkLws2bzc8iIgL4+8HYH2rdGjZuNG9YEh1tzo0jItLABc4e/feio+EPf4ARI+DECavTiIhYLvCKHmDMGLPo09OhqsrqNCIilgrMogdz4rPKSnMeexGRBixwiz4oCPLz4dVXzRkvRUQaqMAteoC2bWH9enjoIfjsM6vTiIhYIrCLHsBuh6efNm9DePq01WlERK67wC96gIkT4a67zDnsq6utTiMicl01jKIHeO45+OYbWLTI6iQiItdVYF0wdTVNmsC6ddC7N8THw5AhVicSEbkuGs4ePUDHjrBmDUyYAF99ZXUaEZHromEVPZhz18+ZYx6cPXfO6jQiIl7X8Ioe4JFHIC4OHnwQrL83uoiIVzXMorfZYPlyOHDAPEgrIhLAGs7B2B9q1sy8YjYx0dy7HzjQ6kQiIl7h1h59WVkZaWlp3HHHHURERLBr1y5OnDhBSkoK3bp1IyUlhZMnT3oqq+eFhZlz1//sZ3DkiNVpRES8wq2inzp1Kvfeey+ff/45f/vb34iIiCAnJ4fk5GQKCgpITk4mJyfHU1m9Y/BgmDYNRo6E8nKr04iIeJzNMFw7Gnnq1CliY2M5ePAgNpvN+XiPHj3Ytm0bwcHBlJSUMHDgQA4cOHD1EB1tGEctPChqGDB6NLRsCf/5n+YYvoiIj7Pb7TgcjjqXc3mPvrCwkLZt2zJx4kTi4uLIysri3LlzHDt2jODgYAA6dOjAsWPHXN3E9WOzwcqVsGuXWfQiIgHE5aKvrKzk008/ZcqUKezZs4ebb775smEam81WY2//Urm5udjtdux2u6sRPKtFC3jzTfj1r+Gjj6xOIyLiMS4XfWhoKKGhoSQmJgKQlpbGp59+Svv27SkpKQGgpKSEdu3a1fr67OxsHA5Hvf7suG66d4cVK2DUKPj6a6vTiIh4hMtF36FDBzp16uQcf3/vvfeIjIwkNTWVvLw8APLy8hg2bJhnkl4vP/kJZGaaY/YVFVanERFxm8sHYwH27t1LVlYWFy9e5Pbbb2fVqlVUV1czevRoDh8+TFhYGG+88QZt2rS5egirD8b+UHU1pKbCv/0bLF1qdRoRkVrV92CsW0XvKT5X9ABlZeZMl/PmwbhxVqcREblMfYu+4V4ZW5dWrcyDs4MGQVSUefWsiIgfaphz3dRXdDQsW2ZeTFVaanUaERGXqOjrMnq0WfQ/+xlUVVmdRkTkmqno62PRIqisNOexFxHxMyr6+ggKgvx8eO01c8ZLERE/oqKvr7ZtzXvOPvQQ7N9vdRoRkXpT0V8Lux2eftq8DeGpU1anERGpFxX9tZo4EZKTISPDvLBKRMTHqehd8dxz8O23sHCh1UlEROqkC6Zc0aQJrF1rXjmbkABDhlidSETkirRH76qOHWHNGpgwAb76yuo0IiJXpKJ3R//+MHeueXD23Dmr04iI1EpF766HH4b4eMjKMm9JKCLiY1T07rLZ4MUX4YsvzIO0IiI+RgdjPaFZM/OK2cREiI01Z7wUEfER2qP3lLAw+OMfzcnPjhyxOo2IiJOK3pMGD4bp083ZLsvLrU4jIgKo6D1v1izo0gUefVQHZ0XEJ6joPc1mg5UrYdcuyM21Oo2IiA7GekXz5uZtCPv3h169oE8fqxOJSAOmPXpv6d7d3LMfNQq+/trqNCLSgKnovem++2DSJPN2hBUVVqcRkQZKRe9tc+fCLbfAzJlWJxGRBsrtoq+qqiIuLo777rsPgMLCQhITEwkPD2fMmDFcvHjR7ZB+rVEj8/z6LVvMzyIi15nbRb906VIiIiKcXz/++ONMnz6dL7/8ktatW7NixQp3N+H/WrUyD85Onw579lidRkQaGLeKvqioiLfffpusrCwADMPg/fffJy0tDYCMjAw2btzofspAEB0Ny5bBiBFQWmp1GhFpQNwq+mnTpvH000/TqJG5mtLSUlq1akVQkHnWZmhoKMXFxe6nDBSjR0NaGqSnQ1WV1WlEpIFwueg3b95Mu3btSEhIcOn1ubm52O127Ha7qxH806JF5r1mf/1rq5OISAPh8gVTH3zwAW+99RZbtmyhvLyc06dPM3XqVMrKyqisrCQoKIiioiJCQkJqfX12djbZ2dkA2DraXI3hf4KC4PXXzdsQ2u3mvDgiIl7k8h79okWLKCoq4tChQ+Tn53PXXXfx6quvMmjQINatWwdAXl4ew4YN81jYgNG2LaxfD5Mnw/79VqcRkQDn8fPon3rqKRYvXkx4eDilpaVMmjTJ05sIDAkJ8Mwz5m0IT52yOo2IBDCbYVg/xaKtow3jqOUxrPHII1BUZJ5+2UjXr4lI/dntdhwOR53LqVmstmQJHD8OCxdanUREApSK3mpNmsDatbB8OfzpT1anEZEApKL3BR07wpo1kJEBX35pdRoRCTAqel/Rrx/Mm2deOXvunNVpRCSAqOh9ycMPQ3w8ZGXpNoQi4jEqel9is8GLL8IXX5gHaUVEPEC3EvQ1zZrBhg2QmAhxcTBokNWJRMTPaY/eF4WFmXPX/+xncOSI1WlExM+p6H3V4MEwY4Z5cLa83Oo0IuLHVPS+bOZM6NrVvHpWB2dFxEUqel9ms8HKlfDxx5Cba3UaEfFTOhjr65o3N+fB6dcPYmKgb1+rE4mIn9EevT/o1s3csx81Cr7+2uo0IuJnVPT+4r77zAupRo2Cigqr04iIH1HR+5O5c6FVK/jFL6xOIiJ+REXvTxo1gtWrzVkuV6+2Oo2I+AkdjPU3rVqZB2cHDYLoaPPqWRGRq9AevT+KjoZly8yLqUpLrU4jIj5ORe+vRo82D8ymp0NVldVpRMSHqej92cKFUF0Nv/611UlExIep6P1ZUBDk58Prr8P69VanEREfpaL3d7fdZpb85Mmwf7/VaUTEB6noA0FCAjzzDPz0p3DqlNVpRMTHqOgDxYQJkJIC48eb4/YiIv/H5aI/cuQIgwYNIjIykqioKJYuXQrAiRMnSElJoVu3bqSkpHDy5EmPhZU6LFkCx4/Dk09anUREfIjLRR8UFMTvfvc79u/fz0cffcSyZcvYv38/OTk5JCcnU1BQQHJyMjk5OZ7MK1fTpAmsXQvLl8OWLVanEREf4XLRBwcHEx8fD0CLFi2IiIiguLiYTZs2kZGRAUBGRgYbN270TFKpn44d4Y03zKGcL7+0Oo2I+ACPjNEfOnSIPXv2kJiYyLFjxwgODgagQ4cOHDt2rNbX5ObmYrfbsdvtnoggl+rXD+bPN6+cPXfO6jQiYjG3i/7s2bOMHDmS5557jltuuaXGczabDZvNVuvrsrOzcTgcOBwOdyNIbaZMMc/GmTRJtyEUaeDcKvqKigpGjhzJ2LFjGTFiBADt27enpKQEgJKSEtq1a+d+Srl2Nhu88AIUFJgHaUWkwXK56A3DYNKkSURERDBjxgzn46mpqeTl5QGQl5fHsGHD3E8prmnWDDZsMM+x/+tfrU4jIhaxGYZrf9fv3LmTH//4x/Ts2ZNGjcz/XyxcuJDExERGjx7N4cOHCQsL44033qBNmzZXD9HRhnFUwwte8957MG6ceZPxzp2tTiMiHmK32+s1/O1y0XuSiv46eOYZ82ycHTugaVOr04iIB9S36HVlbEMxcybcfjs88ogOzoo0MCr6hsJmgxUrzOGbl16yOo2IXEe6lWBD0ry5eRvCfv2gVy/o29fqRCJyHWiPvqHp1g1WrjTvUPX111anEZHrQEXfEN13H2RlmbcivHjR6jQi4mUq+oZqzhxo1Qp+8Qurk4iIl6noG6pGjWD1anjnHXjlFavTiIgX6WBsQ9aqlXnl7KBBEB0N/zcbqYgEFu3RN3TR0bBsGYwcad60REQCjopezDNwRo2C9HSoqrI6jYh4mIpeTAsXmlfM/upXVicREQ9T0YspKAjy882PdeusTiMiHqSil3+57TZYv968acn+/VanEREPUdFLTQkJ8OyzMHw4nDpldRoR8QAVvVwuIwNSUuCBB6C62uo0IuImFb3UbvFiOHECnnzS6iQi4iYVvdSuSRNYu9ac0njLFqvTiIgbVPRyZcHB5l2pJkyAL7+0Oo2IuEhFL1f3ox/B/PnmwdmzZ61OIyIuUNFL3aZMAbvdnNpYtyEU8TsqeqmbzQYvvGAO3yxebHUaEblGmr1S6qdZM/NiqsREiIuDu+6yOpGI1JP26KX+wsLgtddg7Fg4fNjqNOKukhIYMEC3lPRXJSVw4EC9FvVa0W/dupUePXoQHh5OTk6OtzYj19tdd5l3pRo5EsrLrU4j7liwAHbuND+L/1mwoN4nSNgMw/NH16qqqujevTvvvvsuoaGh9O7dm9dff53IyMjaQ3S0YRzVQT6/YRhw//1w883w29+a0xuvWQMdOlidLHBVV0NlpflRVVX7v6/luW++gexs857BTZqY9yRo3drq71Lq6+RJePhh7BUVOOpR4V4Zo9+9ezfh4eHcfvvtANx///1s2rTpikUvfsZmgxUroG9fs+S/3ytctswz6zcM90osEJc1DGjcGG64wZxpNCio5r/r+vqHz+3fDxUV5vtdWWlOUx0X55mfn3jfnj3XdO8IrxR9cXExnTp1cn4dGhrKxx9/7I1NiVWaNzevmu3Xz/x6+XLYu9csFHcLrrr62ovL1WXrWk+TJnDTTdd3m7Ut28iDo6wlJXD77f9+OjipAAACZ0lEQVQ6Vba62hynX7ZMf5X5g+9/ftcwD5VlZ93k5uaSm5sLwI0nbsRut1sVRVx1+LC5d28Y5kdBAXTu/K/nbbZ/Fdb1YBjmXur3e6pSu8OH4bvvaj5WXg4xMTV/fuKbLvn5HarnS7zyX2BISAhHjhxxfl1UVERISEiNZbKzs8nOzgbAbrfjcDi8EUWuA/38/Jd+dg2DV8666d27NwUFBRQWFnLx4kXy8/NJTU31xqZERKQOXtmjDwoK4g9/+AP33HMPVVVVZGZmEhUV5Y1NiYhIHbw2eDp06FCGDh1ar2W/H8IR/6Sfn//Sz65h8Mp59CIi4js0BYKISICzvOg1VYL/yszMpF27dkRHR1sdRa7RkSNHGDRoEJGRkURFRbF06VKrI4kXWTp0c61TJYhv2b59O82bN2f8+PHs27fP6jhyDUpKSigpKSE+Pp4zZ86QkJDAxo0b9d9egLJ0j/7SqRKaNGninCpB/ENSUhJt2rSxOoa4IDg4mPj4eABatGhBREQExcXFFqcSb7G06GubKkG/bCLX16FDh9izZw+JiYlWRxEvsXyMXkSsc/bsWUaOHMlzzz3HLbfcYnUc8RJLi74+UyWIiHdUVFQwcuRIxo4dy4gRI6yOI15kadFrqgQRaxiGwaRJk4iIiGDGjBlWxxEvs7ToL50qISIigtGjR2uqBD+Snp5O3759OXDgAKGhoaxYscLqSFJPH3zwAatXr+b9998nNjaW2NhYtmzZYnUs8RJdGSsiEuB0MFZEJMCp6EVEApyKXkQkwKnoRUQCnIpeRCTAqehFRAKcil5EJMCp6EVEAtz/B+6CXm8sE6XOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAGzhJREFUeJzt3Xt0TOf+BvBnjiBVkbpFEYSFmCSSSTJxORgJIqROSEJRlxLqUHWoVW20R5Mep2q1WkXdslZLpRdO61qXuCycuJ3qIHosRVcJommrqZCQHEm8vz/2LyMRycwkM7PnnXk+a1mRzJ69v5mJx8673/1+NUIIASIiksaf1C6AiIisw+AmIpIMg5uISDIMbiIiyTC4iYgkw+AmIpIMg5uISDIMbiIiyTC4iYgk42GPnbZo0QJ+fn722DURkUvKzs7G77//btG2dgluPz8/GI1Ge+yaiMgl6fV6i7flUAkRkWQY3EREkmFwExFJxi5j3ESuqqSkBDk5OSguLla7FJKUp6cnfH19Ub9+/Vrvg8FNZIWcnBx4eXnBz88PGo1G7XJIMkII5OXlIScnBx07dqz1fjhUQmSF4uJiNG/enKFNtaLRaNC8efM6/8bG4CayEkOb6sIWPz8MbiIiyTC4iSSWmpqKJUuW4M0338SBAweq3W7btm04f/58tY+vWbMGGzZsAABERkZadQNdfn4+Vq1aZfr8559/xsiRIy1+PlmPwU1kb7m5QP/+wC+/2O0Q//jHPzBo0KBqH68puEtLSzF9+nRMnDixVsd+NLjbtGmDr7/+ulb7IsswuInsbeFC4OhR5aMNvP322+jatSv69u2LixcvAgAmTZpkCsvk5GQEBAQgODgYr7zyCo4fP44dO3Zg3rx50Ol0+OmnnxAZGYk5c+ZAr9dj2bJlpjP3cunp6dDpdAgKCsLJkycBoMo2QUFByM7ORnJyMn766SfodDrMmzcP2dnZCAoKAqBczJ08eTK6d++O0NBQHDp0CACwfv16JCQkYMiQIejSpQteffVVm7w27oLTAYnsKTcXWLcOePBA+bhgAfD007Xe3alTp7Bx40ZkZWWhtLQUYWFhCA8PNz2el5eHrVu34sKFC9BoNMjPz8dTTz2FuLg4DBs2rNIQxv37901DIqmpqZWOc+/ePWRlZSEzMxNJSUk4d+5ctTUtXrwY586dQ1ZWFgBlsaRyK1euhEajwX//+19cuHABgwcPxqVLlwAAWVlZOHPmDBo2bAh/f3/MmjUL7dq1q/Vr4054xk1UFxpNzX/atAHKp34VFQGtW5t/Tg2OHDmC+Ph4NGrUCE2aNEFcXFylx729veHp6YkpU6Zgy5YtaNSoUbX7Gj16dLWPjR07FgBgMBhw584d5OfnW/iCVHb06FGMHz8eANCtWzd06NDBFNwDBw401RsQEICrV6/W6hjuiMFNVBdCVP/n558BT8/K2z/xhHIWXtPz6sDDwwMnT57EyJEjsXPnTgwZMqTabZ988slqH3t0yppGo4GHhwcePHhg+lpd5yI3bNjQ9Pd69eqhtLS0TvtzJxYFt5+fH7p37w6dTmfV0oNEbm3hQmWIpKKysjqNdRsMBmzbtg1FRUUoKCjAN998U+nxwsJC3L59G7GxsVi6dCnOnj0LAPDy8kJBQYHFx9m0aRMA5YzZ29sb3t7e8PPzw+nTpwEAp0+fxpUrV8zuu1+/fvj8888BAJcuXcK1a9fg7+9v3TdNVVg8xn3o0CG0aNHCnrUQuZYTJ4D79yt/7f594PjxWu8yLCwMo0ePRkhICHx8fBAREVHp8YKCAgwfPhzFxcUQQuCDDz4AAIwZMwYvvPACli9fbtGMD09PT4SGhqKkpASffPIJACAxMREbNmxAYGAgevbsia5duwIAmjdvjj59+iAoKAhDhw7FzJkzTft58cUXMWPGDHTv3h0eHh5Yv359pTNtqh2NEOZ/NytvjGBpcOv1ejZSIJf0ww8/QKvVql0GSe5xP0fW5KZFQyUajQaDBw9GeHg40tLSrK+SiIhsxqKhkqNHj6Jt27b47bffEB0djW7dusFgMFTaJi0tzRTqN2/etH2lREQEwMIz7rZt2wIAfHx8EB8fb5qQX9G0adNgNBphNBrRsmVL21ZJREQmZoP77t27pivGd+/exb59+0x3RRERkeOZHSr59ddfER8fD0BZ0+C5556rcW4oERHZl9ng7tSpk2kuKBERqY93ThJJZvny5dBqtRg3bpzapdiNn58ffv/9dwDAn//85xq3XbRoUY2Px8bGIj8/v9LiV5Y6fPgwjleYd19x+Vs1cZEpIsmsWrUKBw4cgK+vb6Wvl5aWwsPD9f5JHzdzw9KiRYvw+uuvV/m6EAJCCOzevRsAarXeyuHDh9G4cWPTfx7Tp0+3eh/2wDNuIolMnz4dly9fxtChQ7F06VKkpqZiwoQJ6NOnDyZMmICysjLMmzcPERERCA4Oxtq1awEoIfbSSy/B398fgwYNQmxsrOkOyopnt0ajEZGRkQCUyQhJSUno0aMHQkNDsX37dgA1L8makZGBsLAwhISEYODAgXjw4AG6dOlimiL84MEDdO7cucqU4by8PAwePBiBgYGYOnUqKt4X2LhxYwBAbm4uDAaDabnZI0eOIDk5GUVFRdDpdBg3bhyys7Ph7++PiRMnIigoCNevX6/0/ZWWlmLcuHHQarUYOXIk7t27V+1rkJ2djTVr1mDp0qXQ6XQ4cuRIpaVts7Ky0KtXLwQHByM+Ph63bt0CoDSieO2119CjRw907doVR44cscVbX5mwg/DwcHvslkh158+fV7sE0aFDB3Hz5k0hhBApKSkiLCxM3Lt3TwghxNq1a8XChQuFEEIUFxeL8PBwcfnyZbF582YxaNAgUVpaKm7cuCG8vb3FV199VWV/3333nejfv78QQoj58+eL9PR0IYQQt27dEl26dBGFhYVi3bp1omPHjiI/P18UFRWJ9u3bi2vXronffvtN+Pr6isuXLwshhMjLyxNCCJGamiqWLl0qhBBi7969IiEhocr3NGvWLPHWW28JIYTYuXOnAGCq6cknnxRCCLFkyRLxz3/+UwghRGlpqbhz506lx4UQ4sqVK0Kj0YgTJ05Ueb2uXLkiAIijR48KIYSYPHmyeO+992p8DVJSUkzbPPp59+7dxeHDh4UQQixYsEDMnj1bCCFE//79xdy5c4UQQuzatUsMHDiwyvf7uJ8ja3LT9X6vInKg1MOpeOvfb9lsfyn9U5AamWrVc+Li4vDEE08AAPbt24fvv//edDZ9+/Zt/Pjjj8jMzMTYsWNRr149tGnTBgMGDDC733379mHHjh2mM8zi4mJcu3YNwMMlWQGYlmS9desWDAYDOnbsCABo1qwZACApKQnDhw/HnDlz8Mknn2Dy5MlVjpWZmYktW7YAAJ555hk0bdq0yjYRERFISkpCSUkJRowYAZ1O99i6O3TogF69ej32sXbt2qFPnz4AgPHjx2P58uV45ZVXzL4Wj7p9+zby8/PRv39/AMDzzz+PUaNGmR5PSEgAAISHh1dan9xWGNxEdZAamWp10NpaxeVZhRBYsWIFYmJiKm1TPs77OBWXa624VKsQAps3b66ymt+3335r1ZKs7dq1Q6tWrXDw4EGcPHnStFqgtQwGAzIzM7Fr1y5MmjQJc+fOfWy7NWuXqwWqfw1qq/z1sddytRzjJnIhMTExWL16NUpKSgAoS6nevXsXBoMBmzZtQllZGXJzc00txABlfPfUqVMAgM2bN1fa14oVK0zjzWfOnKnx2L169UJmZqZpudc//vjD9NjUqVMxfvx4jBo1CvXq1avyXIPBgC+++AIAsGfPHtN4cUVXr15Fq1at8MILL2Dq1KmmJWbr169v+n7NuXbtGk6cOAEA+OKLL9C3b98aX4Pqlqz19vZG06ZNTePX6enpprNvR2BwE7mQqVOnIiAgAGFhYQgKCsJf//pXlJaWIj4+Hl26dEFAQAAmTpyI3r17m56TkpKC2bNnQ6/XVwrVBQsWoKSkBMHBwQgMDMSCBQtqPHbLli2RlpaGhIQEhISEVOqwExcXh8LCwscOk5TXkJmZicDAQGzZsgXt27evss3hw4cREhKC0NBQbNq0CbNnzwagLLcRHBxs0fRIf39/rFy5ElqtFrdu3cKMGTNqfA3+8pe/YOvWraaLkxV9+umnmDdvHoKDg5GVlYU333zT7PFtxaJlXa3FZV3JVbnKsq6TJk2q0oPSnoxGI15++WX7zLCQUF2XdeUYNxHZ1eLFi7F69epaj21TVQxuIje0fv16hx0rOTkZycnJDjueO+AYN5GV7DC6SG7EFj8/DG4iK3h6eiIvL4/hTbUihEBeXh48PT3rtB8OlRBZwdfXFzk5OezyRLXm6elZZZ0ZazG4iaxQv359052BRGrhUAkRkWQY3EREkmFwExFJhsFNRCQZBjcRkWQY3EREkmFwExFJhsFNRCQZBjcRkWQY3EREkmFwExFJhsFNRCQZBjcRkWQY3EREkmFwExFJhsFNRCQZi4O7rKwMoaGhGDZsmD3rISIiMywO7mXLlkGr1dqzFiIisoBFwZ2Tk4Ndu3Zh6tSp9q6HiIjMsCi458yZg3fffRd/+hOHxImI1GY2iXfu3AkfHx+Eh4fXuF1aWhr0ej30ej07YBMR2ZFGCCFq2mD+/PlIT0+Hh4cHiouLcefOHSQkJOCzzz6r9jl6vR5Go9HmxRIRuSprctPsGfc777yDnJwcZGdnY+PGjRgwYECNoU1ERPbFQWsiIsl4WLNxZGQkIiMj7VQKERFZgmfcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBkGNxGRZBjcRESSYXATEUmGwU1EJBmzwV1cXIwePXogJCQEgYGBSElJMb/XixeBX36xRX1ERPQIs8HdsGFDHDx4EGfPnkVWVhYyMjLwn//8p+YnFRYCCxfaqkYiIqrAbHBrNBo0btwYAFBSUoKSkhJoNBrze163jmfdRER2YNEYd1lZGXQ6HXx8fBAdHY2ePXtW2SYtLQ16vR56vb78STzrJiKyA40QQli6cX5+PuLj47FixQoEBQVVu51eo4ERAJ54Arh8GXj6aRuUSkTkuvR6PYxGo0XbWjWr5KmnnkJUVBQyMjIse8L9+zzrJiKyMbPBffPmTeTn5wMAioqKsH//fnTr1s2yvZeVATt31qlAIiKqzGxw5+bmIioqCsHBwYiIiEB0dDSGDRtW43NOtQYgBPDDD8pZ9+bNtqqXiMjteZjbIDg4GGfOnKnd3rt1A3bvBmJigMaNlY9ERFQn9r9zMjQU2LoVGD8eOHrU7ocjInJ1jrnlvU8f4PPPgYQE4PRphxySiMhVOW6tksGDgTVrgGeeAS5ccNhhiYhcjdkxbptKSAAKCpQQz8wE/PwcengiIlfg2OAGgOefB+7cAQYNAo4cAVq3dngJREQyc3xwA8CsWcDt28qZ97//DTRrpkoZREQyUm897jfeAIYMAYYOVYZPiIjIIuoFt0YDvPsuoNMBcXFAUZFqpRARyUTdDjgaDbBqlbII1bPPAiUlqpZDRCQD9VuX1asHbNig/H3iRGV9EyIiqpb6wQ0A9esD//oX8OuvwIwZyjonRET0WM4R3ICydvf27cDZs8CrrzK8iYiq4TzBDQBeXsCePUBGBrBokdrVEBE5JXXmcdekWTNg3z6gXz+gSRNlzjcREZk4X3ADyt2UBw4ABoMS3s8/r3ZFREROwzmDG1DWMdm3D4iKUoZQEhLUroiIyCk4b3ADSiOGXbuUOywbN1ZukScicnPOdXHyccLCgC1bgHHjgGPH1K6GiEh1zh/cANC3L/DZZ0B8PFDbNmpERC5CjuAGlH6Vq1cDsbFsxEBEbs25x7gflZgIFBayEQMRuTW5ght42IghOlppxPD002pXRETkUPIFN/CwEUN0NBsxEJHbkWeM+1FvvKGMe7MRAxG5GXmDW6MB3nsPCAkBhg8HiovVroiIyCHkDW5ACe/VqwEfHzZiICK3IXdwA0ojhvR04MED5cIlGzEQkYuTP7gBpRHDV18BubnAiy9yLW8icmmuEdyA0ohhxw7lzsrXXmN4E5HLcp3gBh42Ytizh40YiMhlmQ3u69evIyoqCgEBAQgMDMSyZcscUVftNW+uLAe7bh3w0UdqV0NEZHNmb8Dx8PDA+++/j7CwMBQUFCA8PBzR0dEICAhwRH2182gjhokT1a6IiMhmzAZ369at0bp1awCAl5cXtFotbty44dzBDSjrmOzdCwwYoAyhxMerXRERkU1Ydct7dnY2zpw5g549e9qrHtvSais3YoiOVrsiIqI6s/jiZGFhIRITE/Hhhx+iSZMmVR5PS0uDXq+HXq+3aYF1Vt6I4bnn2IiBiFyCRgjz8+ZKSkowbNgwxMTEYO7cueZ32kYD8bOTTcfbuxeYMEH5GBqqdjVERJXo9XoYjUaLtjV7xi2EwJQpU6DVai0KbafFRgxE5CLMBvexY8eQnp6OgwcPQqfTQafTYffu3Y6ozfYSE4F33lEaMVy9qnY1RES1YvbiZN++fWHBaIo8Jk1SGjEMGsRGDEQkJTkbKdTV3/7GRgxEJC3XuuXdGn//OxsxEJGU3De4KzZiGDGCjRiISBruG9zAw0YMLVuyEQMRScO9gxtQGjFs2KA0YJg0SWnIQETkxBjcANCgAfD118CNG8DMmVzLm4icGoO7XHkjhlOngORkhjcROS0Gd0VNmihNGHbtUm7UISJyQu45j7smzZsD+/cD/fopQf7SS2pXRERUCYP7cVq3VsKbjRiIyAkxuKvTsaPSAo2NGIjIyTC4a8JGDETkhHhx0pzyRgzjxgHHj6tdDRERg9siffsqN+nExwNZWWpXQ0RujsFtqSFDgJUrlUYMFy+qXQ0RuTGOcVtj5EhlJcHBg4HMTKBDB7UrIiI3xOC21uTJbMRARKpicNfG7NlKI4bBg4HDh9mIgYgcimPctbVggTI9MDaWjRiIyKEY3LWl0QBLlgDdu7MRAxE5FIO7LjQaYM0apRHD6NFsxEBEDsHgrqvyRgylpcqFSzZiICI7Y3DbQnkjhpwcNmIgIrtjcNtKeSMGoxGYP1/taojIhTG4balJEyAjA/jmGzZiICK74TxuW3u0EcPMmWpXREQuhsFtD23aAAcOPGzEMGGC2hURkQthcNtLx47A3r3AwIHKWt5sxEBENsLgtqeAAGDnTmDoUDZiICKb4cVJewsPBzZvBp57DjhxQu1qiMgFMLgdoV8/ID1duTX+7Fm1qyEiyZkN7qSkJPj4+CAoKMgR9biu8kYMQ4cCly6pXQ0RScxscE+aNAkZGRmOqMX1jRwJvP22MtZ97Zra1RCRpMxenDQYDMjOznZAKW7i0UYMrVqpXRERScZms0rS0tKQlpZmq925ttmzgfz8h40YmjZVuyIikojNLk5OmzYNRqMRRqPRVrt0bW++qczxjo0FCgvVroaIJMJZJWrRaID33wcCA4Hhw9mIgYgsxuBWk0YDrF0LtGjBRgxEZDGzwT127Fj07t0bFy9ehK+vLz7++GNH1OU+6tVT5niXlLARAxFZRCOE7Vf917TRQPzMZgJWuXdPmeMdGKjM99Zo1K6IiBxIr9dbfI2QQyXOolEjZR3v774DXn9d7WqIyIlxkSlnUt6IwWAAvL2B5GS1KyIiJ8TgdjaPNmJ48UW1KyIiJ8PgdkaPNmIYP17tiojIiTC4nVV5I4YBA5S1vEeMULsiInISDG5nFhAA7Nr1sBHDoEFqV0REToCzSpxdeDjw9dfA2LFsxEBEABjccjAYgA0b2IiBiAAwuOUxdCjw0UdsxEBEHOOWyqhRQEGB0ojhyBGgfXu1KyIiFTC4ZZOUxEYMRG6OwS2jOXOA27fZiIHITXGMW1ZsxEDkthjcsqrYiGHECDZiIHIjDG6ZlTdiaNYMGDOGjRiI3ASDW3b16gGffQbcv69cuGQjBiKXx+B2BQ0aKHdXXr0KvPQSYPveGETkRBjcrqJRI2DnTuDkSTZiIHJxDG5XUt6IYccOYPFitashIjvhPG5X06LFw0YM3t7AjBlqV0RENsbgdkVt2ijh3b8/4OXFRgxELobB7ao6dXrYiMHLCxg+XO2KiMhGGNyu7NFGDAMHql0REdkAL066uvJGDGPGsBEDkYtgcLsDgwH49FM2YiByEQxudxEbC6xYwUYMRC6AY9zu5Nln2YiByAUwuN3NlClsxEAkOQa3O3r5ZaURQ0wMcOgQGzEQSYZj3O4qJQWIigKeeYaNGIgkY1FwZ2RkwN/fH507d8ZiroHhGjQa4IMPAK0WiI9nIwYiiZgN7rKyMsycORN79uzB+fPn8eWXX+L8+fOOqI3sTaMB0tKUoZKxY4Hr15Xb5H/5Re3KqDZyc/n+ySo3F7h40eLNzQb3yZMn0blzZ3Tq1AkNGjTAmDFjsH379jrVSE6kvBHD//6nXLA8ehRYuFDtqqg2Fi7k+yerhQutGrI0e3Hyxo0baNeunelzX19ffPvtt7UrjpxTgwbKHO+uXZUOOmvWKP/7e3qqXRlZqrhYudDM908+5e+dFWw2qyQtLQ1paWkAgIZ/NIRer7fVrskRrl172DlHCOD77znPWyZ8/+T1/+9dthVPMRvcbdu2xfXr102f5+TkoG3btlW2mzZtGqZNmwYA0Ov1MBqNVpRBzoLvndz4/rkHs2PcERER+PHHH3HlyhXcv38fGzduRFxcnCNqIyKixzB7xu3h4YGPPvoIMTExKCsrQ1JSEgIDAx1RGxERPYZFY9yxsbGIjY21eKflQyYkH753cuP75x40QpRf0SAiIhnwlnciIsnYNLh5a7y8kpKS4OPjg6CgILVLIStdv34dUVFRCAgIQGBgIJYtW6Z2SWRnNhsqKSsrQ9euXbF//374+voiIiICX375JQICAmyxe7KzzMxMNG7cGBMnTsS5c+fULoeskJubi9zcXISFhaGgoADh4eHYtm0b/+25MJudcfPWeLkZDAY0a9ZM7TKoFlq3bo2wsDAAgJeXF7RaLW7cuKFyVWRPNgvux90azx8eIsfKzs7GmTNn0LNnT7VLITvixUkiF1FYWIjExER8+OGHaNKkidrlkB3ZLLgtvTWeiGyvpKQEiYmJGDduHBISEtQuh+zMZsHNW+OJ1CGEwJQpU6DVajF37ly1yyEHsFlwV7w1XqvV4tlnn+Wt8RIZO3YsevfujYsXL8LX1xcff/yx2iWRhY4dO4b09HQcPHgQOp0OOp0Ou3fvVrsssiPeOUlEJBlenCQikgyDm4hIMgxuIiLJMLiJiCTD4CYikgyDm4hIMgxuIiLJMLiJiCTzf/uAIikZ1bWcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD9CAYAAACyYrxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclGXeBvBrAhNNJXMFcUDR5SAHcTh4SkMNT7GGr+J6SANFJW3LNtON2pfEtYx9rdSSyinPlYddFTYzc61Y1DSioDRUJhUFnFBRUjxxut8/7mUEQYfT8DAP1/fz8eMw88zMj9PFM/fc9+/WCCEEiIhIte5TugAiIrIsBj0Rkcox6ImIVI5BT0Skcgx6IiKVY9ATEamc2aDPycnBsGHD4O3tDR8fH6xcuRIAEBcXB61WC51OB51Oh927d5vu8/rrr8PNzQ2enp744osvLFc9ERGZpTE3j95oNMJoNCIgIABXr15FYGAgEhMTsW3bNrRr1w4LFiyocnxmZiamTJmC1NRUnDt3DsOHD0dWVhZsbGws+okQEVHNzJ7ROzk5ISAgAADQvn17eHl5IS8v767HJyUlYfLkyWjdujV69OgBNzc3pKamNl7FRERUJ3Uao8/OzkZ6ejr69+8PAFi1ahX8/PwQFRWFy5cvAwDy8vLg4uJiuo+zs/M9/zAQEZFl2db2wKKiIoSHh2PFihXo0KED5s6di9jYWGg0GsTGxuKFF17A2rVra/3Eer0eer0eAHD8+HH06tWr7tUTEbVg2dnZuHjxotnjahX0JSUlCA8Px9SpUzF+/HgAgKOjo+n22bNnY8yYMQAArVaLnJwc0225ubnQarXVHjM6OhrR0dEAgKCgIKSlpdWmFCIi+q+goKBaHWd26EYIgZkzZ8LLywvz5883XW80Gk2Xd+7cCV9fXwBAWFgYtmzZglu3buH06dMwGAzo169fXesnIqJGYvaM/uDBg9i0aRN69+4NnU4HAFi6dCk2b96MjIwMaDQauLq6YvXq1QAAHx8fTJw4Ed7e3rC1tUVCQgJn3BARKcjs9MqmwKEbIqK6q2121vrNWCKqu5KSEuTm5uLmzZtKl0JWzM7ODs7OzmjVqlW97s+gJ7Kg3NxctG/fHq6urtBoNEqXQ1ZICIGCggLk5uaiR48e9XoM9rohsqCbN2+iU6dODHmqN41Gg06dOjXoVSGDnsjCGPLUUA39GWLQE7UwcXFxeOONN/DKK69g3759dz0uMTERmZmZd739/fffx8aNGwEAQ4cOrdOEisLCQrz77rumj8+dO4cJEybU+v5UNwx6ohbqb3/7G4YPH37X2+8V9KWlpZgzZw4iIiLq9dx3Bn3Xrl3xz3/+s16PReYx6ImaG6MRGDIE+PXXRnvI1157DR4eHhg8eDBOnDgBAJg+fbopXGNiYuDt7Q0/Pz8sWLAA33zzDf71r39h4cKF0Ol0OHnyJIYOHYo///nPCAoKwsqVK02vDCps2rQJOp0Ovr6+pkaGdx7j6+uL7OxsxMTE4OTJk9DpdFi4cCGys7NNiy5v3ryJGTNmoHfv3vD398fXX38NAFi/fj3Gjx+P0aNHw93dHX/5y18a7eujdpx1Q9TcLFkCHDgg/09IaPDDff/999iyZQsyMjJQWlqKgIAABAYGmm4vKCjAzp07cfz4cWg0GhQWFuLBBx9EWFgYxowZU2VIpbi42DREExcXV+V5rl+/joyMDKSkpCAqKgpHjx69a03x8fE4evQoMjIyAMieLRUSEhKg0Whw5MgRHD9+HCNHjkRWVhYAICMjA+np6WjdujU8PT3x7LPPVmmiSDXjGT1Rc2I0AuvWAeXl8v9GOKvfv38/xo0bh7Zt26JDhw4ICwurcru9vT3s7Owwc+ZM7NixA23btr3rY02aNOmut02ZMgUAEBwcjCtXrqCwsLBe9R44cADTpk0DAPTq1Qvdu3c3BX1ISIipXm9vb5w5c6Zez9HSMOiJmpJGc+9/XbsCFdPobtwAnJzM36eBbG1tkZqaigkTJmDXrl0YPXr0XY994IEH7vGpaap9bGtri/LyctN1DV041rp1a9NlGxsblJaWNujxWgoGPVFTEuLu/86dA+zsqh7fpo08y7/X/cwIDg5GYmIibty4gatXr+LTTz+tcntRURF+++03hIaGYvny5fjxxx8ByI2Grl69WutPbevWrQDkGbm9vT3s7e3h6uqKH374AQDwww8/4PTp02Yf+5FHHsHHH38MAMjKysLZs2fh6elZ6zqoOgY9UXOxZIkcsqmsrExe3wABAQGYNGkS+vTpg8ceewx9+/atcvvVq1cxZswY+Pn5YfDgwXjrrbcAAJMnT8ayZcvg7++PkydPmn0eOzs7+Pv7Y86cOVizZg0AIDw8HJcuXYKPjw9WrVoFDw8PAECnTp0waNAg+Pr6YuHChVUe5+mnn0Z5eTl69+6NSZMmYf369VXO5Knu2NSMyIKOHTsGLy+v2h3s7w/8983JKnQ6ID29cQsjq1PTzxKbmhFZG4Y5WQiHboiIVI5BT0Skcgx6IiKVY9ATEakcg56ISOUY9EQq9/bbb8PLywtTp05VuhSLcXV1xcWLFwEADz/88D2PXbp06T1vDw0NRWFhYZVGa7WVnJyMb775xvRx5VbOSuL0SiKVe/fdd7Fv3z44OztXub60tBS2tuqLgMpBW5OlS5fi5Zdfrna9EAJCCOzevRsA6tWrJzk5Ge3atTP9sZkzZ06dH8MSeEZPpGJz5szBqVOn8Nhjj2H58uWIi4vDk08+iUGDBuHJJ59EWVkZFi5ciL59+8LPzw+rV68GIEPvmWeegaenJ4YPH47Q0FBTS+PKZ89paWkYOnQoAODatWuIiopCv3794O/vj6SkJAD3bi+8Z88eBAQEoE+fPggJCUF5eTnc3d1x4cIFAEB5eTnc3NxMH1coKCjAyJEj4ePjg1mzZqHyus927doBAIxGI4KDg02tk/fv34+YmBjcuHEDOp0OU6dORXZ2Njw9PREREQFfX1/k5ORU+fxKS0sxdepUeHl5YcKECbh+/fpdvwbZ2dl4//33sXz5cuh0Ouzfv79Km+aMjAwMGDAAfn5+GDduHC5fvgxAbtry4osvol+/fvDw8MD+/fsb41tflWgGAgMDlS6ByCIyMzOVLkF0795dXLhwQQghxKJFi0RAQIC4fv26EEKI1atXiyVLlgghhLh586YIDAwUp06dEtu3bxfDhw8XpaWlIi8vT9jb24t//OMf1R7vu+++E0OGDBFCCPHSSy+JTZs2CSGEuHz5snB3dxdFRUVi3bp1okePHqKwsFDcuHFDdOvWTZw9e1acP39eODs7i1OnTgkhhCgoKBBCCBEXFyeWL18uhBDiiy++EOPHj6/2OT377LNi8eLFQgghdu3aJQCYanrggQeEEEK88cYb4tVXXxVCCFFaWiquXLlS5XYhhDh9+rTQaDTi0KFD1b5ep0+fFgDEgQMHhBBCzJgxQyxbtuyeX4NFixaZjrnz4969e4vk5GQhhBCxsbHiueeeE0IIMWTIEDF//nwhhBCfffaZCAkJqfH7WNPPUm2zk2f0RC1MWFgY2rRpAwDYu3cvNm7cCJ1Oh/79+6OgoAAGgwEpKSmYMmUKbGxs0LVrVzz66KNmH3fv3r2Ij4+HTqfD0KFDcfPmTZw9exZAze2FDx8+jODgYPTo0QMA8NBDDwEAoqKiTOPaa9euxYwZM6o9V0pKiqmV8R/+8Ad07Nix2jF9+/bFunXrEBcXhyNHjqB9+/Y11t29e3cMGDCgxttcXFwwaNAgAMC0adNw4MABs1+Hmvz2228oLCzEkCFDAACRkZFISUkx3T5+/HgAQGBgYJXe/I1FfQN0RM1YXHIcFv9ncaM93qIhixA3NK5O96ncalgIgXfeeQejRo2qckzFOHVNKrcertx2WAiB7du3V+s0+e2339apvbCLiwscHR3x1VdfITU11dTJsq6Cg4ORkpKCzz77DNOnT8f8+fNr3Pqwrq2Xgbt/Deqr4utjqdbLPKMnakJxQ+MgFolG+1fXkL/TqFGj8N5776GkpASAbAt87do1BAcHY+vWrSgrK4PRaDRt5wfI8envv/8eALB9+/Yqj/XOO++YxsvTzfTuGTBgAFJSUkytiy9dumS6bdasWZg2bRr++Mc/wsbGptp9g4OD8cknnwAAPv/8c9N4d2VnzpyBo6MjZs+ejVmzZpnaJbdq1cr0+Zpz9uxZHDp0CADwySefYPDgwff8Gtyt/bK9vT06duxoGn/ftGmT6ey+KTDoiVqwWbNmwdvbGwEBAfD19cVTTz2F0tJSjBs3Du7u7vD29kZERAQGDhxous+iRYvw3HPPISgoqEoIx8bGoqSkBH5+fvDx8UFsbOw9n7tz587Q6/UYP348+vTpU2X3qrCwMBQVFdU4bFNRQ0pKCnx8fLBjxw5069at2jHJycno06cP/P39sXXrVjz33HMAgOjoaPj5+dVquqmnpycSEhLg5eWFy5cvY+7cuff8Gjz++OPYuXOn6c3YyjZs2ICFCxfCz88PGRkZeOWVV8w+f2Nhm2IiC6pTm+JmbPr06dX2j7WktLQ0PP/885aZgWKl2KaYiFQjPj4e7733Xr3H5qk6Bj0RmbV+/fome66YmBjExMQ02fO1BByjJyJSOQY9kYU1g7fByMo19GeIQU9kQXZ2digoKGDYU70JIVBQUAA7O7t6PwbH6IksyNnZGbm5udV6tRDVhZ2dXbWmdHXBoCeyoFatWpmW+BMpxezQTU5ODoYNGwZvb2/4+Phg5cqVAOQqthEjRsDd3R0jRowwrUwTQmDevHlwc3ODn5+faTUaEREpw2zQ29ra4s0330RmZiYOHz6MhIQEZGZmIj4+HiEhITAYDAgJCUF8fDwAuRzZYDDAYDBAr9ebVpIREZEyzAa9k5MTAgICAMg+Dl5eXsjLy0NSUhIiIyMByE5siYmJAICkpCRERERAo9FgwIABKCwshNFotOCnQERE91KnWTfZ2dlIT09H//79kZ+fDycnJwBAly5dkJ+fDwDIy8uDi4uL6T7Ozs7Iy8trxJKJiKguav1mbFFREcLDw7FixQp06NChym0ajaZaO09z9Ho99Ho9AHBGAhGRBdXqjL6kpATh4eGYOnWqqUG+o6OjaUjGaDTCwcEBAKDVapGTk2O6b25uLrRabbXHjI6ORlpaGtLS0tC5c+cGfyJERFQzs0EvhMDMmTPh5eWF+fPnm64PCwvDhg0bAMj2m2PHjjVdv3HjRgghcPjwYdjb25uGeIiIqOmZHbo5ePAgNm3ahN69e0On0wGQu6jHxMRg4sSJWLNmDbp3745t27YBAEJDQ7F79264ubmhbdu2WLdunWU/AyIiuif2oycislK1zU72uiEiUjkGPRGRyjHoiYhUjkFPRKRyDHoiIpVj0BMRqRyDnohI5Rj0REQqx6AnIlI5Bj0Rkcox6ImIVI5BT0Skcgx6IiKVY9ATEakcg56ISOUY9EREKsegJyJSOQY9EZHKMeiJiFSOQU9EpHIMeiIilWPQExGpHIOeiEjlGPRERCrHoCciUjkGPRGRNTIagRMnanUog56IyBotWQIUFdXqUFsLl0JERI2lsBDIygJSU4EPPqj13Rj0RETNyY0bwMmTMtDv/HfjBuDhAVy5AghR64dk0BMRNbXSUuDMmZrDPD8f6NFDBrqHBzBwIBAZKS936QL8+ivQsydQVlbrp2PQExFZghDyDdPKIW4wyP9Pn5ahXRHmnp7A44/Ly926Abb3iOYlS4Dy8jqVwqAnImqIy5erhnjlUG/b9naYe3gAgwYB7u7A738PtGlTv+c7dAgoLq7TXRj0RETm3LgB/PJLzUMtt27dDnJ399tn5u7uwIMPNn4t6em3LwcF1eouDHoiIkCOm2dnVw9yg0GOm/fsWfXMfMYMednREdBolK7+nswGfVRUFHbt2gUHBwccPXoUABAXF4cPPvgAnTt3BgAsXboUoaGhAIDXX38da9asgY2NDd5++22MGjXKguUTEdWBEMC5c9XHzLOyZMg7Od0Ocy8vYOzY2+PmNjZKV19vZoN++vTpeOaZZxAREVHl+ueffx4LFiyocl1mZia2bNmCn3/+GefOncPw4cORlZUFGyv+AhGRFbp0qfqYeUWwt2tXfdzcw0OOm9vZKV25RZgN+uDgYGRnZ9fqwZKSkjB58mS0bt0aPXr0gJubG1JTUzFw4MCG1klEVNX163cfNy8uljNZ3N1liFecmbu7A/b2Slfe5Oo9Rr9q1Sps3LgRQUFBePPNN9GxY0fk5eVhwIABpmOcnZ2Rl5fXKIUSUQtUUlJ93LziTP3Charj5o88AsycKS87ODT7cfOmVK+gnzt3LmJjY6HRaBAbG4sXXngBa9eurdNj6PV66PV6AMCFCxfqUwYRqYEQQF5ezVMUz5wBuna9HeY+PsC4cfLM3MrHzZtSvYLe0dHRdHn27NkYM2YMAECr1SInJ8d0W25uLrRabY2PER0djejoaABAUC2nCBGRFbt0qeZhFoMB6NDh9tBKxdm5h4c8Y1fpuHlTqlfQG41GODk5AQB27twJX19fAEBYWBieeOIJzJ8/H+fOnYPBYEC/fv0ar1oiat6uXat53NxgkMMwld8EHTfudrh36KB05apmNuinTJmC5ORkXLx4Ec7Ozli8eDGSk5ORkZEBjUYDV1dXrF69GgDg4+ODiRMnwtvbG7a2tkhISOCMG6LmymgEJk8Gtm6Vy/Frq6RELuGvaajl4kU5e6UizIcMAWbPlpc7d+a4uUI0QtShBZqFBAUFIS0tTekyiFqWp58GVq8G5swBEhKq3lZeXnW+eeV/Z88CWm3Vs/OKIRcXF46bN6HaZidXxhK1REYjsG6dDPQ1a2RInz9/O8x/+UVOQ6wI8Iqz84px89atlf4MqA4Y9EQt0YIFtxtjFRfLM/pp04Dw8Ntn6O3bK1sjNRoGPVFLYjQCMTHAJ5/cvk4IIDcXiI6u21g9WQ3uGUvUEhQWAi+/DPj6Aj/+CNx/f9Xby8pkn3NSJQY9kZpdvw78/e9yKObCBSAjQ858ubOfeXEx8M03ytRIFsegJ1KjkhLg/fdlwKelAfv3y82kXVxkP3MhACGgiYPpcpU+56QqHKMnUpPycjkvPjZWzo5JSqr15hSkXgx6IjUQAtizB3jpJTn+vno1EBKidFXUTDDoiazdwYMy4C9eBF57Dfif/+EKVKqCY/RE1urIESAsDHjiCbmt3U8/yf4xDHm6A4OeyNqcOgU8+SQwYoQcnsnKkkFvyxfoVLPmEfQnTgC//qp0FUTN26+/As88A/TtC7i5yYZizz3HdgRkVvMI+qIiLtYgupvCQuCvf5Wbbtx/P3D8OLBoEVsUUK01j6AHgLVreVZPVNmNG8CyZbL3jNEo57m/9ZZs90tUB80n6G/eBPr3B3bvlnOBiVqqkhJAr5eLnQ4fBv7zH3ki1K2b0pWRlWo+QQ/Is5aXXpI/4G+8IbceI2opKhY7+fjI/3fsALZvB7y8lK6MrFzzCnqNBhg0SHbW++knuVPNzJnADz8oXRmR5QgBfPGFXMG6bBnw7rvAl18C3IaTGknzCvriYuDQITmEs3GjnI3j5ibnBg8cCHz0EXDrltJVEjWew4eBRx+Vs2f++lfgu++A4cOVropUplkE/fdOqLmxkoODHMo5dUr20N64UY5Tvvyy3M6MyFodPSpXsE6cKOfEHz0qN/3gYieygGYR9GbZ2ABjxwJ79wIpKbL1qr+/PNPft0/+gSCyBtnZQGSkXOgUHCwXO0VFcbETWZR1BH1lnp7AihXAmTPA6NHA/Pnyzaq33wZ++03p6ohqlp8PzJsHBAYCrq5ysdP8+YCdndKVUQtgfUFfoV074Kmn5G45H3wgN01wdZU72h85onR1RNJvv8mWwd7ewH33AceOAYsXAx06KF0ZtSDWG/QVNBrgkUeALVuAzEyga1d5pj9kCLBtm5yTTNTUbtwA3nxTThXOyQG+/16+EnVwULoyaoGsP+grc3ICXnlFjoM+84ycpta9OxAXB5w7p3R11BKUlgIffihXsx44AHz9NbB+vXy1SaQQdQV9hVatgD/+EUhOlm/gnj8vN0WeOFG+mcs3b6mxlZcD//iH/Dn7+GN5eedOufiJSGHqDPrKfH3lmX12tpzl8NRTgJ+f3E+zqEjp6sjaCSFPJvr1A+Lj5aSAr74CBgxQujIiE/UHfYUOHeRwTmamHCvdu1cO68ybJ7sBEtXVt9/KaZLPPgu8+KJc7DRyJOfCU7PTcoK+gkYjfzl37AAyMuQfgKFD5WrExEQ5xkp0L5mZcg3HhAlyd6eff5ZDhfe1vF8nsg4t+yfTxQV49VU5Jz8qCvi//wN69gSWLpXj+kSVnTkjd3IaOlT2ZMrKAmbN4mInavZadtBXaN1anpl98w2QlCRbLnh6AtOmyd47fPO2ZTt/Hvjzn4GAAMDZWS52WrAAaNNG6cqIaoVBfyd/fzk97tQp+Yv95JNyNePatbL1ArUcV67InZy8vOSsmsxMuROavb3SlRHVCYP+bjp2lEvUs7LkUM6OHfLN2wULgJMnla6OLOnmTbmTk7s7cPo0kJYmZ9M4OipdGVG9MOjNue8+udJ21y45y+K+++TUudBQ4LPPgLIypSukxlJaKl+5eXjIXZ327ZMdU3v0ULoyogZh0NdFz57yDduzZ+Xiq7g4eda3bBlQUKB0dVRfQsidnHr3BjZskLs7JSXJj4lUgEFfH23aANOny3nTW7bIJmpubnLmzvffK10d1cWXX8qNbl57DVi+XK6mHjhQ6aqIGpXZoI+KioKDgwN8fX1N1126dAkjRoyAu7s7RowYgcuXLwMAhBCYN28e3Nzc4Ofnhx9awhaA/frJl/dZWfIl//jxcmhn0yY51kvNU8VOTnPmAC+8IMfhR4/mYidSJbNBP336dOzZs6fKdfHx8QgJCYHBYEBISAji4+MBAJ9//jkMBgMMBgP0ej3mzp1rmaqbo86d5S5Yp07JHbA++ki+efvSS3L+NTUPx47JnZzGjZPDb5mZwKRJXOxEqmb2pzs4OBgPPfRQleuSkpIQGRkJAIiMjERiYqLp+oiICGg0GgwYMACFhYUwGo0WKLsZs7EBwsLkZs/798t2tQEBctu4f/9bTtOjpnf2rBxaCw6WQzVZWUB0tGyAR6Ry9TqNyc/Ph5OTEwCgS5cuyM/PBwDk5eXBxcXFdJyzszPy8vIaoUwr5eEh++qcPStn6SxYIOdkr1wJFBYqXV3LcOGCnCar08k21gYD8Je/AG3bKl0ZUZNp8OtVjUYDTT3GNfV6PYKCghAUFNTQEpq/Bx6QZ48ZGcCaNcDhw3LK3lNPAT/9pHR16nT1qtzJqVcv4NYt2Y/mtdeABx9UujKiJlevoHd0dDQNyRiNRjj8d9ccrVaLnJwc03G5ubnQarU1PkZ0dDTS0tKQlpZWnxKsk0YDDB4MbN4sx4a1WuCxx+RwwtatQHGx0hVav1u35Csmd3d59p6aCiQkyLN5ohaqXkEfFhaGDRs2AAA2bNiAsWPHmq7fuHEjhBA4fPgw7O3tTUM8dIfKu2HNmyf747u6yiX3LXm4q77KyuROTh4ecqHT3r3yDfHf/17pyoiUJ8yYPHmy6NKli7C1tRVarVZ8+OGH4uLFi+LRRx8Vbm5uIiQkRBQUFAghhCgvLxdPP/206Nmzp/D19RXfffeduYcXQggBJ7NltAxHjwrx9NNCPPigEBMmCPH110KUlytdVfNWXi7Ejh1CeHkJMXiwEAcOKF2RVUEcf/esWWBgYK2O0wihfGtGTVcNxDnFy2g+rlyRc/MTEuQsnj/9SXbSbN9e6cqal6++ktNXb94EXn9dDoNxHnydaBZrIBbxd89aBQUF1Wr4m5OHm6PKu2G9/bYciujeXe5kdOyY0tUpLy1N7uQ0e7ZsH5yeLmc1MeSJasSgb840GuDRR2Uflp9+kjNGhg27vUNWS9sN68QJuZNTWJhc8HTsGDBlChc7EZnB3xBr4ewse6GfOQPMnAm8+aacovnqq8B/1zGoVm6uPHsfPFjuDWAwAHPnAvffr3RlRFaBQW9tKnbDOngQ+PRTGfy9egFTp8odspR/y6XxFBTIRWZ+fsDvfidXs8bEyHUJRFRrDHprptMBH3wg++sEBQEREbLdwocfWvduWEVF8tWLpydw7Rpw9Kh8s7VjR6UrI7JKDHo16NgReP55ecb7+uuyl3q3bnLp/y+/KF1d7d26Jd98dnOT4++HDwPvvQd07ap0ZURWjUGvJhW7YX36qWzD26qV7K3+2GNyh6zmuhtWWZmcTurpKZvB7dkDfPKJDHwiajAGvVr16AH8/e+yodrkybLvi7u73CGrueyGJYR89dGnD6DXyx7+n30mh6SIqNEw6NWuTRsgMvL2blg//yzbAsyYIeejKyU5GXj4YSA2FoiPly2dH3lEuXqIVIxB35L06yf3RP3lFzlTZ8IE2Zt948am2w3rhx/k8FJUlFwUlp4OjBnDxU5EFsSgb4l+9zvgxReBkyeB//1f4OOP5Zu3MTGyyZolZGXJnZz+8Afg8ceB48fllFAbG8s8HxGZMOhbMhsbGbpffAEcOCBnvQQGAmPHyu6PjbEbVm6u7MX/8MNyLP6XX2TvHi52ImoyDHqSPDyA5cvlm7djxshdmHr1kjtk1Wc3rIIC+Rh+fnL6Z1aW3EuXi52ImhyDnqp64AHZbiA9HVi3Dvj2WzmDJzoa+PFH8/cvKpI7OXl6yi6cR47I2T937DtMRE2HQU8102iAQYPkbljHjgEuLnJ8/ZFH5Oydit2wjEZgyBD5SmDVKjmF88gR4NAhuZnKXXYYI6KmY6t0AWQFunSR0yBjYoB//Uv2yX/+eXnmf/q0nBrp6yv/MOzeDfj7K10xEVXCM3qqvVatgPBwueHHvn3yLP6jj+TCp+JiOdTDkCdqdhj0VD8+PkDbtrdnzwghG5ERUbPDoKf6MRrlGXzFWH3FGf2vvypbFxFVw6Cn+lmypPo8+7IyntUTNUMMeqqfQ4dun81XKC6Wm58QUbPCoKf6SU+X4/JCQBMH02WkpytdGRHdgUFPRKRyDHoiIpVj0BMRqRyDnoioleN1AAAE9ElEQVRI5Rj0REQqx6AnIlI5Bj0Rkcox6ImIVI5BT0Skcgx6IiKVY9ATEakcg56ISOUatJWgq6sr2rdvDxsbG9ja2iItLQ2XLl3CpEmTkJ2dDVdXV2zbtg0dO3ZsrHqJiKiOGnxG//XXXyMjIwNpaWkAgPj4eISEhMBgMCAkJATx8fENLpKIiOqv0YdukpKSEBkZCQCIjIxEYmJiYz8FERHVQYOCXqPRYOTIkQgMDIRerwcA5Ofnw8nJCQDQpUsX5OfnN7xKIiKqtwaN0R84cABarRbnz5/HiBEj0KtXryq3azQaaDSaGu+r1+tNfxyIiMhyGnRGr9VqAQAODg4YN24cUlNT4ejoCKPRCAAwGo1wcHCo8b7R0dFIS0szje0TEZFl1Dvor127hqtXr5ou7927F76+vggLC8OGDRsAABs2bMDYsWMbp1IiIqqXeg/d5OfnY9y4cQCA0tJSPPHEExg9ejT69u2LiRMnYs2aNejevTu2bdvWaMUSEVHd1Tvoe/bsiR9//LHa9Z06dcKXX37ZoKKIiKjxcGUsEZHKMeiJiFSOQU9EpHIMeiIilWPQExGpHIOeiEjlGPRERCrHoCciUjkGPRGRyjHoiYhUjkFPRKRyDHoiIpVj0BMRqRyDnohI5Rj0REQqx6AnIlI5Bj0Rkcox6ImIVI5BT0Skcgx6IiKVY9ATEakcg56ISOUY9EREKsegJyJSOQY9EZHKMeiJiFSOQU9EpHIMeiIilWPQExGpHIOeiEjlGPRERCrHoCciUjkGPRGRyjHoiYhUjkFPRKRyFgv6PXv2wNPTE25uboiPj7fU0xARkRkWCfqysjL86U9/wueff47MzExs3rwZmZmZlngqIiIywyJBn5qaCjc3N/Ts2RP3338/Jk+ejKSkJEs8FRERmWGRoM/Ly4OLi4vpY2dnZ+Tl5VniqYiIyAxbpZ5Yr9dDr9cDAFpfao2goCClSqEG6nahG4I+5ffPGvF7Z92ys7NrdZxFgl6r1SInJ8f0cW5uLrRabZVjoqOjER0dDQAICgpCWlqaJUqhJsDvn/Xi965lsMjQTd++fWEwGHD69GkUFxdjy5YtCAsLs8RTERGRGRY5o7e1tcWqVaswatQolJWVISoqCj4+PpZ4KiIiMsNiY/ShoaEIDQ2t1bEVQzhknfj9s1783rUMGiGEULoIIiKyHLZAICJSOcWDnq0SrFdUVBQcHBzg6+urdClURzk5ORg2bBi8vb3h4+ODlStXKl0SWZCiQzdlZWXw8PDAv//9bzg7O6Nv377YvHkzvL29lSqJ6iAlJQXt2rVDREQEjh49qnQ5VAdGoxFGoxEBAQG4evUqAgMDkZiYyN89lVL0jJ6tEqxbcHAwHnroIaXLoHpwcnJCQEAAAKB9+/bw8vLi6nUVUzTo2SqBSHnZ2dlIT09H//79lS6FLETxMXoiUk5RURHCw8OxYsUKdOjQQelyyEIUDfratEogIssoKSlBeHg4pk6divHjxytdDlmQokHPVglEyhBCYObMmfDy8sL8+fOVLocsTNGgr9wqwcvLCxMnTmSrBCsyZcoUDBw4ECdOnICzszPWrFmjdElUSwcPHsSmTZvw1VdfQafTQafTYffu3UqXRRbClbFERCrHN2OJiFSOQU9EpHIMeiIilWPQExGpHIOeiEjlGPRERCrHoCciUjkGPRGRyv0/gO4P8lrZ+hoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVXW+x/H3VkwzldIjimDeQOMibmFbWoY2hBZjNN5DTY3U1NPN24k6x7SbMTWllpYyY2pOqZXXY2Zm5dEuo1HuKetkHJVBiDFTKbwll3X+WLlHQgX2hQWbz+t5eIC91l7ruzf4cfFba31/NsMwDERExG/Vs7oAERHxLQW9iIifU9CLiPg5Bb2IiJ9T0IuI+DkFvYiIn1PQi4j4OQW9iIifU9CLiPi5AKsLAPi3f/s32rdvb3UZIiK1SnZ2Nj/++GOF69WIoG/fvj2ZmZlWlyEiUqs4HI5KraehGxERP6egFxHxcwp6ERE/VyPG6EX8VVFREbm5uZw5c8bqUqQWa9SoEaGhoTRo0MCt5yvoRXwoNzeXpk2b0r59e2w2m9XlSC1kGAZHjx4lNzeXDh06uLUNDd2I+NCZM2do0aKFQl7cZrPZaNGihUd/FSroRXxMIS+e8vR3SEEvIuLnFPQidczs2bP505/+xKOPPsq2bdsuut769ev55ptvLrp80aJFvPrqqwD07du3Sjc9FhQU8NJLL7m+//777xkyZEilny9Vo6AXqWny86FPH/jnP326m8cff5ybb775ossvFfTFxcVMnDiR0aNHu7Xv3wZ9mzZteOutt9zallSswqA/dOgQN910E5GRkURFRTF//nwAjh07RmJiIuHh4SQmJnL8+HHAPEN8//33ExYWRkxMDF988YVvX4GIv3niCfjoI/Ozlzz11FN07tyZ3r17s2/fPgDGjh3rCte0tDQiIyOJiYlh+vTpfPLJJ2zcuJEZM2Zgt9vZv38/ffv25cEHH8ThcDB//nzXXwbnrFixArvdTnR0NLt37wYot050dDTZ2dmkpaWxf/9+7HY7M2bMIDs7m+joaMA8gX3XXXfRtWtXunfvzocffgjAsmXLGDRoELfccgvh4eH8x3/8h9feH39X4eWVAQEBPPfcc8TGxlJYWEhcXByJiYksW7aMhIQE0tLSSE9PJz09nT/+8Y+88847ZGVlkZWVxa5du5g0aRK7du2qjtciUvvl58PSpVBaan6eORNat/Zok59//jmrVq3C6XRSXFxMbGwscXFxruVHjx5l3bp1fPvtt9hsNgoKCrjyyitJTk5mwIABZYZUzp496xqimT17dpn9nDp1CqfTyY4dO0hNTWXv3r0XrSk9PZ29e/fidDoBsznXOQsXLsRms/HVV1/x7bff0q9fP7777jsAnE4ne/bsoWHDhnTp0oX77ruPtm3bevT+1AUVHtEHBwcTGxsLQNOmTYmIiCAvL48NGzYwZswYAMaMGcP69esB2LBhA6NHj8Zms9GzZ08KCgrIz8/34UsQqUVstkt/tGkD5y6jO30agoMrfk4Fdu7cycCBA2ncuDHNmjUjOTm5zPLAwEAaNWrE3Xffzdq1a2ncuPFFtzV8+PCLLktJSQEgPj6en3/+mYKCgkq8IeV99NFHjBo1CoBrrrmGdu3auYI+ISHBVW9kZCT/+Mc/3NpHXVOlMfrs7Gz27NnDddddx+HDhwkODgagdevWHD58GIC8vLwy/8OGhoaSl5fnxZJFajHDuPjH999Do0Zl17/8cvMo/1LP81BAQAC7d+9myJAhbNq0iVtuueWi615xxRUXXfbbSwBtNhsBAQGUlpa6HvP0DuGGDRu6vq5fvz7FxcUeba+uqHTQnzhxgsGDBzNv3jyaNWtWZpnNZqvydZ4ZGRk4HA4cDgdHjhyp0nNF/NITT5hDNucrKfF4rD4+Pp7169dz+vRpCgsL+e///u8yy0+cOMFPP/1EUlISc+fO5e9//ztg/gVfWFhY6f2sXr0aMI/IAwMDCQwMpH379q7zdF988QUHDx6scNs33ngjr732GgDfffcdOTk5dOnSpWovWsqoVNAXFRUxePBgRo4cyaBBgwBo1aqVa0gmPz+foKAgAEJCQjh06JDrubm5uYSEhJTb5oQJE8jMzCQzM5OWLVt6/EJEar1PP4WzZ8s+dvYsfPKJR5uNjY1l+PDhdOvWjVtvvZUePXqUWV5YWMiAAQOIiYmhd+/ePP/88wDccccdPPvss3Tv3p39+/dXuJ9GjRrRvXt3Jk6cyJIlSwAYPHgwx44dIyoqigULFtC5c2cAWrRowQ033EB0dDQzZswos53JkydTWlpK165dGT58OMuWLStzJC9VZzOMS//tZxgGY8aMoXnz5sybN8/1+IwZM2jRooXrZOyxY8d45plnePvtt1mwYAGbN29m165d3H///a4z8BfjcDg08Yj4pf/93/8lIiLC6jLED1zod6my2VnhVTcff/wxK1asoGvXrtjtdgDmzJlDWloaw4YNY8mSJbRr14433ngDgKSkJDZv3kxYWBiNGzdm6dKl7rwmERHxkgqDvnfv3lzsoP/9998v95jNZmPhwoWeVyYiIl6hO2NFRPycgl5ExM8p6EVE/JyCXkTEzynoRfzcCy+8QEREBCNHjrS6FJ9p3749P/74IwDXX3/9JdedM2fOJZcnJSVRUFBQptFaZW3fvp1Pzrvv4fxWzlbSnLEifu6ll15i27ZthIaGlnm8uLiYgAD/i4BPKrjBbM6cOTzyyCPlHjcMA8Mw2Lx5M4BbvXq2b99OkyZNXP/ZTJw4scrb8AUd0Yv4sYkTJ3LgwAFuvfVW5s6dy+zZs7nzzju54YYbuPPOOykpKWHGjBn06NGDmJgYFi9eDJihd++999KlSxduvvlmkpKSXC2Nzz96zszMpG/fvgCcPHmS1NRUrr32Wrp3786GDRuAS7cX3rJlC7GxsXTr1o2EhARKS0sJDw93tUUpLS0lLCysXJuUo0eP0q9fP6Kiohg3blyZS8CbNGkCmHfsx8fHu1on79y5k7S0NE6fPo3dbmfkyJFkZ2fTpUsXRo8eTXR0NIcOHSrz+oqLixk5ciQREREMGTKEU6dOXfQ9yM7OZtGiRcydOxe73c7OnTvLtGl2Op307NmTmJgYBg4c6Grt3rdvXx566CGuvfZaOnfuzM6dO73xoy/LqAHi4uKsLkHEJ7755hurSzDatWtnHDlyxDAMw5g1a5YRGxtrnDp1yjAMw1i8eLHxxBNPGIZhGGfOnDHi4uKMAwcOGGvWrDFuvvlmo7i42MjLyzMCAwONN998s9z2PvvsM6NPnz6GYRjGww8/bKxYscIwDMM4fvy4ER4ebpw4ccJYunSp0aFDB6OgoMA4ffq0cfXVVxs5OTnGDz/8YISGhhoHDhwwDMMwjh49ahiGYcyePduYO3euYRiG8e677xqDBg0q95ruu+8+47HHHjMMwzA2bdpkAK6arrjiCsMwDONPf/qT8eSTTxqGYRjFxcXGzz//XGa5YRjGwYMHDZvNZnz66afl3q+DBw8agPHRRx8ZhmEYd911l/Hss89e8j2YNWuWa53fft+1a1dj+/bthmEYxsyZM40HHnjAMAzD6NOnjzF16lTDMAzj7bffNhISEi74c7zQ71Jls9P//m4TqcFmb5/NY//zmNe2N6vPLGb3nV2l5yQnJ3P55ZcDsHXrVr788kvX0fpPP/1EVlYWO3bsICUlhfr169OmTRt+97vfVbjdrVu3snHjRtcR7JkzZ8jJyQH+1V4YcLUXPn78OPHx8XTo0AGA5s2bA5Camsrtt9/Ogw8+yCuvvMJdd91Vbl87duxg7dq1APz+97/nqquuKrdOjx49SE1NpaioiD/84Q+uO/t/q127dvTs2fOCy9q2bcsNN9wAwKhRo3jhhReYPn16he/Fb/30008UFBTQp08fwGztPnToUNfycz3E4uLiyvTm9xYFvUg1mt13dpWD2dvObzVsGAYvvvgi/fv3L7POuXHqCzm/9fD5bYcNw2DNmjXlOk3u2rWrSu2F27ZtS6tWrfjggw/YvXu3q5NlVcXHx7Njxw7efvttxo4dy9SpUy849WFVWy/Dxd8Dd517f3zVellj9CJ1WP/+/Xn55ZcpKioCzLbAJ0+eJD4+ntWrV1NSUkJ+fr5rOj8wx6c///xzANasWVNmWy+++KJrvHzPnj2X3HfPnj3ZsWOHq3XxsWPHXMvGjRvHqFGjGDp0KPXr1y/33Pj4eF5//XUA3nnnHdd49/n+8Y9/0KpVK8aPH8+4ceNc7ZIbNGjger0VycnJ4dNPPwXg9ddfp3fv3pd8Dy7WfjkwMJCrrrrKNf6+YsUK19F9dVDQi9Rh48aNIzIyktjYWKKjo7nnnnsoLi5m4MCBhIeHExkZyejRo+nVq5frObNmzeKBBx7A4XCUCeGZM2dSVFRETEwMUVFRzJw585L7btmyJRkZGQwaNIhu3bqVmb0qOTmZEydOXHDY5lwNO3bsICoqirVr13L11VeXW2f79u1069aN7t27s3r1ah544AHAbJEeExNTqctNu3TpwsKFC4mIiOD48eNMmjTpku/Bbbfdxrp161wnY8+3fPlyZsyYQUxMDE6nk0cffbTC/XtLhW2Kq4PaFIu/8pc2xWPHji03f6wvZWZmMmXKFN9cgVJL+bRNsYhIdUpPT+fll192e2xeylPQi0iFli1bVm37SktLIy0trdr2VxdojF7Ex2rA6KjUcp7+DinoRXyoUaNGHD16VGEvbjMMg6NHj9KoUSO3t1Hh0E1qaiqbNm0iKCiIvXv3AjB8+HD27dsHmP0grrzySpxOJ9nZ2URERLiuo+3ZsyeLFi1yuziR2i40NJTc3Nxyt/CLVEWjRo3K9SqqigqDfuzYsdx7771lbjRYvXq16+tp06a57ngD6NSpE06n0+2CRPxJgwYNXHd+ililwqCPj4+/6C25hmHwxhtv8MEHH3i7LhER8RKPxuh37txJq1atCA8Pdz128OBBunfvTp8+fS55DWxGRgYOhwOHw6E/a0VEfMijyytXrlxJSkqK6/vg4GBycnJo0aIFn3/+OX/4wx/4+uuvadasWbnnTpgwgQkTJgDmRf8iIuIbbh/RFxcXs3bt2jK3LTds2JAWLVoAZhe2Tp068d1333lepYiIuM3toN+2bRvXXHNNmTPBR44coaSkBIADBw6QlZVFx44dPa9SRETcVmHQp6Sk0KtXL/bt20doaChLliwBYNWqVWWGbcDsER0TE4PdbmfIkCEsWrTI1WNaRESsoaZmIiK1VGWzU3fGioj4OQW9iIifU9CLiPg5Bb2IiJ9T0IuI+DkFvYiIn1PQi4j4OQW9iIifU9CLiPg5Bb2IiJ9T0IuI+DkFvYiIn1PQi4j4OQW9iIifU9CLiPg5Bb2IiJ+rMOhTU1MJCgoiOjra9djs2bMJCQnBbrdjt9vZvHmza9nTTz9NWFgYXbp04d133/VN1SIiUmkVBv3YsWPZsmVLucenTJmC0+nE6XSSlJQEwDfffMOqVav4+uuv2bJlC5MnT3bNISsiItaoMOjj4+MrPe/rhg0buOOOO2jYsCEdOnQgLCyM3bt3e1ykiIi4z+0x+gULFhATE0NqairHjx8HIC8vj7Zt27rWCQ0NJS8vz/MqRUTEbW4F/aRJk9i/fz9Op5Pg4GCmTZtW5W1kZGTgcDhwOBwcOXLEnTJERKQS3Ar6Vq1aUb9+ferVq8f48eNdwzMhISEcOnTItV5ubi4hISEX3MaECRPIzMwkMzOTli1bulOGiIhUgltBn5+f7/p63bp1ritykpOTWbVqFb/88gsHDx4kKyuLa6+91juVioiIWwIqWiElJYXt27fz448/EhoaymOPPcb27dtxOp3YbDbat2/P4sWLAYiKimLYsGFERkYSEBDAwoULqV+/vs9fhIiIXJzNMAzD6iIcDgeZmZlWlyEiUqtUNjt1Z6yIiJ9T0IuI+LmaEfT79sE//2l1FSIifqlmBP2JE/DEE1ZXISLil2pG0AO88oqO6kVEfKDmBP3Zs/D441ZXISLid2pO0JeWwl/+oqN6EREvqzlBD1BUBPfcY3UVIiJ+pWYFPcDmzZCTY3UVIiJ+o0YE/efBgGGYH+npMHgwnDljdVkiIn6hRgR9GVOnQqdOMHmyGfwiIuKRmhf0NhssWQKffQa/NksTERH3Vdi90hJXXAFr18INN0C3btCrl9UViYjUWjXviP6c8HDzJqphw3TJpYiIB2pu0AMMGADjxplhX1RkdTUiIrVSzQ56gJkzITAQpk+3uhIRkVqpwqBPTU0lKCjINV0gwIwZM7jmmmuIiYlh4MCBFBQUAJCdnc3ll1+O3W7HbrczceJEL1RYD1asMK+v/+tfPd+eiEgdU2HQjx07li1btpR5LDExkb179/Lll1/SuXNnnn76adeyTp064XQ6cTqdLFq0yDtVXnklrFsHU6aA0+mdbYqI1BEVBn18fDzNmzcv81i/fv0ICDAv2OnZsye5ubm+qe580dGwcCEMGgTHjvl+fyIifsLjMfpXXnmFW2+91fX9wYMH6d69O3369GHnzp2ebr6sYcPMu2ZHjICSEu9uW0TET3kU9E899RQBAQGMHDkSgODgYHJyctizZw/PP/88I0aM4Oeff77gczMyMnA4HDgcjqrt9OmnzZbGjz7qSekiInWG20G/bNkyNm3axGuvvYbNZgOgYcOGtGjRAoC4uDg6derEd999d8HnT5gwgczMzErNYF5GQACsXm2emF23zt3yRUTqDLeCfsuWLTzzzDNs3LiRxo0bux4/cuQIJb8OqRw4cICsrCw6duzonUrP17IlrFljtjT+9lvvb19ExI9UGPQpKSn06tWLffv2ERoaypIlS7j33nspLCwkMTGxzGWUO3bsICYmBrvdzpAhQ1i0aFG5E7le43CYnS4HDoSLDA+JiAjYDMP6FpG2NjaM790sY+JE+OEH8wj/1yEkEZG6wOFwVGr4u+bfGVuR+fMhP988uhcRkXJqZvfKqmjYEN56C3r0gLg46NfP6opERGqU2n9EDxASAqtWwejRcPCg1dWIiNQo/hH0APHx8Mgj5p2zp05ZXY2ISI3hP0EPcN99EBVlnqC1/hyziEiN4F9Bb7NBRgZ8+aXZF0dERPzgZOxvNW5sTkPYq5c5DeGNN1pdkYiIpfzriP6cjh1h+XK44w74/nurqxERsZR/Bj3ALbfA5MkwZIjZBE1EpI7y36AHePhhaNUKHnzQ6kpERCzj30Ffr545hPP++7B0qdXViIhYwv9Oxv5Ws2awfj306QNdu5rN0ERE6hD/PqI/JyICFi0yZ6c6csTqakREqlXdCHow75gdMQJSUqC42OpqRESqTd0JeoAnnzTH7R95xOpKRESqTd0K+vr1YeVKePNN80NEpA6oVNCnpqYSFBREdHS067Fjx46RmJhIeHg4iYmJHD9+HADDMLj//vsJCwsjJiaGL774wjeVu6tFC/PO2cmT4euvra5GRMTnKhX0Y8eOZcuWLWUeS09PJyEhgaysLBISEkj/deKPd955h6ysLLKyssjIyGDSpEner9pT3bvD88+b0xAWFFhdjYiIT1Uq6OPj48vN/bphwwbGjBkDwJgxY1i/fr3r8dGjR2Oz2ejZsycFBQXk5+d7uWwvuPNO6N/f7GFfWmp1NSIiPuP2GP3hw4cJDg4GoHXr1hw+fBiAvLw82rZt61ovNDSUvLw8D8v0keeeg2PH4KmnrK5ERMRnvHLDlM1mw1bFibkzMjLIyMjwxu7dd9ll5knZc9MQJiVZW4+IiA+4fUTfqlUr15BMfn4+QUFBAISEhHDo0CHXerm5uYSEhJR7/oQJE8jMzKzUDOY+FRwMb7wBd90F//d/1tYiIuIDbgd9cnIyy5cvB2D58uXcfvvtrsdfffVVDMPgb3/7G4GBga4hnhrr+uth1izzpqqTJ62uRkTEqyoV9CkpKfTq1Yt9+/YRGhrKkiVLSEtL47333iM8PJxt27aRlpYGQFJSEh07diQsLIzx48fz0ksv+fQFeM2kSebwzbhxmoZQRPyKzTCsTzVbGxvG95aXAadPQ+/eMGoUTJlidTUiIpfkcDgqNfzt/90rq+Lyy82bqa67Dux2uOkmqysSEfFY3WqBUBnt2sFf/2o2QDvvpLKISG2loL+Qm282h24GD4YzZ6yuRkTEIwr6i5kxwzy6v+8+qysREfGIgv5ibDZ45RX45BP485+trkZExG06GXspTZuaJ2dvvBFiYsyTtCIitYyO6CvSpQv85S8wdCj82s9HRKQ2UdBXRnIyjB0Lw4dDUZHV1YiIVImCvrJmzYLGjeGhh6yuRESkShT0lVW/Prz2GmzcCK+/bnU1IiKVpqCviquuMk/OPvAAfPml1dWIiFSKgr6qYmJg/nyz0+Wv8+SKiNRkCnp3jBgBt90GI0dCSYnV1YiIXJKC3l3PPAOnTsFjj1ldiYjIJSno3dWgAaxeDUuXwoYNVlcjInJRCnpPtGoFb70F48fDvn1WVyMickFuB/2+ffuw2+2uj2bNmjFv3jxmz55NSEiI6/HNmzd7s96a57rr4KmnzJOzhYVWVyMiUo5XZpgqKSkhJCSEXbt2sXTpUpo0acL06dMrX0RNmWHKE+PHQ0GBOdG4zWZ1NSJSB1R2himvDN28//77dOrUiXbt2nljc7XTggWQkwPPPmt1JSIiZXgl6FetWkVKSorr+wULFhATE0NqairH68q15g0bmuP1c+fCtm1WVyMi4uJx0J89e5aNGzcydOhQACZNmsT+/ftxOp0EBwczbdq0Cz4vIyMDh8OBw+HwtISao21bWLnSnFw8O9vqakREAC+M0W/YsIGFCxeydevWcsuys7MZMGAAe/fuvXQR/jBGf765c815Zz/6yJxwXETEB6ptjH7lypVlhm3y8/NdX69bt47o6GhPd1H7PPggdO4MkyaB5+e6RUQ84tER/cmTJ7n66qs5cOAAgYGBANx55504nU5sNhvt27dn8eLFBAcHX7oIfzuiBzh5Enr1gokTYfJkq6sRET9U2SN6r1xe6Sm/DHqA/fvh+uth3Trzs4iIF1Xr5ZVyEZ06mS0Shg2D84a0RESqk4Le15KSYMIEc87Zs2etrkZE6iAFfXX4r/+C5s3hIpeaioj4koK+OtSrBytWwLvvwquvWl2NiNQxAVYXUGcEBponZfv2hehoiI21uiIRqSN0RF+doqLgpZdg8GA4etTqakSkjlDQV7ehQ82PlBRNQygi1UJBb4U5c6C01DxJKyLiYwp6KwQEmM3PVq6ENWusrkZE/JyC3iotW5ptjSdOhG++sboaEfFjCnorORzwzDMwcCD89JPV1YiIn1LQW+2uuyAhAcaMMcftRUS8TEFfE8ybB4cPw9NPW12JiPgh3TBVE1x2mXlStkcPiIuDW26xuiIR8SM6oq8p2rSBVavMIZwDB6yuRkT8iIK+JrnxRvPa+oED4dQpq6sRET+hoK9p7r0XYmJg/HhNQygiXuFx0Ldv356uXbtit9txOBwAHDt2jMTERMLDw0lMTOT48eMeF1pn2GyweLF5bf0LL1hdjYj4Aa8c0X/44Yc4nU7XlFbp6ekkJCSQlZVFQkIC6enp3thN3dG4Maxda7ZK+J//sboaEanlfDJ0s2HDBsaMGQPAmDFjWL9+vS924986dDB72KekQF6e1dWISC3mcdDbbDb69etHXFwcGRkZABw+fJjg4GAAWrduzeHDh8s9LyMjA4fD4RrukQvo1w/uu89sa/zLL1ZXIyK1lM0wPDvjl5eXR0hICD/88AOJiYm8+OKLJCcnU1BQ4FrnqquuuuQ4va2NDeN7nXi8IMMwgz4oCBYtsroaEalBHA6Ha8j8Ujw+og8JCQEgKCiIgQMHsnv3blq1akV+fj4A+fn5BAUFebqbustmg2XLzLH6JUusrkZEaiGPgv7kyZMUFha6vt66dSvR0dEkJyezfPlyAJYvX87tt9/ueaV1WbNm5jSEaWnw2WdWVyMitYxHLRAOHz7MwIEDASguLmbEiBHccsst9OjRg2HDhrFkyRLatWvHG2+84ZVi67RrroGMDBgyxAx7/ZUkIpXk8Ri9V4rQGH3l/ed/wqefwtat5gQmIlJnVdsYvVSzxx+HBg3MYRwRkUpQ0Nc29evD66+bN1StXm11NSJSCyjoa6MWLcygv/de+Oorq6sRkRpOQV9b2e0wd67Z6fK8exZERH5LQV+bjRoFSUnmZ01DKCIXoaCv7Z57Dn7+2TxJKyJyAQr62q5BA3jjDfjLX2DTJqurEZEaSEHvD1q3hjffhNRUyMqyuhoRqWEU9P6iVy9z+GbgQDhxwupqRKQGUdD7k3vugWuvhbvv1jSEIuKioPcnNhu89BLs3w/PP291NSJSQ6hZir9p1Mi8meraa6F7d/jd76yuSEQspiN6f3T11fDaazBiBOTkWF2NiFhMQe+vEhJg2jRzdqozZ6yuRkQspKD3Z9Onm5OM//u/6+SsSB2moPdnNhu88gr87W/mpCUiUie5HfSHDh3ipptuIjIykqioKObPnw/A7NmzCQkJwW63Y7fb2bx5s9eKFTc0aWJOQzhzpjlhiYjUOW5fdRMQEMBzzz1HbGwshYWFxMXFkZiYCMCUKVOYPn2614oUD3XubE4sPnQoZGaad9KKSJ3hdtAHBwcTHBwMQNOmTYmIiCAvL89rhYmX3XabGfLDhsH775s9ckSkTvDKGH12djZ79uzhuuuuA2DBggXExMSQmprK8ePHvbEL8YZZs6BpU/MkrYjUGR4H/YkTJxg8eDDz5s2jWbNmTJo0if379+N0OgkODmbatGkXfF5GRgYOhwOHw+FpCVJZ9erBX/8Kb79tfhaROsFmGO5fd1dUVMSAAQPo378/U6dOLbc8OzubAQMGsHfv3ksX0caG8b0u/6s2X31l3jH73nvmTFUiUis5HA4yMzMrXM/tI3rDMLj77ruJiIgoE/L5+fmur9etW0d0dLS7uxBf6doVXnwRBg2CY8esrkZEfMztk7Eff/wxK1asoGvXrth/PSqcM2cOK1euxOl0YrPZaN++PYsXL/ZaseJFd9wBn31mtkl4+22oX9/qikTERzz2QjVoAAAFOUlEQVQauvFaERq6sUZxMSQmwg03wJNPWl2NiFSRz4duxA8EBMDq1fDqq7B+vdXViIiPKOjruqAgeOstGD8evv3W6mpExAcU9GL2rn/6aXMawsJCq6sRES9T0Itp3DiIj4exY9XpUsTPKOjlX154AXJz4Y9/tLoSEfEiTSUo/9KwIaxZYw7lxMZCv35WVyQiXqAjeikrNBRWroQ774SDB62uRkS8QEEv5fXpAw8/bN45e+qU1dWIiIcU9HJhDzwAkZEwcaJOzorUcgp6uTCbzZx+8O9/h4ULra5GRDygk7FycVdcAWvXQq9eZpfL3r2trkhE3KAjerm0Tp1g+XIYPhy+/97qakTEDQp6qditt8KkSTBkCJw9a3U1IlJFCnqpnEcegZYtYcoUqysRkSpS0Evl1Ktndrnctg2WLbO6GhGpAgW9VF5gIKxbBzNmwOefW12NeEN+vnnfxD//aXUl4kM+C/otW7bQpUsXwsLCSE9P99VupLpFRsLLL8PgwfDjj1ZXI5564gn46CPzs/gtn8wwVVJSQufOnXnvvfcIDQ2lR48erFy5ksjIyAsXoRmmap+HHjKP6pcuhVGjzAlMWre2uqqaxzCgpASKisyP4uKyny/2dXUsLyyEDz+E0lJzaC4pCZo2NSekadDgX58r87Wvltevb97TIeXl5+Po3JnMSrQW98l19Lt37yYsLIyOHTsCcMcdd7Bhw4aLBr3UQk89ZV6Nk5wMX35pHhG6e2OVYdTMIPTG8uJiM6yqMzyvuKJyz//zn82APxf0Z8/CgAEVv75ffoGTJy/9+r31XpaUmPXWhP90fLEtT/4Te+IJOHGiUqv6JOjz8vJo27at6/vQ0FB27drli12JVQICYO5ciIkxg3rRIvjiCzMwqvqPu7T00v8wfPEPs3Hj6gmJgADzPalp8vPNieGLi83vi4th507znoma9JdZaemF/yLy5X/ap09X377q1XPv962kBD75pNJvo2V3xmZkZJCRkQFAw2MNcTgcVpUi7srJ+dfXhgH798PVV5vf16tntj1u2ND7+y0u/ldAiXtycswj8/OdOWP+x33uZyjuORfG3lZaav7MfvnF/PkZBtmVfKpPgj4kJIRDhw65vs/NzSUkJKTMOhMmTGDChAlA5Wcyl5pJP7/aTT8//+eTvyl79OhBVlYWBw8e5OzZs6xatYrk5GRf7EpERCrgkyP6gIAAFixYQP/+/SkpKSE1NZWoqChf7EpERCrgszH6pKQkkpKSKrXuuSEcqZ3086vd9PPzfz65jl5ERGqOGnjdl4iIeJPlQa9WCbVXamoqQUFBREdHW12KVNGhQ4e46aabiIyMJCoqivnz51tdkviQpUM3VW2VIDXLjh07aNKkCaNHj2bv3r1WlyNVkJ+fT35+PrGxsRQWFhIXF8f69ev1b89PWXpEf36rhMsuu8zVKkFqh/j4eJo3b251GeKG4OBgYmNjAWjatCkRERHk5eVZXJX4iqVBf6FWCfplE6le2dnZ7Nmzh+uuu87qUsRHLB+jFxHrnDhxgsGDBzNv3jyaNWtmdTniI5YGfWVaJYiIbxQVFTF48GBGjhzJoEGDrC5HfMjSoFerBBFrGIbB3XffTUREBFOnTrW6HPExS4P+/FYJERERDBs2TK0SapGUlBR69erFvn37CA0NZcmSJVaXJJX08ccfs2LFCj744APsdjt2u53NmzdbXZb4iO6MFRHxczoZKyLi5xT0IiJ+TkEvIuLnFPQiIn5OQS8i4ucU9CIifk5BLyLi5xT0IiJ+7v8BEjoLGLf11YwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# All emission distributions for variable 2\n", + "plt.figure(1)\n", + "for i in range(5):\n", + " plt.subplot(3,3, i+1)\n", + " hsmc1.extract(1, 2, i).plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "1e-05 0.099997 1e-05 1e-05 0.899973 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 1e-05 1e-05 0.330827 0.669153 \n", + "1e-05 0 1e-05 0.99997 1e-05 \n", + "1e-05 1e-05 0 0.99997 1e-05 \n", + "1e-05 1e-05 0.99997 0 1e-05 \n", + "0.334078 1e-05 1e-05 0.665902 0 \n", + "\n", + "recurrent class: states 0 1 2 3 4\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 42.6452 variance: 1548.84 standard deviation: 39.3553\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 3\n", + "mean: 9.33333 variance: 4.33333 standard deviation: 2.08167\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 1.04302 variance: 694.887 standard deviation: 26.3607\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 1\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 133.99 variance: 4450.56 standard deviation: 66.7125\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 1\n", + "mean: 54 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 59.2976 variance: 2783.15 standard deviation: 52.7556\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 36.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 0.0216902 variance: 14.3768 standard deviation: 3.79168\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 9\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1.52855 variance: 42.7353 standard deviation: 6.53722\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 54\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1.00363 variance: 2.41484 standard deviation: 1.55398\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 32\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 7.70238 variance: 605.89 standard deviation: 24.6148\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 15\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1.14876 variance: 1.97416 standard deviation: 1.40505\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 484\n", + "mean: 1.03306 variance: 0.528926 standard deviation: 0.727273\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1.10531 variance: 4.36154 standard deviation: 2.08843\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 393\n", + "mean: 1.09924 variance: 1.99268 standard deviation: 1.41162\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 15 PARAMETER : 4.24286 PROBABILITY : 0.521053\n", + "mean: 18.9 variance: 7.48485 standard deviation: 2.73585\n", + "coefficient of skewness: 1.03748 coefficient of kurtosis: 1.54774\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 3\n", + "mean: 19 variance: 13 standard deviation: 3.60555\n", + "\n", + "state 0 forward sojourn time distribution\n", + "mean: 10.148 variance: 33.7613 standard deviation: 5.81045\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 33 SUP_BOUND : 34 PROBABILITY : 0\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 forward sojourn time distribution\n", + "mean: 17 variance: 90.6667 standard deviation: 9.5219\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 5 PARAMETER : 1.87866 PROBABILITY : 0.234221\n", + "mean: 11.1422 variance: 26.2239 standard deviation: 5.12093\n", + "coefficient of skewness: 1.47218 coefficient of kurtosis: 3.23191\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 1\n", + "mean: 16 variance: 0 standard deviation: 0\n", + "\n", + "state 2 forward sojourn time distribution\n", + "mean: 7.24768 variance: 27.8932 standard deviation: 5.2814\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 16 PARAMETER : 2.12158 PROBABILITY : 0.0348733\n", + "mean: 74.7152 variance: 1683.67 standard deviation: 41.0326\n", + "coefficient of skewness: 1.37331 coefficient of kurtosis: 2.82868\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 1\n", + "mean: 27 variance: 0 standard deviation: 0\n", + "\n", + "state 3 forward sojourn time distribution\n", + "mean: 49.1232 variance: 1602.6 standard deviation: 40.0325\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 8\n", + "mean: 58.125 variance: 387.554 standard deviation: 19.6864\n", + "\n", + "STATE 4 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.31441 PROBABILITY : 0.0308293\n", + "mean: 42.3207 variance: 1340.3 standard deviation: 36.6102\n", + "coefficient of skewness: 1.74469 coefficient of kurtosis: 4.56552\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 9\n", + "mean: 28.6667 variance: 439.25 standard deviation: 20.9583\n", + "\n", + "state 4 forward sojourn time distribution\n", + "mean: 37.4924 variance: 1241.69 standard deviation: 35.2376\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 2\n", + "mean: 72 variance: 8 standard deviation: 2.82843\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.31639 variance: 0.298485 standard deviation: 0.546337\n", + "coefficient of skewness: 1.59711 coefficient of kurtosis: 2.03051\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.3 variance: 0.233333 standard deviation: 0.483046\n", + "coefficient of skewness: 1.0351 coefficient of kurtosis: -1.41429\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.100016 variance: 0.0900147 standard deviation: 0.300024\n", + "coefficient of skewness: 2.66647 coefficient of kurtosis: 5.1105\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.373379 variance: 0.272749 standard deviation: 0.522253\n", + "coefficient of skewness: 0.929715 coefficient of kurtosis: -0.296133\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 1.10624 variance: 0.460447 standard deviation: 0.678563\n", + "coefficient of skewness: 0.0292603 coefficient of kurtosis: -0.460447\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.9 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: -0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 1.09229 variance: 0.320825 standard deviation: 0.566414\n", + "coefficient of skewness: 0.642155 coefficient of kurtosis: 1.95209\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 1.1 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: 0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 5.72978 variance: 100.296 standard deviation: 10.0148\n", + "coefficient of skewness: 1.61552 coefficient of kurtosis: 1.99289\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 5.7 variance: 87.1222 standard deviation: 9.33393\n", + "coefficient of skewness: 1.16737 coefficient of kurtosis: -1.08077\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 3.30041 variance: 98.0207 standard deviation: 9.90054\n", + "coefficient of skewness: 2.66648 coefficient of kurtosis: 5.1103\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 3.3 variance: 108.9 standard deviation: 10.4355\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 3.57456 variance: 33.1059 standard deviation: 5.75378\n", + "coefficient of skewness: 1.66346 coefficient of kurtosis: 2.53544\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 1.6 variance: 25.6 standard deviation: 5.05964\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 46.2552 variance: 871.729 standard deviation: 29.5251\n", + "coefficient of skewness: -0.349981 coefficient of kurtosis: -1.15396\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 49.2 variance: 875.956 standard deviation: 29.5965\n", + "coefficient of skewness: -0.85303 coefficient of kurtosis: -0.955818\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 41.1401 variance: 999.377 standard deviation: 31.6129\n", + "coefficient of skewness: 0.398737 coefficient of kurtosis: -1.076\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 40.2 variance: 842.844 standard deviation: 29.0318\n", + "coefficient of skewness: 0.213423 coefficient of kurtosis: -1.49886\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3662\n", + "OUTPUT 1 : 0.4624\n", + "OUTPUT 2 : 0.1527\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0187\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1212\n", + "OUTPUT 1 : 0.5757\n", + "OUTPUT 2 : 0.303\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1601\n", + "OUTPUT 1 : 0.0931\n", + "OUTPUT 2 : 0.2622\n", + "OUTPUT 3 : 0.4843\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1603\n", + "OUTPUT 1 : 0.0271\n", + "OUTPUT 2 : 0.2322\n", + "OUTPUT 3 : 0.5802\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3178\n", + "OUTPUT 1 : 0.3579\n", + "OUTPUT 2 : 0.2195\n", + "OUTPUT 3 : 0.0948\n", + "OUTPUT 4 : 0.01\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.366203 0.462481 0.152752 1e-05 0.0185537 \n", + "1 0.12121 0.575746 0.303024 1e-05 1e-05 \n", + "2 0.160177 0.0931718 0.262248 0.484393 1e-05 \n", + "3 0.160347 0.0271556 0.232285 0.580202 1e-05 \n", + "4 0.317895 0.357923 0.219547 0.0948046 0.00983027 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1393.29 (normalized: -1.39329)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.164562\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.164611 critical probability: 0.996793\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -1393.21 (normalized: -1.39321)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.0107418\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0107417 critical probability: 0.999986\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 2.66891 variance: 13.7052 standard deviation: 3.70205\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 2.01069 variance: 20.5595 standard deviation: 4.53426\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 3.42567 variance: 15.196 standard deviation: 3.8982\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 11.823 variance: 146.537 standard deviation: 12.1052\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 43.598 variance: 6027.8 standard deviation: 77.6389\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.5987 variance: 20.8907 standard deviation: 4.57064\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.53965 variance: 199.37 standard deviation: 14.1198\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.38623 variance: 15.0431 standard deviation: 3.87855\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.40231 variance: 13.4673 standard deviation: 3.66978\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 42.0107 variance: 5812.08 standard deviation: 76.237\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.32812 variance: 0.475583 standard deviation: 0.689626\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.52273 variance: 0.902345 standard deviation: 0.949918\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.29426 variance: 0.371534 standard deviation: 0.609536\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.15129 variance: 2.79827 standard deviation: 1.6728\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01118 variance: 0.0110572 standard deviation: 0.105153\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 17.3872 variance: 17.5437 standard deviation: 4.18852\n", + "coefficient of skewness: 0.0584217 coefficient of kurtosis: -0.423724\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 13.3592 variance: 46.0381 standard deviation: 6.78514\n", + "coefficient of skewness: 0.388686 coefficient of kurtosis: -0.886706\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 17.4831 variance: 8.95742 standard deviation: 2.9929\n", + "coefficient of skewness: 0.0273391 coefficient of kurtosis: -0.0387641\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.941 variance: 36.0444 standard deviation: 6.0037\n", + "coefficient of skewness: -0.204394 coefficient of kurtosis: -0.771918\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.505432 variance: 0.640116 standard deviation: 0.800073\n", + "coefficient of skewness: 1.78689 coefficient of kurtosis: 3.54399\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.566 variance: 52.9183 standard deviation: 7.2745\n", + "coefficient of skewness: 0.276865 coefficient of kurtosis: -0.513004\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.8642 variance: 128.391 standard deviation: 11.331\n", + "coefficient of skewness: 0.333177 coefficient of kurtosis: -0.838437\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 22.5893 variance: 19.4883 standard deviation: 4.41456\n", + "coefficient of skewness: 0.163523 coefficient of kurtosis: 0.0138123\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 32.4692 variance: 258.561 standard deviation: 16.0798\n", + "coefficient of skewness: -0.248885 coefficient of kurtosis: -1.06867\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.511258 variance: 0.660977 standard deviation: 0.813005\n", + "coefficient of skewness: 1.81735 coefficient of kurtosis: 3.72311\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.659725 0.161589 \n", + "_ _ _ 0.61933 _ \n", + "_ _ _ 0.0959795 _ \n", + "_ _ 0.0959795 _ _ \n", + "0.161589 _ _ 0.498136 _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9823\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0177\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9696\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0303\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3215\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.4654\n", + "OUTPUT 3 : 0.2131\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.248\n", + "OUTPUT 1 : 0.1578\n", + "OUTPUT 2 : 0.2681\n", + "OUTPUT 3 : 0.3261\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.99\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0099\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.982333 1e-05 1e-05 0.0176466 \n", + "1 0.969678 1e-05 0.0303024 1e-05 \n", + "2 0.321589 1e-05 0.465421 0.212979 \n", + "3 0.248095 0.157832 0.268155 0.325918 \n", + "4 0.990022 1e-05 0.00995797 1e-05 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1072.33 (normalized: -1.07233)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.268359\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.269214 critical probability: 0.965711\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -1072.3 (normalized: -1.0723)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.202107\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.20173 critical probability: 0.977309\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.0117915 variance: 0.0116525 standard deviation: 0.107947\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 64.6206 variance: 2815.95 standard deviation: 53.0655\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 40.6833 variance: 1353.38 standard deviation: 36.7883\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 55.8141 variance: 2173.79 standard deviation: 46.6239\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.86551 variance: 4.83638 standard deviation: 2.19918\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 7.23316 variance: 53.2919 standard deviation: 7.30013\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.14467 variance: 38.9366 standard deviation: 6.23992\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.20339 variance: 8.45628 standard deviation: 2.90797\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 4.25799 variance: 164.722 standard