diff --git a/runs.ipynb b/runs.ipynb index 0809f447..e433b03e 100644 --- a/runs.ipynb +++ b/runs.ipynb @@ -14,13 +14,144 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "upload: resources/datasets_raw/adamson_bulked.h5ad to s3://openproblems-data/resources/grn/datasets_raw/adamson_bulked.h5ad\n", + "upload: resources/datasets_raw/norman_bulked.h5ad to s3://openproblems-data/resources/grn/datasets_raw/norman_bulked.h5ad\n", + "delete: s3://openproblems-data/resources/grn/datasets_raw/op_perturbation_counts.h5ad \n", + "upload: resources/datasets_raw/nakatake_bulked.h5ad to s3://openproblems-data/resources/grn/datasets_raw/nakatake_bulked.h5ad\n", + "upload: resources/datasets_raw/op_bulked.h5ad to s3://openproblems-data/resources/grn/datasets_raw/op_bulked.h5ad\n", + "delete: s3://openproblems-data/resources/grn/datasets_raw/replogle2.h5ad \n", + "upload: resources/datasets_raw/adamson_sc_counts.h5ad to s3://openproblems-data/resources/grn/datasets_raw/adamson_sc_counts.h5ad\n", + "upload: resources/evaluation_datasets/adamson_perturbation.h5ad to s3://openproblems-data/resources/grn/evaluation_datasets/adamson_perturbation.h5ad\n", + "upload: resources/evaluation_datasets/nakatake_perturbation.h5ad to s3://openproblems-data/resources/grn/evaluation_datasets/nakatake_perturbation.h5ad\n", + "upload: resources/evaluation_datasets/norman_perturbation.h5ad to s3://openproblems-data/resources/grn/evaluation_datasets/norman_perturbation.h5ad\n", + "upload: resources/evaluation_datasets/replogle2_perturbation.h5ad to s3://openproblems-data/resources/grn/evaluation_datasets/replogle2_perturbation.h5ad\n", + "upload: resources/grn_models/adamson/grnboost2_0.5.csv to s3://openproblems-data/resources/grn/grn_models/adamson/grnboost2_0.5.csv\n", + "upload: resources/grn_models/adamson/grnboost2_1.0.csv to s3://openproblems-data/resources/grn/grn_models/adamson/grnboost2_1.0.csv\n", + "upload: resources/grn_models/adamson/pearson_corr_0.2.csv to s3://openproblems-data/resources/grn/grn_models/adamson/pearson_corr_0.2.csv\n", + "upload: resources/grn_models/adamson/pearson_corr_0.5.csv to s3://openproblems-data/resources/grn/grn_models/adamson/pearson_corr_0.5.csv\n", + "upload: resources/grn_models/adamson/pearson_corr_1.0.csv to s3://openproblems-data/resources/grn/grn_models/adamson/pearson_corr_1.0.csv\n", + "upload: resources/grn_models/adamson/portia_0.2.csv to s3://openproblems-data/resources/grn/grn_models/adamson/portia_0.2.csv\n", + "upload: resources/grn_models/adamson/portia_0.5.csv to s3://openproblems-data/resources/grn/grn_models/adamson/portia_0.5.csv\n", + "upload: resources/grn_models/adamson/portia_1.0.csv to s3://openproblems-data/resources/grn/grn_models/adamson/portia_1.0.csv\n", + "upload: resources/grn_models/global/Ananse:Bone marrow.csv to s3://openproblems-data/resources/grn/grn_models/global/Ananse:Bone marrow.csv\n", + "upload: resources/grn_models/global/Ananse:Heart.csv to s3://openproblems-data/resources/grn/grn_models/global/Ananse:Heart.csv\n", + "upload: resources/grn_models/global/Ananse:Lung.csv to s3://openproblems-data/resources/grn/grn_models/global/Ananse:Lung.csv\n", + "upload: resources/grn_models/global/Ananse:Stomach.csv to s3://openproblems-data/resources/grn/grn_models/global/Ananse:Stomach.csv\n", + "upload: resources/grn_models/global/Cellnet:Bcell.csv to s3://openproblems-data/resources/grn/grn_models/global/Cellnet:Bcell.csv\n", + "upload: resources/grn_models/global/Cellnet:Heart.csv to s3://openproblems-data/resources/grn/grn_models/global/Cellnet:Heart.csv\n", + "upload: resources/grn_models/global/Cellnet:Neuron.csv to s3://openproblems-data/resources/grn/grn_models/global/Cellnet:Neuron.csv\n", + "upload: resources/grn_models/global/Cellnet:Skin.csv to s3://openproblems-data/resources/grn/grn_models/global/Cellnet:Skin.csv\n", + "upload: resources/grn_models/global/Cellnet:Tcell.csv to s3://openproblems-data/resources/grn/grn_models/global/Cellnet:Tcell.csv\n", + "upload: resources/grn_models/global/Gtex:Brain amygdala.csv to s3://openproblems-data/resources/grn/grn_models/global/Gtex:Brain amygdala.csv\n", + "upload: resources/grn_models/global/Gtex:Breast mammary tissue.csv to s3://openproblems-data/resources/grn/grn_models/global/Gtex:Breast mammary tissue.csv\n", + "upload: resources/datasets_raw/replogle2_bulked.h5ad to s3://openproblems-data/resources/grn/datasets_raw/replogle2_bulked.h5ad\n", + "upload: resources/grn_models/global/Gtex:Lung.csv to s3://openproblems-data/resources/grn/grn_models/global/Gtex:Lung.csv\n", + "upload: resources/grn_models/global/collectri.csv to s3://openproblems-data/resources/grn/grn_models/global/collectri.csv\n", + "upload: resources/grn_models/global/Gtex:Stomach.csv to s3://openproblems-data/resources/grn/grn_models/global/Gtex:Stomach.csv\n", + "upload: resources/grn_models/global/Gtex:Whole blood.csv to s3://openproblems-data/resources/grn/grn_models/global/Gtex:Whole blood.csv\n", + "upload: resources/grn_models/nakatake/grnboost2_0.2.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/grnboost2_0.2.csv\n", + "upload: resources/grn_models/nakatake/grnboost2_0.5.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/grnboost2_0.5.csv\n", + "upload: resources/grn_models/nakatake/grnboost2_1.0.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/grnboost2_1.0.csv\n", + "upload: resources/grn_models/nakatake/pearson_corr_0.2.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/pearson_corr_0.2.csv\n", + "upload: resources/grn_models/nakatake/pearson_corr_0.5.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/pearson_corr_0.5.csv\n", + "upload: resources/grn_models/nakatake/pearson_corr_1.0.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/pearson_corr_1.0.csv\n", + "upload: resources/grn_models/nakatake/portia_0.2.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/portia_0.2.csv\n", + "upload: resources/grn_models/nakatake/portia_0.5.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/portia_0.5.csv\n", + "upload: resources/grn_models/nakatake/portia_1.0.csv to s3://openproblems-data/resources/grn/grn_models/nakatake/portia_1.0.csv\n", + "upload: resources/grn_models/norman/pearson_corr.csv to s3://openproblems-data/resources/grn/grn_models/norman/pearson_corr.csv\n", + "upload: resources/grn_models/norman/pearson_corr_0.2.csv to s3://openproblems-data/resources/grn/grn_models/norman/pearson_corr_0.2.csv\n", + "upload: resources/grn_models/norman/pearson_corr_0.5.csv to s3://openproblems-data/resources/grn/grn_models/norman/pearson_corr_0.5.csv\n", + "upload: resources/grn_models/norman/portia_0.2.csv to s3://openproblems-data/resources/grn/grn_models/norman/portia_0.2.csv\n", + "upload: resources/grn_models/norman/pearson_corr_1.0.csv to s3://openproblems-data/resources/grn/grn_models/norman/pearson_corr_1.0.csv\n", + "upload: resources/grn_models/norman/portia_1.0.csv to s3://openproblems-data/resources/grn/grn_models/norman/portia_1.0.csv\n", + "upload: resources/grn_models/norman/portia_0.5.csv to s3://openproblems-data/resources/grn/grn_models/norman/portia_0.5.csv\n", + "upload: resources/grn_models/norman/scenic.csv to s3://openproblems-data/resources/grn/grn_models/norman/scenic.csv\n", + "delete: s3://openproblems-data/resources/grn/grn_models/op/collectri.csv\n", + "upload: resources/grn_models/op/pearson_corr_1.csv to s3://openproblems-data/resources/grn/grn_models/op/pearson_corr_1.csv\n", + "upload: resources/grn_models/op/pearson_corr_2.csv to s3://openproblems-data/resources/grn/grn_models/op/pearson_corr_2.csv\n", + "upload: resources/grn_models/op/portia_1.csv to s3://openproblems-data/resources/grn/grn_models/op/portia_1.csv\n", + "upload: resources/grn_models/op/portia_2.csv to s3://openproblems-data/resources/grn/grn_models/op/portia_2.csv\n", + "upload: resources/grn_models/replogle2/grnboost2_0.2.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/grnboost2_0.2.csv\n", + "upload: resources/grn_models/replogle2/grnboost2_0.5.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/grnboost2_0.5.csv\n", + "upload: resources/grn_models/replogle2/grnboost2_1.0.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/grnboost2_1.0.csv\n", + "upload: resources/grn_models/replogle2/pearson_corr_0.5.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/pearson_corr_0.5.csv\n", + "upload: resources/grn_models/replogle2/pearson_corr_0.2.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/pearson_corr_0.2.csv\n", + "upload: resources/grn_models/replogle2/pearson_corr_1.0.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/pearson_corr_1.0.csv\n", + "upload: resources/grn_models/replogle2/portia_0.2.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/portia_0.2.csv\n", + "upload: resources/grn_models/replogle2/portia_0.5.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/portia_0.5.csv\n", + "upload: resources/grn_models/replogle2/portia_1.0.csv to s3://openproblems-data/resources/grn/grn_models/replogle2/portia_1.0.csv\n", + "upload: resources/datasets_raw/norman_sc_counts.h5ad to s3://openproblems-data/resources/grn/datasets_raw/norman_sc_counts.h5ad\n", + "upload: resources/inference_datasets/nakatake_rna.h5ad to s3://openproblems-data/resources/grn/inference_datasets/nakatake_rna.h5ad\n", + "upload: resources/inference_datasets/adamson_rna.h5ad to s3://openproblems-data/resources/grn/inference_datasets/adamson_rna.h5ad\n", + "delete: s3://openproblems-data/resources/grn/prior/adamson_consensus-num-regulators.json\n", + "delete: s3://openproblems-data/resources/grn/prior/frangieh_IFNg_v2_consensus-num-regulators.json\n", + "delete: s3://openproblems-data/resources/grn/prior/nakatake_consensus-num-regulators.json\n", + "delete: s3://openproblems-data/resources/grn/prior/norman_consensus-num-regulators.json\n", + "delete: s3://openproblems-data/resources/grn/prior/op_consensus-num-regulators.json\n", + "delete: s3://openproblems-data/resources/grn/prior/op_consensus-num-regulators_global.json\n", + "upload: resources/prior/regulators_consensus_adamson.json to s3://openproblems-data/resources/grn/prior/regulators_consensus_adamson.json\n", + "upload: resources/prior/regulators_consensus_nakatake.json to s3://openproblems-data/resources/grn/prior/regulators_consensus_nakatake.json\n", + "upload: resources/prior/regulators_consensus_norman.json to s3://openproblems-data/resources/grn/prior/regulators_consensus_norman.json\n", + "upload: resources/prior/regulators_consensus_op.json to s3://openproblems-data/resources/grn/prior/regulators_consensus_op.json\n", + "upload: resources/prior/regulators_consensus_replogle2.json to s3://openproblems-data/resources/grn/prior/regulators_consensus_replogle2.json\n", + "delete: s3://openproblems-data/resources/grn/prior/replogle2_consensus-num-regulators.json\n", + "delete: s3://openproblems-data/resources/grn/prior/skeleton_promotor.csv\n", + "upload: resources/prior/ws_consensus_adamson.csv to s3://openproblems-data/resources/grn/prior/ws_consensus_adamson.csv\n", + "upload: resources/prior/ws_consensus_norman.csv to s3://openproblems-data/resources/grn/prior/ws_consensus_norman.csv\n", + "upload: resources/prior/ws_distance_background_adamson.csv to s3://openproblems-data/resources/grn/prior/ws_distance_background_adamson.csv\n", + "upload: resources/results/figs/centrality_in_short.png to s3://openproblems-data/resources/grn/results/figs/centrality_in_short.png\n", + "upload: resources/results/figs/consensus_ws.png to s3://openproblems-data/resources/grn/results/figs/consensus_ws.png\n", + "upload: resources/prior/ws_distance_background_norman.csv to s3://openproblems-data/resources/grn/prior/ws_distance_background_norman.csv\n", + "upload: resources/results/figs/evaluation_scores_global_models.png to s3://openproblems-data/resources/grn/results/figs/evaluation_scores_global_models.png\n", + "upload: resources/results/figs/evaluation_scores_norman_adamson.png to s3://openproblems-data/resources/grn/results/figs/evaluation_scores_norman_adamson.png\n", + "upload: resources/datasets_raw/op_multiome_sc_counts.h5ad to s3://openproblems-data/resources/grn/datasets_raw/op_multiome_sc_counts.h5ad\n", + "upload: resources/results/figs/evaluation_scores_opsca.png to s3://openproblems-data/resources/grn/results/figs/evaluation_scores_opsca.png\n", + "upload: resources/results/figs/evaluation_scores_other_datasets.png to s3://openproblems-data/resources/grn/results/figs/evaluation_scores_other_datasets.png\n", + "upload: resources/results/figs/gb_vs_ridge.png to s3://openproblems-data/resources/grn/results/figs/gb_vs_ridge.png\n", + "upload: resources/results/figs/perturbation_strength_datasets.png to s3://openproblems-data/resources/grn/results/figs/perturbation_strength_datasets.png\n", + "upload: resources/results/figs/raw_scores_norman_adamson.png to s3://openproblems-data/resources/grn/results/figs/raw_scores_norman_adamson.png\n", + "upload: resources/results/figs/raw_scores_others.png to s3://openproblems-data/resources/grn/results/figs/raw_scores_others.png\n", + "upload: resources/results/figs/relative_scores_all.png to s3://openproblems-data/resources/grn/results/figs/relative_scores_all.png\n", + "upload: resources/results/figs/robustnes_analysis.png to s3://openproblems-data/resources/grn/results/figs/robustnes_analysis.png\n", + "upload: resources/results/figs/robustnes_analysis_reg1_1.png to s3://openproblems-data/resources/grn/results/figs/robustnes_analysis_reg1_1.png\n", + "upload: resources/results/figs/robustness_reg1.png to s3://openproblems-data/resources/grn/results/figs/robustness_reg1.png\n", + "upload: resources/results/figs/robustness_reg2.png to s3://openproblems-data/resources/grn/results/figs/robustness_reg2.png\n", + "upload: resources/results/figs/skelton_guided_barplot.png to s3://openproblems-data/resources/grn/results/figs/skelton_guided_barplot.png\n", + "upload: resources/results/figs/summary_figure.pdf to s3://openproblems-data/resources/grn/results/figs/summary_figure.pdf\n", + "upload: resources/results/figs/summary_figure.png to s3://openproblems-data/resources/grn/results/figs/summary_figure.png\n", + "upload: resources/results/figs/tf_guided_barplot.png to s3://openproblems-data/resources/grn/results/figs/tf_guided_barplot.png\n", + "upload: resources/results/figs/topology_stats.png to s3://openproblems-data/resources/grn/results/figs/topology_stats.png\n", + "upload: resources/results/figs/topology_stats_short.png to s3://openproblems-data/resources/grn/results/figs/topology_stats_short.png\n", + "upload: resources/results/summary.tsv to s3://openproblems-data/resources/grn/results/summary.tsv\n", + "upload: resources/results/summary_figure.pdf to s3://openproblems-data/resources/grn/results/summary_figure.pdf\n", + "upload: resources/results/summary_figure.png to s3://openproblems-data/resources/grn/results/summary_figure.png\n", + "upload: resources/scores/adamson/subsampled.csv to s3://openproblems-data/resources/grn/scores/adamson/subsampled.csv\n", + "upload: resources/scores/default_scores.csv to s3://openproblems-data/resources/grn/scores/default_scores.csv\n", + "upload: resources/scores/default_scores_short.csv to s3://openproblems-data/resources/grn/scores/default_scores_short.csv\n", + "upload: resources/scores/nakatake/subsampled.csv to s3://openproblems-data/resources/grn/scores/nakatake/subsampled.csv\n", + "upload: resources/scores/norman/subsampled.csv to s3://openproblems-data/resources/grn/scores/norman/subsampled.csv\n", + "upload: resources/scores/op/subsampled.csv to s3://openproblems-data/resources/grn/scores/op/subsampled.csv\n", + "upload: resources/scores/replogle2/X_norm-50000-skeleton_False-binarize_False-ridge-global-False.csv to s3://openproblems-data/resources/grn/scores/replogle2/X_norm-50000-skeleton_False-binarize_False-ridge-global-False.csv\n", + "upload: resources/scores/replogle2/subsampled.csv to s3://openproblems-data/resources/grn/scores/replogle2/subsampled.csv\n", + "upload: resources/scores/ws_distance_mean.csv to s3://openproblems-data/resources/grn/scores/ws_distance_mean.csv\n", + "upload: resources/scores/ws_distance.csv to s3://openproblems-data/resources/grn/scores/ws_distance.csv\n", + "upload: resources/inference_datasets/replogle2_rna.h5ad to s3://openproblems-data/resources/grn/inference_datasets/replogle2_rna.h5ad\n", + "upload: resources/inference_datasets/norman_rna.h5ad to s3://openproblems-data/resources/grn/inference_datasets/norman_rna.h5ad\n", + "upload: resources/datasets_raw/op_perturbation_sc_counts.h5ad to s3://openproblems-data/resources/grn/datasets_raw/op_perturbation_sc_counts.h5ad\n" + ] + } + ], "source": [ - "# !aws s3 sync resources/ s3://openproblems-data/resources/grn/ --delete\n", + "!aws s3 sync resources/ s3://openproblems-data/resources/grn/ --delete\n", "# !aws s3 sync resources/grn_models/ s3://openproblems-data/resources/grn/grn_models --delete\n", - "!aws s3 sync resources/prior/ s3://openproblems-data/resources/grn/prior --delete\n", + "# !aws s3 sync resources/prior/ s3://openproblems-data/resources/grn/prior --delete\n", "# !aws s3 sync resources/results/ s3://openproblems-data/resources/grn/results --delete\n", "# !aws s3 sync resources/scores/ s3://openproblems-data/resources/grn/scores --delete\n", "# !aws s3 sync resources/evaluation_datasets/ s3://openproblems-data/resources/grn/evaluation_datasets/ --delete\n", @@ -33,6 +164,8 @@ "metadata": {}, "outputs": [], "source": [ + "!aws s3 sync s3://openproblems-data/resources/grn/ resources/ --delete\n", + "\n", "aws s3 sync s3://openproblems-data/resources/grn/results resources/results/ --delete\n", "\n", "aws s3 sync s3://openproblems-data/resources/grn/grn_models resources/grn_models/\n", @@ -98,1317 +231,84 @@ "datasets = ['op', 'replogle2', 'nakatake', 'norman', 'adamson']" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Subsample" + ] + }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
  S1S2reg2-theta-0.0reg2-theta-0.5reg2-theta-1.0ws-theta-0.0ws-theta-0.5ws-theta-1.0
modeldataset        S1S2static-theta-0.0static-theta-0.5static-theta-1.0
negative_controlnakatake-0.000815-0.0009430.0005280.0360900.049519nannannan
positive_controlnakatake0.0005830.0016370.0476720.2283670.109110nannannan
pearson_corrnakatake0.0021030.0058360.0422620.2143510.097166nannannan
portianakatake-0.000014-0.0009000.0543150.1115420.074570nannannan
ppcornakatake0.0002360.0013670.0070700.0408840.051819nannannan
grnboost2nakatake-0.000561-0.0008690.0260390.2168810.153740nannannan
scenicnakatake0.0039150.0067970.0050720.0980200.096053nannannan
negative_controlnorman-0.007578-0.0077390.2269430.2254650.2211430.5345370.5081090.481342
positive_controlnorman-0.000811-0.0008440.4670820.2912450.2535760.8697710.7963150.635768
pearson_corrnorman0.0021220.0021600.4607780.2858920.2515860.7545530.7281150.608357pearson_corr_10.5308970.9702760.5689700.4363500.367186
portianorman-0.002871-0.0029320.1779010.1683190.2026560.5316910.5466370.542537
ppcornorman-0.000423-0.0004320.3680730.2434920.2275290.6782370.6170600.528040
grnboost2norman-0.020135-0.0210260.4712990.2874000.2571200.8417190.8066410.706450
scenicnorman-0.005517-0.0162670.4174240.2373970.2235120.8237650.5600260.496490
negative_controladamson0.0223220.0223220.6034680.5876850.4220970.5071970.5080570.513410
positive_controladamson-0.008409-0.0106620.7260830.6393410.4454480.8499070.7887760.684532
pearson_corradamson0.0004030.0004970.7239720.6371750.4450360.8532800.8007400.669585
portiaadamson-0.003033-0.0031220.5157630.5282980.4098870.8007220.6729630.571839
ppcoradamson-0.000198-0.0002000.6629800.6117280.4324060.6517770.5613960.528788
grnboost2adamson-0.013015-0.0156180.7437070.6673630.4607090.8875590.8404260.730553pearson_corr_20.5322180.9830270.5830440.4395330.368858
\n" ], "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.read_csv('output/default_scores.csv', index_col=0).set_index(['model','dataset']).style.background_gradient()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# new metric" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sourcetargetws_distancews_distance_pcthetadatasetmodel
1008BHLHE40CMTM60.2263860.960theta-0.0adamsonpearson_corr
1019BHLHE40CSRNP10.0180260.528theta-0.0adamsonpearson_corr
1153BHLHE40ZBTB380.1630790.916theta-0.0adamsonpearson_corr
1197BHLHE40TNFSF100.0533230.628theta-0.0adamsonpearson_corr
1597BHLHE40EGR10.0892620.737theta-0.0adamsonpearson_corr
........................
1018SPI1SLC15A20.0027580.654theta-1.0normanscenic
4183SPI1HOXB40.0690250.893theta-1.0normanscenic
881SPI1RP11-266J6.20.0003870.450theta-1.0normanscenic
686SPI1AC108051.30.0000580.263theta-1.0normanscenic
2092SPI1RAI20.0000000.000theta-1.0normanscenic
\n", - "

117897 rows × 7 columns

\n", - "