deviation: 12.8344\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.18208 variance: 0.209024 standard deviation: 0.457191\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.3834 variance: 0.541493 standard deviation: 0.735862\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.46769 variance: 0.677099 standard deviation: 0.822861\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.839 variance: 37.1365 standard deviation: 6.09398\n", + "coefficient of skewness: -0.110561 coefficient of kurtosis: -1.06927\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.17639 variance: 19.2377 standard deviation: 4.38608\n", + "coefficient of skewness: 0.0897507 coefficient of kurtosis: -0.889554\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.546 variance: 43.4575 standard deviation: 6.59223\n", + "coefficient of skewness: -0.153054 coefficient of kurtosis: -1.09724\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 10.9496 variance: 50.6788 standard deviation: 7.11891\n", + "coefficient of skewness: -0.200948 coefficient of kurtosis: -1.10551\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 62.1837 variance: 564.066 standard deviation: 23.7501\n", + "coefficient of skewness: 0.331579 coefficient of kurtosis: -1.19244\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.3011 variance: 27.8618 standard deviation: 5.27843\n", + "coefficient of skewness: 0.160849 coefficient of kurtosis: -0.805722\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.577 variance: 91.0403 standard deviation: 9.5415\n", + "coefficient of skewness: -0.0523614 coefficient of kurtosis: -1.0567\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 15.9383 variance: 111.63 standard deviation: 10.5655\n", + "coefficient of skewness: -0.143707 coefficient of kurtosis: -1.07632\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.734239 0.0176366 \n", + "_ _ _ 0.721583 _ \n", + "_ _ _ 0.270761 _ \n", + "_ _ 0.270761 _ _ \n", + "0.0176366 _ _ 0.741927 _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3724\n", + "OUTPUT 1 : 0.6276\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3333\n", + "OUTPUT 1 : 0.6667\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.4903\n", + "OUTPUT 1 : 0.5097\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2248\n", + "OUTPUT 1 : 0.7752\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8803\n", + "OUTPUT 1 : 0.1197\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.372465 0.627535 \n", + "1 0.333333 0.666667 \n", + "2 0.490302 0.509698 \n", + "3 0.224869 0.775131 \n", + "4 0.880379 0.119621 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -693.085 (normalized: -0.693085)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.200141\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.200195 critical probability: 0.654564\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -693.023 (normalized: -0.693023)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.0766384\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.0766333 critical probability: 0.781913\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.314463 variance: 0.922357 standard deviation: 0.960394\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 5.92123 variance: 42.726 standard deviation: 6.53652\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.19914 variance: 6.32696 standard deviation: 2.51535\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.74674 variance: 5.16151 standard deviation: 2.2719\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.78457 variance: 16.3586 standard deviation: 4.04457\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.40088 variance: 11.059 standard deviation: 3.32551\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.029 variance: 13.5779 standard deviation: 3.68482\n", + "coefficient of skewness: -0.0308354 coefficient of kurtosis: -0.221071\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.8544 variance: 14.5911 standard deviation: 3.81983\n", + "coefficient of skewness: -0.0472219 coefficient of kurtosis: -0.215015\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 51.6071 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: 0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 48.3929 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: -0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.147595 0.507914 \n", + "_ _ _ 0.108464 _ \n", + "_ _ _ 0.265433 _ \n", + "_ _ 0.265433 _ _ \n", + "0.507914 _ _ 0.655509 _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2434.09 (normalized: -2.43409)\n", + "\n", + "state sequence entropy: 25.5422 (normalized: 0.0255422)\n", + "\n", + "log-likelihood of the observed sequences: -2421.31 (normalized: -2.42131)\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AIC): -4930.63\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AICc): -4934.78\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BIC): -5146.57\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BICc): -5044.53\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICL): -5197.65\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICLc): -5095.61\n", + "\n" + ] + } + ], + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Discard state sequence computations (entropy, Viterbi?)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "1e-05 0.099997 1e-05 1e-05 0.899973 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 1e-05 1e-05 0.330827 0.669153 \n", + "1e-05 0 1e-05 0.99997 1e-05 \n", + "1e-05 1e-05 0 0.99997 1e-05 \n", + "1e-05 1e-05 0.99997 0 1e-05 \n", + "0.334078 1e-05 1e-05 0.665902 0 \n", + "\n", + "recurrent class: states 0 1 2 3 4\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 42.6452 variance: 1548.84 standard deviation: 39.3553\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 1.04302 variance: 694.887 standard deviation: 26.3607\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 133.99 variance: 4450.56 standard deviation: 66.7125\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 59.2976 variance: 2783.15 standard deviation: 52.7556\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 0.0216902 variance: 14.3768 standard deviation: 3.79168\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1.52855 variance: 42.7353 standard deviation: 6.53722\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1.00363 variance: 2.41484 standard deviation: 1.55398\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 7.70238 variance: 605.89 standard deviation: 24.6148\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1.14876 variance: 1.97416 standard deviation: 1.40505\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1.10531 variance: 4.36154 standard deviation: 2.08843\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 15 PARAMETER : 4.24286 PROBABILITY : 0.521053\n", + "mean: 18.9 variance: 7.48485 standard deviation: 2.73585\n", + "coefficient of skewness: 1.03748 coefficient of kurtosis: 1.54774\n", + "\n", + "state 0 forward sojourn time distribution\n", + "mean: 10.148 variance: 33.7613 standard deviation: 5.81045\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 33 SUP_BOUND : 34 PROBABILITY : 0\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 forward sojourn time distribution\n", + "mean: 17 variance: 90.6667 standard deviation: 9.5219\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 5 PARAMETER : 1.87866 PROBABILITY : 0.234221\n", + "mean: 11.1422 variance: 26.2239 standard deviation: 5.12093\n", + "coefficient of skewness: 1.47218 coefficient of kurtosis: 3.23191\n", + "\n", + "state 2 forward sojourn time distribution\n", + "mean: 7.24768 variance: 27.8932 standard deviation: 5.2814\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 16 PARAMETER : 2.12158 PROBABILITY : 0.0348733\n", + "mean: 74.7152 variance: 1683.67 standard deviation: 41.0326\n", + "coefficient of skewness: 1.37331 coefficient of kurtosis: 2.82868\n", + "\n", + "state 3 forward sojourn time distribution\n", + "mean: 49.1232 variance: 1602.6 standard deviation: 40.0325\n", + "\n", + "STATE 4 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.31441 PROBABILITY : 0.0308293\n", + "mean: 42.3207 variance: 1340.3 standard deviation: 36.6102\n", + "coefficient of skewness: 1.74469 coefficient of kurtosis: 4.56552\n", + "\n", + "state 4 forward sojourn time distribution\n", + "mean: 37.4924 variance: 1241.69 standard deviation: 35.2376\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.31639 variance: 0.298485 standard deviation: 0.546337\n", + "coefficient of skewness: 1.59711 coefficient of kurtosis: 2.03051\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.100016 variance: 0.0900147 standard deviation: 0.300024\n", + "coefficient of skewness: 2.66647 coefficient of kurtosis: 5.1105\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.373379 variance: 0.272749 standard deviation: 0.522253\n", + "coefficient of skewness: 0.929715 coefficient of kurtosis: -0.296133\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 1.10624 variance: 0.460447 standard deviation: 0.678563\n", + "coefficient of skewness: 0.0292603 coefficient of kurtosis: -0.460447\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 1.09229 variance: 0.320825 standard deviation: 0.566414\n", + "coefficient of skewness: 0.642155 coefficient of kurtosis: 1.95209\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 5.72978 variance: 100.296 standard deviation: 10.0148\n", + "coefficient of skewness: 1.61552 coefficient of kurtosis: 1.99289\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 3.30041 variance: 98.0207 standard deviation: 9.90054\n", + "coefficient of skewness: 2.66648 coefficient of kurtosis: 5.1103\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 3.57456 variance: 33.1059 standard deviation: 5.75378\n", + "coefficient of skewness: 1.66346 coefficient of kurtosis: 2.53544\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 46.2552 variance: 871.729 standard deviation: 29.5251\n", + "coefficient of skewness: -0.349981 coefficient of kurtosis: -1.15396\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 41.1401 variance: 999.377 standard deviation: 31.6129\n", + "coefficient of skewness: 0.398737 coefficient of kurtosis: -1.076\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3662\n", + "OUTPUT 1 : 0.4624\n", + "OUTPUT 2 : 0.1527\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0187\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1212\n", + "OUTPUT 1 : 0.5757\n", + "OUTPUT 2 : 0.303\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1601\n", + "OUTPUT 1 : 0.0931\n", + "OUTPUT 2 : 0.2622\n", + "OUTPUT 3 : 0.4843\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1603\n", + "OUTPUT 1 : 0.0271\n", + "OUTPUT 2 : 0.2322\n", + "OUTPUT 3 : 0.5802\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3178\n", + "OUTPUT 1 : 0.3579\n", + "OUTPUT 2 : 0.2195\n", + "OUTPUT 3 : 0.0948\n", + "OUTPUT 4 : 0.01\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.366203 0.462481 0.152752 1e-05 0.0185537 \n", + "1 0.12121 0.575746 0.303024 1e-05 1e-05 \n", + "2 0.160177 0.0931718 0.262248 0.484393 1e-05 \n", + "3 0.160347 0.0271556 0.232285 0.580202 1e-05 \n", + "4 0.317895 0.357923 0.219547 0.0948046 0.00983027 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1393.29 (normalized: -1.39329)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.164562\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.164611 critical probability: 0.996793\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 2.66891 variance: 13.7052 standard deviation: 3.70205\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 2.01069 variance: 20.5595 standard deviation: 4.53426\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 3.42567 variance: 15.196 standard deviation: 3.8982\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 11.823 variance: 146.537 standard deviation: 12.1052\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 43.598 variance: 6027.8 standard deviation: 77.6389\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.5987 variance: 20.8907 standard deviation: 4.57064\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.53965 variance: 199.37 standard deviation: 14.1198\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.38623 variance: 15.0431 standard deviation: 3.87855\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.40231 variance: 13.4673 standard deviation: 3.66978\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 42.0107 variance: 5812.08 standard deviation: 76.237\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.32812 variance: 0.475583 standard deviation: 0.689626\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.52273 variance: 0.902345 standard deviation: 0.949918\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.29426 variance: 0.371534 standard deviation: 0.609536\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.15129 variance: 2.79827 standard deviation: 1.6728\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01118 variance: 0.0110572 standard deviation: 0.105153\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 17.3872 variance: 17.5437 standard deviation: 4.18852\n", + "coefficient of skewness: 0.0584217 coefficient of kurtosis: -0.423724\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 13.3592 variance: 46.0381 standard deviation: 6.78514\n", + "coefficient of skewness: 0.388686 coefficient of kurtosis: -0.886706\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 17.4831 variance: 8.95742 standard deviation: 2.9929\n", + "coefficient of skewness: 0.0273391 coefficient of kurtosis: -0.0387641\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.941 variance: 36.0444 standard deviation: 6.0037\n", + "coefficient of skewness: -0.204394 coefficient of kurtosis: -0.771918\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.505432 variance: 0.640116 standard deviation: 0.800073\n", + "coefficient of skewness: 1.78689 coefficient of kurtosis: 3.54399\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.566 variance: 52.9183 standard deviation: 7.2745\n", + "coefficient of skewness: 0.276865 coefficient of kurtosis: -0.513004\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.8642 variance: 128.391 standard deviation: 11.331\n", + "coefficient of skewness: 0.333177 coefficient of kurtosis: -0.838437\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 22.5893 variance: 19.4883 standard deviation: 4.41456\n", + "coefficient of skewness: 0.163523 coefficient of kurtosis: 0.0138123\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 32.4692 variance: 258.561 standard deviation: 16.0798\n", + "coefficient of skewness: -0.248885 coefficient of kurtosis: -1.06867\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.511258 variance: 0.660977 standard deviation: 0.813005\n", + "coefficient of skewness: 1.81735 coefficient of kurtosis: 3.72311\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.659725 0.161589 \n", + "_ _ _ 0.61933 _ \n", + "_ _ _ 0.0959795 _ \n", + "_ _ 0.0959795 _ _ \n", + "0.161589 _ _ 0.498136 _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9823\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0177\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9696\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0303\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3215\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.4654\n", + "OUTPUT 3 : 0.2131\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.248\n", + "OUTPUT 1 : 0.1578\n", + "OUTPUT 2 : 0.2681\n", + "OUTPUT 3 : 0.3261\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.99\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0099\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.982333 1e-05 1e-05 0.0176466 \n", + "1 0.969678 1e-05 0.0303024 1e-05 \n", + "2 0.321589 1e-05 0.465421 0.212979 \n", + "3 0.248095 0.157832 0.268155 0.325918 \n", + "4 0.990022 1e-05 0.00995797 1e-05 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1072.33 (normalized: -1.07233)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.268359\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.269214 critical probability: 0.965711\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.0117915 variance: 0.0116525 standard deviation: 0.107947\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 64.6206 variance: 2815.95 standard deviation: 53.0655\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 40.6833 variance: 1353.38 standard deviation: 36.7883\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 55.8141 variance: 2173.79 standard deviation: 46.6239\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.86551 variance: 4.83638 standard deviation: 2.19918\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 7.23316 variance: 53.2919 standard deviation: 7.30013\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.14467 variance: 38.9366 standard deviation: 6.23992\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.20339 variance: 8.45628 standard deviation: 2.90797\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 4.25799 variance: 164.722 standard deviation: 12.8344\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.18208 variance: 0.209024 standard deviation: 0.457191\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.3834 variance: 0.541493 standard deviation: 0.735862\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.46769 variance: 0.677099 standard deviation: 0.822861\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.839 variance: 37.1365 standard deviation: 6.09398\n", + "coefficient of skewness: -0.110561 coefficient of kurtosis: -1.06927\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.17639 variance: 19.2377 standard deviation: 4.38608\n", + "coefficient of skewness: 0.0897507 coefficient of kurtosis: -0.889554\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.546 variance: 43.4575 standard deviation: 6.59223\n", + "coefficient of skewness: -0.153054 coefficient of kurtosis: -1.09724\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 10.9496 variance: 50.6788 standard deviation: 7.11891\n", + "coefficient of skewness: -0.200948 coefficient of kurtosis: -1.10551\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 62.1837 variance: 564.066 standard deviation: 23.7501\n", + "coefficient of skewness: 0.331579 coefficient of kurtosis: -1.19244\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.3011 variance: 27.8618 standard deviation: 5.27843\n", + "coefficient of skewness: 0.160849 coefficient of kurtosis: -0.805722\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.577 variance: 91.0403 standard deviation: 9.5415\n", + "coefficient of skewness: -0.0523614 coefficient of kurtosis: -1.0567\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 15.9383 variance: 111.63 standard deviation: 10.5655\n", + "coefficient of skewness: -0.143707 coefficient of kurtosis: -1.07632\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.734239 0.0176366 \n", + "_ _ _ 0.721583 _ \n", + "_ _ _ 0.270761 _ \n", + "_ _ 0.270761 _ _ \n", + "0.0176366 _ _ 0.741927 _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3724\n", + "OUTPUT 1 : 0.6276\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3333\n", + "OUTPUT 1 : 0.6667\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.4903\n", + "OUTPUT 1 : 0.5097\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2248\n", + "OUTPUT 1 : 0.7752\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8803\n", + "OUTPUT 1 : 0.1197\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.372465 0.627535 \n", + "1 0.333333 0.666667 \n", + "2 0.490302 0.509698 \n", + "3 0.224869 0.775131 \n", + "4 0.880379 0.119621 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -693.085 (normalized: -0.693085)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.200141\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.200195 critical probability: 0.654564\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.314463 variance: 0.922357 standard deviation: 0.960394\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 5.92123 variance: 42.726 standard deviation: 6.53652\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.19914 variance: 6.32696 standard deviation: 2.51535\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.74674 variance: 5.16151 standard deviation: 2.2719\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.78457 variance: 16.3586 standard deviation: 4.04457\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.40088 variance: 11.059 standard deviation: 3.32551\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.029 variance: 13.5779 standard deviation: 3.68482\n", + "coefficient of skewness: -0.0308354 coefficient of kurtosis: -0.221071\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.8544 variance: 14.5911 standard deviation: 3.81983\n", + "coefficient of skewness: -0.0472219 coefficient of kurtosis: -0.215015\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 51.6071 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: 0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 48.3929 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: -0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.147595 0.507914 \n", + "_ _ _ 0.108464 _ \n", + "_ _ _ 0.265433 _ \n", + "_ _ 0.265433 _ _ \n", + "0.507914 _ _ 0.655509 _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the observed sequences: -2421.31 (normalized: -2.42131)\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AIC): -4930.63\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AICc): -4934.78\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BIC): -5146.57\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BICc): -5044.53\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICL): -5144.57\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICLc): -5042.53\n", + "\n" + ] + } + ], + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300, StateSequence=False))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the MCEM option would cause the library to crash" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300, Algorithm=\"MCEM\", MinNbStateSequence=1, MaxNbStateSequence=10, Parameter=10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the Equilibrium option (stationary) would cause the library to crash" + ] + }, + { + "cell_type": "raw", + "metadata": { + "scrolled": true + }, + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Equilibrium\", nb_states)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Change option in means of initial occupancy distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "0.100018 1e-05 1e-05 1e-05 0.899952 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 0.755682 1e-05 1e-05 0.244298 \n", + "1e-05 0 1e-05 0.661586 0.338394 \n", + "1e-05 1e-05 0 0.99997 1e-05 \n", + "1e-05 0.181216 0.818764 0 1e-05 \n", + "0.272698 0.000102883 0.72719 1e-05 0 \n", + "\n", + "recurrent class: states 0 1 2 3 4\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 97.075 variance: 47986.2 standard deviation: 219.058\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 4\n", + "mean: 6.75 variance: 24.9167 standard deviation: 4.99166\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 309.161 variance: 81065 standard deviation: 284.719\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 3\n", + "mean: 27.6667 variance: 14.3333 standard deviation: 3.78594\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 58.1834 variance: 4964.5 standard deviation: 70.4592\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 8\n", + "mean: 30.875 variance: 540.696 standard deviation: 23.2529\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 53.6105 variance: 1036.52 standard deviation: 32.195\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 36.75 variance: 271.643 standard deviation: 16.4816\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 9.90762 variance: 5542.22 standard deviation: 74.4461\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 9\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 3.34069 variance: 1462.44 standard deviation: 38.2419\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 82\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 113.938 variance: 53024.1 standard deviation: 230.27\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 7\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 5.8292 variance: 762.969 standard deviation: 27.6219\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 175\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1.22852 variance: 11.8949 standard deviation: 3.4489\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 498\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 8.95829 variance: 4959.29 standard deviation: 70.4222\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 206\n", + "mean: 1.20874 variance: 4.52695 standard deviation: 2.12766\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 14 PARAMETER : 1.60507 PROBABILITY : 0.17199\n", + "mean: 21.7273 variance: 44.9286 standard deviation: 6.70288\n", + "coefficient of skewness: 1.58567 coefficient of kurtosis: 3.76042\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 4\n", + "mean: 21.5 variance: 67 standard deviation: 8.18535\n", + "\n", + "state 0 forward sojourn time distribution\n", + "mean: 12.3974 variance: 67.962 standard deviation: 8.2439\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 1 SUP_BOUND : 4 PROBABILITY : 0.611111\n", + "mean: 2.83333 variance: 0.712963 standard deviation: 0.844371\n", + "coefficient of skewness: -0.263181 coefficient of kurtosis: -0.597403\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 3\n", + "mean: 3.33333 variance: 0.333333 standard deviation: 0.57735\n", + "\n", + "state 1 forward sojourn time distribution\n", + "mean: 2.04248 variance: 0.90766 standard deviation: 0.952712\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.27392 PROBABILITY : 0.0436501\n", + "mean: 28.9109 variance: 639.424 standard deviation: 25.2868\n", + "coefficient of skewness: 1.77242 coefficient of kurtosis: 4.71143\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 18.8333 variance: 326.167 standard deviation: 18.0601\n", + "\n", + "state 2 forward sojourn time distribution\n", + "mean: 26.0119 variance: 596.83 standard deviation: 24.4301\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 2\n", + "mean: 35 variance: 392 standard deviation: 19.799\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 71 PARAMETER : 6.19571 PROBABILITY : 0.113594\n", + "mean: 119.347 variance: 425.615 standard deviation: 20.6304\n", + "coefficient of skewness: 0.804958 coefficient of kurtosis: 0.970761\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 0\n", + "\n", + "state 3 forward sojourn time distribution\n", + "mean: 61.9565 variance: 1416.23 standard deviation: 37.6328\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 8\n", + "mean: 63.25 variance: 271.643 standard deviation: 16.4816\n", + "\n", + "STATE 4 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 4 PARAMETER : 1.79517 PROBABILITY : 0.105599\n", + "mean: 19.2048 variance: 143.986 standard deviation: 11.9994\n", + "coefficient of skewness: 1.49504 coefficient of kurtosis: 3.34924\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 11\n", + "mean: 19.5455 variance: 156.473 standard deviation: 12.5089\n", + "\n", + "state 4 forward sojourn time distribution\n", + "mean: 13.8505 variance: 133.352 standard deviation: 11.5478\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.394888 variance: 0.345295 standard deviation: 0.587618\n", + "coefficient of skewness: 1.30937 coefficient of kurtosis: 1.2568\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.4 variance: 0.266667 standard deviation: 0.516398\n", + "coefficient of skewness: 0.484123 coefficient of kurtosis: -1.95\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.292606 variance: 0.239747 standard deviation: 0.48964\n", + "coefficient of skewness: 1.33458 coefficient of kurtosis: 0.754394\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.3 variance: 0.233333 standard deviation: 0.483046\n", + "coefficient of skewness: 1.0351 coefficient of kurtosis: -1.41429\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.787451 variance: 0.169526 standard deviation: 0.411735\n", + "coefficient of skewness: -1.35888 coefficient of kurtosis: -0.00513732\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 0.90611 variance: 0.0853907 standard deviation: 0.292217\n", + "coefficient of skewness: -2.76565 coefficient of kurtosis: 5.73534\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 1.09297 variance: 0.212714 standard deviation: 0.461209\n", + "coefficient of skewness: 1.21609 coefficient of kurtosis: 4.62027\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 1.1 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: 0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 8.49943 variance: 173.307 standard deviation: 13.1646\n", + "coefficient of skewness: 1.48764 coefficient of kurtosis: 1.76481\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 8.6 variance: 145.6 standard deviation: 12.0665\n", + "coefficient of skewness: 1.04139 coefficient of kurtosis: -0.944158\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 0.827596 variance: 2.12344 standard deviation: 1.4572\n", + "coefficient of skewness: 1.58755 coefficient of kurtosis: 1.70787\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 1 variance: 2.66667 standard deviation: 1.63299\n", + "coefficient of skewness: 1.1482 coefficient of kurtosis: -1.125\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 20.9918 variance: 461.593 standard deviation: 21.4847\n", + "coefficient of skewness: 1.15802 coefficient of kurtosis: 0.759852\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 18.3 variance: 361.344 standard deviation: 19.0091\n", + "coefficient of skewness: 0.715145 coefficient of kurtosis: -1.44391\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 48.8286 variance: 677.208 standard deviation: 26.0232\n", + "coefficient of skewness: -0.513864 coefficient of kurtosis: -0.827292\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 50.6 variance: 922.489 standard deviation: 30.3725\n", + "coefficient of skewness: -0.906226 coefficient of kurtosis: -0.999491\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 20.8526 variance: 218.207 standard deviation: 14.7718\n", + "coefficient of skewness: 1.21048 coefficient of kurtosis: 1.69058\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 21.5 variance: 266.278 standard deviation: 16.318\n", + "coefficient of skewness: 1.48107 coefficient of kurtosis: 0.841687\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2733\n", + "OUTPUT 1 : 0.4937\n", + "OUTPUT 2 : 0.2203\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0127\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0\n", + "OUTPUT 1 : 0.5939\n", + "OUTPUT 2 : 0.1232\n", + "OUTPUT 3 : 0.2827\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1724\n", + "OUTPUT 1 : 0.2188\n", + "OUTPUT 2 : 0.4206\n", + "OUTPUT 3 : 0.1879\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.161\n", + "OUTPUT 1 : 0.0315\n", + "OUTPUT 2 : 0.2348\n", + "OUTPUT 3 : 0.5725\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.4569\n", + "OUTPUT 1 : 0.4746\n", + "OUTPUT 2 : 0.0392\n", + "OUTPUT 3 : 0.0105\n", + "OUTPUT 4 : 0.0188\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.273335 0.493714 0.220363 1e-05 0.0125771 \n", + "1 1e-05 0.593924 0.123263 0.282794 1e-05 \n", + "2 0.172458 0.218856 0.420689 0.187987 1e-05 \n", + "3 0.161034 0.0315884 0.234855 0.572513 1e-05 \n", + "4 0.456972 0.474691 0.0392654 0.0105606 0.0185114 \n", + "\n", + "theoretical weights: 0.0849961 0.00827595 0.209917 0.488285 0.208526\n", + "\n", + "log-likelihood: -1393.33 (normalized: -1.39333)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.259997\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.260005 critical probability: 0.992248\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.086 0.01 0.183 0.506 0.215\n", + "\n", + "log-likelihood: -1393.22 (normalized: -1.39322)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.0271268\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0271197 critical probability: 0.999909\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 1.3309 variance: 3.43597 standard deviation: 1.85364\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 1.09841 variance: 2.32223 standard deviation: 1.52389\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 12.0435 variance: 92.0633 standard deviation: 9.59496\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 26.7307 variance: 360.629 standard deviation: 18.9902\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 118.327 variance: 56098 standard deviation: 236.85\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.92512 variance: 24.6182 standard deviation: 4.96167\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 7.11144 variance: 194.072 standard deviation: 13.931\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 3.99689 variance: 15.2026 standard deviation: 3.89905\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.05188 variance: 5.15176 standard deviation: 2.26975\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 152.55 variance: 69772.7 standard deviation: 264.145\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.33463 variance: 0.553378 standard deviation: 0.743894\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.53872 variance: 1.0599 standard deviation: 1.02951\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.37863 variance: 0.562102 standard deviation: 0.749735\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.1735 variance: 2.69593 standard deviation: 1.64193\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01621 variance: 0.0159436 standard deviation: 0.126268\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.6296 variance: 11.5489 standard deviation: 3.39837\n", + "coefficient of skewness: 0.244558 coefficient of kurtosis: 0.0674132\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 12.7957 variance: 29.3875 standard deviation: 5.42103\n", + "coefficient of skewness: 0.636295 coefficient of kurtosis: -0.104981\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 16.3403 variance: 13.9054 standard deviation: 3.729\n", + "coefficient of skewness: -0.163452 coefficient of kurtosis: 0.102018\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.7789 variance: 30.5359 standard deviation: 5.52593\n", + "coefficient of skewness: -0.686732 coefficient of kurtosis: 0.199251\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.48547 variance: 0.57742 standard deviation: 0.759881\n", + "coefficient of skewness: 1.82071 coefficient of kurtosis: 4.08199\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.3355 variance: 39.4707 standard deviation: 6.28257\n", + "coefficient of skewness: 0.711257 coefficient of kurtosis: 0.717746\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.7229 variance: 107.77 standard deviation: 10.3812\n", + "coefficient of skewness: 0.955382 coefficient of kurtosis: 0.62439\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 23.0924 variance: 43.1067 standard deviation: 6.56557\n", + "coefficient of skewness: 0.291014 coefficient of kurtosis: 0.280253\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 32.3555 variance: 179.578 standard deviation: 13.4007\n", + "coefficient of skewness: -0.504688 coefficient of kurtosis: -0.439311\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.493614 variance: 0.604962 standard deviation: 0.777793\n", + "coefficient of skewness: 1.86284 coefficient of kurtosis: 4.32088\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.382993 _ _ 0.200122 \n", + "_ _ _ 0.562335 0.475463 \n", + "_ _ _ 0.384526 _ \n", + "_ 0.562335 0.384526 _ _ \n", + "0.200122 0.475463 0.55885 _ _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9769\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0115\n", + "OUTPUT 3 : 0.0116\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9785\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0214\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2506\n", + "OUTPUT 1 : 0.1479\n", + "OUTPUT 2 : 0.282\n", + "OUTPUT 3 : 0.3195\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.976987 1e-05 0.0115013 0.0115013 \n", + "1 0.99997 1e-05 1e-05 1e-05 \n", + "2 0.978516 1e-05 0.0214642 1e-05 \n", + "3 0.250607 0.147907 0.282008 0.319478 \n", + "4 0.99997 1e-05 1e-05 1e-05 \n", + "\n", + "theoretical weights: 0.0849961 0.00827595 0.209917 0.488285 0.208526\n", + "\n", + "log-likelihood: -1072.59 (normalized: -1.07259)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.790717\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.794581 critical probability: 0.850763\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.086 0.01 0.183 0.506 0.215\n", + "\n", + "log-likelihood: -1072.2 (normalized: -1.0722)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.00336485\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.00336586 critical probability: 0.999948\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.00227791 variance: 0.00227272 standard deviation: 0.047673\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 59.3439 variance: 1074.29 standard deviation: 32.7763\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 43.4967 variance: 656.924 standard deviation: 25.6305\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 51.9767 variance: 961.984 standard deviation: 31.0159\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.00981 variance: 5.42944 standard deviation: 2.33012\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 8.18432 variance: 118.741 standard deviation: 10.8968\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.29111 variance: 33.8118 standard deviation: 5.81479\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.82594 variance: 39.0785 standard deviation: 6.25128\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 3.73605 variance: 103.886 standard deviation: 10.1924\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.17002 variance: 0.193998 standard deviation: 0.440452\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.37647 variance: 0.512666 standard deviation: 0.716007\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.45579 variance: 0.640436 standard deviation: 0.800272\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.619 variance: 24.8989 standard deviation: 4.98988\n", + "coefficient of skewness: -0.164428 coefficient of kurtosis: -0.728907\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.17422 variance: 14.6461 standard deviation: 3.82702\n", + "coefficient of skewness: 0.0542412 coefficient of kurtosis: -0.674323\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.4927 variance: 29.3026 standard deviation: 5.41318\n", + "coefficient of skewness: -0.241197 coefficient of kurtosis: -0.724883\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 10.8055 variance: 35.5562 standard deviation: 5.9629\n", + "coefficient of skewness: -0.280754 coefficient of kurtosis: -0.797471\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 62.761 variance: 376.175 standard deviation: 19.3952\n", + "coefficient of skewness: 0.458389 coefficient of kurtosis: -0.819817\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.22259 variance: 20.9672 standard deviation: 4.579\n", + "coefficient of skewness: 0.134399 coefficient of kurtosis: -0.595924\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.3186 variance: 59.8718 standard deviation: 7.73769\n", + "coefficient of skewness: -0.153446 coefficient of kurtosis: -0.726919\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 15.6979 variance: 79.0342 standard deviation: 8.89012\n", + "coefficient of skewness: -0.20687 coefficient of kurtosis: -0.78563\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.0229825 _ _ 0.0229825 \n", + "_ _ _ 0.749363 1.11022e-16 \n", + "_ _ _ 0.727908 _ \n", + "_ 0.749363 0.727908 _ _ \n", + "0.0229825 1.11022e-16 0.0214542 _ _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3444\n", + "OUTPUT 1 : 0.6556\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.6032\n", + "OUTPUT 1 : 0.3968\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.7692\n", + "OUTPUT 1 : 0.2308\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2413\n", + "OUTPUT 1 : 0.7587\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9862\n", + "OUTPUT 1 : 0.0138\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.344475 0.655525 \n", + "1 0.603266 0.396734 \n", + "2 0.769205 0.230795 \n", + "3 0.241372 0.758628 \n", + "4 0.986225 0.013775 \n", + "\n", + "theoretical weights: 0.0849961 0.00827595 0.209917 0.488285 0.208526\n", + "\n", + "log-likelihood: -693.196 (normalized: -0.693196)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.420884\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.421077 critical probability: 0.5164\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.086 0.01 0.183 0.506 0.215\n", + "\n", + "log-likelihood: -692.99 (normalized: -0.69299)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.0101753\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.0101758 critical probability: 0.91965\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.190724 variance: 0.72691 standard deviation: 0.85259\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 16.0954 variance: 142.381 standard deviation: 11.9324\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.36808 variance: 6.79957 standard deviation: 2.6076\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.56234 variance: 2.60968 standard deviation: 1.61545\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.48749 variance: 18.2705 standard deviation: 4.2744\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.48534 variance: 10.3593 standard deviation: 3.21858\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 15.7945 variance: 12.3535 standard deviation: 3.51476\n", + "coefficient of skewness: -0.138538 coefficient of kurtosis: 0.0928305\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.582 variance: 12.8657 standard deviation: 3.58688\n", + "coefficient of skewness: -0.140303 coefficient of kurtosis: 0.145613\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 51.9253 variance: 245.161 standard deviation: 15.6576\n", + "coefficient of skewness: 0.367878 coefficient of kurtosis: -0.562341\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 48.0747 variance: 245.161 standard deviation: 15.6576\n", + "coefficient of skewness: -0.367878 coefficient of kurtosis: -0.562341\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.258791 _ _ 0.64175 \n", + "_ _ _ 0.361894 0.382959 \n", + "_ _ _ 0.527834 _ \n", + "_ 0.361894 0.527834 _ _ \n", + "0.64175 0.382959 0.217019 _ _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2348.43 (normalized: -2.34843)\n", + "\n", + "state sequence entropy: 22.1064 (normalized: 0.0221064)\n", + "\n", + "log-likelihood of the observed sequences: -2337.13 (normalized: -2.33713)\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AIC): -4762.25\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AICc): -4766.4\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BIC): -4978.2\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BICc): -4869.82\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICL): -5022.41\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICLc): -4914.03\n", + "\n" + ] + } + ], + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300, InitialOccupancyMean=20))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Change option in estimating occupancy distributions (censoring, etc.?)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "1e-05 0.0999969 1e-05 1e-05 0.899973 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 1e-05 1e-05 0.335476 0.664504 \n", + "0.0097071 0 0.990273 1e-05 1e-05 \n", + "1e-05 1e-05 0 0.99997 1e-05 \n", + "1e-05 1e-05 0.99997 0 1e-05 \n", + "0.272723 1e-05 0.727257 1e-05 0 \n", + "\n", + "recurrent class: states 0 1 2 3 4\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 19.1578 variance: 331.552 standard deviation: 18.2086\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 3\n", + "mean: 9.33333 variance: 4.33333 standard deviation: 2.08167\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 0.742908 variance: 493.711 standard deviation: 22.2196\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 1\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 38.7492 variance: 1763.39 standard deviation: 41.9928\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 9\n", + "mean: 29.7778 variance: 483.944 standard deviation: 21.9987\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 51.6395 variance: 844.13 standard deviation: 29.0539\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 36.625 variance: 272.268 standard deviation: 16.5005\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 0.0456987 variance: 11.4282 standard deviation: 3.38057\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 9\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1.17019 variance: 7.02821 standard deviation: 2.65108\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 59\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1.00411 variance: 2.74126 standard deviation: 1.65567\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 20\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 4.82983 variance: 353.6 standard deviation: 18.8042\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 187\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1.25972 variance: 10.1533 standard deviation: 3.18642\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 499\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1.22129 variance: 8.75745 standard deviation: 2.9593\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 205\n", + "mean: 1.21463 variance: 4.70861 standard deviation: 2.16993\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 1 SUP_BOUND : 27 PROBABILITY : 0.784059\n", + "mean: 21.3855 variance: 4.40207 standard deviation: 2.09811\n", + "coefficient of skewness: -0.270776 coefficient of kurtosis: -0.00360327\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 3\n", + "mean: 20.6667 variance: 6.33333 standard deviation: 2.51661\n", + "\n", + "state 0 forward sojourn time distribution\n", + "mean: 11.2957 variance: 40.1799 standard deviation: 6.33876\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 1 SUP_BOUND : 21 PROBABILITY : 1\n", + "mean: 21 variance: 0 standard deviation: 0\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 21 variance: 0 standard deviation: 0\n", + "\n", + "state 1 forward sojourn time distribution\n", + "mean: 11 variance: 36.6667 standard deviation: 6.0553\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.66822 PROBABILITY : 0.0647549\n", + "mean: 25.0938 variance: 372.076 standard deviation: 19.2893\n", + "coefficient of skewness: 1.54934 coefficient of kurtosis: 3.59935\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 7\n", + "mean: 18 variance: 276.667 standard deviation: 16.6333\n", + "\n", + "state 2 forward sojourn time distribution\n", + "mean: 20.4594 variance: 330.934 standard deviation: 18.1916\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 2\n", + "mean: 35 variance: 392 standard deviation: 19.799\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 1 SUP_BOUND : 101 PROBABILITY : 0.951097\n", + "mean: 96.1097 variance: 4.65117 standard deviation: 2.15666\n", + "coefficient of skewness: -0.41833 coefficient of kurtosis: 0.155\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 0\n", + "\n", + "state 3 forward sojourn time distribution\n", + "mean: 48.579 variance: 771.983 standard deviation: 27.7846\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 8\n", + "mean: 63.375 variance: 272.268 standard deviation: 16.5005\n", + "\n", + "STATE 4 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 5 PARAMETER : 1.66742 PROBABILITY : 0.107522\n", + "mean: 18.8403 variance: 128.721 standard deviation: 11.3455\n", + "coefficient of skewness: 1.55135 coefficient of kurtosis: 3.60614\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 11\n", + "mean: 19.4545 variance: 142.073 standard deviation: 11.9194\n", + "\n", + "state 4 forward sojourn time distribution\n", + "mean: 13.3357 variance: 122.204 standard deviation: 11.0546\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.294645 variance: 0.313468 standard deviation: 0.559883\n", + "coefficient of skewness: 1.91728 coefficient of kurtosis: 3.4391\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.3 variance: 0.233333 standard deviation: 0.483046\n", + "coefficient of skewness: 1.0351 coefficient of kurtosis: -1.41429\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.100019 variance: 0.0900171 standard deviation: 0.300028\n", + "coefficient of skewness: 2.66643 coefficient of kurtosis: 5.11033\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.882246 variance: 0.104127 standard deviation: 0.322687\n", + "coefficient of skewness: -2.36118 coefficient of kurtosis: 3.61926\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.9 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: -3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 0.927002 variance: 0.0676725 standard deviation: 0.260139\n", + "coefficient of skewness: -3.2827 coefficient of kurtosis: 8.77733\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 1.09027 variance: 0.335458 standard deviation: 0.579187\n", + "coefficient of skewness: 0.857229 coefficient of kurtosis: 2.50167\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 1.1 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: 0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 6.22751 variance: 138.531 standard deviation: 11.7699\n", + "coefficient of skewness: 1.83581 coefficient of kurtosis: 2.8162\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 6.2 variance: 101.067 standard deviation: 10.0532\n", + "coefficient of skewness: 1.08785 coefficient of kurtosis: -1.28817\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 2.10038 variance: 39.6972 standard deviation: 6.30057\n", + "coefficient of skewness: 2.66643 coefficient of kurtosis: 5.11035\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 2.1 variance: 44.1 standard deviation: 6.64078\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 21.2227 variance: 331.759 standard deviation: 18.2143\n", + "coefficient of skewness: 1.11093 coefficient of kurtosis: 1.06852\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 19.6 variance: 325.378 standard deviation: 18.0382\n", + "coefficient of skewness: 0.707661 coefficient of kurtosis: -1.39215\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 50.062 variance: 594.598 standard deviation: 24.3844\n", + "coefficient of skewness: -0.63061 coefficient of kurtosis: -0.567965\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 50.7 variance: 925.789 standard deviation: 30.4268\n", + "coefficient of skewness: -0.910424 coefficient of kurtosis: -1.0025\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 20.3874 variance: 238.364 standard deviation: 15.439\n", + "coefficient of skewness: 1.12237 coefficient of kurtosis: 1.32975\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 21.4 variance: 250.933 standard deviation: 15.8409\n", + "coefficient of skewness: 1.35155 coefficient of kurtosis: 0.609524\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3363\n", + "OUTPUT 1 : 0.4672\n", + "OUTPUT 2 : 0.1644\n", + "OUTPUT 3 : 0.0156\n", + "OUTPUT 4 : 0.0165\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.0952\n", + "OUTPUT 1 : 0.619\n", + "OUTPUT 2 : 0.2857\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1717\n", + "OUTPUT 1 : 0.2351\n", + "OUTPUT 2 : 0.4124\n", + "OUTPUT 3 : 0.1806\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1608\n", + "OUTPUT 1 : 0.0315\n", + "OUTPUT 2 : 0.2346\n", + "OUTPUT 3 : 0.5728\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.4551\n", + "OUTPUT 1 : 0.477\n", + "OUTPUT 2 : 0.0381\n", + "OUTPUT 3 : 0.0106\n", + "OUTPUT 4 : 0.0192\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.336323 0.467266 0.164478 0.0156649 0.0162676 \n", + "1 0.0952363 0.619035 0.285709 1e-05 1e-05 \n", + "2 0.171772 0.235115 0.412427 0.180676 1e-05 \n", + "3 0.160898 0.0315762 0.234694 0.572822 1e-05 \n", + "4 0.455127 0.477007 0.0381051 0.0106977 0.0190627 \n", + "\n", + "theoretical weights: 0.0622751 0.0210038 0.212227 0.50062 0.203874\n", + "\n", + "log-likelihood: -1393.23 (normalized: -1.39323)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.0580969\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0579579 critical probability: 0.999588\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.062 0.021 0.196 0.507 0.214\n", + "\n", + "log-likelihood: -1393.22 (normalized: -1.39322)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.0348639\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0348632 critical probability: 0.99985\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 1.9453 variance: 13.5763 standard deviation: 3.68461\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 1.0477 variance: 2.19288 standard deviation: 1.48084\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 12.2463 variance: 95.4752 standard deviation: 9.77114\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 25.5748 variance: 328.574 standard deviation: 18.1266\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 25.9424 variance: 6190.4 standard deviation: 78.6791\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.76433 variance: 23.8147 standard deviation: 4.88003\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.4801 variance: 161.616 standard deviation: 12.7128\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 3.96961 variance: 15.1859 standard deviation: 3.89691\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.1104 variance: 5.81539 standard deviation: 2.41151\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 28.2972 variance: 7031.85 standard deviation: 83.8561\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.35561 variance: 0.599092 standard deviation: 0.77401\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.56108 variance: 1.10517 standard deviation: 1.05127\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.38353 variance: 0.571672 standard deviation: 0.75609\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.15259 variance: 2.65966 standard deviation: 1.63085\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01748 variance: 0.0171739 standard deviation: 0.131049\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.55 variance: 14.2032 standard deviation: 3.76871\n", + "coefficient of skewness: 0.282233 coefficient of kurtosis: 0.0840006\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 12.6615 variance: 28.3586 standard deviation: 5.32528\n", + "coefficient of skewness: 0.75025 coefficient of kurtosis: 0.121258\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 16.2741 variance: 15.9659 standard deviation: 3.99574\n", + "coefficient of skewness: -0.241461 coefficient of kurtosis: 0.116122\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.9482 variance: 29.7116 