" - ], - "text/plain": [ - " source target ws_distance ws_distance_pc theta dataset \\\n", - "1008 BHLHE40 CMTM6 0.226386 0.960 theta-0.0 adamson \n", - "1019 BHLHE40 CSRNP1 0.018026 0.528 theta-0.0 adamson \n", - "1153 BHLHE40 ZBTB38 0.163079 0.916 theta-0.0 adamson \n", - "1197 BHLHE40 TNFSF10 0.053323 0.628 theta-0.0 adamson \n", - "1597 BHLHE40 EGR1 0.089262 0.737 theta-0.0 adamson \n", - "... ... ... ... ... ... ... \n", - "1018 SPI1 SLC15A2 0.002758 0.654 theta-1.0 norman \n", - "4183 SPI1 HOXB4 0.069025 0.893 theta-1.0 norman \n", - "881 SPI1 RP11-266J6.2 0.000387 0.450 theta-1.0 norman \n", - "686 SPI1 AC108051.3 0.000058 0.263 theta-1.0 norman \n", - "2092 SPI1 RAI2 0.000000 0.000 theta-1.0 norman \n", - "\n", - " model \n", - "1008 pearson_corr \n", - "1019 pearson_corr \n", - "1153 pearson_corr \n", - "1197 pearson_corr \n", - "1597 pearson_corr \n", - "... ... \n", - "1018 scenic \n", - "4183 scenic \n", - "881 scenic \n", - "686 scenic \n", - "2092 scenic \n", - "\n", - "[117897 rows x 7 columns]" + "" ] }, - "execution_count": 28, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scores_all = pd.read_csv('resources/scores/ws_distance.csv', index_col=0)\n", - "scores_all" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
  theta-0.0theta-0.5theta-1.0
modeldataset   
pearson_corradamson0.8716730.7893110.679417
grnboost2adamson0.8904460.8482080.750937
portiaadamson0.7983030.6824590.573197
ppcoradamson0.6523540.5656450.536111
pearson_corrnorman0.7690070.7126580.607553
grnboost2norman0.8474570.7931540.704702
portianorman0.5534820.5631310.546728
ppcornorman0.6941570.6376540.532154
scenicnorman0.8902690.5869510.513064
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mean_scores_all = pd.read_csv('resources/scores/ws_distance_mean.csv', index_col=0).set_index(['model', 'dataset'])\n", - "\n", - "mean_scores_all.style.background_gradient()" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAHECAYAAACwd10jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5iU1fXHv+87dXvvC7v03qu0pSjYFXuHRKOJxqjR+FMTY0uixhiNGjWxEY29EBULCAiCBQRckc7CFmB7L7M77b2/P0YWVnZhd/ae3Tv3vZ/n2eeBKd+9Mzvz3nvPPed7NMYYg0KhUCgUCoVCoVAoFAqFQqFQcEbv7QEoFAqFQqFQKBQKhUKhUCgUCjlRwUeFQqFQKBQKhUKhUCgUCoVCQYIKPioUCoVCoVAoFAqFQqFQKBQKElTwUaFQKBQKhUKhUCgUCoVCoVCQoIKPCoVCoVAoFAqFQqFQKBQKhYIEFXxUKBQKhUKhUCgUCoVCoVAoFCSo4KNCoVAoFAqFQqFQKBQKhUKhIEEFHxUKhUKhUCgUCoVCoVAoFAoFCSr4qFAoFAqFQqFQKBQKhUKhUChIUMFHhaID1qxZgyVLlrS57cwzz0RsbCzuvffebmkvWbIEa9as6ZYGD0LlNR46dAhnnnkmpk+fjvHjx+PZZ58leY5CoVCISKhcq7tDqLzGrs4tBQUFSE1NxezZs9v8bNy4kct4FAqFoqcIlet0dwil17h8+XJkZmZ2elx1dXW48sorMXnyZIwfPx733XcfGGPcxqNQnAgVfFQoOqC9yWfZsmUYO3Zst7VFnmBFe42GYeDMM8/ESSedhC+//BLLly/Hvffei/fee4/rcxQKhUJUQuFa3V1C4TUGO7eceuqpWLNmTZufyZMnd3s8CoVC0ZOEwnW6u4TKa7zxxhvx3HPPwev1dvo5V155JZxOJzZu3Ij169fj7bffxmOPPcZlPApFZ1DBR4VCITTLli3D9u3bcdNNNwEAkpKScNVVV+HPf/4z1+coFAqFQnE81NyiUCgUChGYO3cu3nnnHYSFhXXq8Vu3bsWHH36I2267DQAQHh6O66+/Hg899BD8fj/lUBWKVlTwUaFoh7///e9YsmQJcnNzW0ukmpubW+93uVz41a9+henTp2P06NHYsmVLm+dv3LgRs2bNwrRp0zBt2jQ88MADrRf2q666Crm5uViyZAlmz56N6667DgCQm5uL008/HTNnzsSMGTOwcOFCHDx40PSvcdWqVRgyZAgiIyNbb5s0aRK2bNmCmpoabs9RKBQKEQmVa7UZXqOaWxQKhVkJleu0WV7jwoULu/TaVq1ahcjISAwZMqT1tkmTJqGiogJbt27tkpZCETRMoVC0yz333MNycnKOuT0nJ4dlZ2ez0tJSxhhjt956K5s1a1br/eXl5SwmJoZ9/PHHjDHGGhsb2bhx49hf/vKXNhr33HNPG90nn3yS3Xbbba3/v//++9mcOXOOO8aXXnqJ5eTkHPenpKQkpF/jmWeeyebNm9fmti+++IIBYJs3b+b2HIVCoRCVULhWq/mo/bklPz+fTZkyhZ111llsxowZbMGCBeytt9467u9RKBQKEQmF67QZ5qKjycrKOkazPX7961+zAQMGtLmtqKiIAWDvvvtup3+fQtEdrL0b+lQoQpO5c+ciJSUFADBr1iw899xzrfc99dRTyMzMxGmnnQYAiIiIwOWXX47HH38cd955Z4eal112Gex2e+v/L7roItxzzz1obm7uMKV+8eLFWLx4MYdXdCyivEaXywWn09nmNofD0Xofr+coFApFKCLKtVrNR+3PLU6nE9nZ2fjHP/6BlJQUbN68GSeffDLKy8txww03dOLVKxQKhfiIcp02w1wUDC6Xq3W+OozaGyl6GhV8VCiCID09vfXf0dHRqK+vb/3/tm3bUFJSgtmzZ7fe1tjYCJvNBq/XC5vN1q4mYwx33303Nm7cCKvVCrfbDcYYysvLkZWVRfZaOqI3XuPNN9+M3NxcAMDYsWPx+OOPIzw8vE3JAwC43W4AAb+S9gjmOQqFQhGKqPlI7PkoNTUVb7zxRuv/J0yYgGuuuQZ/+ctfVPBRoVBIg5qLem4uCobw8PDW+eowam+k6GlU8FGhCAKLxXLc+0eOHNnlbmZXXXUVqqursWLFCkRFRaGgoAD9+vUDY6zD5yxZsuSYjmw/5Y033kBqamqXxgL0zmtsb0Lt378/Vq9e3ea20tJSAEC/fv3a/T3BPEehUChCETUfiT0ftceAAQNQXFzMPbNFoVAoegs1F/XcXBQM/fv3R1lZWZvbDs9f/fv35/I7FIoToRrOKBQdoOtHvh4tLS3wer2det7IkSORl5cHwzBabysvL8evf/3rdrUbGxvBGMMXX3yB008/HVFRUQAAj8dzwt+1ePFirFmz5rg/x5tcQ+E1zps3D7t370ZjY2PrbZs2bcKECRMQFxfH7TkKhUIhKqFwrVbzUftzy2uvvYYNGza0ue3QoUNISkpSgUeFQhFShMJ12gxzUTDMmzcPjY2N2LNnT+ttmzZtQnJyMkaPHk3yOxWKn6KCjwpFByQlJbV2r/ztb3+LFStWdOp5v/71r9HU1ITnn38eQCCd/oEHHkBSUlK72lOmTEFjYyOGDx+OtWvXwufzAQDeffddni+nXULhNZ5xxhkYMWIEnnzySQBAZWUlXn75Zdx1112tj3nmmWcwbNgwtLS0dPo5CoVCESqEwrW6u4TCawxmPtqzZw/+/ve/t/6eoqIivPDCC7j++us79foUCoVCFELhOt1dZHmNy5YtQ9++fVFcXAwAGD16NM466yw8+uijAIDm5mY888wz+L//+782QVGFgpSe6GqjUIQiZWVlbNKkSWz69Ons9NNPZy0tLeziiy9mMTExLCsriz366KNszZo1bMyYMQwAy8nJYeXl5YwxxjZu3MhmzJjBxo0bx2bMmMHuvPNO5vP5WrXXrVvHhgwZwqZNm8buuOMOxhhj27ZtY9OnT2dDhgxh55xzDrv99tsZADZlyhS2detWU7/GAwcOsDPOOINNmzaNjRs3jj399NNt7n/sscdYVlYWa2pq6vRzFAqFIlQIlWu1GV5jV+ej7du3s8WLF7OpU6eymTNnsvHjx7O//vWvzOv18n4LFQqFgpRQuU6b4TXed999LCcnhzkcDpaVlcVycnLYpk2bWu9/9913WWJiIisqKmq9raamhl1++eVs8uTJbOzYsezee+9lhmHwfgsVig7RGDuOaYJCoVAoFAqFQqFQKBQKhUKhUASJyrFVKBQKhUKhUCgUCoVCoVAoFCSo4KNCoVAoFAqFQqFQKBQKhUKhIEEFHxUKhUKhUCgUCoVCoVAoFAoFCSr4qFAoFAqFQqFQKBQKhUKhUChIUMFHhUKhUCgUCoVCoVAoFAqFQkGCCj4qFAqFQqFQKBQKhUKhUCgUChJMGXxkjKG+vh6Msd4eikKhUChMipqLFAqFQiECaj5SKBQKBTWmDD42NDQgJiYGDQ0NvT0UhUKhUJgUNRcpFAqFQgTUfKRQKBQKakwZfFQoFAqFQqFQKBQKhUKhUCgU9Kjgo0KhUCgUCoVCoVAoFAqFQqEgQQUfFQqFQqFQKBQKhUKhUCgUCgUJKvioUCgUCoVCoVAoFAqFQqFQKEhQwUeFQqFQKBQKhUKhUCgUCoVCQYIKPioUCoVCoVAoFAqFQqFQKBQKElTwUaFQKBQKhUKhUCgUCoVCoVCQoIKPCoVCoVAoFAqFQqFQKBQKhYIEIYKPHo8Hd9xxB6xWKwoKCk74+PXr12Pq1KnIycnB1KlTsW7dOvpBKhQKhUKhUCgUCoVCoVAoFIouYe3tARQUFODSSy/F4MGD4ff7T/j4wsJCnHHGGVi2bBlmzpyJtWvX4swzz8TWrVuRlZXVAyPuPiW7N0GvL0Ki1Yvi4kI0JI5FeFI/6DEZsFiA/cUVyKjPRbPLhYymnYhNzoI7dQwO6ulITExCTJitt19Cr9Bctg81X72EFi0M/n45yIyxwV+eh8LSSiQkJsHfXIvK/G2odmuwJAxAZFQ0wi0GLDGpiKrcAldEH8SOOQfxCYm9/VJ6Fr8XFbu/gsfPgPTx8DILUmOcqP72bcQ15oENnIcfKoCUuHBkDxoN1OSj0Qv8b3cLMgrexejsVCRMXwxYzPe5qyreD7Z5CZwxafAd2IQmawxK9DT0t5QjYvh8fFfO4D+0GRmNO6An9EfKwHFwlH0HuF2AtwnoNwMYsRCwhfX2S+l5qvOB8l1A9nTAGR24zdME1B4AotMBewSQ/0XgvtgsYO9nQFQaMGA2ULoNqC8GBswFLL0+TcmLtxm+3Suwp/AA4j2lsPpcCPPVICI6AWUZc9FYsBXhfUagvgUIa9iP1JZ9gOFHTfgAROvNCBs0G+g3vbdfRa/g3rYMleWHUFdfB0d0CgYkOlF3YDvqyw8ixl8DZrjhypyNGDQAdQdR7guHhXnBNAv6aFXQZt8OZE7s7ZfR81QXArs+AAwf4PcDGRPgPrAZ1dZkxGSNRnjxN8DBzYDXBY8tGt87JqKqsgwjEzVkDj8JiEoB4vsDVkdvv5KeJ28VjJ0foa6hHpa4foiOiQP8PjTVlsLtqkd0Yhqsfi9QlRd4f3Ub4KpEnT0VjV4Dsafciog+o3v7VfQOPjdQtQ+o2ht4X5KHBj5Hhj9wu7cZ8DQAEckAGMAYYBiABiAyBYhI6O1XIDXs4HeoXfEgWEMJ/LoV/vpKlNsywKxOJFvq0ey3IsrmQ2R0LDRPE8r1FHiqD8LmDIctIgbWpCFIzrkmsLYwEz4vtr/3ZyTseRMRzA2HXUOLHgXD64ErdigMeJFcvwMa0+CFDqZboRkt8Hj8gCMaTtYC66QrYZ13N6Bpvf1qehbDQFneJlTv+Rp9m36A3RmBCms6LNV5aHYkwOZtQOLACai1JMDw+2AwINZdgghPFRrra+HzNCB6ymLo/Wf09ivpeVw1QO6r8JbuQB0LQ7iFIVzzAl434GsB3PVA5iTA7wU89YAtHDWGEw0leUi2uuBMHgTMvhNwRvb2K+lZGkqBgq8AvweISAJShh25ZlXtA1rqAb8bKPoWaKkBEocE9pH1xcC+VYCrDhhzMZAxtldfRnfRGGOsNwewbds2OJ1OHDx4EHPmzEF+fj6ys7M7fPxvf/tbfP311/j6669bb5s8eTJmzpyJRx99tFO/s76+HjExMairq0N0dHR3X0Kn2bf7B8S9fgbiWF271/ij/xLHu9+vWcDm3gfbrBtpBioajZVw/20I7MwX1NzI2JH3kzHgkD0bcbdtRoRD/qBGzap/IGrdPbAi8OFhDGAIrKc7+owd/V4d/e/t2kBk3PYV4iLl3/Q1uX3w/HUwYn1V3V6PMQBs6NnQL3mFy9iEp6UOeG5uYAPcyuE38ceLmGYB2IkPmwAdmHELcPIfOQ9SDHprLoLhh++vg2BpqUJ3txsMgHbJG8DQ03iMTHi2v3oXhu/5Z/evCwxgGuD+5RaEpQ7gMziRaawA/jEO8DZ0W4oB0CZeA5zZuTVfyPP9m2BLr+3+d5UBfk2H9eYfgNhMLkMTntw3gGU3A77m7umkjAZ+/gngkHez3CvzUUMZ/I8Ohs66H/tiDDA0HZY/lJricKLiyQVIrPyGS8yQMaAxeSyibljbfbEQoOm1xQjfs5TLNZVpgH7DRiBpCJexCU19KYy/D4XGGJe9kRaVDty6k8vQhMbvAx4fDTQc4qOnWYFrVwNpY/jo9TC9XnY9cuRIDBw4sNOPX7VqFSZObJstMGnSJKxcuZL30LjS4vUj8/XZiEf7gUcgMPEe/jne/Vb4YV39B+DNq+gGLBCevw2GA8EFHoG276emAZneAlQ/Mp7P4ASG5X+B2HV/bA08AoHXr5/gM9bRv0ciD8Zf+8HvN4hGLA5Vj05FnL/7gUcgEHbTd30A/6q/dF8sFHjx1J8EHoEfQ7BH/bczgUcAMID1jwK7PuY0OAUMP/z3J8LKIfAIBD7f7I1LgJoDHNTE5vuPn+cSeAR+vBYDcD4r/1wEAHhyApfAI/DjUcam54Ev/sZFT2hc1VwCj8Dh9aMB/+MjOaiFAMvvAv53XfcDjwBQthV4dBjgcXVfS9GK8ehgWMAn6U7TAAsM+P+U0n0xwWGr/sQt8AgE3rvI8lzU/u92PoIC43vvl4jgEHgEjszj/n9O5qAmOD432N+HQEf3A4/Aj/N4QzGMl87qvpjoPDWRX+ARAJgP+NesQDVZCNLrwceusn//fqSktJ1YUlNTkZ+f3+Fz3G436uvr2/z0NFUvXQIHfNz0NABs5/uBkhGJcW//CHbwf42Z3kJUV1dx1xWJhmV/4DK5Hk2C3oTlL9zNWVUsqps86OPey12Xrf87d03hcFUD5Tv4634uR+BWhLlo/39+BQv4HiBoANzPL+CqKSIjN97KvTJNA1Dw1u/5iopG2XbAXcdd1ljzMHdN4XjjMu7zuM4Yite+yFlVMAwD+PqffDU99cA7P+er2Yv09nzk2rMWGkHtnc4YvMU/8BcWCLbuEf5zkQZE5/6Lr6hoeJth2fo6d1mdAUbeGu66ItH46lXc5yIA0Aq/IFAVCMaAmo5jVN0i9zUaXWJCLvjocrngcLRNp3c4HHC5Oj6NfPDBBxETE9P606dPH+phHkNa8WfcNTUA3g9u5q4rEo3bPiHR1TSgeM9mEm1RsDUWk+hOKpa7fLi6yUOia2FeEl2hqD1Io1vP8cSwFxFhLkooXEaia2+S42/UIXWHYCGSTt6xhEhZEIq+PvFjgkAzaK7VIuEv+oa7pqYBEV88wF1XKHa8T6O755NAYFMCens+Mt67jsRmUNOAis+f4S8sEFTujBTBYJGoK9lPE0DTgKp1/yZQFoew/OW9PYTQxFVNp001zxETcsHH8PBwuN3uNre53W6Eh4d3+Jw777wTdXV1rT8HDvR8eZgGmiu6b9sHJLqi4I2k8SViDHDE9fzGvyfRo5JIdMPgPvGDQpjshI6vJd2CAXnlfMoOheW7/9LoRslhIi/CXMSYHBvnHscWBiqHbMn3e0AF/0xywATvGwCd6FU6/I0kusJQXUCnXfo9nXYP0tvzkd1HV8IeFptGpi01kvecKaxuJpvH88Jkt7NQC6CgcETRafv5VdT2JCHXcaN///4oKytrc1tpaSn69+/f4XMcDscx2ZKywHxyn/xHWWlen6YBHitRkEkQjDCa4KNFciNvq0UHIzqNbyzeBSRP4i8uCvs+p9EdfQmNbg8jwlxUpycglhFlqEqMzxFLlvnot0cQKQtCY9mJHxMELYYVcs/ihGghl3vQNRIJmzhpVFeCnqW35yPNT7d/ics2aVd3xXFpcTWQNfWujR1LIywIXlhgIbBBY5rkMW/C6xz6z6bTJiTkVh/z5s3D5s1ty2U3bdqEk08+uZdG1Ls0WuN6ewik1FWWkGnbfXKf/BfU02Q4WRySb5RBdxA31FlLpCwIVB1UizfR6JqQtLDQPCntbQyD7njeb5X7mtpgEJ1zyx5AA9ACO42upYe6GfcW/ecQCWtAmgps8cDg7D3cBquTTlsRsmSlJNKJl+bSaQuAjSDwCEgeeAQAi41QPDTTRoVfuV122WW48sorW/9/0003Yfv27fjyyy8BAOvWrcOuXbtw44039tYQOwVVmjechOm8AnDI0flO6F0lLCyMTFsEvtFpuqg2R/Yl0RWFRrcPtQZNMMAJyX0f47JpdOvpDiHMhuHh0PnVhNhtdNlOFrvcG+WmJprySgvHJn6iYhBVaMjvQUy4KSNb0JsMyozv+H502oqQJTY5nezrO8zYTyMsCGRBQtkvp02VdNr7VtNpE9LrZdcejwfz589HbW0tAOCSSy5Bnz598PbbbwMAWlpaoOtHYqRZWVlYtmwZbr31VtjtdrjdbixbtgxZWVm9MfxeJxZye8ix0ZeA/XA/9zT5ZmZBYprcn5m+TpoNX3jfMSS6orC/ohFJsANo4i9eW8hfUySo6ln0Xp+qpMEqecY3GZTeOs01dNoCYE0dAhz4iLuuTfbuCADCfbUkuhFM8uuAIwrQbYDBOciq2+jmOZNREzEAqW6iZgwRyTS6osBAEw2S/JJa2eRFBtHXNytZ8mxyRXC01NFp+1rotAnp9R2d3W7HmjVrOrz/vffeO+a2mTNn4ptv+HcApMSnWWEnOKW3M7lP/lOjaUqOvHokogkzWUQgq4amw6gtfSyJriikxYTBrhE11YnOoNEVBQvN9xWlP9DomhCdqHSGai8kDIaXLObAwuW2Twmz0/jKUTXyMwO67G+dpgGM4Fpngg7rPYUWmQpQNYKV3Jtc7smWDt0RCcZozg+0xEH8RRWhj4MwKB0TmklUwpddy0K5JZVE168TbfYFoe/+N0gmiShGeBIhCBU+/mXljAFVA87hrisSFl1DPSNqY0DZ9UwE0oiyYr0EWagmRSPatci+F3I11ZNpR409n0xbBJqrCLvoSl4CS/XyDNmbHDWUAYzIU9CrrCt4EOOhsVNhDKh0yz4jKYKBUfoEJ6jgY1DI/lWNSqHTDtGDaxV87CGadZqFXoWeQKIrDEUbSGQ1AJ6S3STaovC5dQZ3TU0D3vq2iLuuSDR7fGgBpUGwxAw/h6YJRFhoTrAi4nbQGK7LHQICvC664OPBgr1k2iLQVEk4Z0heAkuTpwz4dcnnOD9R9QIQKL1WdJvGyoNk2geqaWyHhEH2CZeIsrJyMu38fLn3lFQfOcnPD2kbzoy6iE6bEBV87CFivBUkurU+yRdBVA0sAHgbysi0RaC0z5nwML5fcTezYGux3FlozV4/vASOFAwA+p7EXVco3PU02SYjL+CvaVK2ZF9Doiv7+jHGSedSE1W8nkxbBOI8pSS6VIE5kXCBpjGeP3EYia4wxBI2xrP0umOVFNSArhwxzRGaXmi9jtxnORho7CM7rzqwYyONsCAYqmomOBqr6LRDtNRfBR97iHpGs4BM9x8i0RUGwqyGiPg0Mm0RuG1OOmzgGwjKZ2nw+OUOM0Q7bdhm8O+UqAFAo9wBb3z5BI2uTe7O9D2Jve8EEl3pF5CETY8s8aHp29NZImJpmj94meSHrwDcGo21TnXSFBJdYaja19sjUJwAbySNB7amAanVm0m0hYFqwpV7eY8oRpcRG+6Ru3EcIHefBDL8hD7BXz9Fp02ICj72EKVGLImuM4l/kEQkvJTlr1YnnbYA9I1g3GO3Q/WDmB0hd8fm5GgnPteJNmayN04p/IpGt4imeZIZse3+oLeHEJI02hLIyoMap9xMIywIWuZEEl0nvNL778WApit1U9H3JLrCUJVHo2uRvJFJD9ISQdeAz2Ml8u1WhDRGBJ3/XlaC3J85m5PIs172k+vwWDrtXcvotAlRwcceIsNCk3ZbFTOKRFcUtnloJgovNCC2D4m2KLDodBQgnbvumOpPuWuKxnAb/wxFBgAZNJtwYTC8NLpl22h0TYitmmZT7mNyn4pHOugyHxP8lWTaIlAVS7RO0UDXVEQQLEQNEtJrviHRFQaN6Ho04Wc0uiZkgIfOI69Yl7uySREcenwW2SFieCyNn7YoGC10vtdSYyFsDGwNzcMwFXzsIdK1WhLduNJ1JLqicCBqPMlEYQCAIbdjVFm9G3d6FnN//6qqCf0rBOE04wvumpotAoim6XovDBE05ZWwqrJrXoT760h0a5jkndx1uuCqY/tbZNoisKU+ks5UXvKuzf64ATS6FrkrP2CPpNEdcymNrgkJa6JrOJOYLPlaS/LyaDLKtpO5ee1vJAwyCYBf+hRFInQL3R4mmn+CUU+ggo89hNVJs0B2+mhKckRhWrpGMlE4wOAt3cFfWCCiw6zwaQ7u71+Jla5URhQSUMtds8ZKFJgTCR9RCWRkEo2uCaFaeNdC7pKjutpqOvEQXUB2lpGOcpLPnQYAhtyZj7bhZ5HoOkefQ6IrDB6ixngf30qja0KYp4FMO7JK7vU9WRxI9vhSbQGZdGSc3OvUQza5valDkpSRvT2CoFDBxx7Ckj6ORjhS7tO9RAudOXCDR+7MxzCbBXbG3+g2edhM7pqisT+S//c13HUAtU1u7rpC0VBCoxseT6NrQvQYmsODeMhdkuNoKiYJoDEGYPrN/IUFIqPfCBJdBgC63MvY76ppyv2bLAkkusJQT9SM8dAWGl0TolFlpwJ0f3/ZkTyj0hU7lCwLv9/YuTTCgtDC6KxnpMbvpUvM6DOVRpcYuVdtIhEWQ6M79jIaXVGg+sICiPXJ3ZnsQLULm4xBaGT8yqsYA2qTJPctBFAw7BcwOC9QHJoPu777kq+oaEQQnfzGZtPompDE8g0kuvE6UaaRIDhTBtKVDkfSmeALQTPNXGuYoPtm3K7XSHTdBzeR6AoDWVDaACqJmtmYDFcCzaEEACC+P522AFBNRZLHHqHb+FeDHYaFqP9eZ+nv29fbQwhNGivotPM/p9MmRAUfewoCw1HGAIy5hLuuSBiRdKbReoTc2VTRYTY44IUV/LIfNQ3I3bGTm56ojDzwFnSCBUp0VS5/UZEYtIBGd6DcJ8o9iY3I81GXfdtij0Czxt8nT9MA/6oHuOsKRQGNN3WzJr8XbBxRMyJrM6GNgAjohFk6fv4VJWbE3mc8nbhNbhsQjWi6lb3q2qnT2XQwTwuZtghYiNZ4ctcgArDY6LQPbqbTJkQFH3uIDQ7+qbE+aPDpchvcbnfFkWSbMABIG8NfWCBiw+1YnLgbTo3vZLuvmqijsSh4mjCw5CMSaYdD8s3yhEU0mz6f2uzxg2baZ9JvWwAHaDYXltpCEl1hSKbJcNoWOY1EVyRaGM0aT4/PJtEVBqpu1wCQPIxO20SUO2maKQEAZL+mUmXv0ciKQ+JAstfoipC7w3qFjcab2gvC4JwIhMXRaYfoIYsKPvYQm/L4e6FZwfDdtu3cdcXCIEuRh1vuZj0AMCqTb7m/wTS4wyRvnNJSBwtoAqzxAyUvWa8pBAwff93kofw1TYpLo/HZkn3T4vEZ0Ile5IEYIk9oURh1PnyM70TOGNA89y9cNYWEqHw4ro/kATTJvUBl4CsPnZVFc9wQGmHJkX0eR1MV2TFpoYt/ZYRI5KMvia6daL8lDBbCLPy40GwCpGbnHuKUune4a2oa4Fn3D+66IjEim6Y5ggaYonRm24EqrnrL/FNw+WSaCUgYIpLIFmBxyZJ3Cq/cQ6MruX9TT1JnSyTRlb10xkfYVdlZsIpMWwRe+6aAe1m+pgHZhW9x1RSReNAckmrphCWvItBnCp02k7vDek8xNP8/ZE28amrk9nSnQvr6BaJ9n8GAtETCDDcBiNVp5iIViOoGg0/t7REEhfqb9xD9jAMkuokNu0h0RUG3WkGxzDMAU3TQneHj11yihVnxO991cPslX3g3VZIswJjFDkTTlC0IQ9VeGt19oWmqLCJhBk1jmD1M7kOJcDvd6XWMh9CQXABWfLWRxEO35Yf3+YsKhkawAmIAkDKSu65QxGTSaTfX0mmbiCyjiERX04Aku4tEW3akDz4SfnfjI+S2QUuLj+rtIYQwROG2sAQaXWJU8LGHsICgFBFAdFQ0ia4wEKXI6wBQnU+gLBbpkfzePafmwxz9O2wplPxEOTwBHsbfL0rzewCP3B2B0UTTHAEb/k2ja0LCfDQNZ3J9Kjs1WBqIfP1EYbSVJsiww5NEoisSHoKO3hoAbF7CXVcoKH2Cw2LptE1EZA1N80LGAFsKYSdtRchyyEdjO6NrQO0hosN3QYj1S96kjBKNKNy29kEaXWJU8LGHcDtoSt3SBo4l0RWGmgK6kzirg0pZGF4o5+uVd4VlFYamSn76ZbUjVxtOo+2R/DS+Xw6Nbo38BwU9BlHJ4EQLUcm9IFQ30nWy3A7CxgsCcOEY/usfxoBNFslLhwEwjSjjtugrGl1ROMCv6uMYdMJmNibC4q4l0dU0oLZO8kNyKm8gyVMfvzxEkwgEAAXfryHTFgGjUe4KDVqIvrAh+jdRwceeInUUjW7mBBpdUSAqU3XDKn0J7KfbSrDUy9f3qI9Wwb2JjWjUNHmwwcs/GFBrTQQiJc/UcRAFpqPk7iLYkxhEHbz6aERZr4IQbqNbLn0ZfwGZtgj0IUg20TTgJrzOX1gwnFaiQFel3Fk6pB1GFVzQGJ1T8EGf5FVhiqDoGx9B1uQo0U1jryYKbp/klluUUF3rBsyl0SVGBR97iLCitTTChCb4QhCdBi9B2ZEHFhiG3H3dNuyvRh0iUMn4LcKKWBJcXrk/c00eH8kZ1W6rCTo2F31No5s+lkbXhPj0MBJd2TsWOkFXxjk6kqYUXhhcNFlISSw0T/27gk0jmm9lb7iXSuRpqamsR27YI0hkGQMGp4WmF5qCFpvhJmlyBAAZWYNphAWhQaMpWZceyjhNBE1VLTUq+NhTGEQbs9KtNLqCYBgM241+3HUZ05FXQdO5SxTmD0+BAR0FRio3zQ8wG5Oz5W7UkxkXjsH6Ie665WmzuWsKR2QyjW6i3Iu6niQ8jiaLVKcKkggD3WFVxoEPybSFoKmcRNYUC1gimwR/iG5auoTFyV+T+QGDLmPPTFhSRpNp2/1yr+8ZUQBN7pQMICalL1nmo5ZCZNckCPUGwfXUDOiEK5XyHXTahJhi7SY1VXm9PQJSDMaQgiruurnGAEQ66LqXisBJAxMRiwaM0vdx0TtkxOM933R4Ze92DaCPtZarHgMw8dSruGoKyeiLaTJD+s3ir2lSHDE0dhOa7LsWbzNZxoTVIvlSjMpfWXJ/MgBkB9fbwyaT6AqFlaKRk0bXPMBkNDGa91HTANTKXQJLdenzSz6PD2SFJPM4A4AwuRMzPAbNp84M0zgdofmFVTNoTxHFL/vsaNzRWSS6osD8HqRofEu2GANeYwuQHktTfigSA63lcGh8Tumf9Z0FPwM+3VbKRU9kDjj5Z9qlRZrgchuRCAyYw1dz9CWA5CfKPQpRuSVVYE4YLHQdqTOzJO8UHk6zKfPr8jeNY36a4OPn1hkkukJB4fuoW0xwsesZ6lw0n23GABbbl0RbdqQ3FSBKe9QAoGIXibYoMD9dsx6poSy7bq6l0ybEBLthQfC5uUsyBuwZsJi7rkg0l+dD57zO0zTglMgCvqKC4mJWbnPtvbb/4LfWt1HRyP+zLBrP+07nukbRAOD7N/gJisys2/nqqaxHvjiVEX9QOKLIzphtsncejqLJtvVm8G2oJiIGQbdrxoAhaSZoyGKn8CgLzUwTEfHoNAc6mgawlnoSbWEg+hjK/ukuDR9CEn9kDGBJcvu6Z6CERFf2zxy8Ljrt6v102oSo4GNP4eH/4fvSPwSJaXJnPkYlpJFcmOaEyV2uDgA+v4EnLU9wO6S3aMBvrEtxYYTcPqMAUGnP4P+5K/qGt6KYJA/lW3q95xN+WgrAJ3mjCSp0upyQWq/cFiDoO5W7JGPAJ/HyW1nstgzirqlpwDwQNQcTCRJbIulzw3oM1tJAo8sA3SO35yMVsuf0btpO45GnacCOHzaTaItCJJp7ewihCWWmfASRzz4xKvjYUxA0Yphq3Yu0cLmnCi0sluTkPz4hNL+wXaF6z5cYoPM/qUra9y53TdG4KLWUe8YtnLGcBQVl61sBU35e7F0JNMrf1bbHqNxNIiv96TUhlT7Zy4f5LzUZAFea/L6FzyfdRZKpY4uUvOFMZR7gJ6jSMDxkpZtmw2OLJdHVNKCljGaekx25d5TACNcmuljQgY1EwmKg6zYSXem7CFA2KMueRqdNiAo+9hQE6dhWGMD297jrioZmC+cv2ljGX1Mw4kq+JNGVvpwFwIWHHuaqxwBg0s+5agpLFZ8GR634moF1j/LVNDNEzT/ckDx7j5Bof3VvD4EWC//Phq4BZybK7z88f1Q6zWY5kb+vsVBQZr4pz0cu+LNmkmnrDsntRdRHMCj6JNB9Lvo65M629RFl2Ul/lOOIotMmSM7qCVTwsaeo5rwhP0zJDzS6ouCqBjz8g12sdKv0p9c2dy2JrnXoqSS6IpHQUsBVz6fZgIwJXDWFpbaIv+b2pfw1zUrySBLZRhAcEpmEOKfkS7HmWpINRuw38h9KzB9O06xQ+vkoZWTIbszMQnkF3eGBvXQLmbbMMMmDms2VdB55UWFyVzBYbDQerdIbWVAeVkWn0WkTIvmKVyDqDtLoEgWYhMHvJfmQagDgqiJQFoiD33KXbEoeD0yUPIOvsQIa562yxR7BVU9YPC4g/wv+upSGzWYjcSCJrBthJLrC0FxLlmwSHeYkUhaEil0k752R9xmBqljo9URrR2cMja4oWKxANkVHbw0g6kBuNqwuwgqkONXtOhgkjz2ioYWwBDY6g05bACyN5b09BMVPGX5ub48gKFTwsYdgFpoTA9gkD2pEpZBkTDAAsEq+4Wvi55PnZhbc5LkeW+b8F7BLnuFUvY/7AkxPlrsLXiv1hwAPgYk8SddSc1JW20SiG6NJbkZOuPDWk4aQaYvAobgJJIUGmvxuUSjbQ+Qj1lJHoysSJJ1AWaAiR9FtBiTQHVjV2ZLItBWhi3/4OWRFb/5Ioix1QTCcRCXrchchBqDKwqeoNOsBVPCxh3B7fCS6TWlTSHSFoWw73UmchcY8Vxg4llU5ND8+MqYit9gEGWjxA7jPheUjfsZZUVCiMwALQelJ9nT+miblnToarzcL9w5NghGVSrZGrrHEEimLgdeRgFom+aEVEZ9u3sNdkwGAW25/MgB0FUc8G6qZmKQIujV4hRFLpq0IXRLtjKwK1uOWe39UFEMUb5B86QgAYDQxIBR/R6NLjAo+9hA685DoftUg+ekeWXMTnazxgjBkdb4Llp8BvhPsrHP075EZL3lpJQBEJqFZ55tpt/EgQddNEbGHB7y2eDPrd/w1Tco22yia7rl+uRfeoDr1B1BesJNMWwSyEyOQy/iX+/tNsISd4eJfWq4BcH/3JnddoWipA1kf1UObaXRNRn0TTRY+ALD4fmTaIiB/zjcNYRF0zT/CJLdB81Tm9/YQFD8lgcZGiRr5V26CQBHY9zILmpxye0wgfRzRBsMEed5dKCu3aID1BB/Sa60foaqRJoguGh9rs7jq9d/9b656QpMyjL9mcS5/TZNyqfVzkpN/KyT3QXM3kh3Ql0USfGcEY7plO3dN3QTzeJJGUx5d//37JLrCYCPMtKU4YDMhlrJtJLqMAQ6r3G0sqDbvsl9RDZ2w4s0htz2QLvsBMxVkSVQA9i6n0yZEBR97CJ/OP8uuGXbMHpXFXVcobE7k9btK9sbUNDj4ZuoM0wrxry/2w2/I/8f4PGURvIzf5THKXYoV2+k6OwpFeCJ/zc0v8dc0KRmlK3t7CKGJLZxkHmIMyDz7D/yFRaKpCnZQlKrKPxf5QLNZbvZK/t5ZbEBEMo227M16egjDS+MTrGlAkm4CT1NFl/FHZ9J5PvY9iUZYEBwazRsn+UwEMMI85X1r6LQJUcHHHsI6aB53TbctFrHhRI1sBKIuZTJ3zarESdw1hcPgm4kUhWaENRahukn+7MeLZk/A135+2UiFLBnv5xZz0xOaMZfw1+TYPMnsNDbTfH8N2ZcTug6DKPWxvy55F0lHJE3jOAYYkh+GaREEhzkAqodfQaIrDIYB+Il8tgrW0+iajJKUHDLtsnK1ZggG2RM9bI3FZJ6PRWVVNMKCEG2hWTv6dcn9oCkPqygDm4RIvlsQB9vpD3FffJem8w9oikjGN/dwnSx8TIN2zpP8BEUlaxqg8fuKaxpwir4JDqv8l42cwUkoHHE9l4UYY8DLvgVo8ZrEpD48gb9mP75l8GYmwk608rbJ7Qfb0OKl6disAZXfyV0Cu+lQE8l7p2vyl17HRtN4jY4cLfkBbOF6oIWoK3XCABpdk9HA2Vu7jXbhFjJtqZG8+YfHTZNtyxjgjIwl0RaFiDCaPglGZAqJrjBQRbsBIHEQnTYh8kcRBOGtvQxVLIKrZp9JZ3LVE5HqJg9SGN/TJEOzIaHPUK6aQhKdDky9nqukBzZ4/aF50tJV5hhfc5kzNA24374E5/Y3x/uGklz+miMv4K9pUtKTaDKpLJQLLAFoctO1N8k/IHdW9Ma8CpI9rQYAbkI/JQHQfDTZJlaP3O8bmmvotFNG0GmbiOhIvnuio4lxmGS9xRnZgwK7Pclkh4hpDfx9jUXC2lhGomuvLyDRNQVjQ7OCQfbrjDDs/vpDJGp8O7vFfvJrgGhhKgrhdgvcnD2P7PAAdYe4agpL1nRuUgYD1tmmISFS8i7hAGAYSN3/Hje5VK0Gp9e/xU1PaA7l8tcs+Z6/pkkJTx1MI2wQlTgKQqTTSqatNcodfBzRJ55ElwHcvY1FoyS8P42w7NkmHNc+bZG7kUlPMmzOFWQ+uuljTuUvrAh5kut/oEtE89BkVQqD300kLHf1Aimxmb09gqBQwcceYqCLYPPsqgQ2vchfVyCcNguqtVj+wu/+gr+miGx4hpsUg4b+6anc9IRm98ewcu7sZin8kquesDSW8Ne0S+4J05PkryWRZZKbRbV4/fAS1aTFaXJnoeUMTiIp52tGGKDLvYzdXU30varcQ6MrCo5okGxxnFH8Nc1K3UGaQJAGWBlfz3OFHKQ059GJb19Kpy0CRB66cq8cD0MU8W6ppdElRu5Vm0AMjCX64O3+hEZXIFpiCTJ1ir4GfFSnOIJgGED+F9zkLBrD9eNoOm8KR95n/DWJGgcIhzOWr55uA4adzVfTzFTuJZHV4rJJdEUhMdIBG1G3RyNWfg85j42/6fpWEGUFCkS6n6hKQ/KgbSBbnqD01vAF1laK7kPUqVUDAskZiq4jeSSoktH5jJIcvAsFzYdDbsOeH7EQ7Z01uoocSiRffYhDnJ+oC5YufwlI8sDxBKoG0CR3ZzLemwsGYGJ0A1dNYXEQZDdEpfPXFJHsmXz1otOBcJqyTVNiI8oiHXs5ja4J6DtmTm8PgRSf38A//BdxL7G0QO5SfwBIjiH6vpbvpNEVBYo5HAA8jUC9SWx7iKk9SOiRp8m/NyJB8khQc1UpnbjkayC/xd7bQwhddKIgYeVuGl1iVPCxh6iqpgl0eUZeQqIrDIaBmL3v0mj7JPfnAMA4LsA0AMh9hZueyFQNOA8G70O+Q99yFhSUkq189WoL+WuamfkP0OgmD6HRFQWPC0SJj9I3/1i9qxyne5dzL7EcrBFuJAUhNoIo+Gj4aXRFIXkoENOXv67VAYTF8dc1ISVeuoYzsIXRaStClrjULBJdxoCWabeQaIuCD6GZZScEXr42Xq1Ep9HoEqOCjz3EN4x/dzwGwD5C8o7XjaVA3UEabV8Lja5IDJzPV+/ABr56grKyOhGv+jhnI/nlbg7VStkP/DUPbeavaVaGnklSPFPzzasEqgLB/GRG9VrxJhphQSiubcYAnX9JWqRugjk8OoNGN30sja5IeBr5a8YNAByEpZsmwhtJ89lmDKgLIwg8K0KeyEyaTvWaBjgh9xrf6uPbNPcwHtnTbSmJCM3GcSr42EPsz7oYOw2+k2E1osFkP90Li6NLV9bk//hro87nGmhgjRXyZ0wAcFgtONXCOeDFuxxZVBrL+WuSddkzH+6P/o9kqWetCs3yj05jCyezw9LTxhIpi8G4vnHwkyw35d+0GLE0mTpwVdPoioJhAM0Er7GJYH4zKcOmLCDR1TSgqUFuWyUy11HJPR/zSwk/F8W5dNoCoIFm7+eF5HEMSogaSFIjf/RFEP5w3iT8ycfXD+IezxWob5Hc86j2QMDgmwKrg0ZXFNwNwLJbuG7PNDCgbBtHRTE5JSIPSTrnUshD3/HVExaC1etBlfnIC0bUpExvkNxsnbKbt52w/FAAhiSHwQb+BwhNTPI5HEBpyQEa4SrCrq8iUL6DRtctt0VCT2JLJmgmicClOj0pmURbFOoQTaIreewR1hrC654JGsBSoBMFNU1BRWge+gsRfFy6dCkmTZqEmTNnIicnB9u3d2xC7Ha7ccstt2DMmDHIycnBlClTsHSp+O3tk6KceGQE30VkoWMYIh2SezAUfUWn7SHyYBCFvJWAh3+DmKaKAu6aohGxfzl3TYPKPkA0hp/DX7Mmn7+mSbH5aJpG2Q35N+VkeXabl1ApC8G+PdvhIHjzwgyaMjCRiDy0jkTXH6LlWp3GTuSV6fcAfskP/XsI4+tn6cQlr5ZwgMhyQvJk8sx+w+jELXIfhumgaeLkEyMURQdltWCIHob1euRq48aNWLRoETZv3oxBgwbh5ZdfxoIFC7Bz505ERR3bre5Pf/oT/ve//yE3NxcxMTH47rvvMHXqVGzcuBFjxozphVfQedKt/DZ9jAGGIwIWXfKZIpJmgWxoVujJw0m0xaFrn43DiT0n8jVraaiB3Hk6AKr28Zf0hyGJu6qAUEyGCQP5a5oUTbMAjGIxJPkC0mKFDzqsBAVvvpam3l+MEbKrqBQUTluSf+IAAJH1+0l0y+qbkU6iLAjx/em0fc2Ahaibtomo3b8B8QS6mgagpQ5wxhCoi0E4kb+g5DtKaBVEGdFAyDb/6CzMGQ2tpYa7Lo0li0C4KC0gQvO96/VRP/TQQzjjjDMwaNAgAMAVV1wBn8+HJUuWtPv43NxcTJo0CTExgUll3LhxiImJwerVq3tqyMHDsQxE04C7mx7G1/vk9jXBgHlcOzYfRrM6AL3XP/60DDwZsHd+gaxpJw48AkBcsvxG3i5m465Z4TOBr8mhzcCq+/nr9pnCX9Ok6HE0HnINJvDt8ROd/O+LnUaiKwqpDQRNqABoVv7XadGg8tmKz/+IRNcUOFTgkQfV8eNJdBkDEJ1Joq0IcVy1dNopNM1sRIF5m0l0HUzuLGWExdFpRyTQaRPS69GXVatWYeLEia3/13UdEyZMwMqVK9t9/Pnnn49169ahqKgIALB8+XJUVFQgJUXwEpKDm4CqvVwlJ1l2I7+4lKumcBR+CY0gS0cLk/dEtBVHJDDlV9xl9aYy7pqisdHLP2tiiF7EXVM4fniHRjdjAo2uCfFmc+7i/iPNfplz9wJ4QRPs2p+QQ6IrCloczYEVY2RtF4TB0Gg+c3q9CeYjgoNrAIFmNopu0zeSzmGwtpGg07kJkN3zkTRY45e727VfJ5qLZP/UWQgPSVvq6LQJ6dXdQlVVFerr648JHKampuLbb79t9zmLFy+Gy+XC6NGjkZaWhj179uCCCy7ARRdd1OHvcbvdcLuPRNbr63uhRr5yD3dJiwaMtJcCJAVNglBbSKPbVA201ANOGtNmUfBufYf/djlEPSa6wi5kIYd1LhO0s1gAoL5E7tIMv5e/Zt9pQNpo/rq9gAhz0aHSUmQT6No0yReQAFxaBCIZf6/gcbE0GQWikBROc86tGwTXG8FodKYippl/0xmDKIvXFJRvB1JH9fYouk1vz0f2eJosfE0DKnZ9hdjJp5Loy0wLs4LILVUMbIQVGg1yJ2bk2YZhmHcjd10f6/U8uNClmX8ZfE/Qq39xlyuwiHc42pq0OhyO1vt+yvPPP4+HHnoImzdvxs6dO7FlyxZMnToV+nFKaB988EHExMS0/vTp04ffi+gkFE06GIDRwyUOPAJ0J9f+FqC+mEZbEFrK9sFax9cvigHAiPO4aorIfN8aroFH4Mf3TvYO6wNP5q857Ub+mr2ECHORt4Km22O0JncADQAsjMbkP3UbYeMFARgYSdOgw5s0kkRXJPxEayDLqPNJdE2BVQ6Lid6ej5qz57R6jfPGsEXSCEvOAU3uLuGw2AnF5e7aHN5CU2kZpst/iEgGqZ8kHb0afAwPD5yvHH3ydvj/h+87GsYYbr/9dlx33XUYMGAAAGDMmDH4+OOP8Ze//KXD33PnnXeirq6u9efAAf6nyCdiX3E1d01/xhQgKpW7rlBQZYlpOhDT8xv/nmTn2re4mkczBnxgXQAWkchRVUyy7Pw7AmvRmUA4hb26QLTU8tesKeCv2UuIMBdpRKWqdk3+BWQko+mu7PPK7XlU9z2Nv+AHLWI3GeSBpYUmG8022gTBR4rus5oVSJSjAVpvz0d717/F/ZD3MJl9aLIqZScdoZlJ1WliMumKfKMyqJSFIMxG82VVeY/dwBaa/sO9+jdPSEhATEwMysrapiqXlpaif/9jPdcqKipQU1OD7OzsNrf369cP7777boe/x+FwIDo6us1PT1MYxb9s0DrUBCUF2TMBO8EJJjMAD/8Ak