standard deviation: 5.45083\n", + "coefficient of skewness: -0.800078 coefficient of kurtosis: 0.418936\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.481946 variance: 0.627315 standard deviation: 0.792032\n", + "coefficient of skewness: 1.98272 coefficient of kurtosis: 4.86885\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.2737 variance: 51.8996 standard deviation: 7.20414\n", + "coefficient of skewness: 0.740713 coefficient of kurtosis: 0.663732\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.5056 variance: 99.6488 standard deviation: 9.98242\n", + "coefficient of skewness: 1.01437 coefficient of kurtosis: 0.804815\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 22.9033 variance: 44.9425 standard deviation: 6.70392\n", + "coefficient of skewness: 0.0589027 coefficient of kurtosis: 0.133203\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 32.8267 variance: 169.61 standard deviation: 13.0234\n", + "coefficient of skewness: -0.648995 coefficient of kurtosis: -0.163228\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.490679 variance: 0.658877 standard deviation: 0.811712\n", + "coefficient of skewness: 2.0237 coefficient of kurtosis: 5.11657\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.627373 0.13134 \n", + "0.273 _ 0.38392 _ _ \n", + "_ _ _ 0.392146 _ \n", + "_ _ 0.392146 _ _ \n", + "0.13134 _ 0.5443 _ _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9844\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0156\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9523\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0476\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9799\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.02\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2511\n", + "OUTPUT 1 : 0.1478\n", + "OUTPUT 2 : 0.2818\n", + "OUTPUT 3 : 0.3193\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.984405 1e-05 1e-05 0.0155748 \n", + "1 0.952362 1e-05 0.0476181 1e-05 \n", + "2 0.979966 1e-05 0.0200142 1e-05 \n", + "3 0.251119 0.147806 0.281817 0.319257 \n", + "4 0.99997 1e-05 1e-05 1e-05 \n", + "\n", + "theoretical weights: 0.0622751 0.0210038 0.212227 0.50062 0.203874\n", + "\n", + "log-likelihood: -1072.25 (normalized: -1.07225)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.100637\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.100804 critical probability: 0.991741\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.062 0.021 0.196 0.507 0.214\n", + "\n", + "log-likelihood: -1072.2 (normalized: -1.0722)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.000748833\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.000748947 critical probability: 0.999995\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.00456702 variance: 0.00454616 standard deviation: 0.0674252\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 57.3854 variance: 883.062 standard deviation: 29.7164\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 44.5049 variance: 792.566 standard deviation: 28.1525\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 49.8411 variance: 706.985 standard deviation: 26.5892\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.91024 variance: 4.93843 standard deviation: 2.22226\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 8.4299 variance: 115.502 standard deviation: 10.7472\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.37435 variance: 32.3846 standard deviation: 5.69075\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.97466 variance: 40.018 standard deviation: 6.32598\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 4.13358 variance: 119.699 standard deviation: 10.9407\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.16949 variance: 0.19334 standard deviation: 0.439705\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.37435 variance: 0.50951 standard deviation: 0.7138\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.45373 variance: 0.637134 standard deviation: 0.798207\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.8295 variance: 23.2913 standard deviation: 4.8261\n", + "coefficient of skewness: -0.257989 coefficient of kurtosis: -0.582085\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.32654 variance: 13.4149 standard deviation: 3.66264\n", + "coefficient of skewness: 0.00952101 coefficient of kurtosis: -0.568178\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.7136 variance: 27.6015 standard deviation: 5.25371\n", + "coefficient of skewness: -0.350747 coefficient of kurtosis: -0.543012\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 11.0701 variance: 31.3097 standard deviation: 5.5955\n", + "coefficient of skewness: -0.348479 coefficient of kurtosis: -0.618926\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 61.8865 variance: 334.329 standard deviation: 18.2847\n", + "coefficient of skewness: 0.574779 coefficient of kurtosis: -0.571632\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.39999 variance: 19.2945 standard deviation: 4.39255\n", + "coefficient of skewness: 0.0959192 coefficient of kurtosis: -0.498869\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.6334 variance: 55.8112 standard deviation: 7.47069\n", + "coefficient of skewness: -0.24835 coefficient of kurtosis: -0.56732\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 16.0801 variance: 70.2237 standard deviation: 8.37996\n", + "coefficient of skewness: -0.268131 coefficient of kurtosis: -0.623359\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.733286 0.0155648 \n", + "0.0476081 _ 0.0276039 _ _ \n", + "_ _ _ 0.728847 _ \n", + "_ _ 0.728847 _ _ \n", + "0.0155648 _ 0.0200042 _ _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3943\n", + "OUTPUT 1 : 0.6057\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2857\n", + "OUTPUT 1 : 0.7143\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.7485\n", + "OUTPUT 1 : 0.2515\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2413\n", + "OUTPUT 1 : 0.7587\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9911\n", + "OUTPUT 1 : 0.0089\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.394375 0.605625 \n", + "1 0.285714 0.714286 \n", + "2 0.748509 0.251491 \n", + "3 0.241393 0.758607 \n", + "4 0.991113 0.00888733 \n", + "\n", + "theoretical weights: 0.0622751 0.0210038 0.212227 0.50062 0.203874\n", + "\n", + "log-likelihood: -693.007 (normalized: -0.693007)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.0441889\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.0441934 critical probability: 0.833494\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.062 0.021 0.196 0.507 0.214\n", + "\n", + "log-likelihood: -692.999 (normalized: -0.692999)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.0279661\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.0279683 critical probability: 0.867183\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.24348 variance: 1.19738 standard deviation: 1.09425\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 16.8065 variance: 140.156 standard deviation: 11.8387\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.26661 variance: 6.27801 standard deviation: 2.5056\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.58358 variance: 2.60594 standard deviation: 1.61429\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.61628 variance: 20.4333 standard deviation: 4.52033\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.39104 variance: 9.89405 standard deviation: 3.14548\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 15.9807 variance: 12.3065 standard deviation: 3.50806\n", + "coefficient of skewness: -0.149953 coefficient of kurtosis: 0.0889338\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.7814 variance: 12.9768 standard deviation: 3.60233\n", + "coefficient of skewness: -0.140755 coefficient of kurtosis: 0.131377\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 51.2323 variance: 211.456 standard deviation: 14.5415\n", + "coefficient of skewness: 0.46967 coefficient of kurtosis: -0.412376\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 48.7677 variance: 211.456 standard deviation: 14.5415\n", + "coefficient of skewness: -0.46967 coefficient of kurtosis: -0.412376\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.152982 0.596738 \n", + "0.108661 _ 0.462795 _ _ \n", + "_ _ _ 0.507116 _ \n", + "_ _ 0.507116 _ _ \n", + "0.596738 _ 0.242603 _ _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2344.89 (normalized: -2.34489)\n", + "\n", + "state sequence entropy: 20.1842 (normalized: 0.0201842)\n", + "\n", + "log-likelihood of the observed sequences: -2336.09 (normalized: -2.33609)\n", + "\n", + "41 free parameters 2 * penalyzed log-likelihood (AIC): -4754.19\n", + "\n", + "41 free parameters 2 * penalyzed log-likelihood (AICc): -4757.78\n", + "\n", + "41 free parameters 2 * penalyzed log-likelihood (BIC): -4955.41\n", + "\n", + "41 free parameters 2 * penalyzed log-likelihood (BICc): -4862.96\n", + "\n", + "41 free parameters 2 * penalyzed log-likelihood (ICL): -4995.78\n", + "\n", + "41 free parameters 2 * penalyzed log-likelihood (ICLc): -4903.32\n", + "\n" + ] + } + ], + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300, Estimator=\"KaplanMeier\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Change option in state sequence restoration (Viterbi vs. smoothing)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "1e-05 0.099997 1e-05 1e-05 0.899973 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 1e-05 1e-05 0.330827 0.669153 \n", + "1e-05 0 1e-05 0.99997 1e-05 \n", + "1e-05 1e-05 0 0.99997 1e-05 \n", + "1e-05 1e-05 0.99997 0 1e-05 \n", + "0.334078 1e-05 1e-05 0.665902 0 \n", + "\n", + "recurrent class: states 0 1 2 3 4\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 42.6452 variance: 1548.84 standard deviation: 39.3553\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 3\n", + "mean: 9.33333 variance: 4.33333 standard deviation: 2.08167\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 1.04302 variance: 694.887 standard deviation: 26.3607\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 1\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 133.99 variance: 4450.56 standard deviation: 66.7125\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 1\n", + "mean: 54 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 59.2976 variance: 2783.15 standard deviation: 52.7556\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 36.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 0.0216902 variance: 14.3768 standard deviation: 3.79168\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 9\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1.52855 variance: 42.7353 standard deviation: 6.53722\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 54\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1.00363 variance: 2.41484 standard deviation: 1.55398\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 32\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 7.70238 variance: 605.89 standard deviation: 24.6148\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 15\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1.14876 variance: 1.97416 standard deviation: 1.40505\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 484\n", + "mean: 1.03306 variance: 0.528926 standard deviation: 0.727273\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1.10531 variance: 4.36154 standard deviation: 2.08843\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 393\n", + "mean: 1.09924 variance: 1.99268 standard deviation: 1.41162\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 15 PARAMETER : 4.24286 PROBABILITY : 0.521053\n", + "mean: 18.9 variance: 7.48485 standard deviation: 2.73585\n", + "coefficient of skewness: 1.03748 coefficient of kurtosis: 1.54774\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 3\n", + "mean: 19 variance: 13 standard deviation: 3.60555\n", + "\n", + "state 0 forward sojourn time distribution\n", + "mean: 10.148 variance: 33.7613 standard deviation: 5.81045\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 33 SUP_BOUND : 34 PROBABILITY : 0\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 forward sojourn time distribution\n", + "mean: 17 variance: 90.6667 standard deviation: 9.5219\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 5 PARAMETER : 1.87866 PROBABILITY : 0.234221\n", + "mean: 11.1422 variance: 26.2239 standard deviation: 5.12093\n", + "coefficient of skewness: 1.47218 coefficient of kurtosis: 3.23191\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 1\n", + "mean: 16 variance: 0 standard deviation: 0\n", + "\n", + "state 2 forward sojourn time distribution\n", + "mean: 7.24768 variance: 27.8932 standard deviation: 5.2814\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 16 PARAMETER : 2.12158 PROBABILITY : 0.0348733\n", + "mean: 74.7152 variance: 1683.67 standard deviation: 41.0326\n", + "coefficient of skewness: 1.37331 coefficient of kurtosis: 2.82868\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 1\n", + "mean: 27 variance: 0 standard deviation: 0\n", + "\n", + "state 3 forward sojourn time distribution\n", + "mean: 49.1232 variance: 1602.6 standard deviation: 40.0325\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 8\n", + "mean: 58.125 variance: 387.554 standard deviation: 19.6864\n", + "\n", + "STATE 4 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.31441 PROBABILITY : 0.0308293\n", + "mean: 42.3207 variance: 1340.3 standard deviation: 36.6102\n", + "coefficient of skewness: 1.74469 coefficient of kurtosis: 4.56552\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 9\n", + "mean: 28.6667 variance: 439.25 standard deviation: 20.9583\n", + "\n", + "state 4 forward sojourn time distribution\n", + "mean: 37.4924 variance: 1241.69 standard deviation: 35.2376\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 2\n", + "mean: 72 variance: 8 standard deviation: 2.82843\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.31639 variance: 0.298485 standard deviation: 0.546337\n", + "coefficient of skewness: 1.59711 coefficient of kurtosis: 2.03051\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.3 variance: 0.233333 standard deviation: 0.483046\n", + "coefficient of skewness: 1.0351 coefficient of kurtosis: -1.41429\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.100016 variance: 0.0900147 standard deviation: 0.300024\n", + "coefficient of skewness: 2.66647 coefficient of kurtosis: 5.1105\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.373379 variance: 0.272749 standard deviation: 0.522253\n", + "coefficient of skewness: 0.929715 coefficient of kurtosis: -0.296133\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 1.10624 variance: 0.460447 standard deviation: 0.678563\n", + "coefficient of skewness: 0.0292603 coefficient of kurtosis: -0.460447\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.9 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: -0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 1.09229 variance: 0.320825 standard deviation: 0.566414\n", + "coefficient of skewness: 0.642155 coefficient of kurtosis: 1.95209\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 1.1 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: 0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 5.72978 variance: 100.296 standard deviation: 10.0148\n", + "coefficient of skewness: 1.61552 coefficient of kurtosis: 1.99289\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 5.7 variance: 87.1222 standard deviation: 9.33393\n", + "coefficient of skewness: 1.16737 coefficient of kurtosis: -1.08077\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 3.30041 variance: 98.0207 standard deviation: 9.90054\n", + "coefficient of skewness: 2.66648 coefficient of kurtosis: 5.1103\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 3.3 variance: 108.9 standard deviation: 10.4355\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 3.57456 variance: 33.1059 standard deviation: 5.75378\n", + "coefficient of skewness: 1.66346 coefficient of kurtosis: 2.53544\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 1.6 variance: 25.6 standard deviation: 5.05964\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 46.2552 variance: 871.729 standard deviation: 29.5251\n", + "coefficient of skewness: -0.349981 coefficient of kurtosis: -1.15396\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 49.2 variance: 875.956 standard deviation: 29.5965\n", + "coefficient of skewness: -0.85303 coefficient of kurtosis: -0.955818\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 41.1401 variance: 999.377 standard deviation: 31.6129\n", + "coefficient of skewness: 0.398737 coefficient of kurtosis: -1.076\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 40.2 variance: 842.844 standard deviation: 29.0318\n", + "coefficient of skewness: 0.213423 coefficient of kurtosis: -1.49886\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3662\n", + "OUTPUT 1 : 0.4624\n", + "OUTPUT 2 : 0.1527\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0187\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1212\n", + "OUTPUT 1 : 0.5757\n", + "OUTPUT 2 : 0.303\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1601\n", + "OUTPUT 1 : 0.0931\n", + "OUTPUT 2 : 0.2622\n", + "OUTPUT 3 : 0.4843\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1603\n", + "OUTPUT 1 : 0.0271\n", + "OUTPUT 2 : 0.2322\n", + "OUTPUT 3 : 0.5802\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3178\n", + "OUTPUT 1 : 0.3579\n", + "OUTPUT 2 : 0.2195\n", + "OUTPUT 3 : 0.0948\n", + "OUTPUT 4 : 0.01\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.366203 0.462481 0.152752 1e-05 0.0185537 \n", + "1 0.12121 0.575746 0.303024 1e-05 1e-05 \n", + "2 0.160177 0.0931718 0.262248 0.484393 1e-05 \n", + "3 0.160347 0.0271556 0.232285 0.580202 1e-05 \n", + "4 0.317895 0.357923 0.219547 0.0948046 0.00983027 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1393.29 (normalized: -1.39329)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.164562\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.164611 critical probability: 0.996793\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -1393.21 (normalized: -1.39321)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.0107418\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0107417 critical probability: 0.999986\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 2.66891 variance: 13.7052 standard deviation: 3.70205\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 2.01069 variance: 20.5595 standard deviation: 4.53426\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 3.42567 variance: 15.196 standard deviation: 3.8982\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 11.823 variance: 146.537 standard deviation: 12.1052\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 43.598 variance: 6027.8 standard deviation: 77.6389\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.5987 variance: 20.8907 standard deviation: 4.57064\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.53965 variance: 199.37 standard deviation: 14.1198\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.38623 variance: 15.0431 standard deviation: 3.87855\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.40231 variance: 13.4673 standard deviation: 3.66978\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 42.0107 variance: 5812.08 standard deviation: 76.237\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.32812 variance: 0.475583 standard deviation: 0.689626\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.52273 variance: 0.902345 standard deviation: 0.949918\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.29426 variance: 0.371534 standard deviation: 0.609536\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.15129 variance: 2.79827 standard deviation: 1.6728\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01118 variance: 0.0110572 standard deviation: 0.105153\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 17.3872 variance: 17.5437 standard deviation: 4.18852\n", + "coefficient of skewness: 0.0584217 coefficient of kurtosis: -0.423724\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 13.3592 variance: 46.0381 standard deviation: 6.78514\n", + "coefficient of skewness: 0.388686 coefficient of kurtosis: -0.886706\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 17.4831 variance: 8.95742 standard deviation: 2.9929\n", + "coefficient of skewness: 0.0273391 coefficient of kurtosis: -0.0387641\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.941 variance: 36.0444 standard deviation: 6.0037\n", + "coefficient of skewness: -0.204394 coefficient of kurtosis: -0.771918\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.505432 variance: 0.640116 standard deviation: 0.800073\n", + "coefficient of skewness: 1.78689 coefficient of kurtosis: 3.54399\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.566 variance: 52.9183 standard deviation: 7.2745\n", + "coefficient of skewness: 0.276865 coefficient of kurtosis: -0.513004\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.8642 variance: 128.391 standard deviation: 11.331\n", + "coefficient of skewness: 0.333177 coefficient of kurtosis: -0.838437\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 22.5893 variance: 19.4883 standard deviation: 4.41456\n", + "coefficient of skewness: 0.163523 coefficient of kurtosis: 0.0138123\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 32.4692 variance: 258.561 standard deviation: 16.0798\n", + "coefficient of skewness: -0.248885 coefficient of kurtosis: -1.06867\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.511258 variance: 0.660977 standard deviation: 0.813005\n", + "coefficient of skewness: 1.81735 coefficient of kurtosis: 3.72311\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.659725 0.161589 \n", + "_ _ _ 0.61933 _ \n", + "_ _ _ 0.0959795 _ \n", + "_ _ 0.0959795 _ _ \n", + "0.161589 _ _ 0.498136 _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9823\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0177\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9696\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0303\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3215\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.4654\n", + "OUTPUT 3 : 0.2131\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.248\n", + "OUTPUT 1 : 0.1578\n", + "OUTPUT 2 : 0.2681\n", + "OUTPUT 3 : 0.3261\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.99\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0099\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.982333 1e-05 1e-05 0.0176466 \n", + "1 0.969678 1e-05 0.0303024 1e-05 \n", + "2 0.321589 1e-05 0.465421 0.212979 \n", + "3 0.248095 0.157832 0.268155 0.325918 \n", + "4 0.990022 1e-05 0.00995797 1e-05 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1072.33 (normalized: -1.07233)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.268359\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.269214 critical probability: 0.965711\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -1072.3 (normalized: -1.0723)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.202107\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.20173 critical probability: 0.977309\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.0117915 variance: 0.0116525 standard deviation: 0.107947\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 64.6206 variance: 2815.95 standard deviation: 53.0655\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 40.6833 variance: 1353.38 standard deviation: 36.7883\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 55.8141 variance: 2173.79 standard deviation: 46.6239\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.86551 variance: 4.83638 standard deviation: 2.19918\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 7.23316 variance: 53.2919 standard deviation: 7.30013\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.14467 variance: 38.9366 standard deviation: 6.23992\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.20339 variance: 8.45628 standard deviation: 2.90797\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 4.25799 variance: 164.722 standard deviation: 12.8344\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.18208 variance: 0.209024 standard deviation: 0.457191\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.3834 variance: 0.541493 standard deviation: 0.735862\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.46769 variance: 0.677099 standard deviation: 0.822861\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.839 variance: 37.1365 standard deviation: 6.09398\n", + "coefficient of skewness: -0.110561 coefficient of kurtosis: -1.06927\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.17639 variance: 19.2377 standard deviation: 4.38608\n", + "coefficient of skewness: 0.0897507 coefficient of kurtosis: -0.889554\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.546 variance: 43.4575 standard deviation: 6.59223\n", + "coefficient of skewness: -0.153054 coefficient of kurtosis: -1.09724\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 10.9496 variance: 50.6788 standard deviation: 7.11891\n", + "coefficient of skewness: -0.200948 coefficient of kurtosis: -1.10551\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 62.1837 variance: 564.066 standard deviation: 23.7501\n", + "coefficient of skewness: 0.331579 coefficient of kurtosis: -1.19244\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.3011 variance: 27.8618 standard deviation: 5.27843\n", + "coefficient of skewness: 0.160849 coefficient of kurtosis: -0.805722\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.577 variance: 91.0403 standard deviation: 9.5415\n", + "coefficient of skewness: -0.0523614 coefficient of kurtosis: -1.0567\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 15.9383 variance: 111.63 standard deviation: 10.5655\n", + "coefficient of skewness: -0.143707 coefficient of kurtosis: -1.07632\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.734239 0.0176366 \n", + "_ _ _ 0.721583 _ \n", + "_ _ _ 0.270761 _ \n", + "_ _ 0.270761 _ _ \n", + "0.0176366 _ _ 0.741927 _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3724\n", + "OUTPUT 1 : 0.6276\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3333\n", + "OUTPUT 1 : 0.6667\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.4903\n", + "OUTPUT 1 : 0.5097\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2248\n", + "OUTPUT 1 : 0.7752\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8803\n", + "OUTPUT 1 : 0.1197\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.372465 0.627535 \n", + "1 0.333333 0.666667 \n", + "2 0.490302 0.509698 \n", + "3 0.224869 0.775131 \n", + "4 0.880379 0.119621 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -693.085 (normalized: -0.693085)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.200141\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.200195 critical probability: 0.654564\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -693.023 (normalized: -0.693023)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.0766384\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.0766333 critical probability: 0.781913\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.314463 variance: 0.922357 standard deviation: 0.960394\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 5.92123 variance: 42.726 standard deviation: 6.53652\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.19914 variance: 6.32696 standard deviation: 2.51535\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.74674 variance: 5.16151 standard deviation: 2.2719\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.78457 variance: 16.3586 standard deviation: 4.04457\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.40088 variance: 11.059 standard deviation: 3.32551\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.029 variance: 13.5779 standard deviation: 3.68482\n", + "coefficient of skewness: -0.0308354 coefficient of kurtosis: -0.221071\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.8544 variance: 14.5911 standard deviation: 3.81983\n", + "coefficient of skewness: -0.0472219 coefficient of kurtosis: -0.215015\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 51.6071 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: 0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 48.3929 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: -0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.147595 0.507914 \n", + "_ _ _ 0.108464 _ \n", + "_ _ _ 0.265433 _ \n", + "_ _ 0.265433 _ _ \n", + "0.507914 _ _ 0.655509 _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2434.09 (normalized: -2.43409)\n", + "\n", + "state sequence entropy: 25.5422 (normalized: 0.0255422)\n", + "\n", + "log-likelihood of the observed sequences: -2421.31 (normalized: -2.42131)\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AIC): -4930.63\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AICc): -4934.78\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BIC): -5146.57\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BICc): -5044.53\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICL): -5197.65\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICLc): -5095.61\n", + "\n" + ] + } + ], + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300, StateSequences=\"ForwardBackward\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Change option in estimating occupancy distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "1e-05 0.099997 1e-05 1e-05 0.899973 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 1e-05 1e-05 0.330827 0.669153 \n", + "1e-05 0 1e-05 0.99997 1e-05 \n", + "1e-05 1e-05 0 0.99997 1e-05 \n", + "1e-05 1e-05 0.99997 0 1e-05 \n", + "0.334078 1e-05 1e-05 0.665902 0 \n", + "\n", + "recurrent class: states 0 1 2 3 4\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 42.6452 variance: 1548.84 standard deviation: 39.3553\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 3\n", + "mean: 9.33333 variance: 4.33333 standard deviation: 2.08167\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 1.04302 variance: 694.887 standard deviation: 26.3607\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 1\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 133.99 variance: 4450.56 standard deviation: 66.7125\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 1\n", + "mean: 54 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 59.2976 variance: 2783.15 standard deviation: 52.7556\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 36.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 0.0216902 variance: 14.3768 standard deviation: 3.79168\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 9\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1.52855 variance: 42.7353 standard deviation: 6.53722\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 54\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1.00363 variance: 2.41484 standard deviation: 1.55398\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 32\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 7.70238 variance: 605.89 standard deviation: 24.6148\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 15\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1.14876 variance: 1.97416 standard deviation: 1.40505\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 484\n", + "mean: 1.03306 variance: 0.528926 standard deviation: 0.727273\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1.10531 variance: 4.36154 standard deviation: 2.08843\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 393\n", + "mean: 1.09924 variance: 1.99268 standard deviation: 1.41162\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 15 PARAMETER : 4.24286 PROBABILITY : 0.521053\n", + "mean: 18.9 variance: 7.48485 standard deviation: 2.73585\n", + "coefficient of skewness: 1.03748 coefficient of kurtosis: 1.54774\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 3\n", + "mean: 19 variance: 13 standard deviation: 3.60555\n", + "\n", + "state 0 forward sojourn time distribution\n", + "mean: 10.148 variance: 33.7613 standard deviation: 5.81045\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "BINOMIAL INF_BOUND : 33 SUP_BOUND : 34 PROBABILITY : 0\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 33 variance: 0 standard deviation: 0\n", + "\n", + "state 1 forward sojourn time distribution\n", + "mean: 17 variance: 90.6667 standard deviation: 9.5219\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 5 PARAMETER : 1.87866 PROBABILITY : 0.234221\n", + "mean: 11.1422 variance: 26.2239 standard deviation: 5.12093\n", + "coefficient of skewness: 1.47218 coefficient of kurtosis: 3.23191\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 1\n", + "mean: 16 variance: 0 standard deviation: 0\n", + "\n", + "state 2 forward sojourn time distribution\n", + "mean: 7.24768 variance: 27.8932 standard deviation: 5.2814\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 16 PARAMETER : 2.12158 PROBABILITY : 0.0348733\n", + "mean: 74.7152 variance: 1683.67 standard deviation: 41.0326\n", + "coefficient of skewness: 1.37331 coefficient of kurtosis: 2.82868\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 1\n", + "mean: 27 variance: 0 standard deviation: 0\n", + "\n", + "state 3 forward sojourn time distribution\n", + "mean: 49.1232 variance: 1602.6 standard deviation: 40.0325\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 8\n", + "mean: 58.125 variance: 387.554 standard deviation: 19.6864\n", + "\n", + "STATE 4 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.31441 PROBABILITY : 0.0308293\n", + "mean: 42.3207 variance: 1340.3 standard deviation: 36.6102\n", + "coefficient of skewness: 1.74469 coefficient of kurtosis: 4.56552\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 9\n", + "mean: 28.6667 variance: 439.25 standard deviation: 20.9583\n", + "\n", + "state 4 forward sojourn time distribution\n", + "mean: 37.4924 variance: 1241.69 standard deviation: 35.2376\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 2\n", + "mean: 72 variance: 8 standard deviation: 2.82843\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.31639 variance: 0.298485 standard deviation: 0.546337\n", + "coefficient of skewness: 1.59711 coefficient of kurtosis: 2.03051\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.3 variance: 0.233333 standard deviation: 0.483046\n", + "coefficient of skewness: 1.0351 coefficient of kurtosis: -1.41429\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.100016 variance: 0.0900147 standard deviation: 0.300024\n", + "coefficient of skewness: 2.66647 coefficient of kurtosis: 5.1105\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.373379 variance: 0.272749 standard deviation: 0.522253\n", + "coefficient of skewness: 0.929715 coefficient of kurtosis: -0.296133\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 1.10624 variance: 0.460447 standard deviation: 0.678563\n", + "coefficient of skewness: 0.0292603 coefficient of kurtosis: -0.460447\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.9 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: -0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 1.09229 variance: 0.320825 standard deviation: 0.566414\n", + "coefficient of skewness: 0.642155 coefficient of kurtosis: 1.95209\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 1.1 variance: 0.322222 standard deviation: 0.567646\n", + "coefficient of skewness: 0.0911204 coefficient of kurtosis: -0.0281807\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 5.72978 variance: 100.296 standard deviation: 10.0148\n", + "coefficient of skewness: 1.61552 coefficient of kurtosis: 1.99289\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 5.7 variance: 87.1222 standard deviation: 9.33393\n", + "coefficient of skewness: 1.16737 coefficient of kurtosis: -1.08077\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 3.30041 variance: 98.0207 standard deviation: 9.90054\n", + "coefficient of skewness: 2.66648 coefficient of kurtosis: 5.1103\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 3.3 variance: 108.9 standard deviation: 10.4355\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 3.57456 variance: 33.1059 standard deviation: 5.75378\n", + "coefficient of skewness: 1.66346 coefficient of kurtosis: 2.53544\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 1.6 variance: 25.6 standard deviation: 5.05964\n", + "coefficient of skewness: 3.16228 coefficient of kurtosis: 4.3\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 46.2552 variance: 871.729 standard deviation: 29.5251\n", + "coefficient of skewness: -0.349981 coefficient of kurtosis: -1.15396\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 49.2 variance: 875.956 standard deviation: 29.5965\n", + "coefficient of skewness: -0.85303 coefficient of kurtosis: -0.955818\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 41.1401 variance: 999.377 standard deviation: 31.6129\n", + "coefficient of skewness: 0.398737 coefficient of kurtosis: -1.076\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 40.2 variance: 842.844 standard deviation: 29.0318\n", + "coefficient of skewness: 0.213423 coefficient of kurtosis: -1.49886\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3662\n", + "OUTPUT 1 : 0.4624\n", + "OUTPUT 2 : 0.1527\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0187\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1212\n", + "OUTPUT 1 : 0.5757\n", + "OUTPUT 2 : 0.303\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1601\n", + "OUTPUT 1 : 0.0931\n", + "OUTPUT 2 : 0.2622\n", + "OUTPUT 3 : 0.4843\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1603\n", + "OUTPUT 1 : 0.0271\n", + "OUTPUT 2 : 0.2322\n", + "OUTPUT 3 : 0.5802\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3178\n", + "OUTPUT 1 : 0.3579\n", + "OUTPUT 2 : 0.2195\n", + "OUTPUT 3 : 0.0948\n", + "OUTPUT 4 : 0.01\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.366203 0.462481 0.152752 1e-05 0.0185537 \n", + "1 0.12121 0.575746 0.303024 1e-05 1e-05 \n", + "2 0.160177 0.0931718 0.262248 0.484393 1e-05 \n", + "3 0.160347 0.0271556 0.232285 0.580202 1e-05 \n", + "4 0.317895 0.357923 0.219547 0.0948046 0.00983027 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1393.29 (normalized: -1.39329)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.164562\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.164611 critical probability: 0.996793\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -1393.21 (normalized: -1.39321)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.0107418\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0107417 critical probability: 0.999986\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 2.66891 variance: 13.7052 standard deviation: 3.70205\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 2.01069 variance: 20.5595 standard deviation: 4.53426\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 3.42567 variance: 15.196 standard deviation: 3.8982\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 11.823 variance: 146.537 standard deviation: 12.1052\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 43.598 variance: 6027.8 standard deviation: 77.6389\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.5987 variance: 20.8907 standard deviation: 4.57064\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.53965 variance: 199.37 standard deviation: 14.1198\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.38623 variance: 15.0431 standard deviation: 3.87855\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.40231 variance: 13.4673 standard deviation: 3.66978\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 42.0107 variance: 5812.08 standard deviation: 76.237\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.32812 variance: 0.475583 standard deviation: 0.689626\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.52273 variance: 0.902345 standard deviation: 0.949918\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.29426 variance: 0.371534 standard deviation: 0.609536\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.15129 variance: 2.79827 standard deviation: 1.6728\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.01118 variance: 0.0110572 standard deviation: 0.105153\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 17.3872 variance: 17.5437 standard deviation: 4.18852\n", + "coefficient of skewness: 0.0584217 coefficient of kurtosis: -0.423724\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 13.3592 variance: 46.0381 standard deviation: 6.78514\n", + "coefficient of skewness: 0.388686 coefficient of kurtosis: -0.886706\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 17.4831 variance: 8.95742 standard deviation: 2.9929\n", + "coefficient of skewness: 0.0273391 coefficient of kurtosis: -0.0387641\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.941 variance: 36.0444 standard deviation: 6.0037\n", + "coefficient of skewness: -0.204394 coefficient of kurtosis: -0.771918\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.505432 variance: 0.640116 standard deviation: 0.800073\n", + "coefficient of skewness: 1.78689 coefficient of kurtosis: 3.54399\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.566 variance: 52.9183 standard deviation: 7.2745\n", + "coefficient of skewness: 0.276865 coefficient of kurtosis: -0.513004\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.8642 variance: 128.391 standard deviation: 11.331\n", + "coefficient of skewness: 0.333177 coefficient of kurtosis: -0.838437\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 22.5893 variance: 19.4883 standard deviation: 4.41456\n", + "coefficient of skewness: 0.163523 coefficient of kurtosis: 0.0138123\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 32.4692 variance: 258.561 standard deviation: 16.0798\n", + "coefficient of skewness: -0.248885 coefficient of kurtosis: -1.06867\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.511258 variance: 0.660977 standard deviation: 0.813005\n", + "coefficient of skewness: 1.81735 coefficient of kurtosis: 3.72311\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.659725 0.161589 \n", + "_ _ _ 0.61933 _ \n", + "_ _ _ 0.0959795 _ \n", + "_ _ 0.0959795 _ _ \n", + "0.161589 _ _ 0.498136 _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9823\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0177\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9696\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0303\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3215\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.4654\n", + "OUTPUT 3 : 0.2131\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.248\n", + "OUTPUT 1 : 0.1578\n", + "OUTPUT 2 : 0.2681\n", + "OUTPUT 3 : 0.3261\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.99\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0099\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.982333 1e-05 1e-05 0.0176466 \n", + "1 0.969678 1e-05 0.0303024 1e-05 \n", + "2 0.321589 1e-05 0.465421 0.212979 \n", + "3 0.248095 0.157832 0.268155 0.325918 \n", + "4 0.990022 1e-05 0.00995797 1e-05 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -1072.33 (normalized: -1.07233)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.268359\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.269214 critical probability: 0.965711\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -1072.3 (normalized: -1.0723)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.202107\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.20173 critical probability: 0.977309\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.0117915 variance: 0.0116525 standard deviation: 0.107947\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 64.6206 variance: 2815.95 standard deviation: 53.0655\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 40.6833 variance: 1353.38 standard deviation: 36.7883\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 55.8141 variance: 2173.79 standard deviation: 46.6239\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.86551 variance: 4.83638 standard deviation: 2.19918\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 7.23316 variance: 53.2919 standard deviation: 7.30013\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.14467 variance: 38.9366 standard deviation: 6.23992\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.20339 variance: 8.45628 standard deviation: 2.90797\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 4.25799 variance: 164.722 standard deviation: 12.8344\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.18208 variance: 0.209024 standard deviation: 0.457191\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.3834 variance: 0.541493 standard deviation: 0.735862\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.46769 variance: 0.677099 standard deviation: 0.822861\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.839 variance: 37.1365 standard deviation: 6.09398\n", + "coefficient of skewness: -0.110561 coefficient of kurtosis: -1.06927\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.17639 variance: 19.2377 standard deviation: 4.38608\n", + "coefficient of skewness: 0.0897507 coefficient of kurtosis: -0.889554\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.546 variance: 43.4575 standard deviation: 6.59223\n", + "coefficient of skewness: -0.153054 coefficient of kurtosis: -1.09724\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 10.9496 variance: 50.6788 standard deviation: 7.11891\n", + "coefficient of skewness: -0.200948 coefficient of kurtosis: -1.10551\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 62.1837 variance: 564.066 standard deviation: 23.7501\n", + "coefficient of skewness: 0.331579 coefficient of kurtosis: -1.19244\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.3011 variance: 27.8618 standard deviation: 5.27843\n", + "coefficient of skewness: 0.160849 coefficient of kurtosis: -0.805722\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.577 variance: 91.0403 standard deviation: 9.5415\n", + "coefficient of skewness: -0.0523614 coefficient of kurtosis: -1.0567\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 15.9383 variance: 111.63 standard deviation: 10.5655\n", + "coefficient of skewness: -0.143707 coefficient of kurtosis: -1.07632\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.734239 0.0176366 \n", + "_ _ _ 0.721583 _ \n", + "_ _ _ 0.270761 _ \n", + "_ _ 0.270761 _ _ \n", + "0.0176366 _ _ 0.741927 _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3724\n", + "OUTPUT 1 : 0.6276\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3333\n", + "OUTPUT 1 : 0.6667\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.4903\n", + "OUTPUT 1 : 0.5097\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2248\n", + "OUTPUT 1 : 0.7752\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8803\n", + "OUTPUT 1 : 0.1197\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.372465 0.627535 \n", + "1 0.333333 0.666667 \n", + "2 0.490302 0.509698 \n", + "3 0.224869 0.775131 \n", + "4 0.880379 0.119621 \n", + "\n", + "theoretical weights: 0.0572991 0.0330041 0.0357457 0.462551 0.4114\n", + "\n", + "log-likelihood: -693.085 (normalized: -0.693085)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.200141\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.200195 critical probability: 0.654564\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.057 0.033 0.016 0.492 0.402\n", + "\n", + "log-likelihood: -693.023 (normalized: -0.693023)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.0766384\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.0766333 critical probability: 0.781913\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.314463 variance: 0.922357 standard deviation: 0.960394\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 5.92123 variance: 42.726 standard deviation: 6.53652\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 2.19914 variance: 6.32696 standard deviation: 2.51535\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.74674 variance: 5.16151 standard deviation: 2.2719\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 2.78457 variance: 16.3586 standard deviation: 4.04457\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.40088 variance: 11.059 standard deviation: 3.32551\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 16.029 variance: 13.5779 standard deviation: 3.68482\n", + "coefficient of skewness: -0.0308354 coefficient of kurtosis: -0.221071\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.8544 variance: 14.5911 standard deviation: 3.81983\n", + "coefficient of skewness: -0.0472219 coefficient of kurtosis: -0.215015\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 51.6071 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: 0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 48.3929 variance: 413.732 standard deviation: 20.3404\n", + "coefficient of skewness: -0.370427 coefficient of kurtosis: -1.06606\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ _ _ 0.147595 0.507914 \n", + "_ _ _ 0.108464 _ \n", + "_ _ _ 0.265433 _ \n", + "_ _ 0.265433 _ _ \n", + "0.507914 _ _ 0.655509 _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2434.09 (normalized: -2.43409)\n", + "\n", + "state sequence entropy: 25.5422 (normalized: 0.0255422)\n", + "\n", + "log-likelihood of the observed sequences: -2421.31 (normalized: -2.42131)\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AIC): -4930.63\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (AICc): -4934.78\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BIC): -5146.57\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (BICc): -5044.53\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICL): -5197.65\n", + "\n", + "44 free parameters 2 * penalyzed log-likelihood (ICLc): -5095.61\n", + "\n" + ] + } + ], + "source": [ + "print(Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", \"Ordinary\", nb_states, \"Irreducible\", Nbiteration=300, OccupancyMean=\"Estimated\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other options in estimate" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on function Estimate in module openalea.sequence_analysis.estimate:\n", + "\n", + "Estimate(obj, *args, **kargs)\n", + " Estimate\n", + " \n", + " * Estimation of distributions.\n", + " * Estimation of 'top' parameters.\n", + " * Estimation of a renewal process from count data.\n", + " * Estimation of (hidden) Markovian models.\n", + " \n", + " :Usage:\n", + " .. doctest::\n", + " :options: +SKIP\n", + " \n", + " >>> Estimate(histo, \"NON-PARAMETRIC\")\n", + " >>> Estimate(histo, \"NB\", MinInfBound=1, InfBoundStatus=\"Fixed\")\n", + " >>> Estimate(histo, \"MIXTURE\", \"B\", dist,..., MinInfBound=1,\n", + " InfBoundStatus=\"Fixed\", DistInfBoundStatus=\"Fixed\")\n", + " >>> Estimate(histo, \"MIXTURE\", \"B\", \"NB\",..., MinInfBound=1,\n", + " InfBoundStatus=\"Fixed\", DistInfBoundStatus=\"Fixed\",\n", + " NbComponent=\"Estimated\", Penalty=\"AIC\")\n", + " >>> Estimate(histo, \"CONVOLUTION\", dist,MinInfBound=1, Parametric=False)\n", + " >>> Estimate(histo, \"CONVOLUTION\", dist,InitialDistribution=initial_dist,\n", + " Parametric=False)\n", + " >>> Estimate(histo, \"COMPOUND\", dist, unknown, Parametric=False,\n", + " MinInfBound=0)\n", + " >>> Estimate(histo, \"COMPOUND\", dist, unknown,\n", + " InitialDistribution=initial_dist, Parametric=False)\n", + " \n", + " >>> Estimate(top, MinPosition=1, MaxPosition=5, Neighbourhood=2,\n", + " EqualProba=True)\n", + " \n", + " >>> Estimate(timev, type, NbIteration=10,Parametric=True)\n", + " >>> Estimate(timev, type, InitialInterEvent=initial_dist,\n", + " NbIteration=10, Parametric=True)\n", + " \n", + " >>> Estimate(seq, \"NONHOMOGENEOUS_MARKOV\", MONOMOLECULAR, VOID,\n", + " Counting=False)\n", + " >>> Estimate(seq, \"SEMI-MARKOV\", Counting=False)\n", + " >>> Estimate(seq, \"HIDDEN_MARKOV\", nb_state, structure,\n", + " SelfTransition=0.9, NbIteration=10,\n", + " StateSequences=\"Viterbi\", Counting=False)\n", + " >>> Estimate(seq, \"HIDDEN_MARKOV\", hmc, Algorithm=\"Viterbi\",\n", + " NbIteration=10, Order=2, Counting=False)\n", + " >>> Estimate(seq, \"HIDDEN_MARKOV\", \"NbState\", min_nb_state,\n", + " max_nb_state, Penalty=\"AIC\", Order=2, Counting=False)\n", + " >>> Estimate(seq, \"HIDDEN_MARKOV\", \"NbState\", hmc, state,\n", + " max_nb_state, Penalty=\"AIC\", SelfTransition=0.9, Counting=False)\n", + " >>> Estimate(seq, \"HIDDEN_SEMI-MARKOV\", nb_state, structure,\n", + " OccupancyMean=20, NbIteration=10, Estimator=\"PartialLikelihood\",\n", + " StateSequences=\"Viterbi\", Counting=False)\n", + " >>> Estimate(seq, \"HIDDEN_SEMI-MARKOV\", hsmc, Algorithm=\"Viterbi\",\n", + " NbIteration=10, Counting=False)\n", + " \n", + " :Arguments:\n", + " \n", + " * histo (histogram, mixture_data, convolution_data, compound_data),\n", + " * dist (distribution, mixture, convolution, compound),\n", + " * unknown (string): type of unknown distribution: \"Sum\" or \"Elementary\".\n", + " * top (tops),\n", + " * timev (time_events, renewal_data),\n", + " * type (string): type or renewal process: \"Ordinary\" or \"Equilibrium\".\n", + " * seq (discrete_sequences, markov_data, semi-markov_data),\n", + " * states, ... (array(int)): new states corresponding to a partition of the\n", + " original state space,\n", + " * hmc (hidden_markov),\n", + " * structure (string): structural properties of the underlying Markov chain:\n", + " \"Irreductible\" or \"LeftRight\" (i.e. a succession of transient states and a\n", + " final absorbing state),\n", + " * nb_state (int): number of states with 2 <= nb_state <= 15,\n", + " * min_nb_state (int): minimum number of states,\n", + " * max_nb_state (int): maximum number of states with 2 <= min_nb_state < max_nb_state <= 15\n", + " or (number of states of the initial hidden Markov chain hmc) < max_nb_state<= 15.\n", + " * state (int): state to be duplicated,\n", + " * hsmc (hidden_semi-markov).\n", + " \n", + " :Optional Arguments:\n", + " \n", + " **distribution case**\n", + " \n", + " * MinInfBound (int): lower bound to the range of possible values (0 - default\n", + " value - or 1). This optional argument cannot be used in conjunction with the\n", + " optional argument InitialDistribution.\n", + " * InfBoundStatus (string): shifting or not of the distribution: \"Free\" (default\n", + " value) or \"Fixed\". This optional argument cannot be used if the second mandatory\n", + " argument giving the model type is \"NON-PARAMETRIC\" (\"NP\").\n", + " * DistInfBoundStatus (string): shifting or not of the subsequent components of\n", + " the mixture: \"Free\" (default value) or \"Fixed\". This optional argument can\n", + " only be used if the second mandatory argument giving the distribution type is \"MIXTURE\".\n", + " * NbComponent (string): estimation of the number of components of the mixture:\n", + " \"Fixed\" (default value) or \"Estimated\". This optional argument can only be\n", + " used if the second mandatory argument giving the distribution type is \"MIXTURE\".\n", + " the number of estimated components is comprised between 1 and a maximum number\n", + " which is given by the number of specified parametric distributions in the\n", + " mandatory arguments (all of these distributions are assumed to be unknown).\n", + " * Penalty (string): type of penalty function for model selection: \"AIC\"\n", + " (Akaike Information Criterion), \"AICc\" (corrected Akaike Information Criterion\n", + " - default value) or \"BIC\" (Bayesian Information Criterion). This optional\n", + " argument can only be used if the second mandatory argument giving the distribution\n", + " type is \"MIXTURE\" and if the optional argument NbComponent is set at \"Estimated\".\n", + " * Parametric (bool): reestimation of a discrete nonparametric or parametric\n", + " distribution (default value: True). This optional argument can only be used if\n", + " the second mandatory argument giving the distribution type is \"CONVOLUTION\"\n", + " or \"COMPOUND\".\n", + " * InitialDistribution (distribution, mixture, convolution, compound): initial\n", + " distribution for the EM deconvolution-type algorithm. This optional argument\n", + " can only be used if the second mandatory argument giving the distribution type\n", + " is \"CONVOLUTION\" or \"COMPOUND\". This optional argument cannot be used in\n", + " conjunction with the optional argument MinInfBound.\n", + " \n", + " .. note:: the optional arguments MinInfBound and InitialDistribution are mutually exclusive.\n", + " \n", + " \n", + " **top case**\n", + " \n", + " * MinPosition (int): lower position taken into account for the estimation of 'top' parameters.\n", + " * MaxPosition (int): upper position taken into account for the estimation of 'top' parameters.\n", + " * Neighbourhood (int): neighbourhood taken into account for the estimation of 'top' parameters.\n", + " * EqualProba (bool): growth probabilities of the parent shoot and of the offspring shoots equal or not (default value: False).\n", + " \n", + " **renewal case**\n", + " \n", + " * InitialInterEvent (distribution, mixture, convolution, compound): initial inter-event distribution for the EM algorithm.\n", + " * NbIteration (int): number of iterations of the EM algorithm.\n", + " * Parametric (bool): reestimation of a discrete nonparametric or parametric distribution (default value: False).\n", + " \n", + " **markovian case**\n", + " \n", + " * Counting (bool): computation of counting distributions (default value: True).\n", + " * Order (int): Markov chain order (default value: 1). This optional argument can only be used if the second mandatory argument giving the model type is \"MARKOV\", \"NONHOMOGENEOUS_MARKOV\" or \"HIDDEN_MARKOV\".\n", + " * MaxOrder (int): maximum order of the Markov chain (default value: 4). This optional argument can only be used if the second mandatory argument giving the model type is \"MARKOV\".\n", + " * Penalty (string): type of penalty function for model selection: \"AIC\" (Akaike Information Criterion), \"AICc\" (corrected Akaike Information Criterion) or \"BIC\" (Bayesian Information Criterion). This optional argument can only be used if the second mandatory argument giving the model type is \"MARKOV\" (default value: \"BIC\") and if the optional argument MaxOrder is set or else, if a new set of states is given (defining a partition of the original state space) or else, if the second mandatory argument giving the model type is \"HIDDEN_MARKOV\" and the third \"NbState\" (default value: \"AICc\").\n", + " * Algorithm (string): type of algorithm: \"ForwardBackward\" (the default) or \"Viterbi\". This optional argument can only be used if the second mandatory argument giving the model type is \"HIDDEN_MARKOV\" or \"HIDDEN_SEMI-MARKOV\".\n", + " * NbIteration (int): number of iterations of the estimation algorithm.\n", + " * SelfTransition (real): self-transition probability. This optional argument can only be used if the second mandatory argument giving the model type is \"HIDDEN_MARKOV\" and if the initial model used in the iterative estimation procedure (EM algorithm) is only specified by its number of states, its structural properties and eventually its order.\n", + " * OccupancyMean (int/real): average state occupancy. This optional argument can only be used if the second mandatory argument giving the model type is \"HIDDEN_SEMI-MARKOV\" and if the initial model used in the iterative estimation procedure (EM algorithm) is only specified by its number of states and its structural properties.\n", + " * Estimator (string): type of estimator: \"CompleteLikelihood\" (the default) or \"PartialLikelihood\". In this latter case, the contribution of the time spent in the last visited state is not taken into account inthe estimation of the state occupancy distributions. This optional argument can only be used if the second mandatory argument giving the model type is \"HIDDEN_SEMI-MARKOV\" and the optional argument Algorithm is set at \"ForwardBackward\".\n", + " * StateSequences (string): Computation of the optimal state sequences: no computation (the default), \"ForwardBackward\" or \"Viterbi\". This optional argument can only be used if the second mandatory argument giving the model type is \"HIDDEN_MARKOV\" or \"HIDDEN_SEMI-MARKOV\" and if the optional argument Algorithm is not set at \"Viterbi\".\n", + " \n", + " \n", + " :Returned Object:\n", + " \n", + " **distribution case**\n", + " \n", + " In case of success of the estimation procedure, the type of the returned object\n", + " (chosen among distribution, mixture, convolution or compound) is given by the\n", + " second mandatory argument. Otherwise no object is returned. The returned object\n", + " of type distribution, mixture, convolution or compound contains both the estimated\n", + " distribution and the data used in the estimation procedure. In the case of\n", + " mixtures, convolutions, or compound (or stopped-sum) distributions, the returned\n", + " object contains pseudo-data computed as a byproduct of the EM algorithm which\n", + " can be extracted by the function ExtractData.\n", + " \n", + " **top case**\n", + " \n", + " In case of success of the estimation procedure, an object of type top_parameters\n", + " is returned, otherwise no object is returned. The returned object of type top_parameters\n", + " contains both the estimated model and the data used for the estimation.\n", + " \n", + " **renewal case**\n", + " \n", + " In case of success of the estimation procedure, an object of type renewal is\n", + " returned, otherwise no object is returned. The returned object of type renewal\n", + " contains both the estimated renewal process and the count data used in the\n", + " estimation procedure.\n", + " \n", + " **markovian case**\n", + " \n", + " In case of success of the estimation procedure, the type of the returned object\n", + " (chosen among markov, semi-markov, hidden_markov, hidden_semi-markov) is given\n", + " by the second mandatory argument. Otherwise no object is returned. If the\n", + " second mandatory argument is \"NONHOMOGENEOUS_MARKOV\", in case of success\n", + " of the estimation procedure, the returned object is of type markov. If the\n", + " second mandatory argument is \"NONHOMOGENEOUS_MARKOV\", the subsequent\n", + " arguments chosen among \"VOID\" (homogeneous state), \"MONOMOLECULAR\" or\n", + " \"LOGISTIC\", specify the evolution of the self-transition probabilities\n", + " as a function of the index parameter. The returned object of type markov,\n", + " semi-markov, hidden_markov or hidden_semi-markov contains both the estimated\n", + " distribution and the data used in the estimation procedure. In the case of\n", + " the estimation of a hidden Markov chain or a hidden semi-Markov chain,\n", + " the returned object contains pseudo-data (optimal state sequences\n", + " corresponding to the observed sequences used in the estimation procedure)\n", + " computed as a byproduct of the EM algorithm which can be extracted by the\n", + " function ExtractData.\n", + " \n", + " \n", + " :Background:\n", + " \n", + " The aim of the model of 'tops' is to related the growth of offspring shoots\n", + " to the growth of their parent shoot in the case of immediate branching. A\n", + " model of 'tops' is defined by three parameters, namely the growth probability\n", + " of the parent shoot, the growth probability of the offspring shoots (both in\n", + " the sense of Bernoulli processes) and the growth rhythm ratio offspring\n", + " shoots / parent shoot.\n", + " \n", + " :Description (markovian case):\n", + " \n", + " In the case of hidden Markovian models (second mandatory argument \"HIDDEN_MARKOV\"\n", + " or \"HIDDEN_SEMI-MARKOV\"), either the forward-backward algorithm or the Viterbi\n", + " algorithm can be used for estimation. The Viterbi algorithm should only be\n", + " used for the estimation of hidden Markovian models based on an underlying\n", + " \"left-right\" Markov chain (i.e. constituted of a succession of transient states\n", + " and a final absorbing state). Hence, in this case, the model structure is\n", + " implicitly \"LeftRight\" and should not be given as argument (only the number of\n", + " states should be given as argument). Since the optimal state sequences are computed\n", + " by the Viterbi algorithm, the optional argument StateSequences cannot be used if\n", + " the optional argument Algorithm is set at \"Viterbi\".\n", + " \n", + " .. seealso::\n", + " \n", + " :func:`~openalea.stat_tool.data_transform.ExtractData`,\n", + " :func:`~openalea.stat_tool.data_transform.ExtractDistribution`.\n", + " :func:`~openalea.sequence_analysis.data_transform.AddAbsorbingRun`,\n", + " :func:`ModelSelectionTest`.\n", + "\n" + ] + } + ], + "source": [ + "help(Estimate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Estimate HSCM with manual initialization from file" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "0.694432 0.0999981 0.20555 1e-05 1e-05 \n", + "\n", + "TRANSITION_PROBABILITIES\n", + "0 0.431991 0.567989 1e-05 1e-05 \n", + "0 0 0.499998 1e-05 0.499992 \n", + "0 0 0 0.99999 1e-05 \n", + "0 0 0 0 1 \n", + "0 0 0 0 1 \n", + "\n", + "transient class: state 0\n", + "transient class: state 1\n", + "transient class: state 2\n", + "transient class: state 3\n", + "recurrent class: state 4 (absorbing state)\n", + "\n", + "probability of no-occurrence of state 0: 0.305568\n", + "\n", + "time up to the first occurrence of state 0 distribution\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of state 0 frequency distribution - sample size: 7\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "probability of no-occurrence of state 1: 0.600011\n", + "\n", + "time up to the first occurrence of state 1 distribution\n", + "mean: 5.37165 variance: 18.8147 standard deviation: 4.33759\n", + "\n", + "time up to the first occurrence of state 1 frequency distribution - sample size: 4\n", + "mean: 6.75 variance: 24.9167 standard deviation: 4.99166\n", + "\n", + "probability of no-occurrence of state 2: 0.200024\n", + "\n", + "time up to the first occurrence of state 2 distribution\n", + "mean: 10.9192 variance: 141.993 standard deviation: 11.9161\n", + "\n", + "time up to the first occurrence of state 2 frequency distribution - sample size: 8\n", + "mean: 10.625 variance: 166.839 standard deviation: 12.9166\n", + "\n", + "probability of no-occurrence of state 3: 0.200012\n", + "\n", + "time up to the first occurrence of state 3 distribution\n", + "mean: 31.0019 variance: 278.57 standard deviation: 16.6904\n", + "\n", + "time up to the first occurrence of state 3 frequency distribution - sample size: 8\n", + "mean: 30.5 variance: 555.429 standard deviation: 23.5675\n", + "\n", + "time up to the first occurrence of state 4 distribution\n", + "mean: 53.7018 variance: 886.315 standard deviation: 29.771\n", + "\n", + "time up to the first occurrence of state 4 frequency distribution - sample size: 8\n", + "mean: 36.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "probability of leaving state 0: 0.138604\n", + "\n", + "state 0 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 0 recurrence time frequency distribution - sample size: 44\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "probability of leaving state 1: 0.0412602\n", + "\n", + "state 1 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 1 recurrence time frequency distribution - sample size: 92\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "probability of leaving state 2: 0.0496392\n", + "\n", + "state 2 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 2 recurrence time frequency distribution - sample size: 151\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "probability of leaving state 3: 0.0346981\n", + "\n", + "state 3 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 3 recurrence time frequency distribution - sample size: 178\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 4 recurrence time distribution\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "state 4 recurrence time frequency distribution - sample size: 500\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 2 PARAMETER : 3.48885 PROBABILITY : 0.400848\n", + "mean: 7.21481 variance: 13.0094 standard deviation: 3.60686\n", + "coefficient of skewness: 1.10606 coefficient of kurtosis: 1.79663\n", + "\n", + "state 0 sojourn time frequency distribution - sample size: 7\n", + "mean: 7.28571 variance: 15.9048 standard deviation: 3.98808\n", + "\n", + "final run - state 0 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 17 PARAMETER : 2.15715 PROBABILITY : 0.229641\n", + "mean: 24.2364 variance: 31.512 standard deviation: 5.61355\n", + "coefficient of skewness: 1.37333 coefficient of kurtosis: 2.81318\n", + "\n", + "state 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 24 variance: 42 standard deviation: 6.48074\n", + "\n", + "final run - state 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 10 PARAMETER : 0.765176 PROBABILITY : 0.0701318\n", + "mean: 20.1454 variance: 144.661 standard deviation: 12.0275\n", + "coefficient of skewness: 2.2879 coefficient of kurtosis: 7.84825\n", + "\n", + "state 2 sojourn time frequency distribution - sample size: 8\n", + "mean: 19.875 variance: 174.696 standard deviation: 13.2173\n", + "\n", + "final run - state 2 sojourn time frequency distribution - sample size: 0\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.22179 PROBABILITY : 0.0420701\n", + "mean: 28.8201 variance: 661.279 standard deviation: 25.7153\n", + "coefficient of skewness: 1.8098 coefficient of kurtosis: 4.91233\n", + "\n", + "state 3 sojourn time frequency distribution - sample size: 6\n", + "mean: 19.3333 variance: 351.867 standard deviation: 18.7581\n", + "\n", + "final run - state 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 35 variance: 392 standard deviation: 19.799\n", + "\n", + "absorption probability of state 4: 1\n", + "\n", + "state 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "final run - state 4 sojourn time frequency distribution - sample size: 8\n", + "mean: 63.5 variance: 273.143 standard deviation: 16.527\n", + "\n", + "number of runs of state 0 per length 100 sequence distribution\n", + "mean: 0.69443 variance: 0.212197 standard deviation: 0.460648\n", + "coefficient of skewness: -0.844158 coefficient of kurtosis: -1.2874\n", + "\n", + "number of runs of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 0.233333 standard deviation: 0.483046\n", + "coefficient of skewness: -1.0351 coefficient of kurtosis: -1.41429\n", + "\n", + "number of runs of state 1 per length 100 sequence distribution\n", + "mean: 0.399984 variance: 0.239997 standard deviation: 0.489895\n", + "coefficient of skewness: 0.408317 coefficient of kurtosis: -1.83328\n", + "\n", + "number of runs of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 0.4 variance: 0.266667 standard deviation: 0.516398\n", + "coefficient of skewness: 0.484123 coefficient of kurtosis: -1.95\n", + "\n", + "number of runs of state 2 per length 100 sequence distribution\n", + "mean: 0.799974 variance: 0.160016 standard deviation: 0.40002\n", + "coefficient of skewness: -1.49979 coefficient of kurtosis: 0.24938\n", + "\n", + "number of runs of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of runs of state 3 per length 100 sequence distribution\n", + "mean: 0.797624 variance: 0.16142 standard deviation: 0.401771\n", + "coefficient of skewness: -1.48156 coefficient of kurtosis: 0.195012\n", + "\n", + "number of runs of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of runs of state 4 per length 100 sequence distribution\n", + "mean: 0.916526 variance: 0.0765063 standard deviation: 0.276598\n", + "coefficient of skewness: -3.01178 coefficient of kurtosis: 7.07082\n", + "\n", + "number of runs of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.8 variance: 0.177778 standard deviation: 0.421637\n", + "coefficient of skewness: -1.77878 coefficient of kurtosis: -0.075\n", + "\n", + "number of occurrences of state 0 per length 100 sequence distribution\n", + "mean: 5.01004 variance: 20.0746 standard deviation: 4.48047\n", + "coefficient of skewness: 0.718669 coefficient of kurtosis: 0.34569\n", + "\n", + "number of occurrences of state 0 per sequence frequency distribution - sample size: 10\n", + "mean: 5.1 variance: 22.9889 standard deviation: 4.79467\n", + "coefficient of skewness: 0.512743 coefficient of kurtosis: -1.3736\n", + "\n", + "number of occurrences of state 1 per length 100 sequence distribution\n", + "mean: 9.694 variance: 153.565 standard deviation: 12.3921\n", + "coefficient of skewness: 0.698661 coefficient of kurtosis: -1.00396\n", + "\n", + "number of occurrences of state 1 per sequence frequency distribution - sample size: 10\n", + "mean: 9.6 variance: 167.6 standard deviation: 12.946\n", + "coefficient of skewness: 0.804284 coefficient of kurtosis: -1.35587\n", + "\n", + "number of occurrences of state 2 per length 100 sequence distribution\n", + "mean: 16.0856 variance: 176.401 standard deviation: 13.2816\n", + "coefficient of skewness: 1.41899 coefficient of kurtosis: 3.56837\n", + "\n", + "number of occurrences of state 2 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 206.1 standard deviation: 14.3562\n", + "coefficient of skewness: 1.28981 coefficient of kurtosis: 0.223948\n", + "\n", + "number of occurrences of state 3 per length 100 sequence distribution\n", + "mean: 21.0189 variance: 437.962 standard deviation: 20.9275\n", + "coefficient of skewness: 1.04806 coefficient of kurtosis: 0.390499\n", + "\n", + "number of occurrences of state 3 per sequence frequency distribution - sample size: 10\n", + "mean: 18.6 variance: 376.044 standard deviation: 19.3919\n", + "coefficient of skewness: 0.700214 coefficient of kurtosis: -1.49566\n", + "\n", + "number of occurrences of state 4 per length 100 sequence distribution\n", + "mean: 48.1915 variance: 619.948 standard deviation: 24.8988\n", + "coefficient of skewness: -0.576308 coefficient of kurtosis: -0.816286\n", + "\n", + "number of occurrences of state 4 per sequence frequency distribution - sample size: 10\n", + "mean: 50.8 variance: 929.289 standard deviation: 30.4842\n", + "coefficient of skewness: -0.913914 coefficient of kurtosis: -1.00596\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.8963\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0244\n", + "OUTPUT 3 : 0\n", + "OUTPUT 4 : 0.0793\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2577\n", + "OUTPUT 1 : 0.5061\n", + "OUTPUT 2 : 0.2141\n", + "OUTPUT 3 : 0.0113\n", + "OUTPUT 4 : 0.0108\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3134\n", + "OUTPUT 1 : 0.6256\n", + "OUTPUT 2 : 0.0458\n", + "OUTPUT 3 : 0.015\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1746\n", + "OUTPUT 1 : 0.2133\n", + "OUTPUT 2 : 0.4221\n", + "OUTPUT 3 : 0.1897\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.1605\n", + "OUTPUT 1 : 0.0315\n", + "OUTPUT 2 : 0.2342\n", + "OUTPUT 3 : 0.5736\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 4 \n", + "0 0.896356 1e-05 0.024402 1e-05 0.0792224 \n", + "1 0.257717 0.506118 0.214173 0.011306 0.0106861 \n", + "2 0.313478 0.625697 0.0458074 0.0150069 1e-05 \n", + "3 0.174687 0.213384 0.422198 0.189721 1e-05 \n", + "4 0.160542 0.0315415 0.234264 0.573643 1e-05 \n", + "\n", + "theoretical weights: 0.050105 0.0969425 0.160855 0.210187 0.481911\n", + "\n", + "log-likelihood: -1393.47 (normalized: -1.39347)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.538042\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.539802 critical probability: 0.969512\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.051 0.096 0.159 0.186 0.508\n", + "\n", + "log-likelihood: -1393.21 (normalized: -1.39321)\n", + "maximum possible log-likelihood: -1393.2 (information: -1.3932)\n", + "deviance: 0.010631\n", + "\n", + "chi-square test (4 degrees of freedom)\n", + "chi-square value: 0.0106381 critical probability: 0.999986\n", + "reference chi-square value: 9.48773 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.802947 variance: 3.50148 standard deviation: 1.87122\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.7 variance: 4.9 standard deviation: 2.21359\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 5.7393 variance: 21.1711 standard deviation: 4.60121\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 5.9 variance: 24.5444 standard deviation: 4.95424\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 12.34 variance: 87.37 standard deviation: 9.34719\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 10\n", + "mean: 10.2 variance: 37.2889 standard deviation: 6.10646\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 28.0414 variance: 219.637 standard deviation: 14.8202\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 10\n", + "mean: 25.7 variance: 183.567 standard deviation: 13.5487\n", + "\n", + "time up to the first occurrence of output 4 distribution\n", + "mean: 13.9478 variance: 5697.26 standard deviation: 75.4802\n", + "\n", + "time up to the first occurrence of output 4 frequency distribution - sample size: 4\n", + "mean: 5.25 variance: 29.5833 standard deviation: 5.43906\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 4.43669 variance: 21.9315 standard deviation: 4.68311\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 224\n", + "mean: 4.13839 variance: 15.3126 standard deviation: 3.91313\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 5.74424 variance: 184.42 standard deviation: 13.5801\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 195\n", + "mean: 3.56923 variance: 39.7722 standard deviation: 6.30652\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 3.85977 variance: 15.6332 standard deviation: 3.95388\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 216\n", + "mean: 4.04167 variance: 21.8448 standard deviation: 4.67384\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 2.29263 variance: 7.64644 standard deviation: 2.76522\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 320\n", + "mean: 2.25937 variance: 12.8134 standard deviation: 3.57958\n", + "\n", + "output 4 recurrence time distribution\n", + "mean: 18.4217 variance: 7865.9 standard deviation: 88.6899\n", + "\n", + "output 4 recurrence time frequency distribution - sample size: 1\n", + "mean: 4 variance: 0 standard deviation: 0\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 1.47305 variance: 1.44985 standard deviation: 1.2041\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 159\n", + "mean: 1.45912 variance: 1.52838 standard deviation: 1.23628\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.80616 variance: 2.02075 standard deviation: 1.42153\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 118\n", + "mean: 1.73729 variance: 1.99022 standard deviation: 1.41075\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.4223 variance: 0.655215 standard deviation: 0.809454\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 155\n", + "mean: 1.41935 variance: 0.608714 standard deviation: 0.780201\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 6\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 2.06683 variance: 2.56301 standard deviation: 1.60094\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 159\n", + "mean: 2.04403 variance: 2.80185 standard deviation: 1.67387\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 2\n", + "mean: 2.5 variance: 0.5 standard deviation: 0.707107\n", + "\n", + "output 4 sojourn time distribution\n", + "mean: 1.05934 variance: 0.0626113 standard deviation: 0.250223\n", + "\n", + "output 4 sojourn time frequency distribution - sample size: 5\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "final run - output 4 sojourn time frequency distribution - sample size: 0\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 15.7494 variance: 9.05478 standard deviation: 3.00912\n", + "coefficient of skewness: 0.119808 coefficient of kurtosis: 0.00140247\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 8.1 standard deviation: 2.84605\n", + "coefficient of skewness: 0.19954 coefficient of kurtosis: -1.17884\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 11.4656 variance: 20.8057 standard deviation: 4.56132\n", + "coefficient of skewness: 0.634883 coefficient of kurtosis: -0.120908\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 11.8 variance: 30.1778 standard deviation: 5.49343\n", + "coefficient of skewness: 0.552139 coefficient of kurtosis: -1.34827\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 16.3388 variance: 11.3516 standard deviation: 3.36921\n", + "coefficient of skewness: -0.139868 coefficient of kurtosis: 0.24889\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 17.6556 standard deviation: 4.20185\n", + "coefficient of skewness: -0.649044 coefficient of kurtosis: -0.869825\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 15.6128 variance: 20.7419 standard deviation: 4.55433\n", + "coefficient of skewness: -0.487928 coefficient of kurtosis: 0.0536395\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.1 variance: 34.5444 standard deviation: 5.87745\n", + "coefficient of skewness: -1.30266 coefficient of kurtosis: 0.19092\n", + "\n", + "number of runs of output 4 per length 100 sequence distribution\n", + "mean: 0.47295 variance: 0.526727 standard deviation: 0.725759\n", + "coefficient of skewness: 1.62849 coefficient of kurtosis: 2.81505\n", + "\n", + "number of runs of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 23.44 variance: 30.2232 standard deviation: 5.49756\n", + "coefficient of skewness: 0.306511 coefficient of kurtosis: 0.110952\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 23.4 variance: 40.4889 standard deviation: 6.36309\n", + "coefficient of skewness: 0.299779 coefficient of kurtosis: -0.977912\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 20.9762 variance: 88.1781 standard deviation: 9.39032\n", + "coefficient of skewness: 1.03936 coefficient of kurtosis: 1.07784\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 20.5 variance: 123.167 standard deviation: 11.098\n", + "coefficient of skewness: 1.30068 coefficient of kurtosis: 0.0179219\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 23.0989 variance: 34.7081 standard deviation: 5.89136\n", + "coefficient of skewness: 0.344837 coefficient of kurtosis: 0.443507\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 22.6 variance: 38.2667 standard deviation: 6.18601\n", + "coefficient of skewness: 0.574946 coefficient of kurtosis: -1.10525\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 31.9835 variance: 142.541 standard deviation: 11.9391\n", + "coefficient of skewness: -0.44279 coefficient of kurtosis: -0.561928\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 33 variance: 225.778 standard deviation: 15.0259\n", + "coefficient of skewness: -1.03193 coefficient of kurtosis: -0.581789\n", + "\n", + "number of occurrences of output 4 per length 100 sequence distribution\n", + "mean: 0.501351 variance: 0.618837 standard deviation: 0.786662\n", + "coefficient of skewness: 1.76871 coefficient of kurtosis: 3.55744\n", + "\n", + "number of occurrences of output 4 per sequence frequency distribution - sample size: 10\n", + "mean: 0.5 variance: 0.5 standard deviation: 0.707107\n", + "coefficient of skewness: 1.17851 coefficient of kurtosis: -0.5\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.707175 0.66209 _ _ \n", + "_ _ 0.179041 _ 0.582428 \n", + "_ _ _ 0.551105 _ \n", + "_ _ _ _ 0.383922 \n", + "_ _ _ _ _ \n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9793\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0103\n", + "OUTPUT 3 : 0.0104\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9782\n", + "OUTPUT 1 : 0\n", + "OUTPUT 2 : 0.0217\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2525\n", + "OUTPUT 1 : 0.1475\n", + "OUTPUT 2 : 0.2812\n", + "OUTPUT 3 : 0.3188\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 2 3 \n", + "0 0.99997 1e-05 1e-05 1e-05 \n", + "1 0.97934 1e-05 0.0103213 0.0103283 \n", + "2 0.99997 1e-05 1e-05 1e-05 \n", + "3 0.978205 1e-05 0.021775 1e-05 \n", + "4 0.252545 0.147524 0.28128 0.318651 \n", + "\n", + "theoretical weights: 0.050105 0.0969425 0.160855 0.210187 0.481911\n", + "\n", + "log-likelihood: -1072.99 (normalized: -1.07299)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 1.57957\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 1.59084 critical probability: 0.661468\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.051 0.096 0.159 0.186 0.508\n", + "\n", + "log-likelihood: -1072.2 (normalized: -1.0722)\n", + "maximum possible log-likelihood: -1072.2 (information: -1.0722)\n", + "deviance: 0.000271727\n", + "\n", + "chi-square test (3 degrees of freedom)\n", + "chi-square value: 0.000271754 critical probability: 0.999999\n", + "reference chi-square value: 7.81473 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.00205244 variance: 0.00204822 standard deviation: 0.0452573\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0 variance: 0 standard deviation: 0\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 59.4588 variance: 925.348 standard deviation: 30.4195\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 8\n", + "mean: 42.375 variance: 411.411 standard deviation: 20.2833\n", + "\n", + "time up to the first occurrence of output 2 distribution\n", + "mean: 43.7799 variance: 536.598 standard deviation: 23.1646\n", + "\n", + "time up to the first occurrence of output 2 frequency distribution - sample size: 9\n", + "mean: 38.3333 variance: 393 standard deviation: 19.8242\n", + "\n", + "time up to the first occurrence of output 3 distribution\n", + "mean: 52.2495 variance: 926.982 standard deviation: 30.4464\n", + "\n", + "time up to the first occurrence of output 3 frequency distribution - sample size: 9\n", + "mean: 36.3333 variance: 373.75 standard deviation: 19.3326\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.59068 variance: 3.40334 standard deviation: 1.84482\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 604\n", + "mean: 1.57616 variance: 3.03067 standard deviation: 1.74088\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 6.74959 variance: 37.8178 standard deviation: 6.14962\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 67\n", + "mean: 6.1194 variance: 48.1976 standard deviation: 6.94245\n", + "\n", + "output 2 recurrence time distribution\n", + "mean: 4.20277 variance: 28.29 standard deviation: 5.31883\n", + "\n", + "output 2 recurrence time frequency distribution - sample size: 139\n", + "mean: 3.61871 variance: 10.5999 standard deviation: 3.25575\n", + "\n", + "output 3 recurrence time distribution\n", + "mean: 3.25921 variance: 11.2631 standard deviation: 3.35606\n", + "\n", + "output 3 recurrence time frequency distribution - sample size: 154\n", + "mean: 3.05844 variance: 5.85931 standard deviation: 2.4206\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 6.05219 variance: 200.544 standard deviation: 14.1614\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 107\n", + "mean: 4.6729 variance: 129.052 standard deviation: 11.3601\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 2\n", + "mean: 57 variance: 1568 standard deviation: 39.598\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 1.17114 variance: 0.195402 standard deviation: 0.442043\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 57\n", + "mean: 1.29825 variance: 0.320175 standard deviation: 0.56584\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 1\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 2 sojourn time distribution\n", + "mean: 1.3682 variance: 0.505988 standard deviation: 0.711328\n", + "\n", + "output 2 sojourn time frequency distribution - sample size: 100\n", + "mean: 1.45 variance: 0.65404 standard deviation: 0.808728\n", + "\n", + "final run - output 2 sojourn time frequency distribution - sample size: 3\n", + "mean: 1 variance: 0 standard deviation: 0\n", + "\n", + "output 3 sojourn time distribution\n", + "mean: 1.46117 variance: 0.665883 standard deviation: 0.816016\n", + "\n", + "output 3 sojourn time frequency distribution - sample size: 103\n", + "mean: 1.50485 variance: 0.703408 standard deviation: 0.838694\n", + "\n", + "final run - output 3 sojourn time frequency distribution - sample size: 4\n", + "mean: 2 variance: 2 standard deviation: 1.41421\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 10.5507 variance: 23.1583 standard deviation: 4.81231\n", + "coefficient of skewness: -0.186006 coefficient of kurtosis: -0.737076\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 10.9 variance: 26.7667 standard deviation: 5.17365\n", + "coefficient of skewness: -0.813106 coefficient of kurtosis: -1.11134\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 6.08107 variance: 13.6385 standard deviation: 3.69304\n", + "coefficient of skewness: 0.034168 coefficient of kurtosis: -0.685049\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 5.8 variance: 19.2889 standard deviation: 4.39191\n", + "coefficient of skewness: 0.688976 coefficient of kurtosis: -0.140103\n", + "\n", + "number of runs of output 2 per length 100 sequence distribution\n", + "mean: 10.3574 variance: 26.4746 standard deviation: 5.14535\n", + "coefficient of skewness: -0.259347 coefficient of kurtosis: -0.731147\n", + "\n", + "number of runs of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 10.3 variance: 38.0111 standard deviation: 6.16532\n", + "coefficient of skewness: -0.426213 coefficient of kurtosis: -1.24839\n", + "\n", + "number of runs of output 3 per length 100 sequence distribution\n", + "mean: 10.6549 variance: 33.1973 standard deviation: 5.76171\n", + "coefficient of skewness: -0.320355 coefficient of kurtosis: -0.799926\n", + "\n", + "number of runs of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 10.7 variance: 39.1222 standard deviation: 6.25478\n", + "coefficient of skewness: -0.717339 coefficient of kurtosis: -0.966584\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 63.32 variance: 342.607 standard deviation: 18.5097\n", + "coefficient of skewness: 0.510067 coefficient of kurtosis: -0.81747\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 61.4 variance: 517.6 standard deviation: 22.7508\n", + "coefficient of skewness: 0.758395 coefficient of kurtosis: -1.06565\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 7.10994 variance: 19.5515 standard deviation: 4.42171\n", + "coefficient of skewness: 0.11819 coefficient of kurtosis: -0.605049\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 7.5 variance: 28.9444 standard deviation: 5.38\n", + "coefficient of skewness: 0.147165 coefficient of kurtosis: -0.928174\n", + "\n", + "number of occurrences of output 2 per length 100 sequence distribution\n", + "mean: 14.1132 variance: 54.4356 standard deviation: 7.37805\n", + "coefficient of skewness: -0.170628 coefficient of kurtosis: -0.735517\n", + "\n", + "number of occurrences of output 2 per sequence frequency distribution - sample size: 10\n", + "mean: 14.8 variance: 86.4 standard deviation: 9.29516\n", + "coefficient of skewness: -0.447805 coefficient of kurtosis: -1.44578\n", + "\n", + "number of occurrences of output 3 per length 100 sequence distribution\n", + "mean: 15.4568 variance: 73.4596 standard deviation: 8.57086\n", + "coefficient of skewness: -0.243379 coefficient of kurtosis: -0.791275\n", + "\n", + "number of occurrences of output 3 per sequence frequency distribution - sample size: 10\n", + "mean: 16.3 variance: 87.5667 standard deviation: 9.35771\n", + "coefficient of skewness: -0.945543 coefficient of kurtosis: -0.869543\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.0206296 1.11022e-16 _ _ \n", + "_ _ 0.0206296 _ 0.726796 \n", + "_ _ _ 0.021765 _ \n", + "_ _ _ _ 0.72566 \n", + "_ _ _ _ _ \n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9999\n", + "OUTPUT 1 : 0.0001\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.3713\n", + "OUTPUT 1 : 0.6287\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.9882\n", + "OUTPUT 1 : 0.0118\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.7655\n", + "OUTPUT 1 : 0.2345\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "OUTPUT 0 : 0.2424\n", + "OUTPUT 1 : 0.7576\n", + "\n", + "observation probability matrix\n", + "\n", + " 0 1 \n", + "0 0.99999 1e-05 \n", + "1 0.371328 0.628672 \n", + "2 0.988283 0.0117166 \n", + "3 0.765547 0.234453 \n", + "4 0.242439 0.757561 \n", + "\n", + "theoretical weights: 0.050105 0.0969425 0.160855 0.210187 0.481911\n", + "\n", + "log-likelihood: -693.367 (normalized: -0.693367)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.764356\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.764902 critical probability: 0.381799\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "restoration weights: 0.051 0.096 0.159 0.186 0.508\n", + "\n", + "log-likelihood: -692.985 (normalized: -0.692985)\n", + "maximum possible log-likelihood: -692.985 (information: -0.692985)\n", + "deviance: 0.000448302\n", + "\n", + "chi-square test (1 degree of freedom)\n", + "chi-square value: 0.000448305 critical probability: 0.983107\n", + "reference chi-square value: 3.84146 reference critical probability: 0.05\n", + "\n", + "time up to the first occurrence of output 0 distribution\n", + "mean: 0.16065 variance: 0.583715 standard deviation: 0.764012\n", + "\n", + "time up to the first occurrence of output 0 frequency distribution - sample size: 10\n", + "mean: 0.1 variance: 0.1 standard deviation: 0.316228\n", + "\n", + "time up to the first occurrence of output 1 distribution\n", + "mean: 16.9476 variance: 176.602 standard deviation: 13.2892\n", + "\n", + "time up to the first occurrence of output 1 frequency distribution - sample size: 10\n", + "mean: 17.1 variance: 136.989 standard deviation: 11.7042\n", + "\n", + "output 0 recurrence time distribution\n", + "mean: 1.937 variance: 4.78686 standard deviation: 2.18789\n", + "\n", + "output 0 recurrence time frequency distribution - sample size: 499\n", + "mean: 1.95992 variance: 4.902 standard deviation: 2.21405\n", + "\n", + "output 1 recurrence time distribution\n", + "mean: 1.73388 variance: 3.99427 standard deviation: 1.99857\n", + "\n", + "output 1 recurrence time frequency distribution - sample size: 481\n", + "mean: 1.67568 variance: 4.96126 standard deviation: 2.22739\n", + "\n", + "output 0 sojourn time distribution\n", + "mean: 3.2727 variance: 32.2377 standard deviation: 5.67783\n", + "\n", + "output 0 sojourn time frequency distribution - sample size: 158\n", + "mean: 3.13924 variance: 33.127 standard deviation: 5.7556\n", + "\n", + "final run - output 0 sojourn time frequency distribution - sample size: 6\n", + "mean: 2.16667 variance: 3.76667 standard deviation: 1.94079\n", + "\n", + "output 1 sojourn time distribution\n", + "mean: 3.14033 variance: 9.33678 standard deviation: 3.05561\n", + "\n", + "output 1 sojourn time frequency distribution - sample size: 155\n", + "mean: 3.09677 variance: 9.19187 standard deviation: 3.03181\n", + "\n", + "final run - output 1 sojourn time frequency distribution - sample size: 4\n", + "mean: 2.75 variance: 2.91667 standard deviation: 1.70783\n", + "\n", + "number of runs of output 0 per length 100 sequence distribution\n", + "mean: 15.796 variance: 13.5033 standard deviation: 3.67468\n", + "coefficient of skewness: -0.167225 coefficient of kurtosis: 0.239642\n", + "\n", + "number of runs of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 16.4 variance: 9.6 standard deviation: 3.09839\n", + "coefficient of skewness: -0.832647 coefficient of kurtosis: -0.205208\n", + "\n", + "number of runs of output 1 per length 100 sequence distribution\n", + "mean: 15.5747 variance: 13.9623 standard deviation: 3.73662\n", + "coefficient of skewness: -0.170552 coefficient of kurtosis: 0.290764\n", + "\n", + "number of runs of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 15.9 variance: 10.5444 standard deviation: 3.24722\n", + "coefficient of skewness: -0.107574 coefficient of kurtosis: -0.151205\n", + "\n", + "number of occurrences of output 0 per length 100 sequence distribution\n", + "mean: 52.2812 variance: 270.628 standard deviation: 16.4508\n", + "coefficient of skewness: 0.289249 coefficient of kurtosis: -0.607469\n", + "\n", + "number of occurrences of output 0 per sequence frequency distribution - sample size: 10\n", + "mean: 50.9 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: 0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "number of occurrences of output 1 per length 100 sequence distribution\n", + "mean: 47.7188 variance: 270.628 standard deviation: 16.4508\n", + "coefficient of skewness: -0.289249 coefficient of kurtosis: -0.607469\n", + "\n", + "number of occurrences of output 1 per sequence frequency distribution - sample size: 10\n", + "mean: 49.1 variance: 375.433 standard deviation: 19.3761\n", + "coefficient of skewness: -0.41822 coefficient of kurtosis: -1.35608\n", + "\n", + "distances between observation distributions for consecutive states\n", + "_ 0.628662 0.0117066 _ _ \n", + "_ _ 0.616956 _ 0.128889 \n", + "_ _ _ 0.222736 _ \n", + "_ _ _ _ 0.523108 \n", + "_ _ _ _ _ \n", + "\n", + "sequence length frequency distribution - sample size: 10\n", + "mean: 100 variance: 0 standard deviation: 0\n", + "\n", + "cumulative length: 1000\n", + "\n", + "information of the sequences in the iid case: -3158.39 (-3.15839)\n", + "\n", + "log-likelihood of the state sequences: -2309.03 (normalized: -2.30903)\n", + "\n", + "state sequence entropy: 20.4417 (normalized: 0.0204417)\n", + "\n", + "log-likelihood of the observed sequences: -2299.49 (normalized: -2.29949)\n", + "\n", + "38 free parameters 2 * penalyzed log-likelihood (AIC): -4674.98\n", + "\n", + "38 free parameters 2 * penalyzed log-likelihood (AICc): -4678.06\n", + "\n", + "38 free parameters 2 * penalyzed log-likelihood (BIC): -4861.47\n", + "\n", + "38 free parameters 2 * penalyzed log-likelihood (BICc): -4783.88\n", + "\n", + "38 free parameters 2 * penalyzed log-likelihood (ICL): -4902.36\n", + "\n", + "38 free parameters 2 * penalyzed log-likelihood (ICLc): -4824.76\n", + "\n" + ] + } + ], + "source": [ + "hsmc1 = Estimate(seq1v, \"HIDDEN_SEMI-MARKOV\", hmsc_init, NbIteration=300)\n", + "print(hsmc1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Export states\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from openalea.sequence_analysis import ExtractData\n", + "seg = ExtractData(hsmc1) # Data and segmentation" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]\n", + "[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]\n" + ] + } + ], + "source": [ + "# Restored states are added as the first variable to seq_1v, see\n", + "print(seg[0][0:10])\n", + "print(seq1v[0][0:10])" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "seg_dir = \"Results\"" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "if not os.path.exists(seg_dir): \n", + " # if the seg_dir directory is not present \n", + " # then create it. \n", + " os.makedirs(seg_dir) " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "# Export into file\n", + "\n", + "seg_file = \"seq1v_\" + str(nb_states) + \"s_LR_segm.seq\"\n", + "output_Rpyseq1_file = seg_dir + os.sep + seg_file[0:-4] + \".csv\"\n", + "WriteRSequence(seg, output_Rpyseq1_file, RestoredStatesHeader())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create DataFrame" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(output_Rpyseq1_file, index_col=0, comment=\"#\", usecols=range(6))\n", + "var_names = [' axillary shoot type',' lateral flowering', ' terminal flowering']\n", + "df = df[var_names]" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "# Add sequence identifiers to DF\n", + "seqid = []\n", + "for i in range(len(seq1v)):\n", + " seqid += [i+1] * len(seq1v[i])\n", + "seqid\n", + "df[\"seqid\"] = seqid" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "from seqint.pyseq_data_frame import PySeqDataFrame\n", + "pyd = PySeqDataFrame(df, seq_index_name=\"seqid\")\n", + "pyd.seq_index_name\n", + "pyd.col_to_seq(var_names)\n", + "seqc = pyd.get_input_sequence(var_names)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "assert(str(seqc[0]) == str(seq1v[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Embed HSCM within Model class for automatic parameter visualization\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/scratch/Results/2AmEGv.hsmc\n", + "HIDDEN_SEMI-MARKOV_CHAIN\n", + "\n", + "5 STATES\n", + "\n", + "INITIAL_PROBABILITIES\n", + "\n", + "0.694432 0.099998 0.20555 1e-05 9.99999999995e-06\n", + "\n", + "TRANSITION_PROBABILITIES\n", + "\n", + "0.0 0.431991 0.567989 1e-05 1.00000000001e-05\n", + "\n", + "0.0 0.0 0.499998 1e-05 0.499992\n", + "\n", + "0.0 0.0 0.0 0.99999 9.99999999995e-06\n", + "\n", + "0.0 0.0 0.0 0.0 1.0\n", + "\n", + "0.0 0.0 0.0 0.0 1.0\n", + "\n", + "STATE 0 OCCUPANCY_DISTRIBUTION\n", + "\n", + "NEGATIVE_BINOMIAL INF_BOUND : 2 PARAMETER : 3.48885 PROBABILITY : 0.400848\n", + "\n", + "STATE 1 OCCUPANCY_DISTRIBUTION\n", + "\n", + "NEGATIVE_BINOMIAL INF_BOUND : 17 PARAMETER : 2.15715 PROBABILITY : 0.229641\n", + "\n", + "STATE 2 OCCUPANCY_DISTRIBUTION\n", + "\n", + "NEGATIVE_BINOMIAL INF_BOUND : 10 PARAMETER : 0.765176 PROBABILITY : 0.0701318\n", + "\n", + "STATE 3 OCCUPANCY_DISTRIBUTION\n", + "\n", + "NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.22179 PROBABILITY : 0.0420701\n", + "\n", + "3 OUTPUT_PROCESSES\n", + "\n", + "OUTPUT_PROCESS 1 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.8963\n", + "\n", + "OUTPUT 1 : 0\n", + "\n", + "OUTPUT 2 : 0.0244\n", + "\n", + "OUTPUT 3 : 0\n", + "\n", + "OUTPUT 4 : 0.0793\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.2577\n", + "\n", + "OUTPUT 1 : 0.5061\n", + "\n", + "OUTPUT 2 : 0.2141\n", + "\n", + "OUTPUT 3 : 0.0113\n", + "\n", + "OUTPUT 4 : 0.0108\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.3134\n", + "\n", + "OUTPUT 1 : 0.6256\n", + "\n", + "OUTPUT 2 : 0.0458\n", + "\n", + "OUTPUT 3 : 0.015\n", + "\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.1746\n", + "\n", + "OUTPUT 1 : 0.2133\n", + "\n", + "OUTPUT 2 : 0.4221\n", + "\n", + "OUTPUT 3 : 0.1897\n", + "\n", + "OUTPUT 4 : 0.0003\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.1605\n", + "\n", + "OUTPUT 1 : 0.0315\n", + "\n", + "OUTPUT 2 : 0.2342\n", + "\n", + "OUTPUT 3 : 0.5736\n", + "\n", + "OUTPUT 4 : 0.0002\n", + "\n", + "OUTPUT_PROCESS 2 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.9999\n", + "\n", + "OUTPUT 1 : 0\n", + "\n", + "OUTPUT 2 : 0\n", + "\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.9793\n", + "\n", + "OUTPUT 1 : 0\n", + "\n", + "OUTPUT 2 : 0.0103\n", + "\n", + "OUTPUT 3 : 0.0104\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.9999\n", + "\n", + "OUTPUT 1 : 0\n", + "\n", + "OUTPUT 2 : 0\n", + "\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.9782\n", + "\n", + "OUTPUT 1 : 0\n", + "\n", + "OUTPUT 2 : 0.0217\n", + "\n", + "OUTPUT 3 : 0.0001\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.2525\n", + "\n", + "OUTPUT 1 : 0.1475\n", + "\n", + "OUTPUT 2 : 0.2812\n", + "\n", + "OUTPUT 3 : 0.3188\n", + "\n", + "OUTPUT_PROCESS 3 : CATEGORICAL\n", + "\n", + "STATE 0 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.9999\n", + "\n", + "OUTPUT 1 : 0.0001\n", + "\n", + "STATE 1 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.3713\n", + "\n", + "OUTPUT 1 : 0.6287\n", + "\n", + "STATE 2 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.9882\n", + "\n", + "OUTPUT 1 : 0.0118\n", + "\n", + "STATE 3 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.7655\n", + "\n", + "OUTPUT 1 : 0.2345\n", + "\n", + "STATE 4 OBSERVATION_DISTRIBUTION\n", + "\n", + "OUTPUT 0 : 0.2424\n", + "\n", + "OUTPUT 1 : 0.7576\n", + "\n" + ] + } + ], + "source": [ + "output_path = base_path + os.sep + \"Results\" \n", + "model = Model(pyd, output_process_name=var_names, init_hsmc_file=init_file, output_path=output_path)\n", + "model.iterate_em(300)\n", + "model.hsmm.save(os.path.join(output_path, 'seq1v_' + str(nb_states) + 's_LR.hsmc'))\n", + "model.print_hsmc_file(verbose=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:*** ERROR : non-existing characteristic distribution\n", + "\n" + ] + } + ], + "source": [ + "from seqint import html_report\n", + "\n", + "output_path = \".\" + os.sep + \"tmp_dir\"\n", + "\n", + "if not os.path.exists(output_path):\n", + " os.mkdir(output_path)\n", + " \n", + "report = html_report.Htmlreport(model, output_path=output_path)\n", + "report.make_html(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Removing some garbage files*" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "report_prefix = report._html_report_file_path[0:-11]\n", + "report_prefix = report_prefix.split(\"/\")[2]\n", + "import glob\n", + "for f in glob.glob(\".\" +os.sep + \"*.dat\"):\n", + " os.remove(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Report printed in ./tmp_dir/2AmEGv-report.html\n" + ] + } + ], + "source": [ + "print(\"Report printed in \" + str(report._html_report_file_path))" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "import shutil\n", + "#shutil.rmtree(tempdir)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "import dill\n", + "# dill.dump_session('notebook_env.db')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/sequence_analysis/tutorials/sim_v_5s_LR.hsmc b/sequence_analysis/tutorials/sim_v_5s_LR.hsmc new file mode 100755 index 00000000..d2af7aa3 --- /dev/null +++ b/sequence_analysis/tutorials/sim_v_5s_LR.hsmc @@ -0,0 +1,172 @@ +HIDDEN_SEMI-MARKOV_CHAIN + +5 STATES + +INITIAL_PROBABILITIES +0.983184 0.0167856 1e-005 1e-005 1e-005 + +TRANSITION_PROBABILITIES +0 0.344161 0.655819 1e-005 1e-005 +0 0 0.529125 1e-005 0.470865 +0 0 0 0.999756 0.000243555 +0 0 0 0 1 +0 0 0 0 1 + +STATE 0 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 1.214 PROBABILITY : 0.164955 +# mean: 7.14556 variance: 37.2559 standard deviation: 6.10376 +# coefficient of skewness: 1.82256 coefficient of kurtosis: 4.96919 +# coefficient of variation: 0.854203 + +# state 0 sojourn time frequency distribution - sample size: 116 +# mean: 7.50862 variance: 42.7391 standard deviation: 6.53751 + +# final run - state 0 sojourn time frequency distribution - sample size: 0 + +STATE 1 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 9.51496 PROBABILITY : 0.318924 +# mean: 21.3196 variance: 63.7131 standard deviation: 7.98205 +# coefficient of skewness: 0.660368 coefficient of kurtosis: 0.646281 +# coefficient of variation: 0.374399 + +# state 1 sojourn time frequency distribution - sample size: 43 +# mean: 21.2326 variance: 67.3732 standard deviation: 8.20812 + +# final run - state 1 sojourn time frequency distribution - sample size: 0 + +STATE 2 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 4.28511 PROBABILITY : 0.180089 +# mean: 20.5092 variance: 108.331 standard deviation: 10.4082 +# coefficient of skewness: 0.970925 coefficient of kurtosis: 1.40943 +# coefficient of variation: 0.507489 + +# state 2 sojourn time frequency distribution - sample size: 95 +# mean: 20.6421 variance: 107.658 standard deviation: 10.3758 + +# final run - state 2 sojourn time frequency distribution - sample size: 1 +# mean: 32 variance: 0 standard deviation: 0 + +STATE 3 OCCUPANCY_DISTRIBUTION +NEGATIVE_BINOMIAL INF_BOUND : 1 PARAMETER : 0.670372 PROBABILITY : 0.0389384 +# mean: 17.5459 variance: 424.925 standard deviation: 20.6137 +# coefficient of skewness: 2.44319 coefficient of kurtosis: 8.95261 +# coefficient of variation: 1.17485 + +# state 3 sojourn time frequency distribution - sample size: 55 +# mean: 5.6 variance: 30.6519 standard deviation: 5.53641 + +# final run - state 3 sojourn time frequency distribution - sample size: 40 +# mean: 14.4 variance: 26.4 standard deviation: 5.13809 + + +3 OUTPUT_PROCESSES + +OUTPUT_PROCESS 1 : CATEGORICAL + +STATE 0 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.837599 +OUTPUT 1 : 0.043112 +OUTPUT 2 : 0.00187668 +OUTPUT 3 : 0.0144115 +OUTPUT 4 : 0.103 + +STATE 1 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.198527 +OUTPUT 1 : 0.657862 +OUTPUT 2 : 0.108052 +OUTPUT 3 : 0.0299297 +OUTPUT 4 : 0.00562959 + +STATE 2 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.376836 +OUTPUT 1 : 0.57858 +OUTPUT 2 : 0.0352186 +OUTPUT 3 : 0.00909654 +OUTPUT 4 : 0.000268293 + +STATE 3 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.124423 +OUTPUT 1 : 0.22101 +OUTPUT 2 : 0.462468 +OUTPUT 3 : 0.192089 +OUTPUT 4 : 1e-005 + +STATE 4 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.145512 +OUTPUT 1 : 0.0419245 +OUTPUT 2 : 0.206654 +OUTPUT 3 : 0.6059 +OUTPUT 4 : 1e-005 + +# observation probability matrix + +# 0 1 2 3 4 +# 0 0.837599 0.043112 0.00187668 0.0144115 0.103 +# 1 0.198527 0.657862 0.108052 0.0299297 0.00562959 +# 2 0.376836 0.57858 0.0352186 0.00909654 0.000268293 +# 3 0.124423 0.22101 0.462468 0.192089 1e-005 +# 4 0.145512 0.0419245 0.206654 0.6059 1e-005 + +OUTPUT_PROCESS 2 : CATEGORICAL + +STATE 0 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.995312 +OUTPUT 1 : 0.0012052 +OUTPUT 2 : 0.0034729 +OUTPUT 3 : 1e-005 + +STATE 1 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.969859 +OUTPUT 1 : 0.00451974 +OUTPUT 2 : 0.0107587 +OUTPUT 3 : 0.0148629 + +STATE 2 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.99997 +OUTPUT 1 : 1e-005 +OUTPUT 2 : 1e-005 +OUTPUT 3 : 1e-005 + +STATE 3 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.975647 +OUTPUT 1 : 0.00283823 +OUTPUT 2 : 0.0215051 +OUTPUT 3 : 1e-005 + +STATE 4 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.251944 +OUTPUT 1 : 0.147155 +OUTPUT 2 : 0.273018 +OUTPUT 3 : 0.327883 + +OUTPUT_PROCESS 3 : CATEGORICAL + +STATE 0 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.99889 +OUTPUT 1 : 0.00110962 + +STATE 1 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.301492 +OUTPUT 1 : 0.698508 + +STATE 2 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.985937 +OUTPUT 1 : 0.014063 + +STATE 3 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.742475 +OUTPUT 1 : 0.257525 + +STATE 4 OBSERVATION_DISTRIBUTION +OUTPUT 0 : 0.244794 +OUTPUT 1 : 0.755206 + +# observation probability matrix + +# 0 1 +# 0 0.99889 0.00110962 +# 1 0.301492 0.698508 +# 2 0.985937 0.014063 +# 3 0.742475 0.257525 +# 4 0.244794 0.755206 +