0gUe/kWT9QiAjc1LsLuMrnfNwCwRBL0pT7naf6aouEm+GxQdi3tYUSYi+zRND3XNen7ZAI2jSZwW544lURXFBr8NNl74S7JPa8BNBE0PwNAY5EhGhSNYSIF95fvAr09H4WXbiHTjrCpkEYwhEPyCoYD39KtVJoqqJSFICFBnmufNPSf0dsjCIpevzrPnTsXmzdvbv0/YwxbtmzByScfW76XmJgIh8OBkpKSNreXlJS0mykpEoNOOgclBueOR9vf46snIlYHSqL4l1YxAHDI7fdoH3Emmhi/EoM4rQlJqIVOdVQtEiXf89d0yb0wAQAMX8hXLzYLGHQKX02TkzDhXBphSlNtYaC59oXF0ASERcEy/goS3YlWvk38RKTMTtOsB4Vf0uiKAmM0wYCkwfw1TUpz3CASXcaAA82U5bUyI/n6nnDf5z1AF0wXAU99eW8PQfFT9ND0bu714OMdd9yBjz76CHl5AR+qV199FRaLBYsWLQIAzJgxA7///e8BBDphL1q0CM8//zxqagKp4Vu2bMFnn3123IYzIjA0LQauCM5lvs21fPUEhVXz9S1sRfLN8tzR/fE3x6+5eeowBkRGRWNwSmimeXcajwuo3M1fd+eH/DVFIzIRGHsZP71J14Ts5CoqEVGcD8F+pNkaQ6IrEk02mk6ZcYly26ekjJmPWoO/T16sIX/zs6wIogzFil00uqJQ9A0AgkzlEDX4F5H0iWeRabs8cvvvUeHr/bAALRSJBT9ihNOsrUTB2iR3n4SQJDY07SV6tds1AEyePBlLlizBJZdcgrCwMOi6juXLlyMqKhDgcLlcbTwhH3vsMdx7772YN28ewsPD0dDQgIceegi/+c1veusldJp0TwFfwXCajZBItHj9SDCquR/GaQCaDm5DRNY4vsICYdE1/K5/ETROewxNA9L9h+A3GCy6xKejui3gCcrbG88sm5ZzngYyJgBr/wo0drP73/dvANPFv7aHFB4a30KX2yd3l0wAhk6UTZMu7zwEAN8WVGOUxj8YoHkbuWuKRnxTAY1wXDaNrig0ERnxl/5Ao2tCElpoPCY1DRji2QFA3kMdP2g28FYmedCWcO/i6DuRTFtmGKTPt6WjIjSrP3o9+AgACxcuxMKF7ZfrbdnSNo05PDwcf/3rX3tiWHzZ9CLC/JxP6esOAIZf6swgp80CQ+PfKZMxwBYlf+OU8ILPuOrN96xCecMipMXI0e2xXVyV/AOPANB3On9NEdE0wOfh8x7WH+q+hqItRO9pM+TOJAeAKDfRyX/ZDiBN3uYpB6tdmAwPd10r8wCGAegyZ+sQtUfoN4tGVxSyp9HoMj9QmSdN05lexeokkWUAtES5y+PJgjWyR4Fm3wH25eM0L9Mnt4+uL3EIbBX8D1/8TJc935aO7e8Bc+/s7VF0GfX37im+fZG/pqsKqM7nrysYtVHD+ItqgD1e7m7XAAAr3yDhAsu3iAuX3EsnLA7QCc5lsog2Q6Kx9hFg+Z18/LYkzwjrDTzFNJk7O+2jSHRNgdTBMyCzeSdJwgnTbdK/d4wqKJ0l+WFYI6E/mezZYT0Fpe96bCadtiJk8ZbupIuvRqdRKQuBTtT8kUkf8SZEC831T2iOOhTpbvlhR4TH0+gKRDzqCFRNcrEbcwlXuVStBo1FW7lqCofNCUQSlOt88RB/TdHwuIC1HF9nwTpg43P89BTYX09z7fOnjCXRFQmykIPknYeHMJpDUn3o6SS6IlHii6QRbq6m0RUGooxR6EDSECJtc3Eoj6hBB9WfXiCoNu+y74zy92wj0WUMQCr/5qgiwfLXUykT6ZqAQcc2Zw4FVPCxp6DKevK10OiKQnEu0MC/1M0VQ9NlTzSeODiAu+a3e2h8eoSi7xT+mgXrgbLt/HVF4oe3AYOjTYLhAz7+HVC+k5+mySlrIrAUAGCrLyDRFQmdamsWJvchYlx8MndNxoC1ce3b9chEfMkX3DUZANgkd2hNJqiYAeR/33qQ6oRJ3BoiKhSdoU6jy7YtrKLx0xYF3eci0bVqNGtSYTAIM+UnLKbTJkQFH3uK2XcAToJuoJWhaTbaaVyVJLKFTULYnZLy2Y4yFOXxLbEsZXEoCSda1AvE+sSLaRbFsgfRSDqoMuCHdwh0zUmSTtMh2OkmavAgCk2V0KlO6CVvRtWSMZX79VTTAO3rf/IVFRAr458VqwHyz0UAEEVQBin7gX8PEpGcBU32VLsQw61H9fYQSBmQnkKmvWGP3B7lPqKGe9JfAvz8/a5baa6l0yZEBR97iuRhwHXrsC+Wn88O03QggX9mm1BkTgLFpWmgd0+gKYbEPL9uPyLAb6HsZjb83vtzVLj4NwASjRW7KmgWxZKboCORKKNYbfi4kZpG44WVEClxEyoAcDfSLZIPbKRSFgJnDM2Gb7I/l0RXKJKIDvsofI1F48L/8NdUfo/c+Cx3H8khr6YBaCjlLywQfqLZyDribBJdYSDK3tM0YAKjKekWhdIwyfcvVNgI18Yf3EinTYgKPvYoDAeaLDA4TbbeoecAMZKbKtcdAoUfhF3zAX43d12RKG9wI1mr5aJlMOArYzg2GsOQe4DCg1MsYpsK+IsOPBlIG81fVyRGXQTE9OWvO/RM/pomJT6C5vR6QIzkpTMxmcqZKEjydn5Hcpjj1LyAu4G/sEDURxNt+HJfpdEVie8oXqO6CvCiX2MuyXWBMQAWyRsjEn0ObZI34twXPoqs1L8PI+rtIAj16TkkupKvHH+E6Og6RKcjFXzsKZoqgRdPxWzvF9y6PtoME2QDlXxPIlsWMxpwyF1ekBEbhmrG5zXqGjDH8j0etD2H+EjZF3VAlZ1fUN/HNJQMuRK46GVumsLiiAR+9hEw8gLA6sQxE67V0XXNKb8Esk7iMjwFyPxnqiz8ff2EoraILvPRS5ONIQqbCmmamzAAsMqdcestpmnwxkpput4Lg88NbH+vt0ehOA6TR9BlUjVIXj5sIdBkDMDkXxAoi0P/eAdZqb/d30wjLAgjDBrPenMEooiihMmhmY1qjr+5CGxeAjSU8NXcsxyo59+MRSjisrlLGgBSLvg7d13ROHtsOv7nn4EmFkTApwNO0zdi0Wj5DddtZblcdBgDvjaG45++cwB7BBdN4YntC5z7zI8etz+ZcH3uH4OSnSA6E7hmNXDaw9yHaGp4NgQ6ijXN/Uh0hcFO1HUYAMIT6LQFwBGbSpJtwjQLYJG7fDi+eT+Jri88iURXGFzVgIcoK1Z1SeFC7Mj5ZG9lWb3kyRlE5erLv97MX1ggYqtpDnMAAHFyZ43qPrmrBclwN9JpR9J5mFKigo89RRl/LwiNGYGMSpnJOqnzwYpOoo88H+gziaumiJwzNh1uRzyu8d6GGoNPwNCiMUyOoWlYIQr1zR7M1vgswDQNmGnZjnv2XwbUSX5QcDT71wCN3SxBqT+ovB4JOASaDMURPrn9jhCVjAqNKEiYPp5GVxBO1b4hyTZpZjb+ooJhNWi8qa1xWSS6whCRBGgU+WGQv9FjT9FSR5aFlmGXOwuNiuT1f+ztIZDijsykOQhjgKvPLP7CAtHgkrtCgwydaB4CgMhUOm1CVPCxp0gYyF2SMeCARtDNTzTSxnCT8kEHzniMm57IOKwWzBuWghIWjwiN4wamOp+floBEOGzwci5qsTEP8M5irppC4zvOwr8rAcWDcjfi6A0qB11EsvgeVv81f1GBqG/x4pqWm2gydUi6xIuDbc/HJLotjHBRLwhUpf6+FrkPEQNRLaK0OtWimQ/7PieR1TTADv5d4kWiSaOxPxrB9pDoikJ4XDrJ11fTAPv+VfyFBSKseieJrl/2RHLKhjM1obkfV8HHnmLCz34sQ+SHpgGrvs/jqikksXxO6A0GHJz1GBDG9+8gKgeqXfjw+2L8wfrfQIMdTng1ubNNLLqGyphR/IUPbiLz2xOOfjmAjUO2bXRG9zUUbRg1guCzDUCT3DbcommI15toxA25N8qHjDgSXbWADZ76fZIf7LiqAUZ0TfLL/X3tMfJWksgyBhhRcidm2ECzlrRqcs/jlI1GrV6i9YEgWL1E5cPqMCd4QtTzWq3deoqYDFSf/w6aNX4fFA+zoEGL5aYnLDyCGAg0Tclafxuw8j5TLB5X7yqHxvyYo+dy06xn4dhil79k/bQrb+We4cSYQbcZEo2wWOC0vwLaT6aYqPTOa0SlAcPO4josBVBY1UQSJmTDFxKoikOEw4o/RH5As05OG0cgKg67B1xNkjHaxJxo8cp9oGNoNJ6Wbo/k/l3h8XTaUaFZ6iYcNYVk0q4yGq9UUbAQBR9lp6FgC5l2iS63jy5VgqIlVFs2i0A4zcEuNSr42EMYBsPrb7+OMMbPh+QV3yk4ZbT8mUE+Zyw3Lc3wAuv/Diy/i5umqDisOgxo8IBfpuIeIxN2J18PThHZWqnDzbn0uihhBmCRO2u0leYaoGw7EJ4IOKKB9HHA5e8CSUM69/y+04Cr3qctVzApn++ugJfjNQEA3LDANk/+a2o/dpBG2BlNoysIM/AdSdB2h2UwHFa5l7Hf2WgC0xUJkh8i6paA7yMFTRU0uiajzk0TQNM0IKLiexJtUXBznsPNQokngszzsSV9Kn9hoaCZazUqb16R+GkiBi+Sh9PoEiP3qk0g1u6twJyWE/tB7DA67pbVwJzwMR01LAKPeC/E7nF3YWiq3JsWAPgqfC7/yWLLy0BzLWdRsTh1ZCqcNit2sL7cNCda9mBs5TJueqKSuuMFODV+C2M/A7b3vYybntAYfuDlc4ENzwBN5YC7Hij+LhD0j+9/4uf/difw8086H6hUdInB1hI4NX6Z34wBd7qvxvYqbpLCYnA8CGuD5IcS4S2lJLrN4X2hSV6y9Yx+KYlu+rn3k+gKxazf9fYIFMehVKPLFPOljSXTFoEqosZxspMRH0bm+Zhw8DP+wgJhoYoYMRNk8YYTNSsccS6NLjEq+NhDFFW5EI6OGy3sMdJxmvtBXOf5LYwOAm12+PCVMQKLPf+Hf/oXYmp/og+zYJQ6+wcaxfDE1wI0lPDVFIzYcDtWpD+HCTpfX9D6r17iqiciA6tWc9WzaMDsBvmDtgCAvSuAktxjby/8EkgdfeIOpDtN8j71EtMS+ZZbahrwZ/sSvLSKrpxJFJrHXk0j3Gcyja4w0AQIpzXReMaJhB6dRpKpkxRJ07BCKEaez19Tt5E0kDQjsZlDybSbXXL770WApmGU3Ec5QERiH5qmcQCinXJfU2U/6COFZM4I3b+HCj72ECMzovG5MbbD+xNRh6utH+Nq6yfQO/g8OTQfZll+wOv2P2OgdhAjM8zROGVe9CHYOJsgu61RQFw2V03hqM5HZhn/7mveeposFpHQCbwZwwvXcNcUkrJtHd/ndwML/wU4j+NTsvoB/mNStKKX8i9HC9M8OKP839x1ReOAN5K7po9pqPVKXnbkoKnQSID86baRRgONcO0BGl2RiEgMBAt5kj0jUNKt6DbRNjqvt5hGuT0fo0FzXTBCOKDRKZwxYFQvMboLnuYhCOPUf+EYXRJVwSin6BTOgPJdBLr0qOBjDzEhKx5FyfM6vD9eb8IFlnVYZFlxQq1wzY0/xK/B4JQonkMUloSKDdw1X7WdL7+f3K6PSZYRlYb8pf6ITOGvGRbLX1NEEgZ1fN+Ku4H3rwf6ntTxY9z1QL3cWcm9SgXNYmVa8zoSXZGI/fZJ7po6GMrrXNx1RaKqqeOqj+4g+TYZAPCL+ie4lwkyAIjt2OJHKtI5e2YmHmd+U3QJ3UoTxGUA9MTBJNqiQLV59+ly74t8fgMaUbSrrlTugLffQvPZMEXw0U2TqYwf3qLRJUYFH3uQ3w89ccZYZxeZo5o3AC1EH2bRSBrGRcbNrMg1+uMmz/V4gZ3DRVNoYjNJZNfaZpLoCoWXX2OoVmKz+GuKyNAzgMQO/Br9bsDvAfZ8jOOGDiT3wOtNyiNoNmW6nybAJBIJvkPcNXUN6Bsht+dRQ00lnbgh93s3xMM/Y8IAyLJRhaOOc5MoO//sZ7NiJQo+agDIIkyC4CNqOGPtqPROErxugrX9j0j+1sHiriFSNkEoiqCaDkCgsWcIYoK/uDhY4eOmlWBUoeWlswGD6AMtEgNPBuOQiebQfBimFcGu+TBzUCKHgQnO8HO4lxwxBhRnnspVU0giCD4fBzcATYSbcFGw2IBFHwCjLwFs4YC1o+7oHWwOdFvgeQoSGhobSXSrnNkkusJgGHBwnMMP42canJHHsSGQgFgrvwZHR+OHZoISWP5BFAsAbHmFu66Q8K5wCdHuoiJSXriHTLuB5pIjDNXRRJ9Dn9yHiDbCqEdU3V46cQHQfDRfKg0miGNQ1Wm4adbz1KjgY08y7Gyucs6y7wLNHWRH1/H5eD7lbg7Nh4dsz+OWcXKfiraSMpKrnKYBFw+WfbMHYMJi/pqGHzj4LX9dEYlKBQbOC85k2fACu1TTGSqy9/EPOjAGtCz4K3ddodB11LII7rIWjaGiqpy7rkjExsaT6Jphy9JsIcpQLPqKRlck3A2AZuWrue5vfPVMTEsTkZ8pgOrKMjJtEVjdTFVWLvdV1XJgA0m3awDw+vgfTgqFqkjqBkQxh5Y6Gl1iVPCxJ+kzCZh+E1/N0h/46gnIqxsKce2KFm4dyiwwkJL/AR8xwWlx8u+IPnzQAO6awjFwHkqTpvHXjUjmrykim5cA7/0CKN0a3El6BV1GhNmxuPg36fDCgkprGndd0VjOpnLXZAyodHMOkIhGv1kkS2+rCVwff4g/hUa4uZZGVyT+dz1QtZuvJpFnrhnRogi8tRG4pib04+z1KRjnev9HouuT3IHPVZ5Hpm1xSG7JILmPKhlewmziEO0loIKPPc3YK/jqxffjqycYhsHw1Kq98MESKLHiRYieFnQJnxuW/M+5StZHDZT+M3eYlFNu4SsYmw1kTuCrKSKMAV90IjvEcZyGWUzyE+TehGBvYdf8iFz1f/yFBeO9yIu5a2oaMFDj7yUpFD+8RRImbLHK71uY0biVRtgrd5MjtNQBOz+k0abcTJqIlEyag2xNAxoMubO0wkBTAss0uS1vnInZZNp6tdxl10gf09sjCE38HjrtMZfRaROigo89zbZ3uEnVOdK5l3KLRoPbh5J6NwAN5SyWn3B0Oj8tQWne8gZs4GvGHx2fylVPZLSBJwMaxxLzk37FT0tk3PVA3YFOPO44JVdx5ghw9wrO4wR9u0Fm7SYSXZG4Lpkm68lWJXmmb00hiewb7ikkuiKR5KEJTLdIHmRA7UGQlbrVS35Y0EMUp8wg07YYbjJtESDLT7Q5qJSFgLQxno2/LYtQ1BSQyEqfauAkPCT1NtFpE6KCjz2Nj9+EGNVnJGC1c9MTkSiHFUmRdgzX8pGocezuTXkxEIXaTgSAugqTu7NoK34fsOo+rq+X9Z/LTUto7FFAVDeC+xYHMPRMfuNRtKEpcTSJrtxOUQFmhhfQCMt+GEbU6bHGL/lmD4AWkUSi65e9a3M4UVNB3Q5EyW8x0RO4wjK52SkdDQOQbCPMNhKAJtAECb1euUNBdXbCBIrMSXTaIlC1j0S2HvLP42REhmZCkAo+9jCVsfwagOj7V0tf/qHrGu4dVYX37X+EXeMY+Arn74UoGmGD5/AXPV62mkwsvwv48nFucj6m4Z1Czl03RUXXgRk3B/dcqxNY+AwQIf/3s7f4bvjtJBu+/Rb5vWBtBv+NGQPQnCr3pqVJp9lcJGryz0dbo3NIdCNiiIJzolBbQKM79lLALnnWaA8x0FlH0vxDAwIVGBJjpdq+Ex0UiYK7ppROfD9fmyvhcFWSyDog90EBALqs2MjQ7CMQ1NVr9+7deOKJJ7By5crW2z755BOsWrWK28CkJH8dIj++gZ8eM0CYfC8MJ+1/AjaOgUcf05EXLrcZNQAgezr/T0el5J4mQMAravOLXCW3sWy8s/kgV02hmXIdMPzcrj3HYgcueAkYeT7JkBQBspOiSDZ8e5JO5i8qGuXbuUv6mYaNRXJ7EO+JJzgIA7DPNpBEVySiKnNphD2NNLqiQFWlsWsZja4JCUvIosl8ZJA+wYBpNMHHJjhJdEUhOYrQCzRxKJ22APiJwg0OIv9SocggijmEaNVMUFeve++9F59++ikiI4+UbSQnJ+OBBx7Ac889x21wslH19k1wMo4+JANPAWySZ1N5WxBfx3fDt93IwteEh1/CQJEVS5D5Ixz1xYCf32TIGPCZfwIa3SZ4746mq++h3wOsfoBmLIpWMms2k+iOi5I70wQAUFvEXdKqMSQ0cO7IKxjh2RNJdLNN4J6S5aUpdeM5xwmJlyibxlXF1T7J1DSUgKITlaZB+oPyPAe/Krqj+UEfTqIrClpYHJ34hCvptAWgBjQTrilKcCOJrDoaK2h0iQnqb56fn49ly5Zh6tSprbdNmDABK1aswJIlS3iNTSqKCvYiwcVvEckAYPg53PSExWJHo863QcImYwiSouQ+3QMA7PmE+7qOMT/QLHeWDmKzuDaa0TTgeuuHOKMfx+Y1oUAw5QDlO4A6E2WI9gZEzRIGuL4n0RUGbwtg0ARshhtyN5wZMm4mvIx/lCE+3MpdUzTsFoo+4YA3c+qJHxTK7FxKKE7zNzEdy26heyclz3xsnvsA96xRxoC1fa7jKyoaCQPJ6gUr87cRKYtBjUYTuJW/fhPAvtU0ul/+g0aXmKCCj5qmQdePfardbodhyO0XESyr8hrhY/zi+xoAfP86Nz1h0XXUJE/mJscY8GHEeZg7NDR9ErpEBf8NrQYARV9z1xUKeziQMZ6rZITmxs+i5e8G3Ib0se3fbnV2vDHQLIBN+WmRQuTb02KR3DRct8ILmgOEQyVyd889UO3CHd5fcN8sJ9VIHvAGYCGobmEM+MYhefAxfQKNbniC9I0ee4zqfBJZBkjvyzlp+/3c7VM0DTglUfLkgshEsmiX7/tXaYQFIdVGY9VhiszHlhoaXX8zjS4xQf3N7XY73n777WNuf/fdd2GzEfophDB+Rww+Mzgvhsr4+0+JSGb1Bm5aRda++Ns1Z8BuNcHlLnUEje7Gf9PoisToS7hLhvlquWsKS0sd8Nk97d/n9wLzOrhv6OlAeDzduBTwN9IEH0v7nUeiKwouP1Br0ARY9/jk7p5b4/LgXWM2WsA3U3FsC7+1gbAQWJ1oGpBR+D53XaEYczGN7qRraXRNCOtH00xJA4DmWhJtUdAO0Fz7cgtp1gfC4Komk46zyN04JdxGk6esmSH1keo1hodmIlVQK8FHHnkECxYswO9+9zsMGBDocLl//37U1dVhxYoVXAcoC6ePSsOK5Zw31Z5GwO8DLBKXHjVVQuNojJ6VkgAkR574gTJQ8gORbi6NrkhwbjgDAOg/m7+mqHz7AtBS2/59zB/ILJ11e6BkwP+jf1b2TODUh4Cvnwb2fBLIgBxzCTBiYY8N2wxoVgeJbp8EuTMffX4/4gi6KzMGRA+czl1XJIakROFa64cI0/gG0sI0E3jvETWGyW7eSaIrDFYHkDAIqOLs/edt4qtnYrS+k4HcV2jE47JodAXBbxgkGWN2l+SG+C0NJA33AMARkUQjLAi1tlQkoLi3hxGaWGxH9jo8qS3gr9kDBHXtmjx5Mvbs2YNFixYhLi4OcXFxWLRoEfbs2YOJE2mMxUOddFsTrrKuPPEDu4LfA+z6kK+maJR3zYj/hGVdmZOCH0uoUbCeRpcoeCEUFZwbQKSPA/rN4qspMgXrOr7PEQ0kDAwEFRP6H7m9oRR4/VJg+Z1A/hfAnk+BtxcDK+4mH66Z0CkWQABs298l0RWFaKcdHvAvt9Q0YJKPpgmQKOQVV+IWyzvcdXUgcAArM4zm9elmyDD3uvhrHtrCX9OsEDU98gOAXe4kg3wjhUR3ZpTkwaWODsV5UC23d3NjM02Jr/SJj34fTeARACJprgPUBJ0yl5SUhPvuu4/nWORm+1LogSmxXRhDcKcxhzbLnRkU07VytBO+hxOvDn4soUZEIo3uwFNodEWCs3etkTnFHL4mhzneCfC03wCaDvz3fKDhqIVuRxkqX/8TmPJLICaD7xjNik5kjVJTSKMrCpqG9doEzMdX/LW3vwuMv4K/riAcKNiNERpRd2W/R+7qD1sE4CboJB+XzV9TJAw/TXOtUqKKEjNiI2z8SJXeJgh7jEwM1vkHCod75W6agnLCjO+YPnTaAmB30/gW+jVd7v0R5fqkD7+eGD1J0H/vbdu24Ze//CVycnKQk5ODX/3qV9i+3RwehEFxgtKZoOfJhEFBPjFEcMby1SMqYRKSiT/jr2kLB2beyl9XNDL5ZnD7c9/kqic8Exaj3Y6gGROBnN8FshobOrlwZn6AyN/IlGTTlPiypgoSXaFIHEyjy3ueE4xUaxP3ZjPAjxkTFsl9xr1EhvJ2uW0SYHR82N8t3PytF0xLdQGJrA7Q/f0FwUJklKdTZAuLhJvQNkHysuswogNEpkl8eEjN+EW9PYKgCCr4+N///hdjx47Ft99+i5SUFKSkpGDjxo0YO3YsXn1V7m5PQTNoPn9NeyQw6gL+uiJxvPLNLqMBkaFpzhoU/WcDZz4GhHEsrxp1kfReOgDwWdZv4ebYnd7qqQGq9nPTE56sacDZTwY6Wx9N/SGgbAfQ1UBVlNwNOXoSwxFFotvil754BnNT+B9eMQCYcxd3XZEYWfgKXSKS5MFHxmiCKHUHJE8WsNoBC0VXar5VEaaGKFijAUDu6yTaorBSp+lW3xwl+freTmgbVXeATlsAItFCoqszoqoIUWghqFw4DGX2OCFB7a7vu+8+rF69Gps3b8Zbb72Ft956C5s3b8bKlStxzz0ddDE1OykjgGk38tVc8KD8p9fOmBM+xNfZIFH/HCC2bzcHFGJM/Dlw3gv89BpL+GkJzNNbXNDby9wLEg0AVt7LTS8kCI8HfD9ZrDSUAO9dG2gu01l0a8iWFohI5bf8vfcAoMgbS6IrElYC356d2gAgUe4KBitRwEYDAJ/cHUZ9Os3mwrLjPRJdoUgbQ6Orsh+5sJcRlqlKnvnoTp1Mkk1eWyZ3AK3WQ1iOT5WlLghWP01WrCa762MzTbl6KBNU8DE5ORmzZh3bPCEnJwdpaSpDpUPm/4lvimzhl/y0RCV7JhB7/JO4Thkva1bgnKc5DSrEKOLYeEbyyRUA3D4/RtevhU3jvHhtruarJzo/vN3+7WU/emZNuqZzOoYPaKnjMyYFWD1NN0vdJ3m5FgCU5HKV2+7vg9ObH0B+peQddIedSSLrgyWQ4SYxDf1PI9HVDcmzTQDgpBtodOsO0uiaDP+e5XTiRzezk5Db49aQZJMn+iVvOENZRWOmyjqO+CB39QJiMum0Ofcn6CmCCj5mZWWhsPBYc/nCwkIMHnzEE0k1pGmHIafy02oxQTRdtwCXvnFcb8tBlk5k4zEf8M7PO9EOW0IqOHZg6z+Hn5agOKwWJEcQ2B8POZ2/psgcr5Ol3wuc8Shw4X+A4eccvwu9LVx6T7yeRI+iWSCnwATzEceyKjez4HLvHwAAq3aWcdMVkrSxJLJ19tDs9NgV4ofkkOjuiKHRFQoLUYkl5WbSRCQb5SS6jAFIGEiiLQpJpTwtqY6gS56F5uw/jW4baKextBEGomaF7vihJLrCQBl30EOzVU9Qo05ISMD48eOxaNEi/PGPf8Qf//hHLF68GNOmTUNCQgLuv/9+3H///fjPf/7De7yhTW0R8MFv+On5iFq3i0bK8IB/XHc7iR34Bti3is+YQolajl1ozdBUAkC/6RfBz3geK2vAOHm72bbLsLPbvz2+f8CGAgBGnAtcsAQIi+tYp9/MkJ1gRSQxk6ZpSpMWSaIrDJznW4fmx4v2R5CKKjhsFq7awkFUpRHnqwzZk//OYuSt5K7JGNA8/6/cdYXDFkajW1tEo2sy4lNpAoSaBkDyxinOhgISXT/kbv7hqcgn8x9ubib09hMBIpu3CJ/kB9ca4f4lRHsJBHWVOdxwpqioCEVFRybhwYMH49tvv239f21tbbcHKBVf/oNr8MZfsg0Ww5B/Y77pJWDZzVykir94Gan950HXCX0/RIPnQvmbp4ER5wF9jpOpJgGn50zDtvLbMHz737icBLOYPtCc0RxGFkKMugDY/TGw439HbrNHBewPjl79bXsH2LuiAxENGHIG5ShNh5ZIs+Hbk3QypDZdsdhhIMgT2w4Yr+fhWcc/0GfkxRxVzYNueAK+svbw3h4KGb76MvAuLG+0xGDmCMkbSwBAyVYaXTNW0FBg0CRQMABapORZ0X4ar9vyqOGQOa832l9Fpl3qdqAfmXrv4/N6SULTRkMFpD5+pYzRVO4NSYuJoD5HJ510Ej7++OMTPu70001WZngiir7hKmdprgQaiuUuATEMYDm/TqA1Bbn47fPfYMnPJsMpe7YJAGxbCrTU8tXc+qb0wUcAGHnhH1A29lQk/PdkWLXubTb8nmbJz5PbQbcA034DFH0NNP5YVsr8QMUuIOukI4/b8f5xRFjg4CFpCNCXpruj6ciYGNiccZRkDIifcjlHRQHRNFQjFomo5So7VsuDt24XEEnUHEMEkkeQyFYiDokSBx4BwFqXz10zyqgDyncCycO4awtDUxXw+Z/562r6kcx9RfcgatyjAYA1NLvAdhbec/hh4hIzCFQFIn082XvXlCG3lYXup+l27Ycmu+tjwGu0gaBha9po/po9QFDh2M4EHg8/7umnTdrkoz04G916mY5it9wTLKryuJZPpGrV+GZ/Nf77DcdSZFFhDFh+J3/d8h38NQWFfXBztwOPAGDx1AH1kht5/xSPC3j1giOBRyDwXV52M/Dda0du009wCMAMYMO/SIZoSg5t4r7w1jSgf95LnFXFY30UzYHq9r2hWTrTafZ9TiKbZx9CoisSjMjqpKCogERXGAq/BAi608MZB7K6TZNxKHoUnbiPJlAiClS5t9YwmtJaYagvJgk8AkBEkuSBW9BYnPiZ5NWbAOAgqnyLSqXRJYb8L/7OO+9Q/4rQYfIvuMr5YUEL94IcwXBGc51kE7QGzNe/xXtbDnFUFZSK3TQnLW7JfU0OY/iR0vADFynN7wHWP85FK2TY/XHHHb6X33XEq23k+SfWUt1F+UHkV+Yp3EiiKxL9Tr8Zbsb3jN5gQEX0SK6awkH0metrrSXRFQlGsFX2Mw3/KYjnrisUYbE0utnTaHRNSGEdTTCDAWT+dKJgEOWKfVEid0WYq4ZgT/QjG/Z3sN6VBZ2mfstNH4rqfZqJfC3z19PoEkP+F2fKG+UIgxcAZ/0DsPLpwOfUvOhvkbwBSFQqyux9O/3wznzaLresRK2Lxi9FKKw0gWnDd5wuxjKx4m6+2778tTzVxOd45f4tNUD1j9lew88BJl1zfK3MidyGZXqcMSSyNVbJPbYAjBnQB4zzSbOuAdPDJW9gEZlIIpvsyiPRFYkGxr9jcyNzIjbmOE2+ZICqpHyM5PYSPYjTSVi5Jfne07DRBFdjaneR6IqCK5LO6zalaTeZtgg06zQWJy0gagwmElSZ2Hs+odElhjz4qHWiPGHp0qWYNGkSZs6ciZycHGzfvv24j9+/fz/OP/98zJkzByNGjMDUqVOxadMmXkOmZcBcMD+f4I0f+vG7xEpASV0zzm64A6XGkdd5vDVFE3NiuW/ccTXH6vuQnSj3qSiAQFdhO/8OtP44mS2Vf2TVA8A3/+SrGU6zAReW/nOOc+dPrl1nPArcsBEYddGxD41IAqZez314ZsWTRJNlt7efCTbln/wOzsYD3GXD6yUvu04eTiJrhQ9wN5Joi8JuG//S1GbYcdlUyRvObHmFv6Y1DBh0Cn9dk9Jv6rkkMUIN4NrcU0i8NMGMdE3u9y0xgs59fWKq3M6FBSydRDcJdE2AhMHw0+iGqL1Er+e6bty4EYsWLcJrr72GdevW4eqrr8aCBQvQ0NC+EXFFRQXmzZuHm266CZ9//jm+//57hIeHIy8vRE7AawqgMT6lBoXJJwPhcpfOFFW5UM5iMdXzT6z2Bwz5jxfPzjPSMN/y3XE1YzQXbp0od2kBAKChFPDw35jp46/krikULXWBrt6cMSYs5q4pNAkDgOHntn/f8LOAiIS2tyUNAc5/Drj8XWDQfCBlVCAj8ppVQGwf8uGaheI6/j5ozcyKTz1juesKRUs98P2b3GUZAPST26ge/WaRyDIAsMi94UsYPpu7pk0HkqL4Z1QKhTOWv2b6OMBiutZxZMTE0uxfDAbpEzOsoOkU7gjjn7AgFE10ga6oSLnfO80RRaJrJfKSFAqqTOw+U2h0ien14ONDDz2EM844A4MGDQIAXHHFFfD5fFiyZEm7j3/44Ydx0kknYdaswGLWarXi3//+d+v/hSdpKJje/cWym1lRP/9vHAYkNgOTI2G36IhHPWbq2074+DF6fqe8wCdkJZz4QaFOdQGJbE3qDBJdYajez7XJERAoc9uTMJerZkhw0X+ASb9oGyAYcjpw1hMdP2fQycDlbwO/Wh/IiIyTPEOnh4lv2stdM0zzYVREHXddoWipAwwiywnJN8qIyyJrkMDLxkZUBhXxD3hHwXXEc1dWJiwC9y2OiZrt9QTf7q8g6d2jAdI3BdKJrqgWud82wELXJ8Eg8jYWhX4RfPdFpsJHc1iAYWfT6BLT656Pq1atwsSJR/y8dF3HhAkTsHLlynYf/9577x0TaBw4cCDS02nSgXnzyrZmLPVP77ZOmZaAsQPl35QnRDpw5UlZSNOqYdNOnLbcqfVG6uhASbLspAznvjxpZnbERNL4fghDTF/uJv+RWgucBau5aoYMZ/wN+L8i4JrVwM3bgEtfp2sGoDgh0XHJ3DUZA84/SfLOwzGZ8Fr523VogPwNlTw0mxYNkD+IRvDZsMMrvwexbgHO/AdfzZZaYM8Kvpomxu1uphM3fHTaAqBpNNVb+S65D3MKy8rJtHWb3N6FGlFCizkgOn61h+Znjjz4eMcdd3R4X1VVFerr65GS0taoPjU1Ffn5+cc8vqmpCfn5+fD7/bj88ssxffp0LFiwAJ98cnzDTbfbjfr6+jY/vcHmwmrc/b9t+L37SnhY9yaOPOcYTqMSnz+cMQyn5cxAPev+l6xWiwHOfYbDqEIAZzSKwwZzlfzQPxXVzUTeFaIQFgeKiYK5TOBr0hH2cCBzgunLp4WYi1JH89fUgJjENP66IqFpaPQR2XU00W2IhKD+EEHP5h/Re72AhxZGM982lxzfW10KDIJskzUP8tfsJXp7PpqUEUbXF8Yvd/ARRCWwKw25m/tVM5qGewCAJL77LdGw+pt6ewghDNGFrmgDjS4xQa/a3nzzTeTk5GD69EAW3wMPPIBXXjnW4HnBggUdarhcgdNwh6PtSYvD4Wi972hqa2sBAHfffTduv/12fPnll7j99ttx1lln4bPPPuvw9zz44IOIiYlp/enTp3c2wG99GzjBbkYYXvPP65aW3lKNJrfkk+uPaJqG8MhoPOM7p1s6zcyKBc1/AlJpGi6IiCOKb5OTqfoORNgl98vUdRgafx+xJF3uxgiKEyPEXJQykvvnWwOAmkKumiLiZETm3q5qGl1RiM6gK7uWHStNR+CSfP72C8Kx/nH+mhKVXvf2fBRWu4em7FoDfPvW8BcWCZ1/hiJjwJ742dx1RWJoajRdwLs4l0hYFCSvMiCF6EMXolUzQQUf//Wvf+G2227DmDFj0NwcSJs/77zzsHTpUvzjH50vcwgPD5Rvut1tTyfdbnfrfUdjsQSCHmeddRbGjAlk/s2bNw9z58497u+98847UVdX1/pz4AD/bpWdYXfZkSY6f/Fdjv/5pwV9ERzNduG97w5xGpn4OGw6DrFEFBrJQb9nYZoPnztuxRuvvcR3cAKT0LCLq15fvRLW/fKXD+sW/gHWyLwPuGuGDH4vsPVtYOmvgE/vBEp/6O0R9QpCzEW6hSabqkVyz0cABkH+HgOATLmzTWRvCkOKI5pE1qZ5SHSFoaYAqCfYmPncdM0Dehgh5iMiDhqS+7p722/K2h00DbgkQ+5u12Flm+jsQKv2EQmLAev9NiGKn5I0qLdHEBRBtW175ZVX8P333yM+Ph5z5swBAIwYMQJvvvlmayfqzpCQkICYmBiUlZW1ub20tBT9+x/ryZeUlASHw4GMjIw2t2dlZeGrr77q8Pc4HI5jsit7ml2l9dh9sBy/tHyKUyyb4YUVq/1jMVXfiVTUdFkvXmtEZd4WYKr8vo8AcK5vOS63P9VtnXDNg1N2/xEl1echLZ4w/V4QNAIz/qZtH8E5vOOMZhnwag7YwTnLqVaehX2X8HuBVy8E9n9+5LYNzwbsD8ZcEtjMFecCzmggeVivDbMnEGEugt8LnfcJtmYBUkbw1RQQn2YHOHcZ3WMdgiGJobmA7DS7PiQpu/ZrNkiehw+ExZOU5aelhoZPetAwoiyd7JnSNDPp7fnoy3IHuu+AfyyMARHZEwiUxYH5WkiuqZmHPgbwCwJlQagrptOO5O+nLRK6bgcMouoPmWmupdP2EjWyISaoMLau64iPjwcQKIk9jM1mg8fTtdPUuXPnYvPmza3/Z4xhy5YtOPnkk495rMViwfTp01FSUtLm9rKyMvTt27dLv7eneXNDIV6yPYw7bG9ggr4XU/WduMv2OlK1rgceDzPEUclxhAJjGAjf8Dg3uQStHoWbTWIaPuDY71F3iYikycQQiXUawcI1Lpu/Ziiw7d22gUcgsDH89A4g9zXg78OAF+cDT08FnpsHSN4xsNdxVfIvAIlIDGRUSo7bwt/ce48v44SN+UKeBhpPS4MZ0mShdYhBk6FodUo+j8f3B4mtfbTkQdsepJjFkX19kyxy29z4CcquAcDlltvT3ZtE2BhPck/zJqfcwVUyCDush+pnLqiZ2e12Y9u2bcfcvnLlSvj9Xbtw3XHHHfjoo4+Ql5cHAHj11VdhsViwaNEiAMCMGTPw+9//vvXx//d//4f3338fRUWBDeqOHTuwYsUK3HDDDcG8lB4jtfwLTNV3ctWckS354vEwzTXQ6vmWmMdG0PgoCcfAudwlnX3lPlEGgE8ozuPn/5m/ZiiQt6r925trgPdvAI5uxHNoE/DmFT0zLrPiquKeMcEay4FDWzirisc+21Dumqez1ThQIXnJehPNQakNfribakm0hYGqw6gJMpVhJdj0FX/HX9OknGmsIfN8hPvYvgEy0RDZj0S3xhmawYzOohHZWAD48cBDXuw+moB+qTXjxA8KZezhgeogCkK0sVZQZdf33nsvpk6dirlz52Lv3r342c9+ht27d2PLli348MMPu6Q1efJkLFmyBJdccgnCwsKg6zqWL1+OqKhAJy+Xy9XGE3L+/Pl44okncM455yAyMhI+nw//+c9/cOaZZwbzUnqM6Xb+XhDRB1YDky7mrisczhg06jGINPhs0KoRi6FTTuWiJTwUWWSydxcFMDAzBdjPUTAmE8iexlEwhDhehk17pXEl3wfKsNPHUo3I3EQkI9Aihl/KiQYG18YlCF84npumiDQZ/L0LLRoQXb8bSJ7CXVsYdtL43foZYA2T+xCWkTiNAoiRfMMHABnjgcKOLZmCwhHJV8/EFFc3YACBLmOAFid3EM1C9Dm0uIOvxgsFrOHxgc8H54sqA6ANms9XVDDsHprPhtcXmgG0LkHhsw4ABzYAsZk02oQEFXw87bTTsGHDBjzyyCNISUnBDz/8gJEjR+KFF17AsGFd9+xauHAhFi5c2O59W7Ycm01xxRVX4IorQis7ZsjgoUB+15/nZ4HNSbsQ+AAJyY7/Iczgd+ISNmimeQzw93FuDqPpQNpYvpoCMn3GPHj2WWHXOE2K7iY+OqFGwZfA3g4sDsLiAtmP7dHR7Yrus30pKDrvlZeWIJu7qljEeWj8omLjU0h0RcHbXAeKGVfTaJqDiQSDDo2iy+j+tXJ77PrcQPke/rqjL+GvaVKqYseSBB/9mhbc5jaECDfqSXT7NR9b1SgTvoYyWOWwbO1xNKKOzUms6sQPUrRPOd+K2p4i6BSmESNGYMmSJdi0aRM2bdqEJUuWBBV4NAu2sReBWbru0eE/np16f/4ltcLhqgbevwEWdO7UoDP+MWFFX3RzUCFEyfd89fqeBMTJ3+Ro6Y4a7GYcM0P8oWkK3C0aSoHXLmo/+zZlJDDrtvafZ7EDsWJ7+IY0nC0sDnMwXuLMPQAen4EGP/8QGoMmfRZajYPmZF4HAI/cBztNOlFjvEObT/yYUGbvZ0Az73J/DRh/FWdN86IR+ZVZwYAWmuCcKGhNNAEbO6PxmBUFa0wqSQhNAwL+5oou09n9fchCuUaJC829UlDBx927d+OJJ57AypUrW2/79NNPsWpVB95eCiAsFlpEQpefZtc6+FKGJwITf9bNQYUAuz8BfJ3vrtWpVHp3g/wm9UAgs6Gllq9m6TbAIOoiKRAVhTsxQuNYsh4rf8D2GHJfAzwdZCyf9ldg8nVAv1nH3uf3AM/PA/Z9fux9iu7Th3+QsJpFImvOz7nrikSti2ZTpqWMkD4T392Pf+MzAGC6FbDybwIkEjUx/H1GAdD4IYqEmyL4xJQnMUfS4qNIluIMkP6aSuPFAGxxTKYRFoWdH1G9dcCBjVTKQkD1vulEGZXCQOX3CAAJhA2UCAkq+Hjvvffi008/RWTkEc+JpKQkPPDAA3juuee4DU46ojmd/qePA27YaA7vGT/Bhq/vSfwNP0Tk+9f5a7rr+Ac0BWSM7SB0jeOEWLETyFt54sfJRONxbCEaSwObg8veDpRf/5TmGuCVc4HXLwuUzyn4MfhU8F5GxmpN6OPs/CFRKBJv92GiTlDGWVPAX1Mw+oyaSSOs6dJ7EKekE3nXSR60Rf/ZgE5QfLt/DX9Nk6JteZmm4QwA2OT+fO+PpPFX3hI2lURXGBxRdNoxcvuMUiG3cQoAmxPQiQ77aoPw8xOAoFZt+fn5WLZsGaZOPXKRmjBhAlasWIElS5bwGpt8jL2se8+3OIBffQVcuwYIIosyJHEQlBz1lbs8sBWqVO/GMhpdgZgwlmBh9+2L/DVFJuuk9m/XLECfH+eOxrLj+zvu/ghY/zj3oZmaAxvA2/NRB6NpbiUQ1uYqRGoEAVZPo/QlsA1UpcOSJ0wAgFZDs7lwORJJdIUhOh0Y0b6XfLdor0maIijCir+mE6/cS6ctAEv0hSRZo/N8X/IXFYlxl9NNGx65S/2lP7CixCCyM4hOp9ElJqjgo6Zp0Ns5bbbb7TBMUJIZNNuXdu/5fjfwv+sDnWDNQngsf02XScxtBy+g0d3yCo2uQIybPAt5PD0fAaD4O756ojPkDCC7nYynk2444nEXHg9YncfX2fom/7GZGQrPR4sDSArN8o9OE50eeJ0U8G4MJhjfbKYJrmpUHSQFothLk6lTlTGHRFcoag/w10wiKoM3IdEJqXTimtwZ0WO0/SRZoxmSVzDAIOyszOSuqPPEE1375H7baEkKzV4rQV2d7XY73n777WNuf/fdd2GzSe6zESwHNwP5a7uvU5ILPH8yULSh+1qhQNYM1Fvj+WomDuarJyqjLwYGzOOvW0ewoBeQb6a/CIPnEamrgqNYCGCxApe/A5z2CNB/TiAYedHLwPwHjjzGEQWMOUH3UFV2zZdwgoynab9uv3xeJiw2IHEQjbYzlkZXEIbu/ReNsAmCj7qPfwWDHxoyBk/irisc1fv4a57/An9Nk2JNyKYTl7wEdnw6zUFYyuyrSXSFwd1IEutiANyju1ndKDhadHJvD0FxNI5YIDKpt0cRFEEFHx955BFce+21yM7Oxrx58zBv3jz069cPv/jFL/D3v/+d9xjloHI3Py3DC/erl8Lwy7/whtUO9znPoQknyI7qLJGp3S9/DxU0C80pX8YE/poCcnlyPt+TZb8X8BOeuopE3SHggxuBJ8cDm14EBs4DLn4FGH7OsY899eFAB9GOMhWGnkE7VrOROpJr2ZGHWfCnxnb+rjKSSJDdqenAyPP56wpElNUEaxUiMhp+4K5pAQM2PMNdVzgost8K1/PXNCtEjfgYIH1DpR3Fddw1GYCwPjReksLQURPE7sKAb6qIKiMEwUaUoSi9e0oL/+8qAMDTQKPbAwQ1M0+ePBl79+7FokWLEBcXh7i4OCxatAh79uzBxIkTeY9RDpL5psY63FV49oVnYXBNzRKTpFEnw/Xr7XBZuukblTYG+NnHgVJPM7D9PT7ZtkcTlQ5MWMRXU0Q2/Ava/37J9YTUgB7IBpSd5lrgxVOBLS8HSnwrdgIr/hDoYN2et53NCZz9JHDdF0BkWtv7koYBOf/XI8M2C/XWOJSxWG56ds2P1Ru3oLxe8nItAMj7jL+mLVz6OSky5yYaYYvcAQYA0AwviW7L1v+R6AqDxwU0VfLXzX2Vv6ZZyZxEF3iQ/KA3vZK/X6YGAHsJ5jiR8NKsUzQNCKvaQaItDAkDSGSbmOT7IiqfYOYHWkIzABn0sWBiYiLuu+8+vPPOO3jnnXdw7733IjExEVVVJvHT6yrp44CBp3CV1Iu+wpo9x+koKxFJ4TrCrd38Apf+AKx/7PhdeGWiux6jx6AFymhlL6/0+4Av/sZdts4ZmsbAXSb3VaCuneYjxd8Bz80Flt3S/vNSRwG/2Qyc9QQw7TfAec8HApJmaa7VQ6zdXoQk1HLTYwyYge+wufA4jYNkwNsMuAkM5T1NgCF3ZqB1Ao3Jv2vSrwlUxUKLoCmr0mUvWfe10JTlu4kyp0yIe+NLJCWwGgAQBe1FIZoRZVMdrwGgDFAYZf7ImAi5G87sdIwi0Q2D3AcFpHvmIsKmXYRwr0m48MILeUvKw0UvA9NvBqIzwLTuN5evYDH4fJdJfOSWXge4uxnhZwbw3SvAS6eTnX7JDQNW3tvbg6CnsQxo4h+gbp5ClP0jGqXbjn//pheBvSvbv88eEcisnf8AMPpC6UuneoO46q2wcFx/axrwB+t/kWaVe+ENiyPg+8gdBuxdQaArFtq4q7gGIBkDdgy+nqOimGjjLifRrddoGtkIQ3g8oBFk1MjeWKsHqSw4wVohSBgA2CTvzEt1YEXRpEkkEgaQZds2NBIFhAXh47UbSXS7Hw0xMRW7ensEQRFU8DE3Nxdz5sxBXFwcLBZLm5+1azmXecqEPRw45T48PPw93O69rltSDSwMS/0zEeWUPF35MAVf8tOq2gvseJ+fnqiMWMhfM2+l9Fk6iEgEnN0s8f8JpWEDkT7rZ1w1hSWh/4kfs/MD+nEo2mXsIP5G/HbNj7Gub7jrCoWuA4lE3R6rC2h0RWLnB9yznAaVfcJZUUBK+Xs+AoC75iCJrlBQ2JwcpNmAmxGPNZJO3C935iMZ9cW9PQJaCIPSJTph93YBmOBvxzaJB6bodk30IuM7sd8SkKCCj4sWLcL48ePx8ssvY9WqVVi9ejVWr16NVatWYfTo0bzHKA/uBmx5929IX/97RLIGrPWP7PRT2VFHNXuNDPzM8zvUIBrnjc8gGKiA8E6Vr9jJV09ERp4PjOWdNWEAez7lrCkYVgcw5VdcJVOTU4mypgRk3FVA2Ak87HSTHJoIiNca3WY+4YYZ/qa1hTS6kZJ3kWyqAmup5SqpaUDM2j9y1RQRxvPg9Sgi/XJn6QCgabjXWA7UmSBw2wMkpdBY0WgAcGgLibYo2Ah6KQEAmsqIhAWBZPETIMtSTaYtAl4OFZumxUlUeh2iwcegdgtRUVF49NFH273vH//4R7cGJC31xcBLp2F8TQHG//iuV7HOl71oGlDLIvCObxZWsfHYxIZi5qBEDEyWvHTmMINO6bSHoZdp+MSYguFaAQbqpe0/iKJrqWhoGnDu00DKSGD5nfx0D22WvwPx7DsCjVBW/wUwPN3XK/omYBvgMMH3NSoFWLwMWHE3sG9V+48ZdUHPjknRSnjVD/xtj3QbMPR0zqICQtUps98sGl1RMHw05/4tNQEPPgdhBlUv4/N5QXJsFd+PQlUsHNFAM0FAwBbBX9OERKbQNLAAAETL7bGdZHODxCqvvoRAVCD2rCBLtItOG0ykLAYTrIUAQe+UFjgguUlCwNubghDtwRDU2cno0aNRWdl+F7ktW+Q+bQqaz/8C1BS0uSlBa4C7C12eYrUmXGP7BK/b/4z/2v6Cu04xweLxMOf+CwhPPOHDdhp9MNX9NH7j/Q1O9vwd22ztZOLG96cpSRaVLx/nqxfDv2xTODQNmHELMI9TZg3zAZV7+WiFAikjgCvfA362HAg/qmGMpgM5dwBZ03pvbCbHkZDNX7T/7JBdBHUFZnHwF3XGApE0TUWEISqFxGcr4O0WTqAsDodA89mIO13+rFGMOJdGl6Kc24S4wtJIdBkgfaWJLzqTRthF0CFeJCgOIw5TtYdOWwBiQdNZ2QY3ia5Q8EhiaY/i72h0iQk683HKlCmYO3cu0tPTYbEcScVdsmQJbr75Zl7jk4e9n7V7szXIY4QZlm1AwctA39u6M6rQobH0hFknxSwOv/TegipEI0fPxa+t/8Mgb0HgTk0PNAwYcW4goGRzkg9ZCIpzAw1UOMHC4qGZJWuNMWDvcn567/8auP4rfnqhQNZU4JbtwO5PAp2CB8wFYvv29qjMTfpYMPB1oPHHDzSFabh/5AWw5r7CVzRhIF89UbE4AT9Bozedqv5QDN61noVbPU9z1WQAtOyZXDWFhOqgtCoPSB9Ho20iaor3g+LoQAOAgvVSV1h86R6AM8DfZ9nwe/l3ohUJwvWnu8UFguNJYfDCBgf4e6maYe0IqjZHO94PyaqjoIKP//73vzF27Fjk5eUhLy+vzX21tbU8xiUfdoIpdvMSYJZJgo+5rwK+429cnvKdi2KWiJdtD2GW5Scm7cwA/G5g7GXSl2O04fvXucq1eH3yp8f/SP3fJyG6gWO2Yvn2QPl136n8NEMBWxgw8rzeHoXiMMW53MuOaoxwnDgvPfSxnv5X7N+7Ff2bvucnKntX1h/ZnzwPA0o+4qppQJN+41LU70IYu56GzrNDPQBWtR9aZ5qDhTK7lvHX1C3mqP7oAWKtNNlAjAH+5FHBbXBDhIl1K0h0PZoDUqdmEDYi2hE9EzIfSfhgpQmu0tlwyk9tUW+PICiCujbPmDEDH374Ybv3XXrppd0akLSMuRT4/M/H3GzR2s989DArDIsDTuM4PgHuel6jE5+mihM+ZI59N+b5vjs28HgYZgDfPCu/v9bRHOLbnSzMVw9sexeYsJirrmh8ufoDTKvfy79BWSc+xwoFKVb+wa4DSTNNEXyEPRzpN3+O9U8twoy69tdAXWbAPD46ghNWsZVAVf42melxYXDDijDeBm/cjV9FhOA1RqYCEaa42pET4aFZD3kA1IVlQeY2XvGshkS3Uk8GUUG3GCQPI5NOiJHbC9ZOYjIKMM0MMzkRsaF5EBZUdnVHgUcAeOqpp4IejNTMuAUYdSE6+xWza75A4HHIaR0+pi5M6imiLdkzTviQefbtmGfJPf6DQvSUIFiampv5ix4KTY+JrlC+4W3+ezOLHegzhbOoQtFFUodzlXvPNx3vlUjuWXgUzqqdmNG8hp9gxS5+WqJS+DXSfQe4y5phw9K3bDXCNL6bPgZAC4/nqikkFBn3iXI3lehRDD+JbDNzIjbcTqItChaiQJBP9mZKVP7DDOibLvee3G+SKg0aiMwMPC4aXWK4vxsXXnghb0k5sNiA858HFvyla8/b/QkOdZBT8qR2OYeBhQjDzgFO4FGku+tOrJMhc1L8sRR7CBYSHD0kRWVzE0EwZfrNQKTMZ/GK0IFf2OYsy9dIrNzITU9o6kuAl04HPByN1394B2iu5acnIntpSgR1ZxSJrkjMrX+fu6YGALX8g8HCMfayQKYiT4adxVfPzBzdjI4jkVoL7FapnQvJDl4irKoGNhg0DTC+erK3h0FKvZMmuGqGQ0Sy2nIvURdtYoK6OtfV1eHqq69GRkYGLBZLm5+1a9fyHqNc6F13KEpjlSg2jnQSbWY23Oe9EivdfDNYhMZiBS5/BzjjUSB7FuCM6bqGpgcCQCai0RLNX9RFU+4hEpsTz4WPcV68xkvur9VZfG7gm2eAJWcC/z0f+P7NwLHxYXa8D7x2MfDSGcD6xwH38RtNKYLAwe+6YNMMLKp7hpue0Hz1JNCZQ66uwHzy2zGkjqLRZfJvlBO1Wu6aDAAiU7jrCsfHtweaFfKkbDtfPTOTOYFElqc/qtmIjQlibxVKeOk6K9ce2EamLQLMSXNYIP8sDpC9yv5zaHSJCWp3fcstt8BiseCll17C6NGjsXr1anzyySf4xS9+gRtvvJH3GOUiiLRlXQPS9Rrk+vvjSs//YZL7GbzkPw3js+JO/GSZsDmBSdcAiz8Erl3T9eczA1j3N8BPU64gHLUHMKrpa/66lTv5awrGDXMH4gnvuXxFC9bz1QtFDAN47SLg0zuAgnVA3kpg6bXAR7cG7l/1APDWVcCeT4HC9cDKe4CXzw4ELBX8CIvlKhfbsAfwhOYJbJegaGAByB9EG3kezdLbS9A9WzAsBKVuGgBU7uauKxSuamD7u/x1933OX9Os9JlKcl1o30lfLqhmDH/qWCJlQdi1jCzTzp15/Oq8UCfGTZMtz6RvG0eIh8BarQcIKvi4a9cu/Pvf/8b8+fMRFxeHnJwczJ8/H88++ywKCwt5j1Eu4voF/dSxlv1wwIdGhCMmzIYb5gzkOLAQIzoDCAsi+Jr7GrDuUf7jEZEv/wGrlyBrTJfbSwcAzhydjrPGcO6KHmkeX7wO2bsC2L/m2Ns3vQgc2Ah8+Y9j7zu0Gdj2HvnQTIWfc5dRqwOwSt0jM0BDCY1uEBURIcX+NSQbPmaVfy5CYzmNruwNC11VNJ6Csmcp9yQttTTXBcnPcgDAIAqhFZVwzhQWjbgBZIHbtP4jiZTFwN9AMxdZZM99JOywjsJ1dNqEBBV8dDqPbDLcbje83iNvbEFBQbcHJTXZM4CkoUE/faK+G7MHJ+H9G6ZjQFIkx4GFGFZH8CXUm1/iOhRhOfANje6Q02l0BWNQMr/vlx8aMO5KbnohS1FHmbgsEGA0OpikO3yeIih4Bx9HXSR/AA1U2Saa/F6wm5eQyFY6QrPTY5cgCHYxAMiYyF1XKDhnd7dihgzvnoKo9N8KoLlBbnsgqmyxtJrNJLrCkBL8/vuEeEOz+Udn0f1UFkiS5ypbbHTa3Ygn9SZBm5o9++yz8Hg8GD58OC677DK8+uqruPrqq6Hrcpv8dhtNA059OND5NgjKWSwinFZkJ0rekawzzLgZmHdP159nlpPrqDTukgwAJi7mrisk+fxOlN72zsTb+SbI0jkR0cfJJk0Y0PF9BJ9lM9Ni59jp1hoGnPF3fnoiQ9IggQE1BQS6AlFdQCK7OuocEl2h6OhApjswwBvWfiNDaQhyjX1iJN8o9yR+N0mWoqYBrsqD/IUFQiP6HIYbcmdEM6uDrmZ93xoiYTGwgaY7veR5j7SMuay3RxAUQUUK7777buzbtw+1tbX44x//iB07duDKK6/Exx9/jCeeeIL3GOVi69vAKwuDzjyZq2+Bx2MSz8LOMGJh15/Tbxb/cYjIpF9wl9QAoHo/d13hqN4PHPiKm9xp1k14b41JOgIfj1EXtt8sKnEIMPFqIHPSsffZwoFxV9CPzSw0VsDSWMxNrmLYFYAZyl8BaBN+xl/U4gRiJM/gI2o4c5Itj0RXKDT+GU6aBuz+XvJscmcMkDiYvy7B38OsVOZ+Ao3IgC8hRu7KMKrgI7OEk+iKAmuqJtM2mogsMgRBpZYJCNUFlJigPktz5szBI488guTkZPTp0wfbt29HZWUlSkpKMH36dN5jlAdP04+NFYKfNGZYduBvFdcGzLTNRsUe4LM/ov7NX2LLsn+jYukdwDNd/LzZo4B5f6QZn2gMnh8I3PDGJ7/JP7a8zNU4KEZz4aqmJdz0QpbweODKpW2DEf1mAZe/Deg6cPGrwKAFwGE/o8QhwGVvArGSB2d6kk0vwubjUzrIGPD3zQYue47I4kE0CJp/YOJiuhJRUZh4NUl2Q98D7xOoCgajyTZJOLCCRFcoeNtLAECE8m7mRcn+H0h0GQDEZJJoiwJVIKhQk7vKpOLAbrJ4TYnBsaJEQEIzzCUAXsKmMCFaFWYN5kn33Xcf7rmnbbmr3W7HwIEDceutt+JXv/oVl8FJR+HXgLuu2zIxTfnAqvuBsx7v/phChY9vB9v4b2hgiAYwHq937flR6cDI84DJvwDisilGKCYxffh3tYxM5asnIoX8s0Km61u5awpPZR7QUgekjT7ie5IxAfjleqCmMODdGnXU5ykqBbj8LaCxAvA0AvHBN+hSdMBefkEHTQMetL+A3xcwPP15Iq6XvQna5v/w10wdzV9TNArW0WxcKEqSTUKqu6C3h0BPPUGDqIwJ/DVNih5F4/moAUBt0fGtXEIcBp0k+zG8iaajsSgUswQkM/4JY4wB9YljkcFXVih8sMIGVXnZZSgbzoTowXVQhydr16495rbIyEjs2rULr7zySrcHJS08sya2L+WnJTof3w5s/Be07uRONBQHstkq9/IbVyjQ0v1g9zEkEZQyiUYV/3K+cJuJzg3rDgIvLACemgA8Pxd4bEQgcHO0WX9cVtvA49FEJqnAIxUG/8Xj7dY38Po3+dx1haKlHqgmKPNd9yh/TdEo304kbIJrKpF3ocbM4F1IkG9bYwLbmR5iSCKhXQdF1Y9A6M5YEt1EVkmiKwp9U5NIMh81DbBnyH2QyHQHkTCNrDA4o+m081bRaRPS6czHrVu3Ijc3FwBQWlqKl19++ZjH1NTUoKZG7g5j3aLvSYGsu/bM5WP6AKc9Aqy4yxyeep2l9gDw7XN8tNz1wGsXAb/5Hojry0dTZPxeoLGUr6Y9AoiV/L3zuAAX/wWYNWsad01hefMKoPi7I/9vLAM+/E3AdmLMJcBpDwc+S4qeZ8hpQEkuV8kYzYVwr+Rzvy08EAjiXcpZvQ8o3wkkD+OrKxJpE4Dvu1it0BlC9NS/S8QPACp28tel7MApCoMWALs+5KtZvjOQmR+pyq+7i7WMruxaiw7NcsROQ1Q73K0kjxAgIT4eBgN0gszHna4oyJtrC3ihgeK4wACIerebgOLvgGFn9PYoukyng4+ff/45Hn/8cQBAWVnZMWXXuq4jKSkJf/rTn7gOUCp0HYUn/wsx/7sKsd4yAACzOKBNvwlwNwCbXwKGnhXY3Oz+OBAA8XTgzRVMo5VQ5OBGgOcJPTOAlfcCF77IT1NU6g7x1xx2Nn9N0bCFBUzlOXpteWCD3SxeoyXftw08Ho3hBb57BfC6gAtM8B0UER9/HzTGgKEDsrjrCoXFGjhAzD+28qPb1BTKHXwcOIdGt7kG8LYANieNvgjwPkA8TLoJyodPuS9gM+F389PUbXJ/3nqQaj0eZC55kgeI/Z5GkoCNR48Mzo8thGBEmY8jm74BcB5/cUGwGhyvo0fh11TwMWiIrCuo6XTZ9U033YT8/Hzk5+dj5syZrf8+/LNv3z588803OP/88ynHG9J8vbsYb7+xBGVuG5qZHQYDNL8b7ItHgA3PAHuXA1/9I5AhMOMW4Nq1cCcMP1Yoebh5mqZEEzhoFKzjryki3F+nBcj5P86aAqJpXDcXjAGvjnoRSB7KTVNomjqRNbp9KY0fl+LElOZyl/TCirvPGctdVzgufAnQeFv962TdoIUhOp0un4b730MwNKJQwLDTaXRFImEA0H82X83hZwOOKL6aJmVbn0t59vVrRQOAg5v4CwsE89N474XFhmYwo9MwRtasJ7tQbjs0K5Hfo6ZCj8EzMjRjbkF9B5cvX857HKaAvfNz3GZ5HUP0gwjTPK1p38ekubfUAstuhuepqfhn6TD8zHMb3vDNxhu+2Xg67c8wrlsf6BprBvpOBdLGdO05MX2ArON0wW6u6TijVCbC4jgL+gGrSU78s2dxk9pi9MeDW2zYXGiSDvWZkwDbCUqqmQE0qOBjr5DCP9BlcUYiMZLID0gkNAvfTHwAyJ4OxMhsUw/ATuS/ZnEAVkLfOBEgKK9kABAldzfgVhwxfPVOvo+vnokZ3L8/yaEEA4DEQQTK4mAQ+d16ZQ8ENZaTSbeEyZtpG4DmCLHRwnuvKiBhRDGbEI0FBRV8/Pbbb3H//fdj//6AN+HTTz+NMWPG4MILL0RZWRnXAcpCQ/5mTPN2rYOuHT781vYuGDTc4bsWd/iuxV/z++GzXRVEoxSUS98EBp6CTpvLT7oaWLQssDFpD8MLNBCVMolE9gz+mi+cAhCduApFIr+uvXksEx6/gadWEzSrEBFnNHDyPcd/jCMaSBrSM+NRtGXytdybWFg8DYBhggYWujUQgORJOYGfn2DkfbucZqucOpJCVSyoDkqJPOOEw8b5UCQika+eiUmNcYIRZC5rgPSe0n6i/L3lDf1JdIWhJp+sTdmWtEuIlEWB5p0L85sgMYOqV4K7kUaXmKCuXvfddx8Mw0BcXBy+++473HjjjViwYAEyMzPx61//mvcYpcBZGbyx8gWWL9r8f/VOupMbIYlOA654B/jdPiAiucOH+TULMPHnQNpY4K0rAXtk+w90xgDR6TRjFYldH/HXrDsA7Hifv65oVPFr+nS25SsAwA+H6rlpCs+U64CffQKMujDgoflTZv1O+s2BsMRkAGEJfDWZP2S77nUJR2TXM/FPhKsSqNjNV1MwLHs/pREefTGNrkgQNIb5yhgV8DA1A4Vf8tWTux9Hj6OD/6EVA+gyjQTBQvC+AcC+Frm7hCN+AE22LQMcVrkPdJhGU2VgI/osC0VzHY1uVWgmtQQVfGxqasK9996LuLg4vPTSS5gzZw7++te/4rHHHkNJiSqlaw9bYvCnSZFoafP/cIfkafEdEZEA74SrO7z7c+ssoO804JVzgV3LgOaq9h847cb2AyKyQdU1nXf3SBFxdBC4DgInfBii5SMl2gRlqUeTNQ04//lAd/lpNwaCNgPmARf/F5j+m94enXnxtgCN/OdpVh2ai6Au4W2hua5SXasFITmW3/W0DSPkNfc/DEsbz1ePARv9/DL7heb7N6X/boU03mYSWQ0AXHJXiPmJvGCvtKwg0RWGhhKS/D1NA/qxgwTK4lDnlLyDPCVU1yOKvhg9QFDBR6/XCwBwu914++23cfXVRwJCdrvk/jvBkj0TTA9usvjcGNv6b00DzhtnEq+edvBP/y3qWPsnc3O9a4APOwpqaED8QODMxwNZV2Ygnqh8wgzllYn8SoI1Dbje8iFiwvhnsIQEUSnA/D8B130BXPkeMOys3h6RuemoE3k3+bTaBAvT4i0BT2bepMhdPhyROZpG+P0baHQFQktpp+lgd/Q04CbbUsBDE/gRhpZ6ms/H6vv5a5oWwkyx+kN02gJgZM8m0Y2Bi0RXFHyVdIcRNX654x9bk84m0ZW8ZVwAg8iuLO8zGl1igvqbp6WlYfHixTjnnHMAAOeddx4YY/j000/hdtO0Yg95fG5oQbR18zMNB1mgRM5p03H/2SMwKpOzgXYI4XTYEaa3/yXWwQBvRxMnC3g9jruCbnCikUXg+QgAY2T3NUGg1J8jmVolyupbTvxAhYIaJ//54xCLx0sHJO+SCZC8d0gaAsT24a8rEi1EJUd5n4GkXa5INPP3w9IBYMMz3HWFYv+awJqPN5uXAIafv64JaTSsdGXsvBsNCUbEmX8heev0IJNkQoUWN92hS0pLAZm2CMR5zdvTo7GxEbNnz4bT6cSSJUs69Zza2lrce++9qK2tBZyxNANrx7Ln8ccfR25uLs3v40RQwcd//etfiIiIgNPpxNKlS+FwOPD+++/j4YcfVp6PHeF1BXyxuohFY3g47L946uJR2HyJhiurnwRW/AEo2UowyNBAj+zY9/G41BYCuz/mOxiRyV/DX1PTgSGn8dcVjQFzucqFaR6kx5qg1F8hPinDAZ1vFu793qsQa4bM3hiCqgOi8jmhoLI5YYb8gSCqbt51cpcIgqCRCYDAWr5yL422ydhVSuODzQDpG9qVffEiSd6oHqLdcztLxMjTyeLdkd3o7RAKDKxbT6JL1bmdJ5GRkVizZg1SU1M7/Zza2lrcd999geDjoPk0A2vnQDwUgo9BrXrj4+Pxz3/+s81t5557Ls4999zWDtiKnxAeD8RlAzUFXX5qor8cZ67IaXsC/tVTwOmPAJN/wW2IoYI1eQjQEOTCuU7uUow2UJz6MwOo2AUkD+OvLRJRqYHmRk18mjvFogGLp2Vz0VIouo09glv5cCWLxgpjIj46eRAXPaGhCHSZIZDBu0nP0cjeOGXUhYFsO94MOoW/pkj0n02nHRZLp20iCioaMJEq7iB5N/eovUtphAefSqMrCJozhq5nVJTc1jPhfprOygbTIH0niwLOjc8OE6KWPdyPBq+55hrektLg784V75jSGwasuBtwmaBFPRDwGdy/BvjoNmBfN7qqFnxlDs9CABhMlKHoM4m1QuJgblJpeg3mRZko8K0QG44lIGFowW05qRieLneZG4DAIWI4507hJuj0yFJGwEuxveCcwSsk4YncJRkADFrAXVcoHJFAn6n8dSNTA4eTim4ToXnoXBP8RB5rguDQaF4fG3gyia4oVDS46T5zFJURIuGjsY6yaGKugRobG3HZZZehX79+WLBgAZ5//vk297/99tuYPn065syZg8mTJ+O3v/1tq/Xgjh07cMklAYuySy6+CLMf24qlOwMJQU9/68GU5xsx5z9NmPRcI/78hRvsqA/llhI/cpY0YfaSJkx7oQk/f78ZpY1H3qNP9nox+blGzHixCdMW3YNnn3229b758+ejtLQUDz30EGbPno177rmH7P3pDp0OPi5cuBC33XZb4Em6DovF0u7P2rVryQYb0hgGLLUFfDV9zUC+Cd7vmkLg6anAy+cA3z7XPa3dHwLrH+MzLtGJyaDZnJXk8tcUjfJdMA5s4CanAcAHypJCIQjOaG5SEZoHV8aYyAYkeQRfPcNH54koCOu258MGgqxRRxR/TdE4tIm7pAYAeSu56wrHjJv5a/bP4a9pUtLqviNJUNSA4/i/y4HF1n7jze5SsX01ia4oVDd56I77SuVeB/n8NO+cqDnKt912G/Ly8rBjxw4sX74cdXV1KCs74nv55ptv4q677sLnn3+OL7/8Ejt27MDDDz8MABg+fDjeeOMNAMAbzz2BNYsjsHBYYD++JNeDF84Ow+eLIrBmUQTe2uHFK1uPVCpe8V4zFo2xYc3iCKz7WTgKag3sqgy899vL/bjg7WY8d1YY1v88Ah98+CH+9Kc/4fXXXwcArFixAqmpqbjjjjuwZs0a3HfffT3yXnWVTgcfc3JyMGnSJADAmDFjsHr16mN+Vq1ahdGjiboahjq6DsRm8de1m2Dx/f4NQOWxpqpB883T/LRExjBoSq/dDfw1RePrJ6Hzfu+q9/HVExnGgH2fA9++ABz4trdHo/gpWdO4ytn9cm/0WvnhHaBgHX/dg5v5awrE2v2NJNkmhuTNEQAA9aU0utvepdEVic3/4a9ZKrevW08SFsHvEOxoGBCwFpEYZqHJ+va7akh0RaFfYgRdsIt7VYRYMF364uhWGhsb8dJLL+FXv/oVwsICntU33HADfL4jGcePPfYYTj/9dACAzWbDwoUL8cknnxwr9hNfxrcvDMfI5MB7GWHXcPpAKz7JO6J7qMFAYW0g2GjRNfzrTCdGpwQe/9evPJiTbcWY1MD/Ex0GFi5ciKefDq24RqdXbjfffHPrv2+//Xbk5LR/+nf77bd3e1DSMuxM4Ot/nvhxnSU6g9bXRgTqi4Pa7DHNAq2jBj+SZ5m0cuAbGt3MKTS6IlG2g7+mZpKJu6kK+O9CoOT7I7cNPBm4+FXA5uy9cSmOkD0D2PDsiR/XSZxVu7hpCYthAKsfAEl7Vsm7XU/QdtFYsJnhIGwjv+9pGyTfKAMA9n/OX9Ms83gPMDiapnRYA4DynUBqaPqhdQoi39G4vpwz+wXD7qkl8XxkDHBPuwUyr3BJqhcEZd++ffB4POjfv3/rbU6nE8nJRxre1tfX47LLLkNhYSHsdjtKS0tby67bYG/bcO9gvYHffNqCSheDTQcKag30izuSC/jgPCduWd6Ct3f4cOlIG34+zob4sMACalu5H6WNDLOXNAUevHQyarVYOJ2h9ckLyvPx0ksv7fC+mpqun5osXboUkyZNwsyZM5GTk4Pt27d36nlPPfUUNE3DmjVruvw7e4XCr/nqnXKf/GbrQfoLdhh4BIDkoUEOJsSgKC+3hQEZ4/jrikYiQfOMjAn8NUVkxe/bBh6BQImfWewOQgGrg6ucse0d+Q91miqCahh3QsITaa43AjE7uZlEV2NiekXxhDVV8NcEgFm3cdcVikNbaDzKRi7kr2lStEb+n+1W2ukCKxOam6b5B7PwXRsIx85lNKX+GtBY9P2JHxjCcG8SEoJoP354mpqaMHfuXCQlJWH9+vVYs2YN7rjjjjbejW2wRwIACmsNnPKKCzP7WvDlzyOwZnEEFo+1takMuX6SHUU3R+LqcTa8ts2Lof9sxIaDRw5qTu5vxZrFgeeu+fP5yM3NxTffECUbEdHpyNXLL7/cqcc99dRTuP766zs9gI0bN2LRokXYvHkzBg0ahJdffhkLFizAzp07ERXVcUlxcXExHnnkkU7/nl7H3QAUb+GrGZnCV09E4vsBSUMDHZa5oAFnPs5JS3Aosvdy7gCIyj2EYur1wNY3+WrO/xNfPRExDGDbe+3ft+0dYM6dPTseRft8yTEDH4DuawFqi4DUUVx1hcIZA1gcgJ93wy2y3pvCEJ4ykERX+3FBr+gafgBNzV7E0NjGiUEzQfloWAJwkvJu5gZR5jIDoMne/IPgUAIANN69CUSDysYCQHzhCmDoDDL9Xke3kFh5MYjn+zhgwADYbDbs37+/tdLX7Xa3ej7u2rUL5eXluPDCC6HrgbCsx+Npo3H4dgAwdDuaPQybiv1o9gEXjziyj/b8JFfqnR1eXDDchlunOXDTVDtmvuTCf7d6MSXTipHJFuyuPOrQ1deCbdu24b333sMf//jHY35vQ0PDcWNpvUWnA9nXXXcd7rnnntafX/7yl7jmmmtw11134fe//z2uueYaXH311Whp6dpJ40MPPYQzzjgDgwYFTv6vuOIK+Hw+LFmy5LjPu/HGG3HXXXd16Xf1KlYnYOPoQaLpQMZEfnoic/aTCPrSFJYQyPLRdCBhEPCzT4BMk7xvaWP46g09k8bAXUSsfFPYK8ffCKRz/nuISkdZx4bc3SdDioI1XOX80Gg8jUXC5qQJrrqqgHLJy9Ybiml0OV+nRcSv83+NVgDrvlrPXVco+kwGLHa+ms1VQO0BvppmhsKTHD/uFigO30XCXU8i6y+TfC4itP6pbGgi0xYBU3gs/0hkZCR+/vOf45lnnkFzc6By46mnnmrNbMzOzkZYWBhWrVoFAPD7/Xj//ffbaCQkJEDXddTU1GBTuRWL32/G0EQdGoBV+YH9ULOXtfF7BIBrPmhGScORAKPPYBicELD7+L/pdmwp8WPFvsBzvJodd999N7Kyjqy/k5KSUFNTA5/Ph7Fjx/J7UzjS6eDj1KlTkZ+fj/z8fPzhD3/An/70JzQ0NODgwYM4cOAAGhsb8dBDD+Gmm27q0gBWrVqFiROPBIN0XceECROwcmXHnfg+/PBD2Gw2LFiwoEu/q1ex2IDodH56zACayvnpiUyfycDMW4N7bnMVcPY/gXtqgBs3AVkn8R2byJx0A1+9oWfx1RMZTn54r/lm4wz3n/FR4tVc9IRH14Ehp7d/37CzAqW5TVU9OyZFWzwu7rl2GljgVFx2Jv+CRrfwKxpdUdj+PxpdF2HZpiDok/nPHYwBO5tpmn0IgyOKxp/x7av4a5oVyvV4A12GmxBoNEWwYbV7SXRFoaWxlky70ZZ84geFMF4fTZWGaFmPh/nb3/6GgQMHYvjw4TjllFOg6zoyMzPx0EMP4fXXX8err76K119/HVOmTMEFF1yAlJQUlJaWYt68eQCAiIgI3Hbbbbjyyivxm2V1uHmKHSOSLXjmDCfuW+vGrJeacNX/mjEgTkduqR+Xvxdo3Hj9JDvOfN2FOf9pwkkvNGFWXyuunxTIlByeZMGHl4bjrlUtmPxcI+bc9ylmzZqFRYsWtY77d7/7HZ599lnMmDEDt9xyS8+/cZ2g02HsZcuWtf77nXfeOaajj91ux6233ooFCxZ0OgBZVVWF+vp6pKS0LR9OTU3Ft9+23yG1qakJv//977F8+fL2jT1Fxeem8YsyC8POBNb9Lbjnfv0kMPpCvuMJBco6553aaVpq+eqJiscF/PA2F6nR2n7czfrggWU7cNaYDMRHcM7EEJEFfwFKt7a93qWMBCr2AA/3C2RGZk4CzniUf3au4sR89ST3xZ4OBMrtx1/JWVkwEmjKh+GUPBBEVR7tp8mcEom1qT/HdPYs7Bo/s38GIDlTbp9R1B0EfAReo2U7AG9zwP9a0T1SR9OVXMbJ3cSLpoMXoHvkbuLVVFdO1hQmY6DEDY4AGIZ5Gs4AgezH1157rc1tPw3mLVzY1gP4xRdfbPP/hx9+GA8//DDw3nXA1jcAANdNtOO6iR3vBf8yz4m/zOt4XAsGWrFg4I9rqltWAjEZbe6/4IILcMEFF3QsIACdPjqJiDhSMrx79+5jatsBoKWlBXl5eZ3+5S5XIMrrcLQ1uHU4HK33/ZS7774bv/zlL5GWltbp3+N2u1FfX9/mp8fxezssMahj4TC6eqCQNhaIy+7uqEKHmL6AHqTXYE0h37GECl7OJQA/bSIiK65KwMPHzHukpQir7LfBZwDLt0t+En+Y2D7A9RuA854LeIRe8logA2Xv8iMl2Qe/BV4+B3BV9+5YexgR5iKW13FVQbco4txQTUQ2d877usv0lTwjf8BxVtKK4/LYulJsMoZw1dQAjEkSNd+EE2Tl0UyaoHevz0e1RSSBRwYA8UQHRaJAZWMjeWmts980Mm1Ho9yWDDpRtq0p2LuCRrdgHY0uMUF9kqZOnYpZs2bh5Zdfxrp167Bu3Tr85z//wezZs3HSSZ1fRIeHB9yuf5rB6Ha7W+87mi1btmDDhg345S9/2aXxPvjgg4iJiWn96dOnF07EHJFA9sx277LBC70rM7DVCZz7NJ9xhQoRCcC4y4N7rsxNEI5H5iS+elQXT9GISg90oOVEtl6OYVoB8srkPlFug80JjL4o0GAmLA4obSdw3VzDv6mP4IgwFxX7iLLsaotodEUifw2Nruzehf5jD6sVnSOmfhcm6Hu4amoa0L86NDctnSZ5KEhy6jImSpOp3OvzEdGakgEBCxiZMYwTPyYYJJ+LIuJT6cR59nUQEEtUQm8PIXRpJkq0KAhNy56grs7PPfccxo4di2uvvRazZ89GTk4Orr32WowbNw7/+te/Oq2TkJCAmJiY1u5BhyktLf1/9u47PIqq+wP4d3Y32fROEkIINfQmPRQJSBdBQKWIiIAiKv5Q0RfFwquiqIio6IsNEBSQIhZQqvTeews1EEJ6b1vu7481S0Lq7t6bncycz/PwaHZnj5dxs2f2zr3noH79+iWOX79+PXJzc9GrVy9ER0dj5MiRAICpU6ciOjq6zFWXr7/+OtLT061/YmOddHei/2zAo/gvb4HGAx6SjXdRg5sBIc05DqyaGPAx7LqYvHUEuLyN+3Bkz5fzhWROErByHN+YcqTVAZG9uYYcoDmIJjWV8YXFZum3ynnuZtWNQwbkkIu+cx0DpvwGy/wZcoE0Qavoq+nd60rz5Hczpzjlv5Enm36GXuK/yiknW+E3w9z9AZ9aFR9nq1aP8Y/pJE7PRwViGnQw+77aVjOCPvtMym4MmO8q8DrcVdmTj1nBKmnWypvBtkbMNnEtuVCvOrBrfbWnpycWLFiATz/9FJcvXwZgaUtedGt2ZfXq1QtHjhyx/swYw9GjRzFjxowSx7711lt46623rD9fu3YN9erVw7x58xAdHV3mf0Ov15fY2u0UoS2AFw4DJ5Zb6qGFtYXr7y/YHkcNhf1Lo3WFXQnXkAMsHwlMOQL4hnMflmzFHeUf8+xa4NYUoFY7/rHlpMWjwIkV3MLdkYLxZHOBd1zlLKxN2c8p/X10DznkonTPethkaot+Os6fD+EKvzA1CKgfV0jp9XTrRwup7SasXpyMtDWdEvKXPGqORBmtwZSDd+kZADj+M9BpEv+4TuD0fJSdJCSsBDNgNin7u5IkiZl/zEsVEFQ+0gs0ENYWJjdNVGRZSExOhZ+zB1EdMUGrlAEgoORCverAodtDnp6eaNWqFVq1alXmxOPgwYPLjTF9+nSsX7/eumrx559/hlartXbu6datW6kTkdWWR4ClC/HATwDvEIDZcZfp5iFg7WT+Y5O78pbrVNTV0JgHfNEOOLOW75jk7KKgbdIXN4qJKyeJ57mFKmAaNB/0PHzd7axZWp0d+Bb4sYwu6bXaWzpgkyo1pE0Ymmk4b5HWaIFOtpVDqXY8AuyvO1weSQPU78k/rpzE7lf8JKEoJol/DTbGgLOJKmgekM+ndnMxaql9XRX8IoSE1QBIvSrg5rucCPhcUAO/8Kbidn741xEUWB7yzGJWFCt+J45R4MpHN19xsQUSvjY9M7P8rR0dO3bE4sWLMXLkSHTv3h3fffcdNm7cCG9vbwCWpjSldbWeOnVqsW3Xhf9ebRxdCiwdWvFxZTmxTF0TaQCQnQD4lfPhHty0/Neb8oBfnwEybvMdl1yJKhyt8K0FAIAzv3EJY2bAEwVvoHsjYfda5evYT8DfrwKZ9/y++UUAPd8Exv4OaFU4Ietk0cG5qK3hvOKk0QDAWwUre1uP4h+zw0TFf2lByjUhYc0q2F6psakgeOVIEhCWfZp7XNkR0SBB4Q05qlTHicJC5zJl1y6EZw0xcfXeYuLKRKKgeSAGKH73x03vVmIC051J++mrZzkv4VlUkip+Vw0dOrREu/JCR4+Wfvdq3rx5jgzLuUwG4J/3HI+zdz7Q3IEJzOpk73xgyztld3hjJsC/PpB5p/zCrqYCy6Rt1HNixiknKZfFxA0VlIBkhc+tuHWmzojxaIMQH4VfCJdm31elP+7iCfR4tWrHQu6K2co3nqQFBs3jG1OuHpoHJF0EYvfzi3l9D79YciWo4YxJ7wcFb6wEAOg1AATs2urROIR/ULkxlVy44DBPFd5IFEUrbst3WJ1IYbFlQdSNW58wMXFlQoKYch0SYLnhHvU858jyccwQgQEC4ip+7rES82B2q6YNopR/21iO0m4AWXcqPq4iamnWcPsEsGlG2ROPhS6stxSwrmgFjiGH39jkLO6YmLiXNouJKycthnEJ86B2PxbU2wVXnQo/alPLaM6hhq7Icsa7C6hOD9yonh33bJZyFYg9wDfmnTOWpmhKllFO0ykH5BqVvl8L0LiImaCplXpISFzZELU9uttUMXHV6MY+Z4+g+spKEBNX4R2bw/zcxc12KXxVdIBGJd+deRO5OrGgejaOU+E3YhnwCPy3eUrllFkPQS3NGk6trvyxpnwgM778rcG1Ozs+pupA0GqTcleWKkXHZyxd5R2klYAOMZ8Dl7ZwGFQ1U6tt6Y+H3Ve14yDFRfblG8+QA6wcC1zYwDeuHO37EkKq/F/dzT+mnHiJWWXnalLBlyFRq8Ou7hQTVy5ykvnH1Hsrqtu1s4moZwr8+wntUj1XBFVaRYsx7FW3i5i4MiJi7pExAO3FlRGQg+GGP509hOpJZOMrn1riYgtEk4/OoHMDGvau1KGMASuN95ecgNS5A/dP4z82ObInyRaU0+Xwl8eBuON2D6facPMTE7d+tJi4cqJ1AZ7bh9wQThP8x5byiVOdRE8v2aBD4wL0fN054yEWPmGAVsAXsx2f8I8pNzcFrVAUsT1UTjitJL+XJGI/sswYmaBlOkruBAwA4R0AFw++MfMzgV1z+cZUsf05tYQ0m1B8AwsA0HuJidtJ4c1Mc9PEbfPVKvszNcCsgoUnIpQxH/HmP3moOy8T0YvLma+oSDXdySl88pGpIgvY4ND3wNwmwIW/KnW4JAEHWDOMKHgLm01tEWMOQ2bDIcCETWWvLFKaJoP4xstLAza+wTemHEX24R/Try7QXMwXSTlyf/pvZHuEOx6IR5mF6qZuN2D8BqDpYCCokeWf4zdYHifOk51kab7FW4IKGliImrAJaiQmrlykXhMSNgPVs9i6LcyBDcUEbqDwDut6b6DPu/zjnljOP6ZaJZ0XUg5N+bckIG5F9E2Fl2Mw5InYu2BhVvY7L14jpqmg4ms+6txR2t/y/V5uGNfGwdqt16tnySMuk49msxnHjh1DcnLJbQ7btm3j8Z9Qhsv/AOtfAXJTSz4X1LjMlyXDFwdZUzxtmIbeBXNwu89XQE01NP34V92updyNc/Dj6voey11sJRMx+fjkn4Cu8iUDqrtv9tzE4+nPOh7IZHA8RnUU3h4YsRR44ZDlnwrvBlgt7PtaTFxR28DkRNT7V+FF/nFxo5CwTNTqHxlx7SKoOV778WLiyokN5Y0qzSioXa4KNapbV0hcAQ3i5ccjUEzcI4vFxJWLtGtCJrskCZb6zQpmyBSziELxS9Q0GnE3rj2DxMQVzK7Jx88//xyNGjXCoUOHYDQa0b17d7Rr1w61a9fG33//zXuMynF4UdnPJV0o9U5WotkHu8wtrT83DPZCoxBvEaOTtwGzgae3AT2mA33eA/7vBPDATPvjafViLkzlpGFvQOvON+aeeXzjydjJCxfhsukNzNJ+i2yzY+8VY371XBpPFOj2cTFxXZU/EYQOTwOSgA0j6bH8Y8qJoEnCGoZ4IXFlxSiodvO2D8TElQuzCdj8Nv+4aqm1XgUOp3sJ2SItAUCawj9T3QSt+s6IExNXLrKTxMVW+KrRGmaB506QjWfiMWT+bjR9awOGzN+NjWfEXjOsWrUKXbt2Rc+ePdGxY0e8/PLLyM/Pt96c/+5IAep/noluC7Mx8Y9cZN+T3q+lmfHoqhxE/ZCNHouz0WdpNs4mmqzPF92q/fGefPScthiRkZH466+/cOLECTz22GNo3LgxXnzxxWJxly1bhg4dOqBnz56IiorC668XL3/16aefomXLlujUqRM6d+5cbOHgoEGD4Ofnh9deew2TJ09G165d0apVKxw9etTu82TXVfSqVauwfv16dOjQAatWrcKpU6dw+vRp7N27F++9957dg1G8igpga0sWXw6SMvCz7j1ESrHw83DBp4+2FjS4aqBWW0u9uK4vAv51gO4vAWF2bj1vMczSpVXJ3HyBYf/jG/PIYuVf1AFA6nU0/uV+jHfZgOaaG/DUOPYFMD49l9PACHGQqFXz7caJiSsnwU0A39r844YqPK+3fFTI6gaNWeG1MgFgx4di4iacFxNXLhIvWErs8Bah/IYcVSUrNUHItmsJAHKq30SJTUrbQccBE9mZVw5cOC/IKCr+lLjYMuCiF9MJPR9iFgJtPBOPSUuP4MTNdOQaTDhxMx3P/nRE6ATkL7/8gjfeeAPbtm3Dnj17cPbsWXz00UcAgH2xRkxen4cVj3hg93hPvN5Nj59OFd8VdzrBBAnA3vEe2DHOE2NbuWDoL7kwmi1XUIVbtY/cNqFzuBbbduzCa6+9hvHjx2PTpk1YuXIl9u7dix9++AE7duwAAMTFxWHs2LH45ZdfsG3bNvzxxx/49ttvrf/Nb7/9FvPmzcOWLVtw4MABvPvuuxgwYACuXr0KAFi3bh3atGmDVatWYebMmdizZw969+6Nl156ye7zZNfko5ubGyIjIwEAy5cvxxNPPIFmzZqhTZs2cHNTeIcxR9TtXv7zpRQllSQgSncBm/T/waGGi9E6lM5vMQPnAHrf4o9VtDKlXg+g/2xxY5ITV86rZJkJiLP/bke18edU6M38Jgz1BclISU7kFo8Qu3V/hX9MN3+g11v848qRjnMO9goBggTV9ZOJTLeaKthbJYiom33eYup3yYabb8XH2OPQ9yrpaCJeJ38HGi1UROmTaP4RQsJKIc2ExJWNgHriYmuUvZtOK6ihDnMLEBL3620xJf9bDPh6+2Uh/z0A+OyzzzBw4EAAgIuLC4YOHWrdEfzlwQJ0jdCiYy3LeWwQoEHv+sUXnfWoo8OCQe6Q/r0r81hzF1xMNuNySvF6oiGeEu6vY3lt165dcefOHURFRQEAAgMD0axZMxw7dgwAcOfOHZhMJly7dg0AUKNGDfz1192+I7NmzcK4ceMQEhICAOjbty+aNGmCTz/9tNh/s1evXtZjoqOjcfz4cbvPU8mldpWQnp6O7OxsxMbGYuPGjdi9e7f1udxcWuFTpk6TgFOrgBTb3/gSAJeL64H5HYF+71masCi9W2FlhLez1JM7/jOQfhMIbgac/Q24tqvksVpXILIvMOQrwN2vqkfqHNsFbK3y4dCARe5iD3ANV0PKQObmN4CR33GNS4jN9N6Ad00g8za/mL1mlLpyX5EaD7CUSeEl6w6QdgPwE/NlUg6yc/LgAYD3FQuDpPxi9QYxNQZvezdHTSGRZcK3lpi42QmWeuGitr2qSISHoJICAOAqZpWWbGgcbFRRhluhD0DQb448BNQHg5gmJ7n5+RC4rtLptN7BQPo17nFdDGncYwLAxTtZpT5+6Y64fg8ZGRkYPXo0rl+/DldXV8THxyM/z5LDzyWZ0Sa0+FVQhI+E2PS7P+s0wJy9+fjnmgka6e77ND6LoXGR8o41vf9dZJV0ER4eHpbHat7N6J6enkhPtwRu06YNnnjiCfTu3RvR0dEYOXIkHn/8cQBAZmYmbty4gYYNi98Ab9iwIU6dKr6SNyzsbm1yb29vZGRk2HZyirBr5eOYMWNQs2ZNtG3bFj169ECHDh1w5swZjBo1ChERyr2AdphHgKXbqyNdytKvAyvHAstHASYVFPivDO8QoPvLwKC5wOWtpU88AoCpADi/Dviqkzq2DgNA3DHOASUgtAXnmDKk5X9h53Xpd2FfJAmxSfOhfOO1fIxvPDnrNBmQOE+jCWrIIheht7dAK+DbnirWn3kHCwl70ayCm4ii6tDqVVh3XQT/OkLCmiApfmWv6eruig+yEWPAjzeqZwOLyrqTkScscWh9lH3ustzFTEubTWLKpzQKKf3zP1JQ34zs7Gz06tULNWrUwO7du7F9+3ZMnz693LfbvWUnpm3Kw9KTBqx5zB07xnli+zjLTZR7Y1ivp86tu/vYPStT2b8r9CVJwpIlS3Dq1Cm0a9cOM2bMQJs2bZCWlmbT369ofMnBehl2TT4mJydj69atWLZsGf78808AgE6nQ//+/fH+++87NCDFYwzg8Yt2aSNw7nfH4yhJ+k3gQiUaHmXFA9tVsu2a+2oaZpnEVToB3WclUz6f332ly0sHclKcPQpl6zrVst2Xl4sqaTSXfBn4X2dL+QmeXDz4xpObZDHbnMwqmH403VtWhpMQFxXsUuoxXUxcEYUK1ShPzAokDRhgNld8YDXG8vmfO0kCOl39kntcOSlIuyPs19c1qIGYwDKRnW+o+CA7aAXl8ed6Nizx/1qSgOejxfx/On/+PBISEvDoo49Co7FMrxUUFFjLdDQN0uBKavHPpRvpxf/uO2+Y0LOuDsGe/77eVMG5cfOrcFy3bt3Cvn370Lx5c3zyySc4c+YM4uLisHXrVnh7eyMiIgIxMcW3qF++fBktW7YsI6Lj7Jp8/OKLLzB37lxkZmYiK8uyrLVx48Z48sknrbUgSRk8gyxb3ni4tJlPHKXITkSlb2ldUvZKEyte77VCtTur465/poCCxOEdxdWhUoKMOGDZCOCjusDH9YCF/YE7Z509KmXyDgHqduMX7+Qv/GLJ2d+v8S/0L2mBpoP4xpSboEZCwmqVv+kaSLokJGwjbxXcCGv/FOARyDcm7zraaiboJqMEADFbhcSWC8Z79f2/WhacFhJXLkL8BG7HV/hNRH3jPkLiagTdQ+zXPBQLxrRD69p+8HDVonVtP3wzph36NhezKrpu3bpwd3fH1q2Wzx6TyYTff//derNqSkdX7LlhwsFblpvXV1PNWH+p+A7WZjU02HfThByD5aSsOVvBDtfanSoc16VLl/Dqq6/CYLBMHpvNZjDGrPN1M2bMwI8//oiEhAQAwJYtW3Du3Dm88oqA+vD/sqtI0wMPPIC5c+di/fr1eOaZZ5CZmYno6Gg8+OCDaN1a4V0bHaXRAo0HAod/cDyWqC0lcpabChxeZKnJ5xMGtB9v+WKTftPShVTvbanHUxE1TKAZ84FbHJvDuHgC/QXUkJQjA+dVIS6e6mlyZA+zGfhpOJBQZLLxxj5gyWBgylGqryVCZVaJV1baDX6x5KogG4jZwj8uMwFZCcq+MWEUVW6CAWaTwutfi1nBZazdRVCPURnZ9gGQk8w3ZvTrfOOpWZa4rrPwqiEutgywgPpAEv+bswZBk5py4QqTsJqPOL0GaD5ERGR5SLooJq7Ae4j9moein6DJxnsFBgbi559/xvTp0/H3338jLCwMISEh2Lp1Kx5YYsTWsZ5YMMgNI1fnoKa3BnX9JIxp6YIfTxRg0LIcrBvtgbl93fD0n3lo+b8stAjW4r5QyxrBqRvy8EkfNxy5bcLi4wak5TGMXZuL6YNSMf6FCQCAkSNHYuHChZg9ezaOHz+Oa9euwc3NDePGjUNkZCSioqLg5eWF7OxsfPXVV2jVqhUA4JlnnkFGRgYeeOABuLtbmt389ddfqFevnjVuYTwfHx+0a9cOU6dOBWBpPLNq1SrUqGHb561dk49r1qwBAEycOBETJ05ERkYG3n77bXTs2BGhoaG4fv26PWGVz5gPfHM/kHi+/ONcvYGCiibQJKDNaG5Dqxayk4EfegMpV+4+duRHy92mgkzLBE/N1sCNvRXHavO4uHHKRVY8322+hmzL3eRa7fjFlKtG/SyNi3h5cI6lOZJamEzAlreACxsAMKBhH0uXZe8ytvpe3V584rFQdiJwerXlJgPhJzMeMOTwi6eKWqYCr5AvbwOCFLxrRMRKcitlr340QQMtOG/zB7A5JRAPco8qM0cW841XvxcQ9RzfmGomsimMl7JrPuaH3AdXAZOPtxCq7IYz13aKyxgCtsLLyvl1FR9jB2GTwU4wdOhQDB1avKb6woULgZmWm8sT27piYtvit/0+H+Bm/fdaPhr89XjxFbQzo+8+36eBDtO7FekbkrUX+/fvL3b8kiVLSoxr0aJF5Y572rRpmDZtWqnPrVixosRjjnS6Buzcdg0A8fHx+OGHHzBs2DCEh4djwYIFiI6OLnPwBMDmmRVPPGp0FU88SlrgwU+BWm25Da1a2P918YlHwLJqpPB8GbIrMfEoAa1HW2qeKd2eL/jH3PYBkF96BzFF6fNfwIfTJZhWb+mQqxZ3zlq2Te/7Cki5bPmdPfgNsLAfkFdGd7T0W2XHS78pZpxq9gPn7TMZN4HbJ/jGlBuRtW7d/cXFloOGYrZrSQD/bfAyoxHwtYwxwFCg8NrN2UmWa0Kebh/nG0/t6nQRFjo9UdlNJTWCrotc3RXeJZx7HfwiWo8UF1sGXJmYOsGZzIEmvNWFRtA+g2v8G09VBbsmH9u3b4/w8HC8/fbbCAwMxJIlS5CcnIyNGzdiypQpvMeoHKdXlf2c67/bCs2V6GDtV0d9K4FMBuDcH47FaNAb+L/jwND/AVq7Fv1WL0I+lBhw+lcBcWXGvy7w3H4caTgFZkfrkfR4TfmTC4XMZmD5CCA/veRzqVeBE8tLf115q2lrteczNmJxcZOYbdIHvuEfU04KBN100XsDTRS+Bi2kqZCwDIBJr+ySDFpX/nXEJAloG6Lwa6Ab+ys+xla5KcCpcq7jiW08goS0mmAMiMtR9vZhz7QLQuJG1FV20xRkxImLXfd+cbFlQCOoO71eqsS8R3XHu/ZwobJ2k8mcXZOPL774Ih555BG0bNkS9erVQ/369eHpqfC7JTywcmr3FJSxIqg0qVccn4irTm4eAea1dLzeBDNZJpXUQtQWAI3Cv7QUcvNBW88kaBxdeLJzDnDmNx4jkr/Y/eVPbMUdL/3xkGZAqxElH4/oAjTqz2Vo5F+nVoqJe70S5S6qM99wwD2Ab0zPYGDMWkDABJOspN4QMsmQx1yQb1bKhq3SSfV7CIkbkaXwlcqeQWLiXlRJs8KqkHZNyHZLSQLC3RReCkTQzbAAH845Tm5yOdeALerSBnGxZeBqjruQuC4CyorITlBDMXE9q2dtW7smH8eOHYsVK1Zg3bp16NKlC5YsWYK+ffviueeew19//cV7jMrBc3XD2d/5xZIzkxFY+QSQedvxWDVbOR6jOvEQdPHtV1tMXLlhDNKp1Y7HMeYCayYKrnsmExVtyQ+oV/ZzD/8PGDgHiIgCwtoCD7wNjFkDaOyuDkJKYxZ0oafw7a8AgHbj+MVqPx544RBQuwO/mHJ1YrmQSQY3yQAPV4XfDHMX1Ijo3hI2SlO7k5hrIInyETeCagUzAN517hMSWy5yvcWsQsNRDs1Q5azpECE3wgCUXz5IATyzrgqJq+zbh4UEvetE7cgRzK4s+vPPPwMAdDod6tevj3r16kGr1eL777/HqFGjuA5QUdx4br1Ux68rru0EMsr5QL+3M5vGxbKapDRHFgN3znAbmuyJqj+ihk7h2UmW1bZmA594ZoM6tqvXiQJcvUp/zsXTsv188SDg6yjg7/8AGUVuKmi0QMengfEbgGe2WRrUKH1FmDNEdBYTVw0dyWs04Rfr8ELgu15ATgq/mCojAZaSLEp266iYuKEKvxkrSUDX/+Mf11vZjUyqVF6auNiuYlZpycVmXU8xgbMTxcSVC68a4iYf/QXWk5QBT4i5WaCK2Yxbx8XEDW4hJq5gdk0+fvjhh3jjjTes267nzZuHxo0bY/369UhKSuI9RuU4sYxfrOZDKz5GCQwVFLht0BPoOAmo3RloNRKYuNmymsQ7rOSxeenA1nfFjFOO2o7lH9O7pqWjuNJtmA6kcy5YXsC5+L0c6b2B/rNR4nLCIxBoPQL4axpwbZels/WBBZbGJ9kCt8GQkkSVnmj5mJi4chLIeetMymVg///4xpSjhg+IiesVAmhdxMSWC1GF6tXQsLCWgFXFvirZ+VEVPEPAhM0EKdtutKJzZ4fsfCMKmJjV8mYXZS/MuO4iaOuwGt7HBkErFKtpzUe7fgMvXryIffv2Ydy4cRg0aBAaN27Me1zKlMPpS3ZkP6DpID6x5K5ud8uKqbK6FqbdsGzNvJexjDs0l7fxG5vc6b0sF9+3DvGL6RtuWVGgZCYjzGd+s+/OTHmUfke5UNsnLA1kTiy3TPg36AXUjwY+a17y2PRY4MhC4P5Xq3yYqnWT4+dBUd1fFhNXTsLbAcHNLJPnvFzZBvSawS+eHIW3R77WC3oT5wvwdk/xjSdHXoJqOp37U8zKQDn57Rn+MQ8vBDoJiKtGV/4RdzmZcRvwqSkouPMNdD0u5twpvKb7zZRsNAL/BieMAWekemjJPbJ83HCpg7Z5+7jHZVD46kdjvrjYDQStgBbMru/XTz/9NLZt24ZXXnmFJh4r684ZcLtNdWkjsPZZPrHkzs0HGPhJ2c/XKOP9V1Z3YbV0HS7Euz5jvg2NkaorZhZTFy9mM/+YchXSDOj7HjD4C6D5w0ByTNm1SY4vU0c9TLkQ9RnoopIt8q05l5YRVPdMblgQ/2tFs1bPPabsiGqckhwjJq5cZKeU3/zMXonnKt6RQyrFJGhVrwQg5baY+nRy0cmd886cQuGdxMSVifCEbUImbSUJyNX68Q8sI43cxTQxVfTEI2ApByeCzr3aljuya/Lxq6++4j0O5Tu8CFzXFp9YDlznfwdClu57HLj/tZKPS1rLluvStHuy9MebPsRvXHJ3+wRw9je+MZni0wSgc8Vlvyj+cdXQkKMsPrXKLtSfcgX4Nlrxxbplo+VjgFbAlz61fCGv151vvCwOzdSqAenOce4xs3cv4B5TdkIE1XQKUXjNx7gj4mKrqXa4QEc9ugmJyxiQ5i1oi6hMuOsErVBs+aiYuDKRkCTmOpwxoE2Qsrs218q77OwhVE+ilncbcwFjgZjYglHbtqqSJWBlz8UN/GPKVa8ZwOAvi9dyZCbgl8eBS1tKHh81pfSC6md+BTLixI1TTg58Y1nFx1PSBSA3jW9MGdJFCVhZ7F9Op2el86kJNB9W9vOZt4F9dFOrSri4iVmlqJbmQGH3AXqOd5sLlD9pe/BqClwZ/y9mngV3uMeUnfhT/GNKGqCVsicZhNZm9AgUF1tFavqLawrj5yOoS7xcJJwTEzfpvJi4MlHgHS4kriQBrhmCVqPKhD5H0A4lpa9pEbnwRE3drokdIgSspLq2h39MOWvYu2TdvLx0YNWTQN4924Hz04GkiyVj5CQDh34QN0Y5SRGx7YSpYtI74sZv3GNmuQRwj1mtDP4SaDWi7Odv7K26sajZiRX8u4y6q+i9HXuQb/kJBdclK3Q9WUyzLaV/ZwEAXN/NPaQhuBXg7sc9rqwENxFTv67e/UCAim8kchQeFCCs18SdRIXfmMhPFxNXRMkhGYmo20BccEOOuNgy4MKUf6NUCJ43q+/lUT2vvWnysaq0HQvUaMo35q1DwI0DfGPK2Zm1gNlQ8vGCLODve7ZlJ18pu+mMWrbMiOpKnXpdTFwZkS5t4h5z/S0PmMxqaOtWBlcPYNBngNat9Oe9Qqt2PGoVd4x/zPwMVayIBgBkJ/GNp/SmHwDaeAm886/0lq85/M+d7s5xICeFe1zZ8RLQCfSRxfxjqpXARgwR3gr/elurvZCwhhBB3xtkIsejlrCUofTLe63CJ6aF0eos9RlFiD8tJq5gCv90lhG9NzB+A9BqJN+4+77kG0/OyppMBCw1MM+svfuzf52yi7wGKbsWjFXnyYCbgK0nDXvzjykzkonvRXE+0+Lb7O7Ye5nzxEV14+ppqeFamo4Tq3YsahXUiH9Ms7H456+S8e5aL2r7nIx4Jx4TU+Qf4P//Q27KqpXrSEgAOPQ997iyI+JaxZO2XHOzZ56Q1cuSBHjmK3zlY4uhQsLGX1f2tmujQVyNvOu3FF7SS9I6ewS2O7cO+LYnMKum5Z/n1gn7T61evRpt2rSBJElYt24dBg8ejMjISEyZMgUwWd53RjPD9C15aPF1Fjp8l4WeP2bjRLxlUjergCF6cTbc3s/AJ3vy8cTaXHT8LgvSfzOw+4YRnb/PhvTfDKw4bcDQX3LQ8ItMvDD5aeTl5WHq1KmIiopC586dce3aNeuYrl27hkcffRRRUVHo0aMH+vTpg7Nnz1qff/PNN1G3bl1ER0fjk08+wQMPPICGDRtiyZIlws4TQJOPVcvdDxg0F9BxrI2lpiYNjQeW//yBb+/+u2cQ0PaJksfofYAOT/Mdl1z51wEm/gOEtuEX080PCG/HL55MSY0HcIvFGPC84f9wmdVCWk4pK3fVpt8HlpXghU1PvEKAh75QxaS2LLR7UsiEhmoaKh34hm+8o0sU36wnQ/ISEpcByq+/Fyqo4YzAVWey0Xsm3y/MOhV0V69KQkoD/fu5IGqlkUxsTAoRsoLPM/0S/6AyEpJ+Ulj/j7RchV/f68R0pxe2YPTcOktfiLijli3xcUeBX8YIm4B85JFHMG/ePADA2bNn8ccff2DPnj347rvvsO2KJd++vS0fmy4bsX+iJw497YVRLVzQZ2kO0vMYvFwlbB/niVAvCctOG/DlADccfNoLD9TTomWwFisesXym7Y01Ye0IDxx62guLNxzFk08+iRkzZmDfvn2oW7cu/vvf/1rHdPr0aUiShL1792LHjh0YO3Yshg4dCqPRCAB4//33MW7cOBw5cgRt27bF1q1bMXfuXDz33HPIzBTT3Rygyceq5+oJ9H7LtteUV7cmXMzSe1kKbmpZzVeWjH8nYjPiLM0rbpeyHLnFI5ZJObXQ6YFsjneAu7/ML5ac9XkPTO/NJdQf5ihsMbeHq1aDzvUV/kW5MlzcLPUfp10CXjgCvHSm7O70hD93fyCkOfewuRE9uMeUnRv7gQTOZTsKskrWLFaYiI6DhXxRNkMDaKrhagxb9H1fTNz248XElROPACCgPr94vEsnqV2LR4SElQDAK1hIbLn484yYFd8mpW+tdeVzXX8vxgDfhp2FxJYNAdeNAGCGoBy+69NSHmTA7rli/ntFjBo1CgAQHByMZs2a4fgdM3INDJ/tL8DzHVzh5WqZAZ9wnwvMDPjuaPEVuQ83doGfm+WYLWM94et2d8b8seaWOSF/dwnN6oXC29sbNWrUAAB0794dx47dLa3Uo0cPLFiwANK/M+6PPfYYLl68iMuXi3cuDw4OxgMPPAAAiI6ORnZ2NmJiYridj3vR5KMzdH4OqNW28sebjaU/rtEBXabwGVN14V2r7OdCWwKn1wDzWgEb3wBuHSx5zNHFqqhZCAAwGYAlgy2dhHnwCFLPqtE7ZyDlO37X55o5GO8axgIA/q93JGp408oJK3c/SwkEbRnlEYg4bv5cwyXCH/raNuS06mrnJ/xjShrFN/9wc3VBrlRGrVcHaGDmHlN2Qlsh3zWIf9yUyxUfU93FHgKSOa7kun0cOPs7v3hqF9FJXGwXZa98bJx9SMgKvmN5YfyDyknNlkJW2kkS4HZQ2WXQWJ2uQuKaRa1STiyjhECC+NICYWF3f4+8vb2RUaBFTIoZeUagYcDdqTetRkJdPwmnEopfy4T7lP3LXdPr7us93FxRs+bdpoWenp5IT7/bjEqn0+Hzzz9H9+7d0aNHD/Tr1w8AEB9fvHP5veMFgIwMcTfFafLRWRo/6Njr9T7AyGWAXwSf8VQXp1eX/Vy97sDvU0pvSlOImYGYLfzHJUfn1wMpV/jFy0kCrmzjF0/OTiyv1GEJzAdrjF3KfL6uJgEvRSZi+dOd8XxPldQaJfJ36yjXcDWQCk15n81KEX+Kf0xmBjLjKz6umnPRCqhdWFbzKiXZ/xX0BQJqBSu9UQ8AHBZQ13LdS+o4d1VB7y1kIsiy7VrZnw299WImUOLcGwuJKxuMCakzCgBeJmXvYPhd11fIR5/JKGi1bY0mpT8eXMbjHGm1d1dzSpIEVt68RGmvL+dyqdhz7oHF/lsAwIr8T5o2bRqWLl2KNWvWYMeOHdi+fXuJY0obb2nH8ESTj1UtNw3YPQ84vMixON41gUb9eIyoekm7UfZzSTGAIbviGCLb3stJWXd9HLFV0BYwuTHkVOqwS+ba8JbycdDUuMykPKZgJaIa0HZrIiOmcpp32evIYv4x5ca/Hv+YGhfFbxEEYJlk5a2s5lUKkrPvB+4xDZIrUKfsm2aKcWUH/5g5yUD8Sf5x1ejKNjENZyApvhxDpIZ/vX/GgGbNW3KPKysajbAagz5tHhIUWR5OXbgkZLWtKwTVH+7+ClDiE0b69/Gq1zBAAzcdEJNy91rIZGa4lsbQMtjO6TiX8m+y7Ny5Ez179kRwsOUas6BAXMMlW9DkY1XKSQG+fwDY8g6QcdOxWKnXuAyp2ilrCzpQuVV5bn5Akwoa1ygFz1WPhRLPAtkq6NjcqH+FhxQwHbpqz6Cv9gg6ai+UnZQTzpbxBCHOYfQRsGI+QwXNz7q+yD+m2VD+TTUlMBZAa+b7BSNP42Fp4KdwuTlZ3GMeMdbHsVv848pKdjK/kjP3Kq8OO6k0Q4agjtRuvmLiyojOyP/3V5KAjsniugHLwmUxE94AAM8QUZFloVVuKaXMeBD1edp0EDDiJ6BWO8DF0/LPkT8DTRzceWqrf+ct3F0kvNTZFV8fLkB2gWUKfNFxAzQS8HRbe5r5VPxObtasGfbt24ecHMuCmjVr1tjx3+GPJh+r0oEFQDKnAp6mfMtkptrUjy77uZQr5a9qdPUERi23/FMNRNXROLpETFw5ue8JIKTsLqPpZg+4SuVMhBflEQBwqB9JCBeGPKRkCJh4CG7GP6bcNHkQ8AnnH/fWEf4x5eTEcvBeb6KDwhsj/OsYGnGPWV+6jU1nBU38yIWN29xs4k47GXjI1grahaSGXfFGQe/vm4ImmOTixj5xsRX+3bJusJ+QuFKEwEY9TQcBT/8DzIiz/FPgxOOGDRswdepUAJamLSkpKXjqqadw/ORpLD5uwCd78vFuTz361Neh0/fZ6PBdFn46acCmJzysDWWiF2cjPoth9u4CTPwj1xr7eLwJI1dbfh65OhdnE00YuzYHx48dweLFizF37lwsW7YMs2fPRnx8PKKjowEAc+fORd26ddGyZUsMGTIEFy5cAABMnToVmzdvxuzZs7F48WIcP34cY8eORXp6uvW1hceIIDGRm7plKiMjA76+vkhPT4ePTxVuwV3Yn98Hn6QB/nMdcFPJFuJCiReAr6MAVsoXD78IoOebwNpnSn9t2H3AM9uFDk9WYg8BP/TmH7f1KGDoAv5x5ebyNmDpw3xiufsDj69WV3d6UiFn5KI7uxYhZOtU/oFHrQQaq6AUyJ2zwIKufLcRP/knUO9+fvHk5o8XgaM/cg2Zz3SQ3kqAq07Z2yufmr8OCxMf57rdLZvp8V333Zjam//Epqx8Gw3EHavwMJs99CXQbiz/uE5W1fnIfGUXNEsG8Q+s0QFvJ/OPKyOmjyOhzUngHpe1GA7pkYXc48rGpa3Az8PExH7+EFBDuZ+pN84fQ8SKaP6B+30IRD3HP66czBS0GvvRH4HmD4uJLRCtfKxKHhzvljYaoL6JRwCo0RjoN6v05zo/Z9lSrS1j+bKnCupqFVW7Q9nnwhFByk2uxdS7n98qp9xUYO0kKlRPnM50U8CXcQC4rJJGXiHNgAlbAYnTpFdgJFC3O59YclW7I/eQOpjw+Z+HuMeVmwn9OiGOBXCNmQEPDG6t8K62ADBonphroLpiur6qjUbU/lezUfHlgQwh/GszmhnAOkziHldWBDYbMV3ZLiy2HPwV7yXkK4zBIHCVutJV0/ccTT5WpXZPlf5408FArXtWRDV7GJhyFHjid6D5PXdpQlqqotZRmTpPBgbOAbxCLT97BAIPvG15XO8NtHik9Ne1G1dlQ5QFswkw8S4uK6nnPGq0wGNLwNz8+MRLjgHunOYTixA7+YcLunlwfa+YuHKUdL701ff2aNwfQqq4ywr/S02txBB+4lOhHRnloFtkDdzW1eIa8w/pAdSv4cU1piyFtQE6lLETxl5u/kBgA74xVYr51RYymcEAMZPOMuLW5x3uu8sTXcKgqdOJc1SZ8a4pLPT1LGXXgm2etV/IpUpq/DX+QeXEkFvxMfZKENP1XjRl/6bITWRvYMDHwLZZQF46AMlSf2DIV5ZVjNf3AalXgZqtgZDmltcENgAaRAPRr1vqQvmGA3W7qeDLSgU6Pm2ZzM1JttTU07rcfW7gJ5Zuxef+sGyN0/sCPV5TT6OZQhqtpQ4bz4Yn3V62nG+VyAtpg/+4f4DP83htCVD57y1xOvd2o5G7/SO4mzL4BvZSdrH1YrJs3O7m4mHJSaUpr06xUlzfIyRsB/NpGEwMrjplf642DgsEHOxRWNSWgqZQ+Pqmu5Iv8ovlHgT8n6CV4yq09ooOHVkAwiX+9evzdZ7Qc48qIwVZ3K8mg013LLtzlPz9srympQ4wMC3S6g4QElsuOnuLWU2sNXC+FlWTOgLrZQpEk49VrdMkSzOLxHOWlXu+Re5o14my/ClNjUaKriVhF60O8C7lC6/eC3jsRyAjDsi4bVlmr/BCwGWKng6sfBKOVuBmDDgT/iha9H6bz7iqiVVHbuL323541KU5umnPOBZM0gI1xG35IKRSPALg/tDHwG/P8o0bWnaDJsUJquD3WOdu+dA05Vm2VEe/Dvz8KGDIvudAybLLQenC7gOO/8Q9bIHkAled8jfweAfW5Dr5+JJ2DYBp/ALK1eVtwKVNjsfxCAJGrwTC2zkei1jdSMlGf0lA8zMGpOcYEOyj4Hqwem/uISW9l7InHgEh21QZAxZphmNivVDuseXEJStOSFx9QwXXuwYAF3fAzfffRWc8SUD0G5xjVg3lX7XJkauHpeW7L9+tNOQePmGWi0W1TjwCQLMhwOhfKn14Pkq/WJMkwCePf3Frudvyb0fQKYYp2GxqCzOzXJjdZIE4ZrZx6xUzAdd28R4iIbbzDOIf88YB/jHl6PSvwMoxZT9fszUwcYuls2LzYUDadeCf94B2TwI6t7vHSRqg7/vquKnY7knkSO7cw5r0ftxjylKbx7mGa6S9zTWebJ1azScOM9HEowAPBcXBQ+JdGgjIkdwR5KXodY9AzVZAKOe6j23KyWtKYeZfX1CSgP4hKdAIK2IqE0b+24dzmQuu11T2ilEAQJ/3+MfUuQHGPP5xqwBNPhKidI36VaqhQS5zxRlT3TKfD3G9d9WOcpnNDG/+dgo7LiYCAFLhg6cN09Ap/ys8kP8Juud/jqEF7+HZ/P+zrWaRiQorExkQsLohP+UG95iyc/sEsHpC2V9gBs8HJu203OlePAA48yuQdgO4sQ/Y/zXQY7qlCcaAT4D/OwF0eaFKh+80Whf82nElLpn51ttyC6rLNZ5cXfNui3cNTyCH8ZlQ8fTx4xJH9njVvKa8LUSDAP4ThIwBp9u8rfyJIAB4bAly/Rtbf2TMMpljtnGjk5kBmfUfBB54i/MA5cfcsJ91EQFP3glHuceUm1jPptxjLjT2h5u7B/e4snPfE4DGpeLjbGHMBc7+zjdmFaHJR0LUoHvFW6zcpQK4SWVfZOsbKLwjaxE/H7yBn/aXnExJhB8us1pg/350bmCd8J2pcrVEszVeQD31nEMiY351uYe8oFNBSYHDCwGYy36+4N8bNPu+Kn2Lzf6vgPvGAJ2eAfwihAxRrnSBddGn4FNkc5pAA4BtEv8u2nJ0NSkbC00D0Cn/KzxZ8B+sNzn293ZvO5LTyGSuyYOlP6735ROHOCa8A9K1fGuIJ9doh04P86rRLXMB9SE9tw9DCt7D2IL/oEX+92ia/yNGFLwFAyv7630uc8Gvxq54s2AcJhS8gp4FczEsaRJMWrcyX6MUGp0OC4wPcm90VMAUvMX/X18l8l39nco88ZVpKPINnJr3yZlGY2mAxlteGv+YVYAmHwlRgzpRgKbi7n/NNDew3tSh5BOeIUAnzjXiZGzNkcoV2NLrJHxgHINxBa/iH1MbnDDXw1fGwVhqfKDYcflMh49cnrOsiCLE2YIaApF9uYXLZO74J/hJbvFkK/NO+c+HNLP88/aJ0p/PTrTUIlah8/GZAIDfTV3sev29XxZXm+7HVlNbR4dVLUSGWDpTZ8IDO8yt8bxhKp4ueBm7TM2Qy+6upqjMF2pzrQ5AlEpW3DYdDLR8rPhjLh7AIwst50BbOBFezkqogPpA75miRqhuWhck9PoUuYxfZ+qApGMwpnIskCpzn2y8gBPmBthpbo1sWFaQHWJN0afgE6wzdiyxys/INHje8H942fg8fjL3xVZzO1xnobiUkIVt59VRWmmueTSeNUzFBXMtJDIf3GF+Dsc8W0P5DU1d3D2Rx/is3kswe6NH/jzkwA3HY9O4xJS96Nf5x2zYh3/MKkANZwhRA50eCKgLJJXf+TGPueBl4xR0GmJE0PFvgPwMoEEvy/ZAb2UXUy4qO7/ijniuWg1e698I7607j+3m+7DdfF+x51ebeqCX9jiymR5/mLogLNTGGpGEiDT8B+Dv/wCn1wCmfFi+gFtmL0yeIUCzIdAe/sFS76wMacwTf5s64nvTQMzs2LVqxu1MEZ2Bi3+X/lztzkC9fwunB9QDbh0ueYyrF+BZQ9z4ZKxOoOWL8fvGJ9BbexTBUuWLr18zB2OGYQKaaG7AV8rGDlNrHGGNMaV+oKjhykpBKStDNpvbY7O5PQCgnnQbgUhHd81J/J/Lb8WO22K6D1vNbVFLSsJ5TSTmT3gD0Ch/lQ4Ay2qT4d8B7Z8CLv8DuPsDLR8FvIKByN5At5cs10R+dYCLG4Cdc4DMOEszj5ptLFvlmg0BXJS/IsxZIrsOw2pjBC5tXghPZKMlrqCn7qTd8TQw46dNuzF2hPJX9+YWmPDT/uulPneN1cQLxqmoZ7qNp7Xr0EJzDTdYMBYaB+AoK73O8IU7mejdrJQmngrj4+6CjTkdsbHAsoK8nnQb/7i+UqlqNKU1A48x10TEsHcEjFReht4XjtxjerjB8TIUbxknIAOWfgx5alj5CAANH7DUVeXVfK/zc5aGutWQLCYf165diw8++ABubm7QaDT4+uuv0bx581KPXblyJb7//nuYTCZkZGSgbt26+OSTT1C3bt2qHTQh1U1mfIWH/GmKQqOwQFyv0QxBE4dXwaDkqX1df1xKKL8L46Ptw7H/SmqZz59gDXHC2ND689Mt+NY7I8Qhbj7A0P8hv/8nmL/pNNYeuYG2xhPIght25bWC52F3vH7/SIwIugrovWFMjUXW3zPhh0yYmITN5vZ41TAJmfBAi1q+6B6pgkm19k8Bx38ueROnfjQw4ue7P3eeDJz5rWRtyA4TLA3nVOjhNrXw8YbzyDG44aH8WfhL/zoCpcxyX2NiEsYW/Ad7WCsAwB7T3QYL4X7uGNelrsghy8a7686W+/xVVhNXUROHTU3wj7kthmp3wxN5+Md8HzaaO8D87yYnF62EX4/fxrC24VUxbPmo08Xy516eQXebb3WYALR7CshNtXQm1cri65HiHbmegre2JCLXaNnaroEZ09gKTNT9DVfJ9kmJPOaCBWd0eMxggpuLsifZf9h9BfnGcsqAwPLZ8Ibx6UrF++PELTzfs2HFB1ZzmXnFFxdcZTWRDg/4Iafc1xmYFhMNr2CSdh3aaC4jC+5YZuyJG62nYm6o8m+EHYtNQwM4PlGYy1yxz9zM+rNe4b+nxQyZD9TtCvwxBTDfs8jF3d9y/z+vyPfKoMZA0oXix4U0tzSwaVh8h1114vTsevDgQTz55JM4cuQIIiMjsWTJEvTr1w/nzp2Dt7d3iePHjBmDP//8E/369YPZbMa4cePQv39/nDhxAnq9wrubEWIvY4FlFWM5dpua413jWGTeSsfw/+3D093rYcaDzcp9jVJ5u5W9tcBFK2F423DcSsvF9guJlYoX4OmK0Z3q8BoeIdw8s/wMdlxMBuCJm7j7BT0t14D/bIyH5+guGNQoDNcSMjEwLwiR0i0kMl8kwN96bFJmvhNG7gRuvsD4jcDB74CrOwHPQKDdOMvq8KJqtQNGrwC2/BeIPwl4BAIdnwHuf9Upw5aDJfuuI9dg+aJ8BwF4xTAZ37vMgU4q/8vzQVZ6DprQvR4Cld7RFpbmZ/uupFT6+HtvehVlMDG8svIEQn3c0KWhgI731Z1GY/mdJlVm1vpz1s8FADBDg49No/GxaTQGa/biYe0uhCIFafBCbSkBtTXJ5cZbZOqPOKM7UnMKUNNXuWVuDlxJxpxN5e9kstWF+CwcvJqCjvX41uGUG0MpHXnmGh/Df3WLy139OM84HDvMbbDD3KbY4xM9+JUNkLOjN1IRbm6OftpSdnVUkpkB7xmfQAa8rI8ZKphAVxRJAtqMBoKbAhvfAK7vBbSuljJIw76z7DQ68xuQnQDUvR+o3QFIuQoc+RGAGeg4CfCt5ey/hcOcPvk4e/ZsPPjgg4iMjARgmVx87bXXsHjxYkyZMqXE8UOGDEG/fv0AABqNBi+++CI6dOiAo0ePIioqqkrHTki1oXMFQloCd06VeMqk98XDWdNxylR8cuy7XVcxpE0ttKhlY3F2BSgoJxkaTAy/HIpFZetVtw73xUePtIK7q4ru7pFq4fC1FOy4mFTuMYv3XMOgVmEI8tLDILngDKtb4pjEzHzkFpjU8R73CACi/2P5U56GvS1/DHmWshcCOoxXF4wxLNl3rdhj281t8IThdUzSrkNbzUX4SLklXrfD3BqGMi5TT96s/Lbt6uz4zbQKVzfZggH4cd81mnwkTpdbYMLRG2llPv+HuQv+MN+9IeaJXEzW/YEBmoMwQYMz5joIktJRT7qNZPhhhaknlpseQIiPHsHeyt4q//2uq0LiXkrIVPTkY3x6yTwDAEtMfWFgWrzkshoByEQBdJDA4C4ZkM30WGrqi69Ng0t9bXJWnsghy0YtP3d8anwUnTVn4SuVvkr03m3phT/nMR2OmSMx0/gkLrDizfZa1fYTOGqZCrsPeOpvwJhv6YKtKdKCpe0TxY8NqAf0mVmlwxPN6ZOPW7duxdtvv239WaPRoF27dtiyZUupk4+rVq0q9rObmyXB5OerZOUFIfbqNQNY8XixGm4GyQVrm32BU/tKX+m37uRtVU4+dm0YhMV7r5X5fGUmHvs3D0HbOgF4onMddUzKkGrn8LWyywYUup1uubD283CFr7sL0nJK1vsxMYb0XAO9z0tD9eJQYDIjObugxOP7zM2xz9wcvsjCCtf30VRzw/rcHeaH941jyozp58Gn8L3cGU2c27ICiE9Xx5dlIm+uOg289DpkVaLGNgBkwx1zjCMwByPKPW5817rQapR9s+dmavlbhO3VKKTkjkMl8XUve5XicvMDWJ5/dyurHgWoJSUhngUgB2Xn8bXHb2NImwRENwnmOla5ebhNGL7dWRsD8z/EE7rNaCJdh6+Ug3pSPLyRgxhWC58ZhqOpNhatpMuIZcFYbeqOLHjgFgtCPko/9+F+yl2hXCGd8ndvlMapk4/JycnIyMhASEjxArehoaE4dOhQpWLs27cPYWFh6NpVBcXuCXFE4wFY23oBPI8sQB3pDs6wuvjGOAgXyph4BCxbO9TogSbB6N00GFvO2d/9b8OZO9hw5g5+2H0FP0/sjIbBXhW/iJCqVInvZ+3q3N1ePahlTfx04EaJY8L93RHsrc6LKFIxvU6LFrV8cPpW6aU/0uGFwQXvY4DmAFpqruI6C8Fvpq7IQun1MbUaCSM61BY5ZNm4L8KPe8yIQHXWHSXyotVIeLR9OBbtucY1bkxCNtd4chTVIBDn4suvmWsrN50GzWr6cI0pN+6uWvh5lH4T9V75cMUVFlapuK+vPYV9r1ffGnyVUVgr8xZqYLZxdJnHbTB2sinuoWupeLAV1cRXE03Fh4iTk2O5c3NvrUa9Xm99rjz5+fn45JNPMH/+fLi4lD2Bkp+fj4yMjGJ/CFGbmIRMvLzfE88YXkG/go/xsuG5Esvf73UuPgOM8V95IXcajYQFY9oh1MfxVUt3MvLx5m8lt7sT9ZFbLupbQWdLbzcdpvS6Wz9ucs+GCLqnzp5GAl7r3wQaha80IY55tV+Tcue6DdDhD3NXzDKOwU+mPmVOPOo0EmY82BRNQpX9JbmQTiPBk/eKYvWldFIKOeSj//RvAh83vutgKluLuzp75v4G8OZ83vKMZqw+cpNrTDn6fGQb7jETMpS/+zJI0A3mAJXsYiB3OXXy0cPDcnF575bp/Px863PlmTRpEkaMGIGhQ4eWe9yHH34IX19f65/atdVxx5wQADCazNh0Jh7v/HHG5u8cBUYzSqnNrAo6rQZPd6/HJdb+KylILWXbIVEXueWi+jW80LGuf6nP9WsWgj9e6IbIItuwavm54/cXuuKprnXRprYfBrYMxfKnO2Nw68qtDiDq1aNRDbQKd7yEh9HMMP+fGMSmiNl2KDd/nIhDdoHjHUaLOnlLHfUySfnkkI/cXLR4IopvMz5XnfJvhIX6umHzSz3Qv3n5NxBtdfh6xaVYqjufchpK2svNxanTKVWiQQ0vRATw3yId7EO7ZtTGqb8tgYGB8PX1xZ07d4o9Hh8fj/r165f72unTp8PDwwPvvfdehf+d119/Henp6dY/sbGxDo2bkOriWlI2en26A88sPYI9MbZvoe7ZOFjxtXPKMyaqDjw4rDqRJECj4oYTxEKOuWjBE+3xQJFaRaE+bpg/+j58M7Y96gV5Fjv2cmIWVhy0bLt+qU8jfDW6LTrVp+6wpHLiONUaTMkuwDc7L3OJJXe/HbvFPWZlthwS5ZNLPhrYgu+Wy4nd+Nw0lrtQXzfMGtqSay8z5U+hAUv3Xeces5ZK6hZ2i+R/vbfzovJXKpPinN5wplevXjhy5Ij1Z8YYjh49ihkzZpT5mtmzZyM2NhZLly4FAOvr27VrV+rxer2+xNZuQtTgP2tO4oYDK0Sy8g2ISchSZb1Co8mMHRcS0a9ZCH4/EefQCtDukTXgS1sLVE+OuSjA0xU/jOuA+PQ8pOUWoGENL+i0Jb+CrD12E9NWnYTp31+ERXuuYUibMMwb0QYSTayTCqTlFCAxk9/WtOOxadxiyVmBiV+n60JRDZTbzZZUnlzy0W/H+U6we+id/tW2yuy4mAielZE8VXDuYgU06/HivAVertJyKtccyhYJHK8LSPXg9Jsc06dPx/r16xETEwMA+Pnnn6HVavHkk08CALp161ZsInLBggX46aefMGXKFBw9ehSHDx/Gn3/+iVOnqKYaIUUlZObhwNUUm17j7lJ8ld+Bq6kY+e1+pKtspURCZh76z9uJZ5YewdrjlonHmr5uGN0posQ5qkj9IE98MLSFoJESwkeorxuahPqUOvGYmWfAW7+dsU48Fvr9eJwq6msRx6VwLjsR4q2OLuK9m/LdVgkAk3s04B6TEHvZep1akd2XkrjGkzNXHd+v8WYV1HgXcau0Te3Sy9cojoD3h97G71Sk+nP6VH3Hjh2xePFijBw5Eu7u7tBoNNi4cSO8vS11pnJycqw1ITMzM/H888/DbDYjKiqqWJxFixZV+dgJkTNzOQsm3HQa5BmLH+Ct1yEzv+RdraSsfKw5ehPjVbKVBQBm/HoKMYnFOybeTs+Dt16HyuxCb1PbD8Pb1kJNX3f0bKLuretEfkxmhl8OxeLPE3EwMYb+zUMxpnOdEl9kGGOYu/kivt15BfnG0j9Qtpy7g55Ftm0TUprfj8dxjeevkpXkoztF4KMN55Fn4LcC8n87LmPBmPbc4hFirzyDCRc4d232cVfHZwMA9GoSDJ1GgpFTcfYagpqKyMnVZP4rHydwqg8vd8dj+dcL5rkjglQPTp98BIChQ4eW2TTm6NGj1n/39vaGycS38DYhShXq64bWtf1wopTtaa8PbAp/T1esOHgDaTkGdI8MQr0anpi+pvQVxNeSs0t9XIkYY9hyLqHU51YfvYn+LWpizdHyOwI2q+mNJ6LqChgdIY57ZeVx/FZkMujg1RTsuJiIxU91KLaF+q3fT+On/TfKjcWjJipRvuucc8g/KllxazAxFHCceASATWfuID3HQKVAiNPtiUkq88aWvcZ05tvARs48XHV4Y2ATvLvuHJd4bSOUvYKvwGjmPtnVspavKmo+pmQXcKvbXBRdQ6qP07ddE0LEmT2sJYK8XIs91qtJMEZ3isDg1mFY9nRn/PV/3fH6wKboWDegzMLVzcN8qmC08nA1KbvMruC5BSb8Z0DjCmtgLjsYi0Ff7IJZra3CiWydjcsoNvFYaMfFROy9fLcpVUauocKJR0kCHr6vFvcxEuVpxjmHpGQX4LQKujafv50B3lUfzQy4qqIbikS+krL4TgRF+LujaU31XK8CwPhu9TGgeajDcSQo/1rfVadB/Xsa6TkqIlD5E48AsP4k390LhdQwcUuKo8lHUu1cTcrGM0sOo9GMv9Hm3U14b91Z5BbQitjSNK3pgx2v9sTHw1vhxV4NMaBFKPbGJCFyxt+oN309Rn27DzEJli0v9Wt4YUjrsBIx6tfwxODW6plgKG97Ww1vPYK93fD3/3XHV6PbYkSHcDQK8Sq1hszpuAxM/eW4sHESYo8j18uur3XkeioAyyq1Xp9uLzeOTgM82LImPF1lsYGCyNyI9hHcv2TkGZSf98/dzhASl1abEDm4mZLLNV5sai7uZPBfnSVn525nINvgeCMQBuCMoM8bObl3QYajtp69wzWeXGkENRb869RtIXGJfNHkI6lW0nIKMOKbfdh09g4KTGak5Rjww+6rmLL8mLOHJlueeh0e61AblxOz8ffpeGutRwZg35UUPLpgH5L/vfs859HW+E//JogM9kItP3c8GVUHKydFwV1FX1SahHojzLf0Zgbju1rqurhoNXiwVU18NLw1Vk6KKnOl5Kaz8YJGSYh9Qn3LngAK9bG872etP4ekrPIbhBjNwLqTt9Hz0+2Ys/EC1zES5fH1cMHKSZ3RrKY3l3g1vPVoXduPSyw5u5nKd3Km0LbzpZcWIaQqlVZn3BEMwMpDsVxjyll8eh5GfrsfOy/yabJTs4xrX6VIzsrH0RtpXGPmGRmMJt7r0+XnsfbhQuJeSsgSEpfIF00+kmpl9ZGbSCilXseWc3esK/hIcXkGEzafjcf6Mu4upeYYsPKwpYahTqvB5OgG2PxyD+yZ3gv/HdICQV7KL0BdlEYj4aNHWsHNpfjHY49GNTCsbS3M3XQBUR9uRZv/bsLIb/fhTFzZd4oLONcyIsRRPRvXQJ1AjxKPB3np8WCrmjCbGf6xYWKCMWD+thjsv5Jc8cFE1b7ffRVnb9uep7X3rLhw1WrwwdCWcCmlM7vSiOo+G5cmZlKTEFt0bRjEPaaIunRytezAdaTnGrjECvbWo0mosrddJ2Tmc2vOU9RJFZQAubcJJy9MBR3WSXG0X4pUK1eSyv7wu5yYjYbBfFZVKMVP+69jzqYLSMsp/+LkcmLJO085BUbsvJgIxoD7G9WAp149HxfdI2tg27Ro/Hr0FpKy8tGlQRCiG9XAI9/sxYki3d72X0nBgasH4KIBStutXTug5CQPIc6k02qwdHwnTP/1pLXGY9sIP3w4rJX1d9xVp4HRxlIW607GoXP9QO7jJcqQkJmHpfuu2fVaE2Po0agGGtTwgp+HC4a1rYVwf3V8tjaooL6wvbRaMVvoCLFFqI8ekmS5icVL41AxvzNydLmc70S2SsnOR1a+EV4KvtavF+QJb70Wmfl8S3ZsPhOv+GY9+y6LucFcJ5BvDU4if8r9hCGK1CS09MlFSQIah9DEY1G7LiXizd9OV+rYe8/r1nN3MPWX48jMs2yJ8dLrMOfR1ujfwvGi1tVFTV93PN+zofXnDadvF5t4LMQYYCjjwvnDoS1FDY8Qu0UEemDZ052RlJUPs5kh2Kf4VqshbcKw/KBtW9eotxIpz4X4TDiyEHz3pUQ0DvWGr7uLquqMDm4VhulrTnGPm5HLd7srIfZYvPc614lHALienMM3oIw1CfHGevCpmWc0W0pbKXny0c1FC42kAcB38nHXpST8ZwDXkLITyLlWZqFnejQQEpfIl/L3rBBFGdY2HLUDStYsG9w6DHU5dzCr7pYdKL9TbaFQHz0ebVfb+nNaTgFeWHbMOvEIAFn5RvzfimPcOxNWB4wx3ErLxe5Ltt31axLqjQ71AgSNihDHBXnpS0w8AsCw+8IR4l283ELHugH4+8VuZZZhGNiippAxEmWICPCAI/XqTQz4ducVvPPHGdz/8TYcvlZ24yQlOR6bJiSut5tyJxhI9XEjhf9Wzr9Pq6eBxbB2lWsG6e5S8dd9D1ctwsqpCa0EKdn5SM/js029qHPxmTAr/A5sPw4d1e/lopW4dGon1QtNPpJqxUuvw8pJURjRvjZqeOtRN9ADr/RphDmPtnb20GQnuYKGEQDg7+GC5U9HwdfDxfrYxjPxyC2li2i+0Yy/VdaVbOOZeETP2Y6us//BsgPXbXrt+fhMRH24FT/uvSZmcIQIsOH0bYz6bj/uFKmtWzfQA9MHNsGdzHzMfKhZiU6547rURbdI/rW7iHLUCfRE32YhXGJl5hvx2pqTXGLJnoDd0ZJkucFAiLM1D/PlHjM+PR8GFTQAASrXLTzA0xW5pdUFuseAFqHQaJRdjiGLc4OjQiYzU3zjFDcXLVw5l+swMyAlp+LvqkRZ6NYnqXZq+rrjo0daOXsYste5fgAOVrA6JDXHgGOxqahX4+6q0fxy9sblVeICRilO3UzH8z8ftRantudvnpRVgHf+OINAL1cMahXGd4CEcGYyM7y37lyJguzXknMw7Ou9AACdRkJEgAe0Ggnh/u6Y8kBDtI2gFb4Vyc43YvnBG9h1KQl+Hi4Y0b42ughotiBn80bchw/+OoflB687tAUbAK4kZuPSnUxEKrzcSse6AdBpJG5NEiQA7w5pgZbh/Cd9CLHVhG71sJjzDVqtZMlTauDj7lLhMdpKnAuNBEzqUZ/HkGSttr8HPFy1yLGxpnVlqGE1eZifG64l82tWZjIz/HE8DuO71eMWk8gfrXwkRKHGda2HWn4Vb6HYHZNU7OeejYNR2rWKJAG9Oa1cqQ6W7r/G7Qvf4j3XuMQhRKSrSdm4VUEXXKOZ4UpSNi4lZGHbhUT894+zyCtlpTS5K7fAhFHf7cf7689hx8VE/H48DqO/P4DFe646e2hVyt1Vi5Eda3PrcKuGbtc6raZSkweV5eWmQ4/IGtziEeKIP0/GcY8Z5K2H5EiNh2qkaU0fhPmWLJ1SVGJmxeWSzAwY+8NBYSsD5UKSJIzqWLviA22k12kQVonvW9Xd453qcI+ZRisfVUf5V26EqFSApyuah/lUfJxH8SLCtQM88GCrkvXbXurdCPVUVFfzViq/u3u30/O4xSJEFF93l1JvPJTnxM10rD12S8yAFGLN0Zs4ebNks6pPN11EtsK/7BVKzzVg9Hf78eAXu7HjYlLFL6hAoKerauo88+wGmplnxPxtl7jFI8ReqdkF+HwL//ci7wY2clfLn8+kV3xGPn5TQS6/GM9/e3TNCiaAlcLfk3/TmW50M0x1aPKREAU7cj213Oe1GgmPti9+F3DruTv480TJ2o731nlTujxH9wUW0baOP7dYhPCSkJGHeVsu4sXlx/DVthhoNRIeaGr76ub9V2xrxqQ2ZZ2fzHwjTt8qOSmpRO+vO4u9l/m9T0JV8mUPAJ6I4rvaZP8VdTTrIfJ2PDat3DI/9vJUcLfm0vDceXA1iX8DIDkpMJpxqILvRfYI8Kx4+7sS/HIolms8rQR0pMacqkOTj4QoWFmdaS3PueKzEW3QOLR4zazvdl0p9fjvd6lni6DZzHAhns+kgLdehym9GnKJRQgvF+Iz0W/eTszbcgl/nIjDJxsvYMDnO/F/vSIR3fjunejKrIQs73OGlH9+AlVw7gwmM/44wXd7ZWUaqinF4x0j4OHC7+Yf554BhNhFVN4Yel/lOkArwbWkbJy7ncEtXtOaFe+Wqs5Ox6ULKRNz6Y7yu10DQGxKDtd4JgZcVnijHlKSum4PEaIyYzpH4K3fz5R4fFTH2ph0f4NSCyTHltE9Lz4jD/lGE/Q65a+APHUrDVn59t2RH9OpNjLyTLiekoPmYT6Y2K0e6tfw4jxCQhwz++9zSM0xFHvsTkY+fthzFYuf6ogbyTlIzMpDVp4Rk5YeKXMlsARgZAf+NZSUZGTH2vhp//USNWQ71w9Aw2DlfzaYzAwFnLvPGs3qaH6WbzRh3MKDyOH4hZnnqn5C7NUy3Bc+bjpk5PErPeGl1+LZHg24xZOz1OwCPPrNPoebdxWqE+iBQaWUXFIST1cx0x6Z+WbEZ+Qpvu6jSUBNgw1nbuP54EjucYl80cpHQhRsTOc6eKFnQ+uWab1Og4EtQ3H0eiqi52xH+1lbMH7xISRk3K1J2KJW6Xc+G4V4qWLiEQDWHit7lY6LVoKrruyPzp8OxMLNRYPfnuuCD4a2pIlHIku7LpVed++3Y7cw6tv9iEnMRLs6AejROBibX74fvu6lX7SP6FBb8R2HHdUk1AdfjroPoT6WrcKSBNzfqAbmj27r5JFVDTcXLbo0COQas1eTYK7x5OqXQ7HYx3mbtEp6cRCZM5sZ12ZKAJCVb0JmnqHiAxVg4Z6rlWomUxl1AjywZnIXuHFcYS1HjUO94e8haAJSBe87o5H/5KOHoAlhIl80+UiIgkmShGn9GuPgjN7468XuWP9iN+y4kIgLdyzL3BkD/jmfgKeXHLa+5vmeDaG/Z3JNkoCX+zSq0rE7U1w5HX9f69cYBRXcal55+Cb3bYaE8OTrXnqNIgZg35VkjF98GGuO3AQA1A7wxFej28HNpfjnQqd6/pg5uLnooVYr2flGnI/PQHpu8S8iA1rWxJ7pvbBhanfsnd4LS8Z3VNV29bcGNUMAp2L1AZ6ueLlPYy6x5G7TmTvcY0bV5zsRTIg9EjLzS6y+5+G5n49yjylHf50qWZvdXjqdBHeFTzwWurfJJi9pAt7LcqMXUPt/QAtlr7YlJdHkIyEq4KXXoVmYDzacjkd2QcntWydupuPYDUsR5lbhflj9bBcMbBmKOoEe6B4ZhCXjO6K/ihJE69p+pT7u5qJBUiVrjf1Jk49ExkZUYqv0Z1suWusYdYsMwj+vROOVPo0wNqoOvn68LX6e2FnxKyVsMXfzRXSctQX95+1Cx1lb8O6fZ2EqstVaq5HQJNQHNX2VvTWrNE1CfbD15R54onMdaB248vR01WD1s51V03CmvFX29nDRSnj7IbphQJzPz8MFLgK+hR69ngoD5zIPcnTvDS5HXE7Ixo/7rnGLJ2e30vMqPsgOTUKVXS8TANpF+HGNFxHgrppcTu6iyUdCVCQ+o+yke6fIcy3DffH14+2w49WeWDqhE7pH1ijzdUr0eKcI1A4oOUFgNgPf7Cy9Ic+9MvIMOHYjtcJVkoQ4w9TejRBYwUq0m6m5SM25O9ke5ueOKQ9E4t0hLTCwZU3oHJlFUpifD1zHF1svWW/u5BvNWLjnKr7aFuPkkcmHj7sL/j59G47MC2QXmPHyypP8BiVzQ9qEcYulkYDnoxuU2NlAiDMwBjDwrwFgMLNi17NKdO52BlKy+Tbd+udcAtd4cnQrLRd5Bv7X5BEBHvD1UH7H6z7NQrjGu5GSi2sK77BOSqIrEEJUpEPdgFIf12kktKntX8WjkS8/D1esmdwFT3evh2Y1fdA2wg8awKamCQevpmLo13sR9eFW/H78lrjBEmIHV52mUqsf/7f9chWMpvpbuu96qY//tL/0x9Xo2I3USq8cBwAPl9InJo7HpuH0rXRew5K1wa3DMKojn4ZOZgbM2xqDcYsOqqIzK5G3s7czSjTh4sHdRYNAT2WXtPhmx2XwPnX3llVRIlErYvU65RfSZYzhxzKucxzxy+FY7jGJvCn/k4YQYjWgRU3cV8qy+fHd6tHS93sEe7thygORaBTiheOxabD3kiU5uwAvrzyBs3EZXMdHiKOe6loPQRWsfly89xriBW1TUpKyJtWSsvg0BFACWxplDmwZivxyitsnquS8SpKE56LvNo3jYf+VFGw9r/xVTkTeagiqedurSTDcBdSmk5NztzO5xwz2Vv53AFGTHpcTspGh8IYze2KScexGGve4l//tQUDUgyYfCVERV50GP0/shOkDmqBj3QBEN66BL0fdhzcGNnX20GRp6orj+O14nMN3mE1mhpV0d4/ITA1vPd4f1qLcY4xmhuOxaVUzoGqsU/3SV5V3qkfNPQpdT8mp1HEaCfjrVDxMZXzuumol3FdGXV4l+nzrJeSUUqvZEUeup3KNR4itbqeX3djPEbsvJQmJKyd1gzy4x1RDng/353/eAMAMICFD2TfEROUMdz1NRakN/R8nREXOxmXg8y2XsPtSEpJz8nElMRu7LiUitpJfCtXkWlI2/uG4OoR3fR5CeOjVOKTC2o8f/n0O/9t+uUT90jwD3wmR6uyl3pElOoi7ajV4pW8jJ41IXjLzDHjn99OVOraimz2hvu7wE9SxVI52XUzkHjPUR9nbUon8XbzDf/UeAKTnGXE7TczEplw83b0+tBq+W33VcI2q0UjwcdMJiV1anXglCfUVlTOUv2WdFEeTj4SoxNJ91/Dgl7vwzc4r2B2ThMsJ2biRkoOVh29i6Nd7FV+g21ZxnO/Kd21IK6CI/LjqNJg1tCV05XyRuZ6cg482nEfnD7fi6SWH8fqak+g6+x80eWsDes3Zjt+OUU3ThsHeeGNAExQ9jQUmMz7feomaTgHYeznZ2ozHUTdScnBCBat0Chk4F3eTADx8Xy2uMQmxVcNgb2Gxb6Yq+4Z6+7oBGNKaXzMqAKgdIGZVoJykZBcgI88oJLZep+yt/r05N5sppNfS5KPa0OQjISqQml2A99afK7PmVlJWPqI/2Y5xiw7Sdqx/Na/py60Ad/s6/hjShr7sEfkpMJrRuX4Atk2Lxoj24fAvp2NjSnYBNp+9g+WHYnHr35UlV5KyMfWX49h4Jr6qhixLRpMZn225VGLV3q5LSfiNGk5x77Ack6COOlFGkxmZnGuJMQCGsva0E1JFohoEwkXQxEOdQE8hceUkz8h358HU3g25xpMjnVYSss6O8yJUWUrMFLOtvGeTYCFxiXzR5CMhKrA7JqnC1Te5BhO2X0jEqG/3Y/nBG6pvMuHr4YJnezRwOI6XXoefJnaCm4uy74qS6sVoMuPDv86h3Xub0ebdzRi36CAeaBqCY2/3rVQX7Ht9u/OKgFFWH2dvZyC+jNXj/5yj5h5dGgRxbTCRlS9m9YrcZOQZuE8UaiVLXiLEmWISMoVMgjcK9kKwj7Kbp8QkZOGvU/xu+Hm76dAy3I9bPLnycXNBsDf/7cOlNfJUmuUH+He6BoAaKmh0RIqjyUdCVMCWTpkFJjNe//UUun70D17+5TjyOd9drU6m9m4EP/eyV4JVhotWoolHIjsf/HUe3+y8gsx/J3EuJ2Zj8s9HceR6ql13uK8nZ/MeYrXi4Vr2ZE5abgFeXH4MU1ccw9Zzd6pwVPLhqtPAz9Oxz9KitCq5el3PcYKhUJC3XvHdgIn8XU/mvzU6zNcNP07oyD2u3Gw4fZtrvMw8I/63/TLXmHKlEbBMMchL+TWID14TsytuyT4xk5pEvlRy+UaIunWPrAF3G7cQm8wMvx67hU83XRQ0quqhW2SQQ6/P5dyllBBHZecbsfzgjRKPm8wMi/deQ4Idk4/Nw3x5DK3aahjshdbhpZ+D/VdS8MeJOPx2PA4TfjyM//55popH53yZeQZcusNvq/SvR9Wxlf3EDf5f+EZ1tH1lMyG8Nanpwz3mt2Pboaavsht/AIAk8Z9A2yGgsZXc3EzNwW0Bu7pMKijrLKrJ27nbGULiEvmiyUdCVEAjAS4a+37dl+y7hjyDOra4lWZKr0iHugrmGc3480QcxxER4pjkrHzkltGp+mZqTrl1H8symiY08OWotogM9rL+XFY9s0V7rqmmZmEh3vWijt5IQ5zCO9oCQKMQvk05NBLwZFQ9rjEJsUctP3eu9feCvPRoFMJ/QlOOBrasyT2mjxu/lelylS+o+dvjnSKExJWTYYKalDm6u4xUPzT5SIgKpOYYkGFnjaw8gxlPLToEoxpu7ZWicag3JnRz7Mva3M0Xwcrq9kNIFVuwo+z6jK3D/fBYe9snEr3pAhIRgR7Y9NL9WPVsFL55oh2eub9+mcfuiUmqwpE5X7i/B/dC/2k5fBuxyNGwduFc49Xw1sOVc/MfQuyl49hwZkznCNW8t+sFeWJ4W77dru3J+9VN/SBP1A/i34xIDQ2OfN3F1Ak203cj1VHHpzQhKufv4YIgB4r977uSgs1n1VmrDIDDX5qvJmUjI0+9q0eJfMQkZGJZKVuuAUvR+Qnd6uGh1mF4tkfZE2f30mokNKjhVfGBKiBJEjrUDUC/5qGo5edR5nF+dqwurc5SsgvAc6egRgIahSj/PRfkpcdIOxpAleVORj7GLTpIN8OILPRvHsot1rwtl9B19j9IyRLTlVdOCoxmnL6VySWWBGB813qqKMcgSRKeiOK/SlENNXQTswqExL2pgh0MpDiafCREBXRauoAcLgAASfNJREFUTaUmE8r7QNh/JZnfgKqZ8ICyJxEqw9tNB08VXJwQ+dt/JaXM5x5pF47a/77XW9vQ+fKRtuEIUXh3UXs82KomvN1KrhYI9HRFP45fuquDeVsuwsxxvuvBVjWhU0nXmfeGNIc/x1Unh66lYtclda28JfLUOJRvWYFbabl49Jt9XGPK0d+nb+PCHccnH+sHeWLjS/fj7YeaCakjKUefb73EPea8zcqvjd82wl9I3LQc5d8sIMWp48qNEIKJ3etj9rCWaBTiBU9XLdpG+KF7ZBC83XQI8HTFY+3D4aIr++Ij0IGVk9XdkDZhDq0cfax9uGq+KBN5K+993LBIvcKNZ8rustughie89TrU8nPHy30aYdbQFlzHqBS+7i5YOK4DagfcbYBQP8gTi57qADcXdd2M2H6BXzODB1vWxLwR93GLJ3dv/nYaqbl8V87vuqT85hJE/lYciuUe83JiNpIUvvrxTJzjTTpe7NUQj7avjT+Ox+HI9bJvSipJQkYe0nL470L6QwV13ZvW9LGrHnhFtJK6roUIIGYDPyFElkZ2jMDIjne3HPxy6AZOxKYhJbsAKw/fLPe1wznXnqpOfNxcsPzpTnjnjzPYe9m2FaC+7jrMGNhM0MgIsU2vJsGo6etWouOjr7sLHmptqSF15HoKfjte9sX0l6PaolmYOgr7O6pD3QDsmNYTZ+IyIElA8zAf1awwKUrH8ftFi1o+DjUBq05up+di1ZHyc7M97OloTwhvGbli6rbeSs116Iax3NUJdGw3DgB8+U8MChejz98Wg1EdI/DhsJYOx5UzvaCbfqIa2chJTEImUgXUWVZbCRpCKx8JUQ3GGLZfSMB//zyDzzZfxF+n4jD911OVrkVYU+XbKiNDvDFvZBvobPzS+2yPBtCo5IsykT9XnQZLxndEi1p3Jw8bBnth8VMdrN0ufztW9sTjqI61aeLRRhqNhJbhvmhRy1eVE48AwLPE4M8HSq9ZqkSX7mRx3a5eqAnn7a6E2CPMz73ig2wkAYhUeD3YIW1qwdHLyns/VpYfvIHdCi/H4OvuAleOTY4KqaGs0hZBdf8DPGnyUW1o5SMhKmA2M0xZcQzrT962PiZJlf9C2DzMR9UTaJl5BtxKy8XBK8kwlvFN0MdNV+pE7qI916DVSHi6e33VTjwQeYkM8ca6Kd1xNSkbJrMZDYOLT0QUlHMXv3B1JCGVlZ1vxJ0MfivtUrLFFL6Xo3pBnjbl6srq0agG34CE2MFbz/9rqIjfF7lx1WqE3JTYdDYe3SKD+AeWkSahPjh5K51rzHyjGQVGs6K7rYvqSn0zNa/ig4ii0OQjISrw+/G4YhOPQOUvzly0EmYNVfZWjLKYzQyzN5zH0n3XkWswlXthMaZzBI7dSMe+exrzJGTm44O/zsNgYni+Z0PRQyak0uoFeZb6eO9mIfjlcMlaXG4uGkxfcxKAhAEtQ/FCz4bwdqO71qR8OQWmMm/a2MNsZmCMqeJmTu0ADwxuHYbfyymDYI9ztzPRLMyXa0xCbHWaQ+3Ce5mZ5TPHU8DEply46jTQSOA+AemigtrkMYlZ3GMWmBjyjeV/R6jusgtMQuKKmtQk8qXc3xJCCADLF7X315+167U+bjpsebkH2tT24zuoauKbnVfw7c4ryDVYkm5ZK8J0GgmPd66L5c90RnQZK0p+2H0VRpPy68KQ6utaUjaO3UhF98hADLuvVonn8wxm3EjJxY2UHHyz4wqeXHgQjC4cSQVqeOvROITfNt88oxnjFx/mFk/u3h3SHKGcy55QzUfibBfiM63XVjz5uOlQw1u59R4Lifg7Dmmj7J0N2flG5AiYRAv21iv+RmxGnpj6rF0aKHulLSmJJh8JUbgdlxKRbOc2tVlDW6JOYOmro5Ru/cnbmLv5QoXH6XUSPn6kFWr9W7vo3kYehVKyC5AuqLg6IY5IyMzDqG/3I3rOdgz9ei+6zt6GzvUD4ete/sX00Rtp2HGRuuaSij3QNJhrvG0XEnAyNo1rTDkymRlGf3cA8Rl8t6a5KXiFDqkeriZlC4lrUMlN3gnd6nGNV8PbFa3C/bjGlBudVoKI9fIiJtHlpm/TUO4xNZLl5hpRF7r6IEThzt2u/LYWbzcdvN10aF3bDwvGtFVtfbffj9/C88uOwmCqeFVXt4Y1MLTIKrGymnGE+brB38OV2xgJ4WXKsmPFygUkZxfgP7+erNRk+VkbPl+Iet1MzeEe88MN57nHlJvNZ+/gjICtqfVqqPOmIpGPpjXFND0SUQtRjiZ2q4/xXevBhVMDlZx85U+g6XVaIQ1OClQw+ShiYtrMgL9O3a74QKIoNPlIiMLVs2HlYmaeEW8MbIrfn++K/i1qChyVvH35T0ylj916PqHY6q9JPerD3aVk57spD0SqumkPkacriVk4cDWlxOOV3U1dv4y6kYQUlZTFv0mMGlY+Hrle8nfTUZ6uGnSPpIYzxLnqBHoixIf/1uF8oxkJnFcKy5FGI+Hth5rh4Bu90YDDzQSedXnlrMDI/++phvrDf57kW3e40He7rgqJS+SLJh8JUbhukUEI9Kz8iruZf5xBqoq6id7LbGaISbCtIPXuS0nWf28S6oNVz0ahX/MQhPq4oV0df3w1ui1GdYzgPVRCHJaaU/bvekWX0/UCPdC7aQjfARFFElGIX0TtLrkJ9XXnHjO7wIzLApouEGKLjDwDEjLE1B5V043etcdu4XJiyS3svu461Pav/OeHv4eyaxYWMpr5b8vPM5oRX0bJJaUQ9b0wrZxrUKJMNPlIiIKl5RTgwc9321TzMd9oVnUdN41Gsnk117218VrU8sU3T7TH/jcewJrJXfBgK/WuIiXyFuSlL3OS8YEKJhbrBHpCp4LumMRxZXVWd4QaOrP2by5mcv+7nVeExCWksowmBhFr7UJ89AjyUn7DGcBys3zBjsulPpeea0Rsam6lYz3WQR03yLUaMXnj9K10IXHlIqpBoJC4DWp4CYlL5Ev5V26EqNj/tl/GDTtqbelVXoz+uZ4NK32si1bC0LYlOwMTUh2sOBRb6hdAjQR8/EhLPNY+vMzXbr+YiBspYpoGEGV5tF1t8N6ZpoKdbvjjhJitbslZ1O2aOFeApyu3eoVFmVSyfRgAMvONXDrXNw71xnPRDTiMSP5EvOcAoJYNq0yro5sp/Os2A8BghXdYJyWpe4aBEIXbdCbe5tfodRp0aSjmDld18Ui7cLSv41/qc/fu5jGaGL7YeglmFV3wEuUo6269mQHx6fmY0iuy3Nf3n7cLp24q+44/cVzdIA+0jSj9M9Ve7evyjSdHImplAkBnQatYCLGFTsAdhOSsgko1S1MCb70Otfwcn/S6EJ+JZQducBiRetVXeBOvxfuuCYlrz/dUUr3JYvJx7dq16NChA7p3744ePXrgzJkzXI8nRK089TqbX5NvNKPfZ7vAKttxQqHeHdICbi4lPyKb1izezZoBWHn4Jn4+cL2KRkYIP3UCPUp93FWrQZifG7ILjOW+PqfAhCcWHqDJd1KuV1edxJHrqVxjfjC0Jdd4ctS3mZht1wNbUikQ4nwGAfX3GKD4+nuFNBoJL/Sq/E6d8ny9PQYGE///H3IT7l/6NY+jtApfin+llLqiPJyPzxQSl8iX0ycfDx48iCeffBLLli3Drl27MGHCBPTr1w+ZmaW/GW09nhA1e6xD7TKfc9OVnSjjM/Lw1fbS68ioRbMwH6x4Jgo9G9eAv4cLmof54MOhLXGhjET567FbVTxCQhz3ZFTdUsssDG8XDj8PVzQK9kaYr1u5MdJyDDh4jX9XXqIMcWm5+Pv0ba4xfdx1qBOo7JUmANCpfiB89FquMbs0CBT2BZwQW3jpxTQ5saXRSnWWnmvAmiM3ucRKyipAIoct3HL3zkNNhcSNS1P2hLeoclxqX+iiRrYvi+Js9uzZePDBBxEZadnaNWbMGLz22mtYvHgxpkyZ4vDxsnJiFbB2Ip9YWg9g2nnA3ZdPPLmL2QL8MwtIPAcYDQAY4OIBuLgDBdmAqQAwGy2Pl6AB/OsAgz4HGvSo4oE715hayXjcbTQ0pZ0WCZZPgLI+93f8+6eQxhWYdgnw8OM8Spm6tBVtlj2KRezfjqopAPsbGFnWtXICgJllPNdmDPDwV/zHqATn1wMnfwGM+UDjAUCbxwGtOrouOs3FLcCy4QCASADndbj7WVB4T+Kk5Y8GwB4AKKd+/+L8bsgzdBA3Xjn5/UXg2I98YgVGAs8fADR8J5fkJi4tF54sFSdcn+dWpzGRBQJQftOUDadv472CDzBYf4JLPCYBCdHbucSqFmZyvEbW+QBvxvKLR3BfbV98f7UvePUAMZmAhsZliE3NReNQbz5B5Wpee/ikXcIqhnLzc2UwBqzVtEKgV38uQ5Mzgwm47DKa23vObAYaGJbhWGwqIsrYSaIEjUO9MSpmJqa67uOWx/Pygb4ea/kEkzueuQgAXjwNBJS9wEjOnL7ycevWrWjfvr31Z41Gg3bt2mHLli1cjpeNQ4v4TTwCgCkH+CgCMKmgrsmuT4GfhgNxRwFDLsCMADMBBZlAdgJgyAbM/05IlsoMpF4Flg4GjnD60lgdJJyHZmEvaGEpzF/iD/79U9pzEkp2wDUXAB/XAcymKv+rVLmLm4Cfh1neZ0XYdL6KOv4TsOB+kSOunja/DawYDZz9Hbi4Afjz/yw/C9iKRf5186h14rFQsc+CIj8Xe76s970EjNPvRpdj06vsr+A0yx/nN/EIAMmXgA+U36wqMtgLJ/XPQ6Mp/31ky58aSAZmKb87q+fqRzHY9QS386YBEPpzNJChgjpbvL/sGTOAmcqvM1qVFt7oC62W3+eCVgtccR0trKmIbHzVHUi7VGFurvTnggYYhpPQ//q8s/9mwnVaWp/7e+6qfjRCvMvfIVLd1b75N17S7+Oax930wNbcoc7+q4nHOxcBwBct+MesIk6dfExOTkZGRgZCQorXtAkNDcXVq1cdPl5W/npZTNwlD4uJKxc5KcD22fzi/T0dMCh7abzVNz3FxF08WExcOVkxhn/M+BNABt+th9VaWiyw98uSj1/aZFnpTMT4nv/ngiQBrufXcI8rOxfW8Y9pzFX8+933s7qQOM8FSABgSOcbVIa64RT3cwcA+KKtgKAy8tfrggKbgWwqMcHFf0PLXjNgp8JJjfp6MfXpZCPxJPeQEgCcXc49rpwkrZ0OSdAu39Y/tRYTWCZmYR7/PC4BtM/JASImNauAUycfc3Isbdv1+uLrxfV6vfU5R44vlJ+fj4yMjGJ/qhwTtJIn9qCYuHJx85BlSzUvxhwgQSUNikxl/044JHa/mLhyYhZU9+a0CiZoKuvGvrI/F6/trNqxVBFZ5CIiP/u/cfYIxDIInAjI4dvERjWMCp+cObhAXOyt74mLXYWcno9YrpCJdUkC8EU7/oFJted/4n/C3nN6puzeEwpfSyzO7vnOHoHsOHXy0cPDUhshP7/4F/38/Hzrc44cX+jDDz+Er6+v9U/t2tVzj3ypXBReVNkzSEDMGvxjqomLcmuaCBdQ39kjkI/yfrc9g6tuHFVI0bmI2C8o0tkjqL70Cq/rRuyj9xEXu143cbGrkFLzEQOA8M7OHgaRIZPAaQ+lt02hyUc71e/q7BHIjlMnHwMDA+Hr64s7d+4Uezw+Ph7165f8km7r8YVef/11pKenW//ExjqhYHSgoC8XjywUE1cuarUDQlvxi1e3G+Cn/DpRAICWI8XEfVTh7zkAqCuiPqMENBkoIG41VS8aCGhQ8nEXT6C1oPeuk8kiF9XqKCiw00tIiycJagwTrfB6mQPniYutdXrfRKGEfeHr+JyoyPIw7ZK42C2HV3xMNeD0fPTsfiETNhIAjFstIDKp7lxnpgp5zzEA2lcuC4gsL6LOnaKF3ScudrtnxcUWyOnfFnr16oUjR45Yf2aM4ejRo+jduzeX4wHLtmwfH59if6rc8wf4rxir2wOILPvvrRijlgNhHOoTBbcAHlvqeJzqYvg3gBvn4ugRXYHIPnxjytG4P/mfu2e2841X3Wk0wOOrgFp3G4ghoD4w+hfAS5krH2WRi57eLCbuTBVsf31DQJOOIQsANye8D6pSx6cgpLLTqzKv9c3D2wJ+r3QewMAP+ceVExdXIFTA1tsRP/GP6SROz0ehTblOrlsnMWo/wDGqTM0UVO9WVFwZYXDnOuHF8O+Et7eAnXpyMjNdyO+r5i0V1NAdsVJM3Ic+EhNXMIkx5tRJ54MHD6JPnz44cuQIGjZsiJ9++gnTp0/HuXPn4O3tjW7duqFHjx6YNWtWpY6vjIyMDPj6+iI9Pb3qk+2dc8BvLwBpVwGdO2DIAfLzAJYPQAPo9IAxD4ARgBbQaC3dhV28ABc3S4208PbAqGWWL+9qknodiDtu6WxtyAMC6gJeoUDieYAxy7m8edCyDatOV+DqLsv58woGmg4GfJXfVbRUOcnADwMtHb/NRkDjYjkvpgKAVdQtXQI0Ost77qm/IabyvYylxgJrJwPptwCdG+DuB7j5Auk3LO9BQzaQnwloXQCNq2X7ZFY8UJBteU+6+wHR/1HMSglhUq5YzmdwU1W9x5yai9LvAJ81hsP3nR9ZCrRQQROqos7+CayeCJjzAGgAjf7ffwcg6f49peV9troAXV4A+s4UPlRZMZuBdwMB2FYDu/BMWqcv7xsPDPmM48CqgUNLgfUvFHuo6DusclO7euD1q4Dek+PAqoH/hgHMwRqX9fsCY1fxGY9MOTUfldE4ofA9rkUlV8uoYPKsmE0fA3tnWX+897OSwfJtsuhjpXp4CdBmCPfhyVqR99y92doFlvPGivxcdhyVvediTwE/2F56omS+8gBmqqwJ58xgABx6ClTz95zTJx8BYO3atZg1axbc3d2h0Wjw9ddfo3nz5gCAtm3bolevXpgzZ06ljq8MpyZYQgghBJSLCCGEyAPlI0IIIaLJYvKxqlGCJYQQ4myUiwghhMgB5SNCCCGiqWzfLiGEEEIIIYQQQgghpKrQ5CMhhBBCCCGEEEIIIUQImnwkhBBCCCGEEEIIIYQIQZOPhBBCCCGEEEIIIYQQIWjykRBCCCGEEEIIIYQQIgRNPhJCCCGEEEIIIYQQQoSgyUdCCCGEEEIIIYQQQogQOmcPwBkYYwCAjIwMJ4+EEEKIXHl7e0OSJGHxKRcRQgipiOhcBFA+IoQQUjFH85EqJx8zMzMBALVr13bySAghhMhVeno6fHx8hMWnXEQIIaQionMRQPmIEEJIxRzNRxIrvNWlImazGXFxcVVyJ9FWGRkZqF27NmJjY4VfaCgNnTv70HmzH507+1WHcyc6R8g5FwHV4/+RHNF5sx+dO/vQebNfdTh3VZEj5JyPqsP/Izmi82Y/Onf2o3Nnn+py3mjlox00Gg3Cw8OdPYxy+fj4yPqNJ2d07uxD581+dO7sp+ZzVx1yEaDu/0eOoPNmPzp39qHzZj+1n7vqkI/U/v/IXnTe7Efnzn507uyj9PNGDWcIIYQQQgghhBBCCCFC0OQjIYQQQgghhBBCCCFECJp8lBm9Xo933nkHer3e2UOpdujc2YfOm/3o3NmPzp380f8j+9B5sx+dO/vQebMfnTv5o/9H9qHzZj86d/ajc2cftZw3VTacIYQQQgghhBBCCCGEiEcrHwkhhBBCCCGEEEIIIULQ5CMhhBBCCCGEEEIIIUQImnwkhBBCCCGEEEIIIYQIQZOPhBBCCCGEEEIIIYQQIWjy0QnMZjMAgHr9VB6dK+JMhb+zhCgJ5SLb0bkizkS5iCgR5SLb0bkizkS5iNhL5+wBqM23334LSZIwatQoeHl5OXs4srZlyxZkZGSgYcOGaNWqlbOHQ1Row4YNaNGiBcLDw509FEK4olxUeZSLiLNRLiJKRbmo8igXEWejXEQcRSsfq9DXX3+N1157DTExMUhMTHT2cGRt/PjxmDVrFt5880106NABc+fOhdlspjstlVDWOaJzZ5t33nkH48ePx0svvYScnBxnD6daKLwTn5GRgfT0dCePhpSFclHlUS6yH+UiPigX2Y5yUfVAuajyKBc5hvKR4ygX2Y5yUUm08rGK7N69G1lZWbh27Rrc3d2h1+udPSTZev755xEQEICFCxfizp07mD9/Pv7zn//g/vvvR/v27Z09PFkzm83QaCz3FFavXo3bt2/D09MTffv2RXh4OEwmE7RarZNHKX9XrlzB1atXcfz4cZhMJnh4eDh7SLLHGIMkSdi+fTvmz58PV1dXTJ48Gd27d3f20EgRlIsqj3KR/SgX8UG5yHaUi6oHykWVR7nIMZSPHEe5yHaUi0pHk49VYM6cOZg/fz569OgBPz8/mEwm6xuSFHf48GHExcXh119/BQAEBQVhxowZuHDhAtavX4/27dvTuStHYXKdN28e1q1bhyZNmuD27dv44YcfsHTpUtSvX79YEiYlvfPOO7h06RKGDx+O4OBgGAwGZw+pWpAkCRs2bMCsWbMwYsQIuLq64saNGzAajdBqtfQ7KwOUiyqPcpFjKBc5jnKRfSgXyR/losqjXOQ4ykeOoVxkH8pFZWBEqE2bNrExY8aw4cOHM39/f/bbb79ZnzObzU4cmTzt2LGDubi4sJiYmGKP//e//2WPPfaY9ef8/PyqHlq1sWjRItarVy9mMBgYY4x98803zN/fn7Vs2ZKdOXOGMcasz5Hifv/9d1anTh2m1+vZsGHDrI+bTCYnjkq+ip6XGzdusE6dOrFDhw5ZHyv8jMvNza3ysZHiKBfZhnKR4ygX2Y9ykW0oF1UflItsQ7mID8pH9qFcZBvKRRWjKX6B5s6di9mzZ2PGjBn46quvMGTIEHzwwQdYt24dAMuMOKNuZcXcf//9mDdvHi5evAjgbq2EYcOGwc3NDQCQlJSEvXv34vz5804bp1wsWbIEGRkZ1p8LCgpw9epVDB48GDqdDps2bcKKFSswZ84ctGvXDqNHj0ZKSgrOnTvnxFHLT2HNl4iICBw8eBDLly/HH3/8gffffx+A5a4p/a7etXHjRgAodpdYr9fDw8MDgYGBMJlM1nNqMpmwdOlSHD161CljJZSL7EG5yDaUi/igXGQbykXVC+Ui21Eush3lI8dRLrIN5aLKo8lHQRYtWoTFixejf//+SE9PR0hICF588UW0adMG77//PjZt2gQAVGAZwJ07d2A0Gq0/T548GQMGDAAA65JkV1dXpKWlwWw2w2Qy4eTJk/jhhx9Uff4uX76MSZMmYeXKldbHXF1d0apVK9SsWROXL1/Gu+++i88//xzjx4/HuHHjkJycjKCgILz66quUNIooLJzcpk0bBAcHY8CAAViwYAFmzpxpTbSSJCErK8uZw5SFW7duYdy4cXjjjTeKPV5QUIATJ05g8+bN1u0EZrMZWq0Wd+7cwenTp500YnWjXFR5lIvsQ7mIH8pFlUe5qHqhXFR5lIvsR/mID8pFlUe5yDZU81GA7du3w9vbG9u3b0dAQID18fvuuw/PPPMMfvjhB3zwwQf47LPP0KlTJ8ycOdN5g3WyCxcu4NVXX8XYsWPxyCOP4IcffoCrqyvGjBkDAMXqIej1emg0Gri6uuKrr75CYGAggoKCnDV0p2KMoUGDBjh79ixq1aqFP//8E/n5+XjkkUcwfPhwAMCuXbvg5eWFunXrAgB69OiB3r17w9/fHx9//LF6a03c47PPPsO2bduQl5cHPz8/fPrpp6hduzbGjx8Ps9mM559/Ht7e3vDz87MmYDWrVasW1q9fj+DgYMTExMBgMKBJkyYIDw/HhAkTMHnyZNSsWRMPPfSQtYB3bm4uXaA4AeWiyqNcZB/KRfxQLrIN5aLqg3JR5VEush/lIz4oF9mGcpGNnLDVW9Fmz57NJElijRo1YleuXGGMWfb/F60BcPHiRVavXr1itSfU7JVXXmE6nY5NmDCB9evXj2VmZpY4Ji4ujo0YMYLdvHmTRUVFsebNm7OCggLGmDprxBiNRmY0GhljjH388cdMkiTWv39/9vvvv1uPWblyJZMkiS1btowlJCSwjz/+mD377LPW9yK99xibM2cO69WrF9u7dy/7/PPPWfPmzVmdOnXYtm3bGGOW8/zLL78wSZJYnz59rOecMLZ9+3YmSRJr1aoVu3jxImOMsUuXLrFhw4YxSZLY/Pnz2ZkzZ9jq1atZ165d2eXLl508YnWhXGQ7ykW2o1zEB+Ui+1EukjfKRbajXGQfykeOo1xkP8pFlUOTjxzduHGDvffee+z7779nQUFB7KWXXrI+ZzQarcng4MGD7LnnnrN+wKn1F7docoyKimJ6vZ4tWrSo1GOTkpJY165dWWRkJIuMjLQmWLUlif3797OTJ09af05PT2c7d+5khw8fZo888ggbNGhQseLdjz/+OJMkibVo0YL16dPHer6oULDl97Vr167s0qVLjDHL+zE2NpZ17dqV1a9fn2VlZTHGGFu6dCnr378/nbsijEYjW7NmDdu+fTvr0KEDa9eunbUY+uXLl9mbb77JwsLCWL9+/VjPnj3Z6dOnnTxidaFcZBvKRbajXMQP5SL7US6SN8pFtqFcZB/KR3xQLrIf5aLKo8lHQX766Sfm6urKpk+fbn2sMKkUTbhqT7BGo5FlZmayV199lU2ePJm5ubmx5cuXFzsvhXf83N3dWbt27awfdmpLsKmpqWz27Nmsa9eu7MSJE2z+/Pls9OjR1g53ly5dYg8++CAbNGgQ+/XXX62v2717N/vnn3+s51St77l7XblyhbVo0YLduHGDMXb3vFy9epU1aNCAzZ49mzHG2IULF+iOKCv7TnpeXh5r1qwZa9u2rfVOH2OWC+OsrCyWkpJSVUMkpaBcVD7KRbajXMQX5SLbUC6qnigXlY9ykX0oH/FDucg2lIvsQ5OPHKxfv56tWLGCLV26lGVnZ1sfX7ZsGXN1dWVvvvkmY4yxPXv2sOTkZGcNUzaK/rJevXqVpaenW39++eWXmZubG1u5ciXLz89n+fn5rE+fPiwuLo4tWbJE1Xf2GLO8h5566inWsGFD1rNnT+vjhefj6tWrbODAgWzw4MFs8+bNbM2aNcXec5Rci5+D+vXrsyeeeML6c15eHjObzezxxx9nH374YbHXqXUbC2N3/+579+5l33zzDdu8eTPLzc21Pl9QUMCaNWvG2rVrx5KSktiJEydYXFycs4arWpSLbEO5yH6UixxHuch2lIuqB8pFtqFc5BjKR46hXGQ7ykX2o8lHB73//vusS5cubMCAAaxhw4asTp06bOvWrcxsNjODwcBWr17NPD09WbNmzdgLL7yg6l9Uxop/UH355ZesZ8+e7JVXXmHnzp2zPj5t2jTm5ubGVq9ezRhj7KmnnmKnTp2yPq/GBFv07zx79mwWEBDAOnfuzE6cOMEYs5zXwguQuLg49sgjj7CAgAA2YsQIWg5fxIoVK9gnn3zC1q5dyxhj7IsvvmBhYWHsxRdfLHbchAkT2EcffcQYU3dyLWrTpk2sZcuWrEuXLqxDhw5s8uTJxeoQ5efns/bt2zN/f3/Wt29flpiY6MTRqg/lIttQLrIP5SI+KBfZj3KRvFEusg3lIvtRPnIc5SL7US6yD00+OmDJkiWse/fu1p9jYmJYr169WM2aNdnRo0etj/fr14916dJFtcmhNPPmzWPDhg1j+/fvZ3/99VeJu04vvfQS8/f3Z/369WP333+/qpNE0Q/5r7/+mn300Ufs+PHjbPz48axbt25s165d1ufj4+MZY4w988wzrGfPntb3HCUKSxHl+++/nz377LPs6aefZjdv3mTx8fHstddeY0FBQaxPnz5s1apVbMqUKaxfv370+8ruvm8SEhLYG2+8YS0W//XXX7NevXqxsWPHsoyMDOvxP//8MwsMDGRnzpxxynjVinKR/SgXVR7lIj4oF9mOclH1QLnIfpSLbEP5yHGUi2xHuchxNPnogLlz57J33nmHMWZZlsyY5c0YFRXFOnbsyMxmM0tISGBffPGF6osoF3Xp0iXWrVs3ayHWuLg4durUKbZgwQL2559/Wo/79ddf2ZIlS6znTI2JtmhinD17NvP19WX33XcfY4yxbdu2sTFjxrDu3buz7du3M8YYe/3119nmzZvZzp07VV0D5l7fffcdi46Otv5c9M5Ueno6W7duHevbty976qmn2KRJk+j3tYjffvuN1a1blz300EPWLQP5+fls0aJFrGfPntbtGQkJCWzz5s3F7taTqkG5yD6UiyqPchEflIvsR7lI/igX2YdykW0oHzmOcpH9KBc5Rgdit9jYWGzcuBEzZ86EXq+HyWRCjRo1MHPmTEybNg2xsbGIiIjAlClTAAAmkwlardbJo3Y+vV4PLy8vbN26Fbt378Yvv/yCs2fPIisrC+Hh4YiPj8fEiRMxdOhQ62vUeO7MZjM0Gg0A4OzZszh37hzS0tIQFxcHAIiOjoarqyu++eYbvPnmm/j++++RnJyMPXv24J133gFgOW86Hf2aX758GQMGDAAAFBQUwMvLCwBw/vx5ZGRk4MEHH8SDDz5Y7DVqfM/dKzU1FStXrkSjRo2wbt06bNu2DY8++ihcXV0xevRoAMCaNWvQtm1b1K9fH4sWLYK3t7eTR60+lIvsQ7mocigX8UO5yD6Ui6oHykX2oVxUeZSP+KBcZB/KRY7TOHsA1U1MTAwuXboEAJg4cSKSk5Mxfvx4ALD+Qnbt2hX+/v4wGo3FXqvGX1iz2Vzisdq1a8PPzw9z5szBM888g6ZNm2LevHm4du0aWrdujezs7BKvUeO5K0yuM2fOxMsvv4w6deoAAEJCQqzntUuXLnj22WfRpEkT9OvXD4mJiZgxY4Y1hhrPW1EmkwmA5YL40KFDAABXV1cwxgBYEu4PP/yA5ORk67GF1H7uAMDf3x/ffvstNm7ciCeffBLPPfcc/vnnHxgMBri6umLcuHEIDw9HXFwc3nvvPUqwVYhykW0oF9mPcpHjKBc5hnKRfFEusg3lIsdQPnIM5SLHUC5ynLqn/W305ZdfYvXq1XB3d8ekSZMwaNAgTJ48GQsXLsTo0aPx3XffwdPTE3PnzkVAQADq1q3r7CE7VdG7U2vWrEF2djZycnIwcuRILF++HLGxsTCbzdbEAQBubm7IzMx01pBlZ9euXfj9999x5coVXL58GePHj7eer8LzGxUVhVatWuHmzZto2LAhtFot3Z36V+E5GDlyJAYPHoz58+fjhRdeAGMMkiTBw8MDeXl58PPzo/MFWM/L+fPnYTAYYDAY0KpVKwDAokWLIEkSRowYgRUrVqB///5ITU1FgwYNsGvXLkRGRjp59OpBucg2lIscR7nIMZSLbEO5qHqgXGQbykV8UD6yH+Ui21AuEsBpG76rmdmzZ7OHHnqI7dmzh23fvp1t2bKFMWbZz//pp5+yOnXqsIiICNa/f3/28MMPW2sjqLUeR1GzZ89mUVFR7MUXX2Te3t6sVatW7KuvvmKMWWok/PbbbywvL4+9+eab7NFHH1V1HY7COiaF/8zKymKMWd5n3t7ebOTIkSwhIcH6fGHtjaL1T6geh6V729y5c9mqVausxYAnT57MJElin376qbX73QcffMAmTpyo+qLTRW3ZsoV17tyZPfbYY0ySJDZy5Ei2bds26/Pjxo1jwcHB7JVXXmHfffed9T1KqgblIvtRLqo8ykV8UC6yH+UieaNcZD/KRbahfOQ4ykX2o1zEF00+VsBsNrMLFy6wzp07s4SEhBLPF3Y0MplMbMuWLezIkSPWDzi1f9Axxtjq1atZly5drOciLi6O9evXj7Vo0YItXLiQMcbYkCFD2P3338+GDh2q6oK2RS/I4uLirEVsC506dYp5eXmxkSNHsrS0NMYYYykpKVU6xupg9uzZrHnz5qxfv36sUaNGrFatWuzQoUMsJyeHvfbaa8zV1ZV17dqVDRgwgA0aNIi63hWxf/9+1qZNG3bgwAHGmOViJSAggO3fv5/l5+dbj2vdujXz9/enIspViHKRYygXVR7lIj4oF9mPcpF8US5yDOUi21A+chzlIvtRLuKPJh8r4cqVK6xjx47s8uXLzGQyWT8IzWYz+/jjj9nGjRutPxeiO3sWn3/+OXvyyScZY8z6SxobG8u6devGevbsaT3uzJkz1nOmxgRb9L0zZ84c1r17d9ayZUvWqlUrtmTJEnbnzh3GGGPHjx9nPj4+bPz48Wz69Onss88+c9KI5WnLli3s+eeft3ZZ3L59O+vXrx9zc3NjR44cYYwxdu7cOfbrr7+ydevW0QXxPb7++mv27LPPMsYYu379Ohs+fDj7/vvvGWOMrVmzhhUUFLCMjAz2xBNPsNOnTztzqKpEuch+lIsqh3IRH5SLHEO5SN4oF9mPclHlUT5yHOUix1Au4o8mHyshNTWVBQcHsxkzZlgfK/wlfvvtt9nKlSudNTTZKvzQmj9/PuvQoQOLjY1ljN1NJCdOnGDu7u7s6NGjxV6n9ouTOXPmsAceeICdPXuWnT59mg0aNIjVqFGDzZo1iyUnJzPGGLt58yaTJIn16dOHkkMRX375JWvVqhV75513GGN330vHjx9nffr0YV26dGGJiYklXkfn8K7vv/+eDRs2jJ07d47179/fmmBv3rzJmjdvzg4fPswYu/v5R6oW5SLbUS6yD+Ui+1EuchzlInmjXGQ7ykX2o3xkH8pFjqNcxB9NPlag8Bf1008/ZZIksY8//rjY888++yz79ttvnTE0WSkrOZ48eZJptVo2efJklpqaak2yOTk5bODAgezatWtVOUzZMpvNLC0tjfXv3996J6rQ2LFjWWBgINu5cydjzLIEfODAgarfilHUn3/+ye677z7WqlUrFhYWVmJbxtKlS1mdOnXo/VZE4e9iamoqy83NZYxZ7pBKksQaNmzIFixYUOz4adOmsYsXL1b5OIkF5aLKoVzkGMpFjqFcZDvKRdUL5aLKoVzkOMpH9qNcZDvKRVWDJh8rKTY2lk2dOpVJksTGjx/PVq1axaZNm8YGDx6s+g+4ogl2xYoVbM6cOeyDDz6w3r1bsmQJ0+v1bPz48Wzv3r2MMcbeeecd9vDDD6v6jt69BZRzcnJY165d2ZIlSxhjzFr8lzFmLXTLmCWhFr5G7UWoGbMUno6NjWVZWVnsxIkTrEuXLqVewLVp04YdOnTISaOUl8L3z6ZNm9iDDz7I2rVrx27evMkYY+yjjz5iGo2Gffnll9ZzuHr1ata9e3d269Ytp42ZWFAuKhvlIvtQLuKDcpHtKBdVX5SLyka5yH6UjxxHuch2lIuqDk0+2iAxMZGtXLmSde/enT3xxBPs6aefpu5tRXzwwQesW7dubNKkSaxr165Mo9Gw+fPns4yMDLZmzRoWFhbGmjRpwnr16sX69++v6nNX9O+cnJxs/XnEiBGsXbt21oLdOTk5jDHGvvvuO2vNiUJUCJix999/n3Xu3JlFR0ezZ555hqWlpbH169ezgQMHsujoaHb69GlWUFDA3nrrLda9e3dVvtfK8tdff7EePXqwv//+m82YMYMtX76cmc1mlpOTw959913m4uLCmjZtyoYNG8ZatGhBRZRlhHJR+SgXVR7lIj4oF9mPclH1RbmofJSLbEP5yHGUi+xHuahq0OSjHe79YFP7HT7GGPvtt99YVFSU9ee0tDT20ksvMVdXV+vdqps3b7KzZ8+yI0eOqL6IcqH333+fRUVFsfvvv59NmjSJ7dq1i0VERLB+/fpZ65gwxthzzz3HpkyZ4sSRys/PP//MunXrxnbv3s3eeecdVr9+fdayZUt27tw5tmXLFta+fXvm7+/PXn75ZfbRRx9Z63Go/Y4oY4zduXOHde/enR08eND6WGHh88LztHfvXrZ69Wq2YsUKdvXqVWcMk1SAclFJlIvsQ7nIfpSL7Ee5SBkoF5VEuch+lI/sQ7nIfpSLqo7EGGMgAADGGCRJqvAYANbjKvMaNVi5ciU2bdqE77//Hvn5+dDr9TCZTHjxxRexatUqHD16FOHh4cVeYzabodFonDRi5yj6d162bBn+97//Yfbs2di8eTOWLVsGg8GASZMmYeHChQCAvn37wmAw4Nq1a1i/fj10Op0zhy8bv/76K06dOoWxY8eiXr16MBgMOHnyJCZMmAAAOHbsGLZv346PP/4YOp0O8+fPR506dZw8avmIi4tDnz59sGzZMrRu3RqA5b1ZUFCA1atXo3fv3ggNDXXyKNWLcpH9KBdVDuUiPigXOYZykbxRLrIf5aLKo3zkOMpFjqFcVHXU9wlXioyMDJhMpkolS0mSih0nSRLUNn9b2t83JycHK1asQHx8vDXBSpKEyZMnIzQ0FAkJCSVeo7YEyxiz/p1//fVXXLp0CUuWLEHXrl3xxhtvYNmyZQgJCcGPP/6Ibdu2YezYsQgICEB4eLg1uZpMJif/LZxv3rx5eOSRR/DVV1+hoKAAAODi4oK2bdvif//7H5KTk7FgwQL07NkT48aNg9lsxuuvv44vv/wS69evd/LonaPwdzYxMRFZWVkICwuDp6cn/v77b2RlZQGwfJa5ubnh5MmT+PTTT505XNWiXGQbykX2oVzEB+Ui21Euqh4oF9mGcpH9KB85jnKR7SgXOVEVrrKUpffee48NGDCARUVFsZMnT1bqNYVL49W4TLlood+iWwPS09NZq1atWFRUVImOWj179mT79u2rsjHK3WeffcYkSWI1atRg58+ftz5uNpvZ3r17We3atUvtFEhbMRjLyMhg77zzDlu8eDFr2LAhGzRokPU5g8HADAYDGzRoEHvzzTetj2/fvp3Vr1+f1alTp9j5VouiRZT79u3LGjduzLKystj//d//MS8vL7ZkyRJrHR3GGPv6669LdHQj4lEusg3lIsdRLrIf5SLbUS6qHigX2YZyER+Uj+xDuch2lIucS323WIr466+/sHv3brz00ksICgpCdHQ0NmzYUO4du8Kl4RkZGXjllVeQlJRUhSN2np07dwKw3EkBLHdZJkyYgOeffx7Lly+Hj48P3nnnHaSmpmLAgAE4evQoUlJS8N///hdubm7o2LGjM4cvG5mZmUhLS8OiRYvg6+uLadOmWZ8zmUzo0KEDWrdujdjY2BKv1Wq1VTlUWfL29sbMmTPx5JNPYvbs2bh27RpGjRoFANDpdNDpdPD09ARjDGazGQDg6uqKmjVr4u+//0bjxo2dOXynkCQJGzZswOzZs/Hee+/h7bffRl5eHubNm4eHH34Yzz33HObOnYtDhw5h9erVWL16NaKjo509bFWhXFR5lIv4oFzkGMpFtqNcJH+UiyqPchE/lI/sR7nIdpSLnMyZM5/O9Msvv7BXX33V2kadMcYmTpzIfHx82J9//lnqawrvrqSnp7PBgwer5q7V6NGjWaNGjdjChQsZY4z98MMPrH379uzbb79lnTp1YnXr1mUTJkxgjDG2YcMG1qtXL+br68v69+/Phg0bpvrubWVZvXo1a9GiBRs5cmSxx0eMGMFmzJjhpFFVH7m5uezXX39lDRo0YN26dWM///wzmzt3LuvZs2exu+83b94s9nuuNtnZ2Wz48OFs586djDHLndCYmBi2ePFiduzYMTZhwgTWt29f1rFjR9a3b192+vRpJ49YXSgXVR7lIjEoFzmGclHlUC6SN8pFlUe5SBzKR/ajXFQ5lIucS5WTj19++SXz9/dn3t7ebNWqVcWeGz9+PPPz82O7du1if/zxB7t16xZjrHiCffjhh1WTYLdv387Gjx/PnnvuOdanTx/28ccfs5dffpmlpKQwxhhLTExks2bNYsHBwez555+3vu7s2bMsLi6OureVo7JJgpQtLy+PrV27ljVp0oQ1b96crV+/3vqcwWAo0YFRjbKzs1nr1q3ZrFmz2IEDB9jo0aNZixYtmF6vZ8HBweyXX35hBQUFLCUlpdg2AyIe5aLKo1wkDuUix1EuqhjlIvmiXFR5lIvEonzkGMpFFaNc5Fyqmnw0m80sJyeHLViwgK1bt44NHz6ctWrVih06dKjYcS+++CKTJIkNHjy42F2ptLQ0Nnz4cNUk2KLi4+PZhAkTWJ8+fVifPn2KPZeSksLefvtt1rx5c2t9mKLnje7sla2iJEEqlpeXx9asWcM6duzIRo0axRizXAyTuxYuXMh8fHyYp6cnGz58uLV2yX//+182YMAAeq9VMcpF9qNcJAblIsdRLqoY5SJ5oVxkP8pF4lA+cgzloopRLnIeVU0+3mvTpk3sscceYz179mQHDhywPv7jjz+yqKioYm+8vLw8NmjQILZnzx5nDNUpCu+OFCbJq1evskmTJrGgoCD22WefFTs2NjaW+fv7sxUrVlT1MKs9ShKOy87Otp7Dpk2bsoEDB7KcnBxnD0tWYmJi2JEjR4o9tmTJEjZx4sRiBdNJ1aNcVD7KRVWDcpHjKBdVjHKRfFEuKh/loqpD+cgxlIsqRrnIOSTGyqkirCA//vgjLl26BHd3dzRs2BAjRowAAGzevBnfffcdUlJS8PXXXyM/Px+1atWCr68vtFotjEYjdDod0tPTkZ6ejoiICCf/TapGYQHpe8XGxuL9999HTEwMRo0ahYkTJ1qf69+/P5566inruSWVl5OTgw0bNuCjjz5CZmYm6tWrh9WrV8Pd3d3ZQ6tWpk6dilWrVmHTpk1o3ry5s4cjO4wxHDlyBJIk4fbt2/j888/x+eefo1mzZs4emmpQLrIN5aKqRbmID8pF5aNc5HyUi2xDuajqUT5yHOWi8lEuqnqq6Hb96aef4vvvv4e3tzc2bNiA5557Ds8++ywAoE+fPnjuuecQHh6O9u3bY9asWfD394dWq4XZbIZOpwMA+Pr6qibBMsasCfbgwYPYtWuX9bnatWtj+vTpaNCgARYvXowZM2bgzp07+PDDD5GXl4fhw4c7a9jVmoeHB4YNG4aoqCikp6fj448/puRqo7y8PHh6euKff/6hBFsGk8mEmJgYTJo0CXPnzsUXX3xBCbYKUS6yDeWiqke5yHGUiypGuci5KBfZhnKRc1A+cgzloopRLnIC5y26rBr//PMP69SpE0tOTmaMMXbr1i328ccfM1dXV/biiy9aj3v66aepmC1jxQrRfvDBB6xRo0YsIiKCdevWjcXExFifj4mJYc8//zxzdXVlDzzwAHvnnXesxZOpiLJ9cnNz2RtvvMHOnz/v7KFUW7RMvmIFBQXs3LlzLDEx0dlDURXKRbahXOQ8lIscR7moYpSLnINykW0oFzkX5SPHUC6qGOWiqqX4bde//vorFi5ciHXr1oExBkmSkJKSggULFmDp0qVYtWoVGjVqhDVr1uCxxx4rtqVAbYpuKdi3bx/Wrl2LV155BYwx9O/fH5Ik4eeff0bjxo2h1WqRkZGBtm3bYsiQIZgzZw4kSSpzWwKpHIPBABcXF2cPgxDCGeWiyqNc5HyUiwhRJspFlUe5SB4oHxGiHIr/NIyIiMD+/fuxbt06SJIEAAgICMDQoUORmpqKpKQkuLq6YtSoUdBqtTCZTKpMsKzIloIvv/wS06ZNQ/PmzRESEoLQ0FAcO3YMADBq1ChcuXIFAHD27Fl069YNH330ESVYTii5EqJMlIsqh3KRPFAuIkSZKBdVDuUi+aB8RIhyKPIT8dixY7h8+TIKCgpQq1YtNG3aFF988QW2bdtmPaZp06bo3LlziaSg1WqrerhOZzabrRcgf/75J3766SckJiZi7ty5yMrKAgBIkoRDhw7BxcUFY8aMwUsvvYTs7GwsWrQIOp0OJpOJEiwhhBRBucg2lIsIIYQ/ykW2oVxECCFiKO5Tce7cuXjhhRcwefJkxMTEoGbNmnj11Vdx/fp1zJw5E9988w2MRiNmzJiB3NxcdO3a1dlDdrrC5PjDDz9g7dq12LFjB+bPnw8PDw9MnDgRaWlpAACdTofDhw/j0KFDOHDgAKKjoyFJEhhjqrw4IYSQslAush3lIkII4Ytyke0oFxFCiBiKmnycO3cudu3ahW3btmHWrFlo0qQJAGDw4MH45ptvEBERgWnTpmHIkCE4efIk1q9fb+3epkZF/94ff/wxPvroIxgMBty+fRvR0dF44YUXkJycjMmTJyMnJwcAkJCQgJEjR2Lnzp3Wc1d4d5AQQgjlIltRLiKEEP4oF9mGchEhhIilmIYzubm5GDt2LKZOnYquXbvi2rVruHLlCpYtW4b27dtj2LBhCA4ORnJyMgBLfRNJkmAymVR5d6qwyDQAxMTEYMuWLRg3bhzc3Nysx5hMJixbtgw//fQTwsPDUadOHTz66KNo2rQpAKi2ADUhhJSFcpFtKBcRQgh/lItsQ7mIEELEU8Tk4/bt2xEZGYnhw4ejTZs2CA0NxV9//YXMzEyYzWZotVqMGjUKr7/+erGkoNZCwEUT7FtvvYVZs2bh8ccfx+LFi2EymeDq6lrs4uO3337DmDFj0KVLF/z999+qvCghhJCKUC6yDeUiQgjhj3KRbSgXEUJI1aj2GWb27Nno1asXduz4//buNqbqsoHj+O88uCMPzgzWJFCxUnSK4ENhGmE2QsPSyCRdZi1l05yZVtNaC18gyFBxMmlLLdIwFyqaKWqp90xiluZMB2I1hxbTqUgogjxc94t7niRXdyrn/A/w/byC83gdXpwvu/7/6/r/R3PmzNGBAwe0fv16JSUlKTc3VydPntSMGTNUUVFxy9GojhjYm5cD7N69W2fOnNHkyZNVUFCgw4cPtwjsjeUH169fV2Jionbs2NGhl2MAwN+hRbeHFgFA66NFt4cWAYD3tOlzw4uKinT27FkdOnRILpdLkZGRSkhIkMvlUmBgoPtxFy5ckL+/v4Uj9Q3GGPc/Funp6SouLtbGjRvVuXNnNTc368knn1RJSYkGDBjQ4rEjRozQxIkTZbfbWVIAAH9Bi24PLQKA1keLbg8tAgDvarPflp9++qn279+vCRMmaNiwYWpsbJQkBQUFqbGxUStXrlSfPn1UXFys06dPKy8vT1LLU+s7kpuXUhw6dEjZ2dkaOHCgKisr9cADDyg3N1c2m03Dhw/XkSNH1KdPH5WWlqpfv34KCwuT9L+/HYEFgD/RottDiwCg9dGi20OLAMD72uQ35po1azRnzhw5nU5duHBBI0eOVFBQkDugTqdToaGhWrBggaKjo5WXlyen09lhN1GW/lxKkZGRoaqqKj333HPasGGDpk+frqysLA0dOlQ5OTlyOByKiYnRhAkT1LdvX/cmypI65D8nAPB3aNHto0UA0Lpo0e2jRQDgfW3ygjMVFRUKCgrShx9+qPz8fL344ouaPn26unXr5t67w2az6eLFix3+6m03W7t2rXJycnT48GHZbDadPXtWY8eOVXh4uBYtWqQhQ4aoqalJ3bt3V79+/bRv3z6O6AHA36BFd4YWAUDroUV3hhYBgHe1uZ2FjTHq2bOnAgICNH/+fMXHx2vLli1avXq1amtrZbfb3UeigoKCZLPZZIzp8IGVpF9//VVRUVGy2Wy6fv26wsLCtG3bNpWVlWn+/Pk6cuSITpw4oWnTpmnv3r3uo6IAgJZo0Z2jRQDQOmjRnaNFAOBdbebMx/Xr1+vs2bNqaGjQK6+8oh49erjve+edd1RcXKyXXnpJp06d0ujRo5WYmGjhaH3LjWUXixcvVmFhoTZt2qQePXq4b//+++81atQojR8/Xm+88YZiYmIkiU2UAeAvaNGdo0UA0Dpo0Z2jRQBgjTZx5mN2drbWrVunuro6lZaWKjY2VqdPn3bfn5mZqaeeekrz5s1TWVmZEhISrBusD7pxxHP8+PE6evSo0tLSVFVV5b4/PDxcKSkpOnz4sFauXOm+ncACwJ9o0d2hRQBw92jR3aFFAGANn598zM/PV2FhoXbt2qXU1FS98MIL+v333zV06FCVlpa6H3fffffpscce09atWzkt/m8MGDBAq1ev1ieffKL58+fr0KFDkqTc3FxFRkZq+/bt+vLLL1VcXGzxSAHAt9Ci1kOLAODO0KLWQ4sAwLt8+hBOc3Oz+6ptkrRz506tXLlSW7ZsUWFhoWJjY1VeXq7z589r3LhxmjFjhhwOB6fF/4OpU6cqMDBQs2bN0rfffquAgAB16dJFu3btkp+fn8aNG6du3bpZPUwA8Bm0qPXRIgC4PbSo9dEiAPAenyzRjT037Ha7+vfvrwcffFCnT5/WkiVLtGLFCkVFRalv377avXu3goODFR8fr6KiItlsNjU3NxPYf2Cz2ZSUlKSYmBj99ttvqq2tVWxsrBwOh7Zt26aKigp17drV6mECgOVokefQIgD4d2iR59AiAPAen6zRuXPnZIxRSEiI4uPjJUk//PCDmpqaFBQUJEnq06ePnn/+edntdmVkZLj377DbfX4luU8IDQ1VaGiorly5osLCQpWUlOjo0aP66KOPdP/991s9PACwHC3yPFoEAP+MFnkeLQIAz/O5ycecnBxt2bJFly9fVnNzs9LS0jR69GhVVVXp4MGD+vzzz5WUlKSNGzeqtrZWq1atkt1uZ0nBHaqrq1NZWZnq6uqUk5OjiIgIq4cEAJajRd5FiwDgVrTIu2gRAHiOzRhjrB7EDcuWLdM333yjZcuWKSQkRDExMerZs6c2bdqkwMBAvfnmm1qxYoX69eunsLAw7dixQ06n070cAXemsbFRxhh16tTJ6qEAgOVokTVoEQD8iRZZgxYBgGf4xCExY4yqq6u1Z88eZWRkKCIiQgcPHlRoaKgyMzNVU1OjS5cuafny5UpOTpbL5dKgQYPkcDjU1NQkh8Nh9Udo0zgyCgC0yGq0CABokdVoEQB4huXfrjeOzrlcLtXX16uhoUH79u3TokWLlJ6erqioKGVlZamkpEQFBQUaPny4+7kEFgDQGmgRAMBqtAgA0F5ZPvlYVVWle+65R35+frr33nuVnJysXr16KSsrS8OGDZMkTZo0SWfOnLnluQQWANAaaBEAwGq0CADQXlk6+ZiWlqavvvpKnTp1Uv/+/TV37lzNnj1bNTU1GjZsmPvo35o1a1RfX2/lUAEA7RQtAgBYjRYBANozyy44k5+fr9zcXGVkZGjPnj3Kz89XfX29Zs6cqdWrV6u5uVlxcXEyxujSpUvavHkze3AAAFoVLQIAWI0WAQDaO0smHzdv3qyffvpJL7/8snr37q3r16/r2LFjmj17tqqrq/X1118rLy9P165dk8vl0oIFC+R0OtnLBADQamgRAMBqtAgA0BF4ffIxOztb8+bNU3BwsA4cOKCIiAhJ/9tguaSkRMnJyXr//fc1Y8aMFs8jsACA1kKLAABWo0UAgI7C7s03q6mp0eXLl/Xxxx+ra9eueuutt9z3NTU16eGHH1ZUVBSbKAMAPIYWAQCsRosAAB2JVzcL6dKli1JTUyVJgYGBSk1N1eTJk7Vhwwb3viUBAQFqbm725rAAAB0ILQIAWI0WAQA6Est2Kk5MTJTdbtfbb7+t2NhYzZw5U+fOndP58+e1fv16q4YFAOhAaBEAwGq0CADQ3ll2tWtJqq+v186dO7Vw4UI5HA5lZmbq6aefliQ1NjZyFTcAgMfRIgCA1WgRAKA98+qej3/lcrk0duxYpaWlKSAgwH1k748//iCwAACvoEUAAKvRIgBAe2bpmY831NbWqqioSEuWLFFNTY169+6tgoIC+fn5WT00AEAHQYsAAFajRQCA9sjSMx9v8Pf3V1JSkh599FFVV1crMzOTwAIAvIoWAQCsRosAAO2Rz5zDX1dXp4CAAO3du1cRERFWDwcA0AHRIgCA1WgRAKC98Yll1zc0NDSoU6dOVg8DANCB0SIAgNVoEQCgPfGpyUcAAAAAAAAA7YdP7PkIAAAAAAAAoP1h8hEAAAAAAACARzD5CAAAAAAAAMAjmHwEAAAAAAAA4BFMPgK4RUFBgaKjo2Wz2f71cxYuXKjw8HCNGjXKcwMDAHQo9AgAYDVaBNw9p9UDAOB7Jk6cqODgYD3xxBP/+jnp6elyuVzav3+/5wYGAOhQ6BEAwGq0CLh7nPkIAAAAAAAAwCOYfATamJtP+9++fbueeeYZ9e7dW2lpaaqurtZrr72mIUOGKCEhQVVVVe7nrVu3TtHR0YqJidHgwYP1xRdftHjd7777TlFRURo6dKjGjx+v8vLyW967vLxcY8aM0fDhwzVy5EjNnTtX165d8/hnBgD4HnoEALAaLQLaCAOgzdm3b5+RZJYuXWqMMebkyZPGZrOZ119/3Vy9etU0NTWZESNGmNTUVGOMMbt27TKBgYGmrKzMGGPMsWPHTOfOnc3BgweNMcbU1NSYoKAgk5WVZYwx5urVqyYuLs7c/BVRV1dnwsPDTW5urjHGmIaGBpOYmGhSUlLcj/nggw9MXFycxz8/AMA30CMAgNVoEeD7OPMRaMMmTZokSerbt6+Cg4PVvXt3+fv7y263a8SIEfrxxx8lSWlpaZowYYIiIiIkSZGRkUpISNDixYslSfn5+bpy5YpmzZolSfL399fUqVNbvFd+fr4uXryolJQUSZLT6dSrr76qtWvXqr6+3iufFwDgm+gRAMBqtAjwXVxwBmjDQkJC3D/7+/u3+D0gIEDV1dWSpOPHj2v06NEtnvvQQw+5lxeUlpYqJCREfn5+7vt79uzZ4vHHjx9XU1NTi9epq6tTaGioKisrFR4e3mqfCwDQttAjAIDVaBHgu5h8BNowh8Pxj78bY+74tW022y23BQcHc8U2AMAt6BEAwGq0CPBdLLsGOoCBAwfq559/bnHbL7/8osjISElS//79VVlZ2WKD5IqKilteo7KyUjU1Ne7bGhoaNG3aNDU2Nnpw9ACA9oIeAQCsRosA72PyEegA3nvvPW3dulWnTp2SJJ04cUJFRUV69913JUlTpkxRYGCgVq1aJUm6du2a1qxZ0+I1pkyZorCwMKWnp7tvy87Olt1ul9PJSdQAgP+PHgEArEaLAAtYfMEbALdp586dJioqykgycXFx5uLFiyY+Pt64XC4TERFhPvvsM7N06VLTq1cv07VrV5OcnGyMMSYvL89ERUWZRx55xERHR5uNGze2eN3i4mIzaNAgM3jwYDN27FizfPly93ucOnXKGGNMeXm5GTNmjBk4cKB5/PHHTUpKirly5YoxxpgFCxa43/PZZ5/17h8FAOB19AgAYDVaBLQNNmPuYuMDAAAAAAAAAPgbLLsGAAAAAAAA4BFMPgIAAAAAAADwCCYfAQAAAAAAAHgEk48AAAAAAAAAPILJRwAAAAAAAAAeweQjAAAAAAAAAI9g8hEAAAAAAACARzD5CAAAAAAAAMAjmHwEAAAAAAAA4BFMPgIAAAAAAADwCCYfAQAAAAAAAHgEk48AAAAAAAAAPOK/AYdcLo2Z4VMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Example: FacetGrid Line Plot\n", - "g = sns.catplot(\n", - " data=scores_all,\n", - " kind=\"strip\",\n", - " x=\"model\",\n", - " y=\"ws_distance_pc\",\n", - " hue='dataset',\n", - " col=\"theta\", \n", - " height=4, \n", - " aspect=1 \n", - ")\n", - "g.fig.tight_layout() # Adjust layout to fit everything\n", - "g.set_xticklabels(rotation=45, ha='right')\n", - "# for ax in g.axes.flat:\n", - "# ax.set_yscale('log')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Subsample" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 S1S2static-theta-0.0static-theta-0.5static-theta-1.0
pearson_corr_0.20.0036590.0044360.6415500.4789040.433637
portia_0.2-0.001686-0.0017450.2813230.3401380.390759
pearson_corr_0.50.0048410.0051630.6355270.4708070.433435
portia_0.5-0.001686-0.0017450.2813230.3401380.390759
grnboost2_0.50.0499330.0597090.6812810.5035990.450855
pearson_corr_1.00.0004030.0004970.6527530.4814730.435883
portia_1.0-0.001686-0.0017450.2813230.3401380.390759
grnboost2_1.0-0.023183-0.0277580.6802810.5036650.451488
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "df = pd.read_csv(f'resources/scores/adamson/subsampled.csv', index_col=0)\n", + "df = pd.read_csv(f'resources/scores/op/subsampled.csv', index_col=0)\n", "df.style.background_gradient()" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUPklEQVR4nOzde1iUdf7/8dfMcBIFzAMghUcsI0xCpTQNUPOwZulmrbpulpVlZZpZ2sG0g6nZyX5tbqeVbbXaTm5aqYVJ38otTbIy0tLQykDMA6jIabh/fxCTCAPDYbhv4Pm4Li65P/c99/0eglf3vOeez20zDMMQAAAAAAAAAACowG52AQAAAAAAAAAAWBVNdAAAAAAAAAAA3KCJDgAAAAAAAACAGzTRAQAAAAAAAABwgyY6AAAAAAAAAABu0EQHAAAAAAAAAMANmugAAAAAAAAAALhBEx0AAAAAAAAAADdoogMAAAAAAAAA4AZNdDRbL774ooKDgzV//nyzSwEAAPC6pKQkhYeHy2azmV0KgGaMLAJgFY0xj/Lz83XbbbfJbrcrNTXV7HKaFZroaDK++uorjRs3Tj179lRsbKzOPfdcnX/++ZoxY4a2bt3q2m7//v269NJL9fe//11Hjx41sWIATZEnWZSXl6d//vOfSkxM1Nlnn62YmBjFxsbqySefVGFhocnPAEBlkpOTlZycXOvH79mzR/Pnz9eePXsqrLvzzjvVtWtX5eXl1b7Ak2zbtk3z58/XkSNHyo1v3LhRN954Y70co0xVz6uuSkpK9Mgjjyg6Olrnnnuuzj33XL344osePz4/P19z5szRWWedpXPPPVd9+vTR6tWr671OoCGRRZWzahbt2bNHrVq1UmxsbIWvjz/+uN5rBRoSeVQ5b+bR1q1b1bt3b6WmpsowjBo/nnOjOjKAJuDrr782AgICjNtvv90oKChwjb///vtGYGCgcc8997jG7r77buOpp54yfvzxR0OSMW/ePBMqBtAUeZpFr7zyiuHj42OsXr3atU1KSorh6+tr/PnPf27wugFULyEhwUhISKj14zdu3GhIMjZu3Fhh3ZIlS4yEhIRyuVEXy5cvNyQZGRkZFdbNmzfPqM+XAFU9r7qaNWuWERoaauzevdswDMPYsmWLERAQYPz973/36PFjx441evToYRw4cMAwDMNYvXq14XA4jDVr1tR7rUBDIYsqZ9UsysjIqNN/L8DKyKPKeTOPLr30UiMlJcX1fGp6DM6N6oYr0dEk/Otf/1J+fr7mzp0rPz8/1/jFF1+sa6+9tty2999/v6ZNm9aoPq4DoHGoSRb96U9/0qhRo1zLgwcP1hVXXKG33npLP/74Y4PVDMB8s2bNUmpqarncaO52796tJ554QjNnzlTXrl0lSX369NGkSZN011136dixY1U+/qOPPtIbb7yh+fPnq127dpKkUaNGaciQIZo+fXqtrt4CmjqyqKK6ZhGA2iGPKvfmm29q8ODBtXos50Z1RxMdTUJxcbEkVfpxmQULFmjWrFmuZR8fn4YqC0Az42kWXXnllXrzzTcrbHPGGWdIkg4fPuy9IgFU6vvvv9fo0aMVGxur8847T3379tX8+fOVk5Oj2NhYffHFF/riiy9cH8NftGiRJCkjI0PXX3+9evXqpbi4OPXq1UvTp09XTk6Oa99LlizRddddJ0m67rrrXPs4cuSIrrnmGnXs2FE2m61CdqSkpGjgwIHq2rWrevXqpQsuuECPPPJIlU2b2267Tffdd5+k0jfrYmNj1b9//wrbbdu2TcOHD9dZZ52l6OhovfvuuxW22blzp0aPHq1OnTopKipKAwcO1MaNGz16XpL0/PPPa+DAgerTp4969eqlAQMG6P333/fgv4b01ltvyel0VnihOHjwYOXm5mrt2rVVPv61115zbX/q43/88Ud98cUXHtUBNDSyqGllEdCYkUfWyiOpbv0szo3qgdmXwgP1Yc2aNYYko1OnTsaLL75o5OTkVPuYjIwMpnMBUK9qk0Unu+yyy4zQ0FAjPz/fSxUCcCcqKsqYP3++a3nTpk2Gv7+/62O/7j6y/MorrxgXXXSRcezYMcMwDOPYsWPGmDFjjNGjR5fbrqqP9lb2EeO3337bsNvtxnPPPeca+/e//21IMr788ssqn4snH1meMmWKUVhYaBiGYdx2221GUFCQcfjwYdd2P/74o9GmTRtj3LhxRlFRkWEYhvHUU08Zvr6+xscff+zR8+rRo0e5aas2btxoBAYGGlu3bq2yfsMwjAkTJhiSjEOHDpUb37p1qyGp3FR9lenfv78RHBxcYfzNN980JBnPP/98tTUAZiCLmlYWZWRkGD169DD+9re/GfHx8UZUVJQxatQo44MPPqj22IDZyCNr5VFlz6cm07lwblR3XImOJuGSSy7RwoULtX//fl177bVq166dBg8erGXLlpV7txMAvKkuWbRnzx6tXbtWDz/8sPz9/RuoYgCS9Ntvv2nXrl2KiopyjfXr108LFixQcHBwlY8dNmyYXnvtNbVs2VKS1LJlS02ZMkX//e9/lZ2dXat6DMPQ9OnT1atXL11//fWu8YkTJ+qCCy6Qw+Go1X5PNmXKFPn6+kqSxo8fr6NHj2rLli2u9WVXmj3++OOuq55uueUWdezYUfPmzfPoGKtWrSo3bVViYqJ69uypF154odrHHjhwQJIq/PzLlsvWV/X4yv7befp4wAxkUdPLIofDoZKSEl1//fX6/PPP9c033yg2NlZDhw716PiAWcgj6+VRXXFuVHfMa4EmY86cObrxxhv1n//8R2vWrNGHH36oDz/8UHPnztXrr7+upKQks0sE0AzUJosKCgp01VVX6eqrr64wdzoA72vbtq1iY2N1ww036IsvvtBf/vIXxcfH6/bbb6/2scHBwXrxxRe1cuVKHTx4UD4+Pq6PFO/evVuhoaE1ruf777/Xnj17NGzYsArr/ve//9V4f5Xp0aOH6/u2bdtKkrKyslxj77//vrp166YOHTq4xmw2m2JiYrR27VoVFRW5Xmi6Y7fbdc0112jbtm0qKSmRzWbTrl27FBISUi/PAWhqyKKml0WRkZHauXOnazkgIEAPPPCA1q1bp1mzZulvf/sbF0/AksijppdHqDuuREeT0rp1a91www165513dODAAT399NM6duyYrrrqKrNLA9CM1CSLioqKNH78eHXu3FnLli0zoVoANptNqampuu222/Tmm2+qX79+6tixo5544olqb7I0b948TZs2TXPnztX27du1bds219VEBQUFtarnt99+kyS1adOmyu3K5tks+/r11189PkbZ1WFS6Qs6SXI6neVq2LdvX4VjfPXVVzrttNOqvXdDZmamBgwYoCNHjuijjz7SV199pW3btqlPnz7lfi4nzxcaGxur1atXS5Lrhle5ubnl9lu23L59+yqP365duwqPrcnjATOQRU0vi9y54IILlJOTo+3bt9fq8YC3kUfWy6O64tyo7rgSHU3CF198IafTqfPPP9811rJlS918882uwM7Ozq7VO54A4KmaZlFBQYHGjh2r008/XcuWLZPNZjOrdKDZCwkJ0YMPPqgHHnhAH3/8sR555BHNnDlTwcHBVX5CZPny5br44os1ZMiQequlrGlz6NChKrfbtm1bvR2zshrCw8P15Zdf1urxZW8i3nPPPVV+7Nvdx5djY2P1yiuv6Mcff1Tv3r1d4z/++KMkqVevXlUePzY2Vv/73/908OBB19VkNXk8YBayqGINjTmLcnJy5OfnpxYtWpQbL5t6oqSkxKPnAZiBPKpYg5l5VFecG9UdV6KjSXjnnXf0+OOPV7rO4XDIz8+v2nm7AKCuapJFeXl5uuSSSxQVFaV//OMfrgb6/fffr3feeafBagYgZWdna/r06ZJKr7y66KKL9Pbbb6t169b66quvJEm+vr6uK6+OHz/uuiqooKDAdbVSmczMzArHKPt4b9k+tm7dqu+//77Ses4880x17txZmzdvrrDusssuU2pqapXP59Rjffzxx/rll1+qfMyphg0bpl27drk+fl1m06ZNuummm9weq+x5lV1R5cnPpjKXX365HA6HNmzYUG58w4YNCg4O1vDhw6vc75VXXuna/tTHd+3aVX369PGoDqAhkUUVNfYsmj59up544okK+/3iiy8UGBioc845x6M6gIZGHlVkdh7VFOdG9Y8mOpqMN998U//5z3/KfbRo/fr1WrFihW644QYFBASYWB2A5sKTLMrNzdWwYcP022+/qXfv3lqxYoXra8OGDa6PKwJoGHl5eVq2bJk++ugj19jWrVt19OhR11VUXbp00b59+2QYhj755BPNmDFDkjRq1Ch98MEH+uKLLyRJhw8f1mOPPVbhGJ07d5bNZnO9YJs2bZo+++yzSuux2WxaunSpvvrqKz3//POu8WeffVY7duzQBRdcUOXz6dKliyTpl19+UXFxsf7617+6rjLy1Pz58+Xv768ZM2aoqKhIUumLsZtvvlnR0dHVPq+hQ4fK399fjz76qOvxL730ktsXx6fq1q2bbrvtNj3++OPKyMiQVPrf5F//+pcefvhhBQUFubZduHChIiIi9J///Mc1lpiYqLFjx2r+/PmuTH333Xf1wQcf6Mknn+STP7Aksqiixp5FkrRs2bJyx1u2bJk++eQT3XfffQoMDKzRzwNoKORRRWbnUU1wbuQlBtAE7Nixw7j33nuN/v37G9HR0ca5555rdO7c2ejTp4+xdOlSo7i42LXtl19+afTq1cs4++yzDUlGWFiY0atXL+P+++838RkAaAo8zaKlS5caktx+LV++3NwnAjQzeXl5xvz58424uDijV69eRq9evYzevXsbL730kmubnTt3Gn379jV69OhhxMTEGO+8845hGIaRk5NjXH/99UZERIQRFxdnDBs2zJg/f74hyejWrZuxcOFC1z7mzZtndOzY0YiJiTHGjh1r5OfnG1dffbURGRlpSDLOPvtsY+nSpa7tP/jgA2PAgAFG586djXPPPde44oorjL1793r0nK6//nqjU6dORnR0tHHTTTcZhmEYo0ePNsLCwgxJRq9evYz/+7//M15//XXXOVFkZKQxbdo01z6+//574/LLLzdOP/10IzY21ujbt6/xwgsvVDhWZc/LMAzjvffeM8477zzj9NNPNxISEozbb7/d6NOnj9GyZUujV69exuHDh6t8Dk6n01i0aJHRo0cPo2fPnkZMTEylx3/++eeNoKAg4/333y83fuLECWP27NnGmWeeafTs2dOIi4sz3n77bY9+foAZyKKml0Vff/21MX36dKNnz57Gueeea3Ts2NE4//zzjRUrVnj08wPMQh5ZM4+ef/55o1evXq6fT7du3YxevXoZ7777boXtODeqfzbDqOaOAAAAAAAAAAAANFNM5wIAAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3fMwuoKGVlJTo119/VVBQkGw2m9nlAPAiwzB09OhRRUREyG633nuG5BHQfFg5j8gioHkhjwBYgZWzSCKPgObE0zxqdk30X3/9VZGRkWaXAaAB/fzzzzrjjDPMLqMC8ghofqyYR2QR0DyRRwCswIpZJJFHQHNUXR41uyZ6UFCQpNIfTHBwsMnVAPCm3NxcRUZGuv7urYY8ApoPK+cRWQQ0L+QRACuwchZJ5BHQnHiaR82uiV72MZzg4GCCEGgmrPrxO/IIaH6smEdkEdA8kUcArMCKWSSRR0BzVF0eWW/iKQAAAAAAAAAALML0K9FXrVqlhx9+WAEBAbLb7XrmmWd0zjnnVLptjx49FB4eXm7sl19+UUREhP7v//6vIcoFAAAAAAAAADQjpjbRN2/erEmTJmnr1q3q3r27XnrpJQ0bNkzfffddpfPQhIeHKzU1tdzY2LFjlZSU1EAVAwAAAAAAAACaE1Ob6IsWLdLIkSPVvXt3SdLEiRN15513Kjk5WdOmTauw/fLly8stHzp0SB988IGef/75BqkXDcPpdKqoqMjsMtBI+Pn5yW5nZirUv5KSEhUWFppdBhoJX19fORwOs8sAAMCreK2GmuC1GryF12qoifp6rWZqE33Dhg267777XMt2u129e/dWSkpKpU30Ll26lFt+5ZVXNGLECJ122mlerxXeZxiGsrKydOTIEbNLQSNit9vVpUsX+fn5mV0KmpDCwkJlZGSopKTE7FLQiLRu3Vrh4eGWvUEWAAC1xWs11Aav1eANvFZDbdTHazXTmugHDx5Ubm6uwsLCyo2Hh4dry5YtHu0jOTlZDz30kDfKgwnKTspCQ0MVGBhIEwLVKikp0a+//qrMzEx17NiR3xnUC8MwlJmZKYfDocjISK6eQbUMw1BeXp6ys7MlSR06dDC5IgAA6hev1VBTvFaDN/BaDTVVn6/VTGui5+XlSZL8/f3Ljfv7+7vWVSU9PV1ZWVm6+OKLq9yuoKBABQUFruXc3NxaVAtvczqdrpOytm3bml0OGpH27dvr119/VXFxsXx9fc0up0rkUeNQXFysvLw8RUREKDAw0Oxy0Ei0aNFCkpSdna3Q0FBLT+1CFgGwCvKoceC1GmqL12qob7xWQ23U12s1096yKftlPzmkypY9+UNITk7WVVddVe27TgsXLlRISIjrKzIysvZFw2vK5tUjBFFTZR8NdDqdJldSPfKocSj7XeJjp6ipsv+HWX2uWLIIgFWQR40Dr9VQW7xWQ33jtRpqqz5eq5nWRG/btq1CQkK0f//+cuNZWVnq2rVrlY91Op1auXKlrrnmmmqPc9dddyknJ8f19fPPP9epbngXH/FCTTWm3xnyqHFpTL9bsIbG8jtDFgGwCvKocWks/5+DdTSm3xnyqHFpTL9bsIb6+J0x9caigwYN0tatW13LhmEoLS1N99xzT5WPe//999WtWzdFRUVVewx/f/8KU8YAgBnIIwBWQBYBsAryCIBVkEcAqmPqDPxz5szRu+++q127dkmSVq5cKYfDoUmTJkmSBgwYUGlDPTk52aOr0AEAAAAAAAAAqAtTr0SPj49XcnKyxo0bpxYtWshut2v9+vUKCgqSVHrz0VPnTD9y5Ig2bNigF1980YySYXHOEkObMw4p+2i+QoMCFN+ljRx2PuYDoOGRRwAAAH/g3AiAVZBHqA1Tm+iSNGbMGI0ZM6bSdWlpaRXGWrdurd9++83bZaERWrc9U/evSVdmTr5rrENIgOaNitbwmA4mVgaguSGPAKDpc5Y4lZadpgN5B9Q+sL3iQuPksDuaXQ2AJzg3AmAV5BFqy/QmOlAf1m3P1NQVaTJOGc/KydfUFWlaNjGOMATQIMgjAGj6UvamaNHmRdqft981FhYYpjnxczSk05BmUwPgCc6NAFgFeYS6MHVOdMAdwzCUV1js0dfR/CLNW/1thRCU5BqbvzpdR/OLPNqfYVS2p8otXbpUPXr0UOfOnbVkyRINGTJEnTt31qRJk3TixAlJ0rFjx3T99dfrvPPOU0JCgkaPHq2ffvrJtY8PP/xQSUlJSkxMVL9+/XT11VfryJEjrvWXXHKJWrdurTvvvFNTp07VwIEDZbPZtG3bNqWlpSkhIUGJiYnq37+/Jk+erKysLNdj161bp/j4eJ1//vk699xz9fTTT7vW3XvvvercubMSExO1ZMkSDR48WFFRUXrppZc8fv779+/XlVdeqdjYWA0YMECDBg3S2rVrXet/+OEHjRgxQr1791bPnj11yy23KD+/9N3eN954Q7GxsbLZbHrvvfc0atQoRUREaPTo0eVqe/TRRzVs2DC1bNlSTz75pMe1AfWlMeQRWUQWAWg4KXtTNDN1ZrnmtSRl52VrZupMpexNaRY1oPlqDOdGEudHnB+hOWgMeUQWNZ0s4kp0WNKJIqei71tfL/syJGXl5qvn/Pc92j79gWEK9PPsT2P69OkKCQnRddddJ5vNppSUFB07dkz9+vXT3Llz9eijj2rKlCmSpK1bt8put2vhwoUaMWKEvv76azkcDr333nsaO3asbr75ZhmGoSlTpmjmzJn65z//KUl65513lJiYqFdffVWffvqpIiMjNXnyZDkcDk2YMEGzZs3S5MmT5XQ6dfHFF2vHjh0KDw9Xenq6LrvsMm3YsEEDBgzQL7/8ori4OLVt21bjx4/XQw89JB8fHz322GOaO3eu7rjjDq1evVoTJkzQmDFjXPcmqMqf//xn9ezZU9u2bZMkLViwQM8++6xGjBihgoICDRs2TNddd53uvvtuFRYWaujQoZo+fbqeffZZjR07Vu3atVNSUpK2bNmiNWvWaNeuXZo7d2652mbNmqVZs2Zp+fLlrv/BAA2pMeQRWUQWAWgYzhKnFm1eJKOSl+BlYws+X6Cz2pwlf4e/HDaHfOw+f/xrd8jH5iObrfbzrlZXg002Ld68WEmRSUztAq9oDOdGEudHnB+hOWgMeUQWNZ0sookO1AObzaZbbrlFktSqVStdf/31uuuuuzRlyhS9+uqr2rx5s+z20g9+TJkyRXfffbdSU1M1ePBgzZo1S6eddpprP2PHjtXVV19d4RiDBw9WZGSkJLmCct++fdq7d68kyeFw6Nlnn1Xbtm0lSYsXL1Z8fLwGDBggSTrjjDM0YcIELViwQOPHj3ftNzQ0VIMHD5YkJSYm6vjx49q1a5fOO++8Kp/zxo0btWnTpnLvQE6dOtUVoi+//LJ+/fVXzZgxQ5Lk5+enGTNmaOzYsXrggQcUFhbmelzZ842KitIrr7ziGm/Xrp0uueQSSdI111xTZT0AyKIyZBEAb0nLTqtw9fepfjvxm/701p+q3MZus8vH9kdTvazBXtZsL2u8l1v/+3JeUV6VNRgylJWXpbTsNPUN71ur5wk0JZwfleL8CDAXWVSqMWcRTXRYUgtfh9IfGObRtpszDunq5Vuq3S75mr6K79LGo2PXVFhYmAICAlzL3bp1U15entauXSvDMDR9+nT5+vq61nfq1EkHDhyQJBUWFurmm29Wenq6/Pz8dOTIkXIfrSlzxhlnVBhbuHChbrvtNr3++usaP368Jk+erDZtSp/j9u3bde6555bbPioqSn//+99VVFTkqiciIsK1vizIcnNzq33O27dvl8PhUJcuXVxjbdq00a233upa36FDBwUGBpY7vtPpVHp6erkwrOy5VTUONKTGlEdkUSmyCIC3HMg74NF2PrbSl1nFRnGl60uMEhUahVJJvZVWgae1AjXVmM6NJM6PynB+hKaoMeURWVSqMWcRTXRYks1m8/hjegO7t1eHkABl5eRXOreVTVJ4SIAGdm8vh732H52tixUrVpQLjZONGDFCPXr00MaNG+Xv76/U1FQlJSVV2M7hqBjQN910ky6//HKtWLFCL7zwgh555BGlpKTo/PPP97i2k/db9tHimsw1WB8qe25VjQMNqSnlEVnkeQ2ejANoftoHtvdou+eGPqe+4X1lGIachrP0q8SpopIi1/fFJcUqNopd3zsNZ8XlkmLX984Sp4qMIn1/6Hs9/83z9VYrUFNN6dxI4vyoJjV4Mg40pKaUR2SR5zV4Mu4N3FgUjZ7DbtO8UdGSSkPvZGXL80ZFezUEs7OzVVBQ4FrevXu3AgMDNWLECEnSzp07y21/3333aceOHTp48KDS09M1evRo+fv7Syp9h9FTb7zxhsLCwnT77bfrm2++UUxMjFasWCFJiomJ0a5du8ptv3v3bp111lnl3t2srZiYGDmdTtfHgiTpt99+0zPPPONan5mZqby8vHLHdzgcio6OrvPxASsyO4/IolJkEQBviQuNU1hgmGwVUr6UTTaFB4YrLjSudNlmk4/dR/4OfwX6BirEP0RtAtqofWB7dWjVQZFBkeoc0llRp0XprDZn6Zy25+jc9ucqLixOfcP7ql9EPw08Y6ASIxM1uNNgDe88XDfH3lyjGgAzmX1uJHF+VIbzIzR3ZucRWVSqMWcRTXQ0CcNjOmjZxDiFhwSUGw8PCdCyiXEaHtPBq8d3OBxatmyZpNK7Kr/wwguaOnWqzjzzTI0fP16PPPKI6+7CmzZt0ptvvqmoqCi1adNGYWFh+vDDD137euuttzw+7nXXXafMzEzXcnFxsc4880xJ0uzZs7V582Zt2rRJUuk8WC+//LLuueeeOj9fSUpKSlL//v312GOPucYeffRR7du3T5I0YcIERURE6KmnnpIkFRUVaenSpbr22mvLfSQHaGrMzCOyqBRZBMBbHHaH5sTPkaQKTeyy5dnxs716Q08r1ADUBK/VSnF+BJiP12pkUZ0YzUxOTo4hycjJyTG7FJzkxIkTRnp6unHixIk67afYWWJs2vWb8d8vfzE27frNKHaW1FOF7i1fvtzo1KmT8eyzzxpDhw41OnXqZFx11VVGXl6eYRiGcfToUWPKlCnGWWedZSQmJhqjRo0yfvjhB9fjP/74YyM2NtY499xzjUsvvdSYNm2aIclISEgwsrOzjb/85S9GSEiI0alTJ2PkyJHljn3XXXcZcXFxRmJiotGnTx9j5syZRnFxsWv9e++9Z/Tp08eIj483YmJijP/3//6fa93ChQuNTp06GSEhIcbf/vY348iRI0ZCQoIhyejVq5fx/vvvV/vcMzMzjbFjxxq9evUyLrzwQuOmm24yCgsLXeu///57Y9iwYUZcXJwRExNj3HTTTa6fy9q1a41evXq5nuvrr79eaW0JCQnlfl6nqup3x+p/71avr7lqrHlEFpmbRYbRePPIyrUBVvXBng+Mwa8NNmKSY1xfQ14bYnyw5wPL12Dlv3kr19acNdZzI8Pg/Mjs86PGem5kGNavr7lqrHlEFjWN12o2w2jgSWxMlpubq5CQEOXk5Cg4ONjscvC7/Px8ZWRkqEuXLuVutNAYJCcna/78+dqzZ4/ZpTRLVf3uWP3v3er1NVeNNY/IIvM11jyycm2AlTlLnErLTtOBvANqH9hecaFxDX71d21qsPLfvJVra84a67mRxPmR2RrruZFk/fqaq8aaR2SR+eojj7ixKAAAAADUkMPuUN/wvs2+BgAAgOaAOdGBOli6dKkWLVqkrKwsJSYm6sSJE2aXBKAZIosAAADK4/wIgBWQRU0HV6IDdTB9+nRNnz7d7DK8Ytu2bZoxY0al6wYMGKCHHnqoYQsC4BZZBAAAUB7nRwCsgCxqOmiiA6hUbGysUlNTzS4DQDNHFgEAAJTH+REAK2huWcR0LgAAAAAAAAAAuMGV6AAAAICHnCWGNmccUvbRfIUGBSi+Sxs57DazywIAAADgRTTRAQAAAA+s256p+9ekKzMn3zXWISRA80ZFa3hMBxMrAwAAAOBNTOcCAAAAVGPd9kxNXZFWroEuSVk5+Zq6Ik3rtmeaVBkAAAAAb6OJDgAAAFTBWWLo/jXpMipZVzZ2/5p0OUsq2wIAAABAY0cTHbCw1NRUJScnlxvLz89XZGSktmzZYk5RAJodsgjN3btf/1rhCvSTGZIyc/K1OeNQwxUFADAV50cArIAsajg00dG0lDiljI+lb94o/bfEaXZFdVJZGPr6+uqss85ScHCwOUUB8EwTyiOyCM1NYXGJNu36TQveTdeQxz/Sra9u8+hx2UfdN9oBoNlrQudGEudHQKPWhPKILGo43FgUTUf6amndbCn31z/GgiOk4Yul6EvNq6ueORwOpaSkmF0GgKo0gzwii5onZ4mhzRmHlH00X6FBAYrv0kYOu83ssupFVk6+Undma+PObH3yw286XvjHiym7TfJkppbQoAAvVggAjVgzODeSOD8CGoVmkEdkkXdwJTqahvTV0mtXlQ9BScrNLB1PX+2Vwy5dulQ9evRQ586dtWTJEg0ZMkSdO3fWpEmTdOLECUnSsWPHNGXKFPXs2VNxcXEaNWqU9uzZI0natWuXEhMTZbPZ9OKLL2rs2LHq2bOnWrdurccff1zJycnatm2bEhMTlZiYqBMnTmjo0KFq3bq15s+f76rj9ddf14UXXqikpCTFx8dr5syZKigo8MpzBlANE/KILEJDWLc9UwMWf6jxz3+m6a9u0/jnP9OAxR822htqFjtLtGXPIT2ybodGLP1YFyzcoDlvfaP13+7X8UKn2rXy0+VxZ+jpCefpi3suVoeQALl7u8AmqUNI6ZsKAIBT8FqN8yPAKnitRhbVAVeiw5oMQyrK82zbEqe09k7J7e2+bKXvMnZNlOyO6vfnGyjZPLuqbvr06QoJCdF1110nm82mlJQUHTt2TP369dPcuXP16KOPasqUKTpy5Ii+/PJL+fj46O6779bIkSP19ddfKyoqSqmpqbLZbHr99df19ttvy9fXV/369dPMmTOVm5ur1NRUpaamuo75/vvvKzExsVwd//nPf1z7LSoq0qhRo7R48WLdd999Hj0PAFVoBHlEFsHb1m3P1NQVaRV+s7Ny8jV1RZqWTYzT8JgOptRWEwePFeij7w9o484D+r/vDyjnRJFrnc0m9TqjtZLOClVSj/aKiQiR/aSr7OeNitbUFWmyqfxfuO2k9U3lqnwAqFIjODeSOD8CmoVGkEdkUdNBEx3WVJQnPRxRTzszSt9lXBTp2eZ3/yr5tazREWw2m2655RZJUqtWrXT99dfrrrvu0pQpU/Tqq6/qgw8+kI9P6Z/bHXfcoUWLFmnVqlUaO3asax/jx4+Xv7+/JOnzzz+v0fGfeOIJnXHGGZJK574aM2aMkpOTCUOgPjSiPCKL4A3OEkP3r0mv6uWG7l+TroujwxukiVyTKWVKSgx9sy9HG3dma+POA/r6lyMyTnoiIS18lXBmeyX1aK+LurdX21b+bo87PKaDlk2M0/1r0svdZDQ8JEDzRkU3ijcRAKBeNKJzI4nzI6BJa0R5RBY1fjTRgXoQFhamgIA/5kHt1q2b8vLytHbtWhmGoaioKNe60047TW3atNE333xTLgzLwqw2cnNzNWHCBO3du1d+fn7KysriYzlAM0QWwRs2Zxwq1zQ+lSEpMydfQx//SF1DWyks2F9hQQEKCw5QaLC/QoMCFBbsr9MC/cpd2V0b67ZnVmhidziliZ2TV6T/++GANu7M1kc7D+jg8cJy+4juEKykHu2VdFaoYiNby8fh+eyGw2M66OLo8CY7LzwANEWcHwGwArKo8aOJDmvyDSx9V88TezdJK8dWv91f35A69ffs2CZwODz4uFAljh8/rkGDBukvf/mLVq5cKbvdruTk5HJzXwGog2aWR2QRTpV91H0D/WS7fzuu3b8dd7ve12FTaFBpYz3s98Z6aPDvzfYgf4UFl46FtPCVrZKPxlY1pcyNK9J0WWyEfj1yQmk/HZHzpLuAtvL30YCodkrq0V4JZ4YqPKRuN/902G3q161tnfYBAI1aMzs3kjg/AiyrmeURWWQumuiwJpvN84/FdBtUeifl3ExVPreVrXR9t0GezWtVC9nZ2SooKHB9rGb37t0KDAzUiBEjNGPGDO3atUudOnWSJB0+fFiHDh1Sz549q92v3f7H1XH5+flyOBzy9fUtt82OHTuUnZ2tK664wrV9YWH5q+4A1EEjyiOyCN4QGuRZ0/n2i8/UaS39lJ2br/25Bdp/tPTf7Nx8HTxeqCKnoX1HTmjfkRNV7sfPx17havb2Qf569qMf3U4pI0lvb/vjBVT30FZK6hGqxLPaq0+nNvLz8fxqcwBANRrRuZHE+RHQpDWiPCKLGj9eUaDxszuk4Yt/Xzj1yrXfl4cv8tpJmVT6buCyZcskld5V+YUXXtDUqVN15plnavz48XriiSfkdDolSY899pjOPvtsjR49utr9tm/fXocPH5YkzZw5U++//36FbTp37qwWLVpow4YNkiSn06m33367np4ZgBoxOY/IInhDfJc26hASUOE3uoxNpVOq3JQUpYkXdNLMoWdp8dhzlXxNvNZOH6itcy/W9w+N0KdzBumtm/rrHxN764HLztHNSd00tvcZGti9nc4KC1LrwNKT/cLiEv186IS+2HtY736TqeWf7tEj63aWuwmoO5Mv7KyP70zSBzMTdPefzlb/bu1ooAOAmXitxvkRYBW8ViOL6ohXFWgaoi+VrnxJCj7lpl7BEaXj0Zd69fBhYWEKDAzUsGHDFBMTo/POO08PPvigJOm5555TRESEYmNjFRcXp23btundd9+Vj4+PsrKyXHdMnjFjhu69995y+7388svl7++vAQMGaO/evRoyZIiGDh2qbdu2KTk5Wffee6/atm2rlStX6pVXXtH555+vsWPHKiwsTFlZWRo8eLBXnzeASpiYR2QRvMFht2neqGhJbl9uaN6o6CrnBffzsev01i0U1/E0DY8J11X9OuuOYT306BW99O9rz9f62y7StvuGaseDw/XxnUl6c2o/PfPXOM0bFa0bE7qpb6fTPKq1V2RrRbYx56P+AAA3eK3G+RFgFbxWI4vqwGYYRmWfYWiycnNzFRISopycHAUHB5tdDn6Xn5+vjIwMdenSpdyNFmqsxFk6z9Wx/VKrsNJ5rLx4VYMk1zxSe/bs8epxULmqfnes/vdu9fqaq8aaR2SR+RprHnlamyc39fSW/+0+qPHPf1btdq9cfwHzlQPVaAp5hIbVWM+NJM6PzNZYz40k69fXXDXWPCKLzFcfecSc6Gha7A6py0CzqwAA8ghNzvCYDro4OlybMw4p+2i+QoMCFN+lTZVXoNeXsillsnLy3c1gqfCQ0noAABbFuREAqyCPUAtM5wLUwdKlS7Vo0SLXx2tOnKj6ZmkA4A1kERqKw25Tv25tdVns6erXrW2DNNDLjlvXKWUAAM0L50cArIAsajpoogN1MH36dO3YsUP5+flKTU1VixYtzC4JQDNEFqE5GB7TQcsmxik8pPzHL8NDArRsYpzXp5QBADQunB8BsAKyqOlgOhcAAAA0CmZOKQMAAACg+aKJDgAAgEajbEoZAAAAAGgoTOcCAAAAAAAAAIAbNNEBAAAAAAAAAHCDJjoAAAAAAAAAAG7QRAcAAAAAAAAAwA2a6ICFXXPNNQoPD9fVV19tah3z58/Xnj17yo299tprGjp0qAYPHqy+ffvqiiuuqLANgKaDPAIAAPgD50YArII8ahg00dGkOEuc2pK1Re/9+J62ZG2Rs8Rpdkl1snz5cg0fPtzsMnT//fdXCLmJEyfq9ttv14YNG/T555+rRYsWGj58uAoKCswpErAY8sg7yCMAABonzo28g3MjoObII+9o6nnkY3YBQH1J2ZuiRZsXaX/eftdYWGCY5sTP0ZBOQ0ysrGm67LLLNGzYMEmS3W7Xrbfeqr59+yotLU39+vUzuTrAXORRwyKPAACwNs6NGhbnRoB75FHDakp5ZIkr0VetWqW+fftq4MCBSkhI0Lffflvl9j/++KMuv/xyJSUl6ZxzztEFF1ygL774ooGqhRWl7E3RzNSZ5UJQkrLzsjUzdaZS9qZ47djHjh3ThAkT1KVLFw0ZMkSPPfaYOnfurB49euihhx5SbGysbDab3nvvPY0aNUoREREaPXq07r33XnXu3FmJiYlasmSJBg8erKioKL300ksVjuF0OnXbbbcpISFBnTt31pIlS8qt/+GHHzRixAj17t1bPXv21C233KL8/HzX+uLiYs2ZM0cxMTHq27evkpKS9NVXX7nW//jjjxo+fLguuugiDRw4UFdeeaV27typQ4cOKTExUZI0Y8YMJSYmatmyZZKk119/vVwNAQEBktQo300E6hN5RB4BAIA/cG7EuRFgFeQReVQnhsk+//xzIygoyPj+++8NwzCMf/3rX8bpp59u5ObmVrp9dna20blzZ+Ojjz4yDMMwioqKjKSkJOOVV17x6Hg5OTmGJCMnJ6d+ngDqxYkTJ4z09HTjxIkThmEYRklJiXG88LhHX7n5ucag1wYZMckxbr8GvzbYyM3P9Wh/JSUlNar9hhtuMPr27Wvk5eUZhmEYjzzyiOFwOIzly5cbhmEYGzduNCQZ8+fPNwzDMH744Qdj3LhxhmEYxrx584xWrVoZKSkphmEYxttvv220bNmy3O//pEmTjFatWhmfffaZYRiG8d133xkBAQHGmjVrDMMwjPz8fKNLly7GggULDMMwjIKCAiMhIcGYMmWKax933XWXcd555xlHjx41DMMwnn32WaN9+/bGkSNHDMMwjBEjRhhz5851bX/VVVe56jcMw5BkbNy4scqfw3PPPWdEREQYhYWFnv/w6sGpvzsns/rfu9Xra67II/KothprHlm5NgD1z8p/81aurTnj3Ihzo9pqrOdGhmH9+por8og8qq36yCPTp3NZtGiRRo4cqe7du0sqnSvnzjvvVHJysqZNm1Zh+8WLF6tfv3666KKLJEk+Pj567rnnFBgY2KB1w7tOFJ/Q+S+fX2/725+3X/1f7e/Rtp9P+FyBvp79Ph07dkzLly/XP/7xD7Vo0UKSNG3aNN19990Vti27wUNUVJReeeUV13hoaKgGDx4sSUpMTNTx48e1a9cunXfeea5tYmNjdf75pT+PHj16aMSIEXrqqad0ySWX6OWXX9avv/6qGTNmSJL8/Pw0Y8YMjR07Vg888ICCg4P1xBNP6Omnn1arVq0kSddee63uvvtuPf/885o1a5b27dunsLAwOZ1OORwOLViwQDabzaOfgVT6DuKSJUv09NNPy9fX1+PHAY0BeUQeAQCAP3BuxLkRYBXkEXnUkEyfzmXDhg3q06ePa9lut6t3795KSan8IxRvvfWWq4FeJioqShEREV6tE6jM7t27VVhYqK5du7rGAgICFBoaWmHbM844o9J9nPy7GxQUJEnKzc0tt02nTp3KLXfr1k3fffedJGn79u3q0KFDuTeSoqKi5HQ6lZ6erl27dik/P19RUVGu9Q6HQ507d9Y333wjqfTmD2+88Ya6deumOXPmKC8vT6effrpHPwNJuuGGG/SXv/xFY8aM8fgxAOoXeVSKPAIAABLnRmU4NwLMRx6Vaux5ZOqV6AcPHlRubq7CwsLKjYeHh2vLli0Vtj9+/LgyMjLkdDr117/+VXv27FGrVq00Y8YMjRgxoqHKRgNo4dNCn0/43KNtt+7fqps23FTtds8Mfka9w3p7dOy6quydOIfDUem2J4+XPc4wjDrXUBOjR4/WL7/8oldffVUvvPCCHnvsMb3++usaPXp0tY+dM2eOAgMD9eCDD3q/UMAE5BF5BAAA/sC5EedGgFWQR+RRQzL1SvS8vDxJkr+/f7lxf39/17qTHTlyRJI0d+5c3Xnnnfr000915513atSoUfrggw8qPUZBQYFyc3PLfcH6bDabAn0DPfrqH9FfYYFhsqnyj5DYZFN4YLj6R/T3aH81+ShKt27d5Ovrqx9//NE1VlBQoP3791fxqJr76aefyi3v3r1bZ599tiQpJiZGmZmZ5f5mdu/eLYfDoejoaEVFRSkgIEC7du1yrXc6ndqzZ4969uwpSXrjjTcUEhKiG264QVu2bNGYMWP04osvurY/+Wdy9OhR1/eLFi3Szz//rKefflqStHXrVm3durUen3nTQh41TuRReeRR40cWAbAK8qhx4tyoPM6NmgbyqHEij8ojj7zL1CZ62UcITr0ja0FBQaVznJe96zJq1Cj16tVLkjR48GANGjRIS5curfQYCxcuVEhIiOsrMjKyPp8CLMBhd2hO/BxJqhCGZcuz42fLYa/83by6aNWqlSZPnqxly5bpxIkTkqRly5bJx6d+P+Tx+eefuz6dsWPHDq1du1a33nqrJGnChAmKiIjQU089JUkqKirS0qVLde211yosLEwtWrTQbbfdpmeeeUbHjx+XJC1fvlx2u13XX3+9JGn27Nnavn2763hFRUU688wzXcvt27fX4cOHlZ2drUGDBkmS/vGPf2jFihWaNm2a0tLS9MUXX2jNmjWuj/mgIvKo6SOPyKPGgCwCYBXkUdPHuRHnRo0FedT0kUfkUZ15446nNRESEmI8+uij5cb+9Kc/GZdddlmFbYuLiw1/f3/jrrvuKjd+3XXXGdHR0ZXuPz8/38jJyXF9/fzzz9xh2YKqukuupz7Y84Ex+LXB5e6sPOS1IcYHez6ox0orOnr0qDF+/Hijc+fOxtChQ43nn3/e6Nixo7FixQpj7dq1Rq9evQxJRkJCgvH666+7Hrdw4UKjU6dORkhIiPG3v/3NOHLkiJGQkGBIMnr16mW8//77xtVXX22EhYUZ48aNM6ZMmWIMHDjQ6Nixo7F48eJyNXz//ffGsGHDjLi4OCMmJsa46aabXHd8NgzDKCoqMmbPnm2cc845Rp8+fYyEhATjyy+/dK1/8sknXePx8fHGNddc47obs2EYxlNPPWWcddZZRnx8vPHmm28aubm5ht1uNyRV+Dr5zswNoTHd8Z08ahzII/KothpLHpFFQPNGHqGmODfi3Ki2Gsu5kWGQR40FeUQe1VZ95JHNMBp4Ap1T/PnPf1ZAQIBefvllSaXz+UREROiee+7RLbfcUmH7wYMHq2PHjlq+fLlr7NJLL1VRUZHWrl1b7fFyc3MVEhKinJwcBQcH198TQZ3k5+crIyNDXbp0UUBAQK334yxxKi07TQfyDqh9YHvFhcZ55V3Ekx0+fFjBwcGuT0qUlJSoZcuWSklJ0YUXXujVY6Pq3x2r/71bvb7mijxCbTXWPLJybQDqn5X/5q1cW3PGuRFqq7GeG0nWr6+5Io9QW/WRR6beWFQqnVj+4osv1q5duxQVFaWVK1fK4XBo0qRJkqQBAwYoISFBCxYskFT60YFx48bpp59+UseOHZWenq73339fb7zxhplPAxbhsDvUN7xvgx5zwYIF6tmzp+t39oUXXlDHjh3Vt2/D1gHAWsgjAACAP3BuBMAqyCPUhulN9Pj4eCUnJ2vcuHFq0aKF7Ha71q9fr6CgIEmlNx89ec70oUOH6qmnntJll12mVq1aqbi4WP/61790ySWXmPUU0MwNGTJEDz74oJYvX67i4mK1bt1a77zzjvz8/MwuDUAzQx4BAAD8gXMjAFZBHjV+pjfRJWnMmDEaM2ZMpevS0tIqjE2cOFETJ070dlmAR4YPH67hw4ebXQYAkEcAAAAn4dwIgFWQR42f3ewCAAAAAAAAAACwKprosBST73OLRojfGXgLv1uoKX5nAABNGf+fQ03xOwNv4XcLNVUfvzM00WEJvr6+kkrnwAdqorCwUJJcd7gG6qrsd6nsdwvwVNn/w8r+nwYAQFPAazXUFq/VUN94rYbaqo/XapaYEx1wOBxq3bq1srOzJUmBgYGy2WwmVwWrKykp0YEDBxQYGCgfH+IM9cPHx0eBgYE6cOCAfH19ZbfzfjOqZhiG8vLylJ2drdatW/NCEQDQpPBaDbXBazV4A6/VUFP1+VqNJINlhIeHS5Lr5AzwhN1uV8eOHTmRR72x2Wzq0KGDMjIytHfvXrPLQSPSunVr1//LAABoSnithtrgtRrqG6/VUFv18VqNJjosoywMQ0NDVVRUZHY5aCT8/Px49xn1zs/PT927d+djgvCYr68vV6ADAJosXquhNnitBm/gtRpqqr5eq9FEh+U4HA4aEQBMZ7fbFRAQYHYZAAAAlsFrNQBWwGs1mIG3BAEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADR+zCwAAAAAAAEDtOEucSstO04G8A2of2F5xoXFy2B3NrgYA8CZLNNFXrVqlhx9+WAEBAbLb7XrmmWd0zjnnVLrt/Pnz9d///letW7d2jbVp00ZvvfVWA1ULAAAAAABgvpS9KVq0eZH25+13jYUFhmlO/BwN6TSk2dQAAN5mehN98+bNmjRpkrZu3aru3bvrpZde0rBhw/Tdd98pKCio0sc8+eSTSkxMbNhCAQAAAAAALCJlb4pmps6UIaPceHZetmamztTjiY97vYlthRoAoCGY3kRftGiRRo4cqe7du0uSJk6cqDvvvFPJycmaNm2aydUBAAAAAABYi7PEqUWbF1VoXktyjd336X36Kfcn2Wy2Cutcy4bhdl1125UYJfrXt/9yW4NNNi3evFhJkUlM7QKg0TO9ib5hwwbdd999rmW73a7evXsrJSWFJjoAAAAAAMAp0rLTyk2fUpmjRUf1RNoTDVRRRYYMZeVlKS07TX3D+5pWBwDUB1Ob6AcPHlRubq7CwsLKjYeHh2vLli1uH/fPf/5T8+fPV1FRkaKionTfffepW7du3i4XAAAAAADAdAfyDni0XVxonE5vdXq5q9FPZdMf607e7uTxytb9fPRnbc7aXG+1AoCVmdpEz8vLkyT5+/uXG/f393etO1XHjh0VEhKif/7zn7Lb7XrggQfUu3dvffvttzr99NMrbF9QUKCCggLXcm5ubj0+AwDwHHkEwArIIgBWQR4Btdc+sL1H291y3i1euwp8S9YWj5rontZqJvIIQHXsZh48MDBQksoFVdly2bpTTZ48Wbfddpt8fHxkt9s1d+5cBQQE6Jlnnql0+4ULFyokJMT1FRkZWb9PAgA8RB4BsAKyCIBVkEdA7cWFxiksMKzC1eJlbLIpPDBccaFxTbqG+kIeAaiOqU30tm3bKiQkRPv3l5/HKysrS127dvVoHw6HQ507d9bu3bsrXX/XXXcpJyfH9fXzzz/XuW4AqA3yCIAVkEUArII8AmrPYXdoTvwcSZVMu/L78uz42V69oacVaqgv5BGA6pjaRJekQYMGaevWra5lwzCUlpamIUOGVLr99OnTK4z9+uuv6tixY6Xb+/v7Kzg4uNwXAJiBPAJgBWQRAKsgj4C6GdJpiB5PfFyhgaHlxsMCw/R44uMa0qnyvkpTq6E+kEcAqmPqnOiSNGfOHF188cXatWuXoqKitHLlSjkcDk2aNEmSNGDAACUkJGjBggWSpNWrV2vw4MG69NJLJUkvvPCCDhw4oMmTJ5v2HAAAAAAAABrakE5DlBSZpLTsNB3IO6D2ge0VFxrXoFd/W6EGAPA205vo8fHxSk5O1rhx49SiRQvZ7XatX79eQUFBkkpvPnrynOkLFizQk08+qccff1yFhYXy9/dXSkqKevToYdZTAAAAAAAAMIXD7vDazUMbUw0A4E2mN9ElacyYMRozZkyl69LS0sotT5gwQRMmTGiIsgAAAAAAsCRniaHNGYeUfTRfoUEBiu/SRg575Td4BAAAdWOJJjoAAAAAAJ5q7g3kddszdf+adGXm5LvGOoQEaN6oaA2P6WBiZQAANE000QEAAAAAjUZzbyCv256pqSvSZJwynpWTr6kr0rRsYlyz+DkAANCQ7GYXAAAAAACAJ8oayCc30KU/GsjrtmeaVFnDcJYYun9NeoUGuiTX2P1r0uUsqWwLAABQWzTRAQAAAACW11wbyIZh6NcjJ/Thjv26Z9U3Fd5AKLetpMycfG3OONRwBQIA0AwwnQsAAAAAwPI2ZxzyqIG8cUe2hkSHNVxh9eh4QbG+339UO7KOakdmrr77/d/c/OIa7Sf7qPufEwAAqDma6AAAAAAAy/O0MXzdS18opIWvOrUNVMc2pV+l37dUp7aBCg8OkL2ONyGt641NS0oM/XQoTzuycvVd5lHtyMrVjqyj2nswr9Ltfew2dWvfSm1b+WnT7oPV7j80KMDjWgAAQPVoogMAAAAALK8mjeGcE0X6+pccff1LToV1fg67zmjTQp3aBKpT25YnNdkDFdkmUAG+jir3XdMbmx7JK3RdWb4jq/Qq851ZR3WiyFnp/tsH+atHeJDO7hCsHuFB6hEerG6hLeXv45CzxNCAxR8qKye/0mltbJLCQ0qb+gAAoP7QRAcAAAAAWF58lzbqEBJQbQP5/dsu0r4jJ7T3YJ5+PpSnvQfztPdQnn46eFy/HD6hQmeJfjxwXD8eOC7pQIX9hAcHqGPbQHX6/Sr2jm1Lm+2d2gTqsx8P6qaVaRWOX3Zj03sviVa7Vn7lmubupqDx87HrrLCg0kb57w3zs8KD1K6Vv9ufgcNu07xR0Zq6Ik02qVwdZdfBzxsVXaOr4gEAQPVoogMAAAAALM/TBnJQgK96hPuqR3hwhX0UO0uUmZOvn1zN9eP66WCefjqUp58O5uloQbGycvOVlVv5zTlPPW6ZsrEH30mvtPbTW7fQ2R1Kryrv8fu/ndsGysdhr8FPoNTwmA5aNjGuwtXw4VVcDQ8AAOqGJjoAAAAAoFGoawPZx2FX5O/TtlwYVX6dYRg6nFekvQePu5rqe13/Htf+3IJKG+inOjOslfp2bqMeHYJ1dniQzgwPUnCAby2erXvDYzro4ujwOs3LDgAAPEcTHQAAAADQaHirgWyz2dSmpZ/atPTTeR1Pq7D+ja0/a9brX1e7n5uTonRZ7Ol1qsUTDrtN/bq19fpxAAAATXQAAAAAQCNjRgP59NaBHm1XkxugAgCAxqHmE7ABAAAAANDMlN3Y1N317jZJHUJKr4oHAABNC010AAAAAACqUXZjU0kVGukn39iUeckBAGh6aKIDAAAAAOCBshubhoeUn7IlPCRAyybGVXtjUwAA0DgxJzoAAAAAAB7y1o1NAQBA3TlLnErLTtOBvANqH9hecaFxctgddd4vTXQAAAAAAGrAjBubAgBgdd5qYHsqZW+KFm1epP15+11jYYFhmhM/R0M6DanTvmmiAwAAAAAAAABqzZsNbE+PPzN1pgwZ5caz87I1M3WmHk98vE51MCc6AAAAAAAAAKBWyhrYJzfQpT8a2Cl7U7x6fGeJU4s2L6rQQJfkGlu8ebGcJc5aH4Mr0QEAAAAAAAAANeZJA3vup3P1/eHvS7c3nCoxSlxfTsMpwzBc45Utn7z9yWNl2x7OP1yhgX9qHVl5WUrLTlPf8L61ep400QEAAAAAAAAANZaWnVZlA1uSjhUd07KvljVQRe4dyDtQ68fSRAcAAAAAAAAA1Jinjenzw89X55DOstvsctgcstlsctgcHi2XfZ28fPL3GTkZev6b56utoX1g+1o/T5roAAAAAAAAAIAa87QxfUOvG2o9lUp1nCVOrd69Wtl52ZVOK2OTTWGBYYoLjav1MbixKAAAAAAAAACgxuJC4xQWGCabbJWut8mm8MDwOjWwq+OwOzQnfo7reKceX5Jmx8+Ww+6o9TFoogMAAAAAAACoFWeJof/tPqi3t+3T/3YflLOk4pXAaLoaooHtiSGdhujxxMcVGhhabjwsMEyPJz6uIZ2G1Gn/TOcCAAAAAAAA1JCzxNDmjEPKPpqv0KAAxXdpI4e98qtxm2oN67Zn6v416crMyXeNdQgJ0LxR0Roe06HB6oC5yhrYizYvKneT0bDAMM2On13nBnZN6kiKTFJadpoO5B1Q+8D2iguNq5cGPk10AAAAAAAAoAas0Dw2u4Z12zM1dUVahRmos3LyNXVFmpZNjKOR3ox4s4FdEw67wytzrzOdCwAAAAAAAOChsubxyc1r6Y/m8brtmU2+hvwip+at/raSWzjKNXb/mnSmdmlmyhrYf+r6J/UN79vgDXRv4kp0AAAAAAAAwAPOEkP3r0l32zy2qbR5fHF0uNemVfGkhvlr0tWnUxsVOkuUV+hUfpFTeYVOnShy6kRhsU6ULf/+lVf0x/dl60ofU6wTRSXlHpNf5FSRs+rmuCEpMydfmzMOqV+3tl74KQANiyY6AAAAAAAA4IHNGYcqXP19srLmccy8dfJx2GWTZLPZZLPJ9b1U9n3pd3+s++NGjBW2t5VtLxUUlSj7aEGVNWTl5KvPgpS6Pdl6kH3U/c8KaExoogMAAAAAAAAe8LQpfKKoRCoq8XI11fNz2BXga1egn49a+DnUwtehFn4OBfo5FOBb+m/ZWAvfk8d9ym9zymO378vR9S9trfb4oUEBDfAsAe+jiQ4AAAAAAAB4wNOm8ONX9lJsZGsZkgxDkgwZhlzLxu/Lqma5bNIUwzBcj92+74jmrU6vtoYV18ZrQPf2NXuCHgoNClCHkABl5eRXOq2MTVJ4SIDiu7TxyvGBhkYTHQAAAAAAAPBAfJc2HjWPL4s93WtzosdGttY/Pvqx2hr6dWvnleNLksNu07xR0Zq6Ik02qVwdZc963qhor/0MgIZmN7sAAAAAAAAAoDEoax5LfzSLyzRU89gKNUjS8JgOWjYxTuEh5a/ODw8J0LKJcRoe08GrxwcaEleiAwAAAAAAAB4qax7fvya93E1Gw0MCNG9UdIM0j61QQ1kdF0eHa3PGIWUfzVdoUOkULlyBjqaGJjoAAAAAAABQA1ZoHluhBqn0yvh+3do26DGBhkYTHQAAAAAAAKghKzSPrVAD0BwwJzoAAAAAAAAAAG7QRAcAAAAAAAAAwA2a6AAAAAAAAAAAuEETHQAAAAAAAAAAN2iiAwAAAAAAAADgBk10AAAAAAAAAADcML2JvmrVKvXt21cDBw5UQkKCvv32W48e9/TTT8tmsyk1NdW7BQIAAAAAAAAAmi0fMw++efNmTZo0SVu3blX37t310ksvadiwYfruu+8UFBTk9nG//vqrlixZ0oCVAgAAAAAAAACaI1OvRF+0aJFGjhyp7t27S5ImTpyo4uJiJScnV/m4adOm6e67726ACgEAAAAAAAAAzZmpTfQNGzaoT58+rmW73a7evXsrJSXF7WPWrFkjX19fDRs2rCFKBAAAAAAAAAA0Y6ZN53Lw4EHl5uYqLCys3Hh4eLi2bNlS6WOOHz+ue+65R+vXr1dBQUFDlAkAAAAAAAAAaMZMa6Ln5eVJkvz9/cuN+/v7u9adau7cubrxxhvVoUMH7dmzx6PjFBQUlGu45+bm1q5gAKgj8giAFZBFAKyCPAJgFeQRgOqYNp1LYGCgJFW4orygoMC17mRpaWn6/PPPdeONN9boOAsXLlRISIjrKzIysvZFA0AdkEcArIAsAmAV5BEAqyCPmoASp5TxsfTNG6X/ljib1/GtUkMTZjMMwzDr4K1bt9bcuXN1++23u8ZGjhwpX19f/fe//y237YMPPqhVq1YpODhYkpSfn6/PP/9cvXr1UuvWrfXCCy8oKiqqwjEqezcxMjJSOTk5rn0BaJpyc3MVEhJimb938ghovqyUR2QR0LyRRwCswEpZJJFHjV76amndbCn31z/GgiOk4Yul6Eub/vGtUkMj5WkemTadiyQNGjRIW7dudS0bhqG0tDTdc889FbadO3eu5s6d61res2ePunTpoieffFKJiYluj+Hv719hyhgAMAN5BMAKyCIAVkEeAbAK8qgRS18tvXaVpFOuEc7NLB2/8iXvNpHNPr5VamgGTG2iz5kzRxdffLF27dqlqKgorVy5Ug6HQ5MmTZIkDRgwQAkJCVqwYIGZZQIAAAAAAACwkhJn6dXXpzaPpd/HbKXruyZKdod3jr/2TvOO73ENc6QeI71XQzNhahM9Pj5eycnJGjdunFq0aCG73a7169crKChIUunNR0+dM12SZsyYoc8++8z1fY8ePfTqq682aO0AAAAAAAAATLJ3U/npSyowStcvMmuOe7OPX1bDvtKfVZeBJtbR+JnaRJekMWPGaMyYMZWuS0tLq3T8ySef9GJFAAAAAAAAACzt2H6zK2g8+FnVmelNdAAAAAAAAACokVZhnm331zekTv3r//h7N0krx5p3/JrU4OnPCm7RRAcAAAAAAADQuHTqLwVHlN5As9I5wW2l67sN8s584N0GmXv8mtTgrSZ+M2I3uwAAAAAAAAAAqBG7Qxq++PcF2ykrf18evsh7DWyzj2+VGpoJmugAAAAAAAAAGp/oS6UrX5KCO5QfD44oHY++tGkf3yo1NANM5wIAAAAAAACgcYq+VOoxsnR+8GP7S+f/7tS/4a6+Nvv4VqmhiaOJDgAAAAAAAKDxsjukLgOb7/GtUkMTxnQuAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4UesmelFRkX766SdJUklJSb0VBABWRe4BsAryCIBVkEcArIAsAuBtNW6iFxQU6MYbb1TLli2VlJQkSZo8ebKuvfZanThxot4LBACzkXsArII8AmAV5BEAKyCLADSUGjfR58yZo3379unVV19VaGioJOmFF17Q2WefrZkzZ9Z7gQBgNnIPgFWQRwCsgjwCYAVkEYCGUuMm+hdffKG3335bf/7zn9WiRQtJko+Pj2bNmqUdO3bUe4EAYDZyD4BVkEcArII8AmAFZBGAhlLjJrrT6ZTdXvowwzDKrTt06FD9VAUAFkLuAbAK8giAVZBHAKyALALQUGrcRA8JCdHzzz8vSbLZbJKk48eP695779Xpp59ev9UBgAWQewCsgjwCYBXkEQArIIsANBSbcepbddX44YcfNGzYMB06dEhOp1Pt2rVTZmamzjjjDK1fv17dunXzVq31Ijc3VyEhIcrJyVFwcLDZ5QDwovr6e/dW7pFHQPNh5Twii4DmhTwCYAVWzqL6rA+A9Xn69+5T0x13795dO3bs0MqVK/Xtt99KkmJiYjRhwgT5+fnVvmIAsChyD4BVkEcArII8giSpxCnt3SQd2y+1CpM69ZfsjuZVg9nHb+bIIgANpcZNdEny8/PTNddcU2E8Ly9PgYGBdS4KAKyG3ANgFeQRAKsgj5q59NXSutlS7q9/jAVHSMMXS9GXNo8azD4+JJFFABpGjedEr8oll1xSn7sDAMsj9wBYBXkEwCrIo2YgfbX02lXlm8eSlJtZOp6+uunXYPbxUS2yCEB9qvGV6F27dnW7Lisrq07FAIAVkXsArII8AmAV5FEzVuIsvfpald1ezZBkK13fNdF705qUOKW1d5pXg0fHnyP1GMnULl5GFgFoKDVuovv7+2vOnDmuZafTqX379mnNmjWaOnVqvRYHAFZA7gGwCvIIgFWQR83Y3k0Vr74uxyhdvyiywUqyXg2GlLuv9GfVZaBJNTQPZBGAhlLjJvr999+vK6+8ssL4bbfdphtvvLFeigIAKyH3AFgFeQTAKsijZuzYfrMraDz4WXkdWQSgodS4iV5ZOElSq1attGvXrjoXBABWQ+4BsAryCIBVkEfNWKswz7b76xtSp/7eqWHvJmnlWPNq8PT4nv6sUGtkEYCGUuMm+ksvvVRh7OjRo9q0aZPs9nq9TykAWAK5B8AqyCMAVkEeNWOd+kvBEaU30Kx0TnBb6fpug7w3H3i3QebW4OnxvfUmAlzIIgANpcZN9BtuuEHh4eGuZZvNpqCgIMXGxmrlypX1WhwAWAG5B8AqyCMAVkEeNWN2hzR8sfTaVZJsKt9EtpX+M3yRd2+oaXYNZh8fLmQRgIZS4yb6BRdcoI0bN3qjFgCwJHIPgFWQRwCsgjxq5qIvla58SVo3u/xNRoMjSpvH0Zc2/RrMPj4kkUUAGk6Nm+hVhdPevXvVqVOnOhUEAFZD7gGwCvIIgFWQR1D0pVKPkaXzgx/bXzr/d6f+DXv1tdk1mH18kEUAGky9ThB1zTXX1OfuAMDyyD0AVkEeAbAK8qgZsTukLgOlnmNL/zWjeWx2DWYfH26RRQDqk0dXotvtdtlsNm/XAgCWQe4BsAryCIBVkEcArIAsAmAGj5rovXr10pNPPlnlNoZh6LbbbquPmgDAdOQeAKsgjwBYBXkEwArIIgBm8KiJftdddykhIcGj7QCgKSD3AFgFeQTAKsgjAFZAFgEwg0dzol955ZUe7WzLli11KgYArILcA2AV5BEAqyCPAFgBWQTADB5diX6qTz75RGvXrlVWVpYMw3CNr1u3TkuWLKm34gDAKsg9AFZBHgGwCvIIgBWQRQAagkdXop/sxRdf1F/+8hdlZGTovffek2EYKigo0Pvvv69zzjnHGzUCgKnIPQBWQR4BsAryCIAVkEUAGkqNr0R/7rnn9NVXX6ldu3ZKSkrS8uXLJUkHDx7kpg0AmiRyD4BVkEcArII8AmAFZBGAhlLjK9EDAwPVrl07SZLT6XSNt23bVpmZmfVXGQBYBLkHwCrIIwBWQR4BsAKyCEBD8aiJvmPHDtf3eXl5ys7OllQaVqtWrZIkffTRR/rhhx+8UCIANDxyD4BVkEcArII8AmAFZBEAM3jURL/qqqtUXFwsSRoxYoQuvPBC/fzzz7rlllt0xRVXyM/PT4MGDdLkyZNrVcSqVavUt29fDRw4UAkJCfr222/dbvv2229rxIgRGjx4sAYMGKC4uDi98sortTouALjj7dwDAE+RRwCsgjwCYAVkEQAz2IyTb13sRnh4uE4//XSdd955mjBhggYNGuRa9/nnn+vTTz9VdHS0hg8fXuMCNm/erCFDhmjr1q3q3r27XnrpJd1999367rvvFBQUVGH74cOHa8KECbrqqqskSWvWrNFll12mbdu26dxzz632eLm5uQoJCVFOTo6Cg4NrXC+AxqMuf+/ezL36qA9A42LlPCKLgOaFPAJgBVbOorrWB6Bx8fTv3aMm+m233aYnnnhCn332mV5++WV9+umnSkxM1IQJE9S7d+86FfrnP/9Z/v7+rqvJS0pKFBERoXvuuUfTpk2rsP3WrVvVq1cv+fiU3hP16NGjCg4O1qpVqzR69Ohqj0cQAs1HXf7evZl79VEfgMbFynlEFgHNC3kEwAqsnEV1rQ9A41KvTfRTlZSUKCUlRa+88oq+/fZbjRw5UhMmTFD37t1rXGhISIjuu+8+3X777a6xkSNHysfHR2+//XaVjy0qKtJDDz2kN954Q59//rlatWpV7fEIQqD5qM+/9/rMPW/UB8DarJxHZBHQvJBHAKzAyllU3/UBsDZP/949mhO9woPsdg0dOlTLly/Xxx9/LLvdrpiYGMXHx9doPwcPHlRubq7CwsLKjYeHhysjI6PKx958881q3769UlJStH79eo8a6ABQW/WVewBQV+QRAKsgjwBYAVkEoCH41PaBv/76q1555RW9/PLL+vLLL+Xj46PQ0NAa7SMvL0+S5O/vX27c39/ftc6dv//971q6dKnmzZunCy+8UJ999pk6dOhQYbuCggIVFBS4lnNzc2tUIwCUqWvukUcA6ktd8ogsAlCfyCMAVsBrNQDe5tGV6M8++6wkKScnRy+++KIGDx6sTp066c4771TLli31zDPPKDMzU++8806NDh4YGChJ5YKqbLlsXVV8fHz04IMPqqSkRI8//nil2yxcuFAhISGur8jIyBrVCKB58kbukUcAaqO+84gsAlBb5BEAK+C1GgAzeDQnelRUlHr16qX33ntPBQUF6tWrlyZMmKDx48frjDPOqFMBrVu31ty5cyvMie7r66v//ve/FbYvLCyUn59fubHBgwcrICBA7777boXtK3s3MTIyknmtgGagLvPYeSP3yCOg+bJSHpFFQPNGHgGwAitlkUQeAc2Zp3nk0XQuP/74o2w2m+644w6NHz9eZ599dr0VOmjQIG3dutW1bBiG0tLSdM8991S6fVxcnLZv315uLDMzUxdeeGGl2/v7+1eYLgYAquON3COPANRGfecRWQSgtsgjAFbAazUAZvCoid6/f3998sknXilgzpw5uvjii7Vr1y5FRUVp5cqVcjgcmjRpkiRpwIABSkhI0IIFCyRJ6enpevfddzVy5EhJ0ooVK7Rz504999xzXqkPQPPkzdwDgJogjwBYBXkEwArIIgBm8KiJ/tprr3mtgPj4eCUnJ2vcuHFq0aKF7Ha71q9fr6CgIEmlNx89+SM1S5cu1YIFC7Rw4UKVlJTIZrNp9erVGjBggNdqBND8eDP3AKAmyCMAVkEeAbACsgiAGTxqokdERHi1iDFjxmjMmDGVrktLSyu3PG3aNE2bNs2r9QCAt3MPADxFHqGCEqe0d5N0bL/UKkzq1F+yO6jBjBqaGfIIgBWQRQDM4FETHQAAAIAFpK+W1s2Wcn/9Yyw4Qhq+WIq+lBoasgYAAAA0G3azCwAAAADggfTV0mtXlW8cS1JuZul4+mpqaKgaAAAA0KxwJToAAABgdSXO0iuvZVSy0pBkK13fNdF7U5qUOKW1dzaCGuZIPUYytQsAAADqDU10AAAAwOr2bqp45XU5Run6RZENVpJ1a9hX+vPqMtDEOgAAANCUMJ0LAAAAYHXH9ptdQePCzwsAAAD1iCvRAQAAAKtrFebZdn99Q+rU3zs17N0krRzbOGrw9OcFAAAAeIAmOgAAAGB1nfpLwRGlN8+sdD5wW+n6boO8Nxd4t0GNpwZvNfEBAADQLDGdCwAAAGB1doc0fPHvC7ZTVv6+PHyRd2+mSQ0AAABopmiiAwAAAI1B9KXSlS9JwR3KjwdHlI5HX0oNDVUDAAAAmhWmcwEAAAAai+hLpR4jS+cGP7a/dO7vTv0b9spragAAAEAzQxMdAAAAaEzsDqnLQGqwQg0AAABoFpjOBQAAAAAAAAAAN2iiAwAAAAAAAADgBk10AAAAAAAAAADcoIkOAAAAAAAAAIAbNNEBAAAAAAAAAHCDJjoAAAAAAAAAAG7QRAcAAAAAAAAAwA2a6AAAAAAAAAAAuEETHQAAAAAAAAAAN2iiAwAAAAAAAADgBk10AAAAAAAAAADcoIkOAAAAAAAAAIAbNNEBAAAAAAAAAHCDJjoAAAAAAAAAAG7QRAcAAAAAAAAAwA2a6AAAAAAAAAAAuEETHQAAAAAAAAAAN2iiAwAAAAAAAADgBk10AAAAAAAAAADcoIkOAAAAAAAAAIAbNNEBAAAAAAAAAHCDJjoAAAAAAAAAAG7QRAcAAAAAAAAAwA2a6AAAAAAAAAAAuEETHQAAAAAAAAAAN2iiAwAAAAAAAADgBk10AAAAAAAAAADcoIkOAAAAAAAAAIAbNNEBAAAAAAAAAHCDJjoAAAAAAAAAAG7QRAcAAAAAAAAAwA2a6AAAAAAAAAAAuGGJJvqqVavUt29fDRw4UAkJCfr222/dbvvaa69p6NChGjx4sPr27asrrrhCe/bsabhiAQAAAAAAAADNhulN9M2bN2vSpEl6+eWX9fHHH+vaa6/VsGHDdPTo0Uq3nzhxom6//XZt2LBBn3/+uVq0aKHhw4eroKCggSsHAAAAAAAAADR1pjfRFy1apJEjR6p79+6SSpvkxcXFSk5OrnT7yy67TMOGDZMk2e123Xrrrdq5c6fS0tIaqmQAAAAAAAAAQDNhehN9w4YN6tOnj2vZbrerd+/eSklJqXT7119/vdxyQECAJHElOgAAAAAAAACg3pnaRD948KByc3MVFhZWbjw8PFwZGRke7eN///ufIiIidOGFF3qjRAAAAAAAAABAM+Zj5sHz8vIkSf7+/uXG/f39XeuqUlBQoCVLlujpp5+Wr6+v221Ovko9Nze3DhUDQO2RRwCsgCwCYBXkEQCrII8AVMfUK9EDAwMlVZyKpaCgwLWuKjfccIP+8pe/aMyYMW63WbhwoUJCQlxfkZGRdSsaAGqJPAJgBWQRAKsgjwBYBXkEoDqmNtHbtm2rkJAQ7d+/v9x4VlaWunbtWuVj58yZo8DAQD344INVbnfXXXcpJyfH9fXzzz/XuW4AqA3yCIAVkEUArII8AmAV5BGA6pg6nYskDRo0SFu3bnUtG4ahtLQ03XPPPW4fs2jRIv3888/697//LUmux/fu3bvCtv7+/hWmiwEAM5BHAKyALAJgFeQRAKsgjwBUx9Qr0aXSK8rfffdd7dq1S5K0cuVKORwOTZo0SZI0YMCAcg31f/zjH1qxYoWmTZumtLQ0ffHFF1qzZo2++eYbU+oHAAAAAAAAADRdpl+JHh8fr+TkZI0bN04tWrSQ3W7X+vXrFRQUJKn05qNlc6YfPXpUN998s0pKStSvX79y+1m+fHmD1w4AAAAAAAAAaNpMb6JL0pgxY9zeHDQtLc31fVBQkJxOZ0OVBQAAAAAAAABo5kyfzgUAAAAAAAAAAKuiiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbtBEBwAAAAAAAADADZroAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcMP0JvqqVavUt29fDRw4UAkJCfr222+r3L6wsFBz5syRj4+P9uzZ0zBFAgAAAAAAAACaJVOb6Js3b9akSZP08ssv6+OPP9a1116rYcOG6ejRo5Vuv2fPHiUkJCgzM1NOp7OBqwUAAAAAAAAANDemNtEXLVqkkSNHqnv37pKkiRMnqri4WMnJyZVuf+zYMf373//WNddc04BVAgAAAAAAAACaK1Ob6Bs2bFCfPn1cy3a7Xb1791ZKSkql28fExCgqKqqhygMAAAAAAAAANHOmNdEPHjyo3NxchYWFlRsPDw9XRkaGSVUBAAAAAAAAAPAHH7MOnJeXJ0ny9/cvN+7v7+9aVx8KCgpUUFDgWs7Nza23fQNATZBHAKyALAJgFeQRAKsgjwBUx7Qr0QMDAyWpXEiVLZetqw8LFy5USEiI6ysyMrLe9g0ANUEeAbACsgiAVZBHAKyCPAJQHdOa6G3btlVISIj2799fbjwrK0tdu3att+PcddddysnJcX39/PPP9bZvAKgJ8giAFZBFAKyCPAJgFeQRgOqYNp2LJA0aNEhbt251LRuGobS0NN1zzz31dgx/f/8KU8YAgBnIIwBWQBYBsAryCIBVkEcAqmPaleiSNGfOHL377rvatWuXJGnlypVyOByaNGmSJGnAgAH12lAHAAAAAAAAAKAmTL0SPT4+XsnJyRo3bpxatGghu92u9evXKygoSFLpzUdPnjO9sLBQQ4cO1ZEjRyRJ48aNU2RkpF5//XUzygcAAAAAAAAANHGmNtElacyYMRozZkyl69LS0sot+/n5KTU1tQGqAgAAAAAAAADA5OlcAAAAAAAAAACwMproAAAAAAAAAAC4QRMdAAAAAAAAAAA3aKIDAAAAAAAAAOAGTXQAAAAAAAAAANygiQ4AAAAAAAAAgBs00QEAAAAAAAAAcIMmOgAAAAAAAAAAbviYXQAAAACszTAMFRcXy+l0ml0KGgmHwyEfHx/ZbDazSwEAAADqjCY6AAAA3CosLFRmZqby8vLMLgWNTGBgoDp06CA/Pz+zSwEAAADqhCY6AAAAKlVSUqKMjAw5HA5FRETIz8+PK4tRLcMwVFhYqAMHDigjI0Pdu3eX3c4skgAAAGi8aKIDAIBGxVniVFp2mg7kHVD7wPaKC42Tw+4wu6wmqbCwUCUlJYqMjFRgYKDZ5aARadGihXx9fbV3714VFhYqICDA7JIAAACAWqOJDgAAGo2UvSlatHmR9uftd42FBYZpTvwcDek0xMTKmjauIkZt8HsDAACApoIzWwAA0Cik7E3RzNSZ5RrokpSdl62ZqTOVsjfFpMoAAAAAAE0ZTXQAAGB5zhKnFm1eJENGhXVlY4s3L5azxNnQpQEAAAAAmjia6AAAwPLSstMqXIF+MkOGsvKylJad1oBVoSacJYb+t/ug3t62T//bfVDOkopviAAAAACAFTEnOgCPcCM/AGY6kHegXrdDw1q3PVP3r0lXZk6+a6xDSIDmjYrW8JgOJlYGAAAAANWjiQ6gWtzID4DZ2ge2r9ft0HDWbc/U1BVpFSbiycrJ19QVaVo2MY5GOgAAAABLYzoXAFXiRn4ArCAuNE5hgWGyyeZ2m/DAcMWFxjVgVc2TYRjKKyz26OtofpHmrf62kpns5RqbvzpdR/OLPNqfYXg2BczSpUvVo0cPde7cWUuWLNGQIUPUuXNnTZo0SSdOnJAkHTt2TNdff73OO+88JSQkaPTo0frpp59c+/jwww+VlJSkxMRE9evXT1dffbWOHDniWn/JJZeodevWuvPOOzV16lQNHDhQNptN27ZtU1pamhISEpSYmKj+/ftr8uTJysrKcj123bp1io+P1/nnn69zzz1XTz/9tGvdvffeq86dOysxMVFLlizR4MGDFRUVpZdeesnj/0b79+/XlVdeqdjYWA0YMECDBg3S2rVrXet/+OEHjRgxQr1791bPnj11yy23KD+/9FMCb7zxhmJjY2Wz2fTee+9p1KhRioiI0OjRo8vV9uijj2rYsGFq2bKlnnzySY9rAwAAABojrkQH4FZ1N/KzyabFmxcrKTKJqV0AeJXD7tCc+DmamTpTNtkqzaXZ8bPJogZwosip6PvW18u+DElZufnqOf99j7ZPf2CYAv2qP32dPn26QkJCdN1118lmsyklJUXHjh1Tv379NHfuXD366KOaMmWKJGnr1q2y2+1auHChRowYoa+//loOh0Pvvfeexo4dq5tvvlmGYWjKlCmaOXOm/vnPf0qS3nnnHSUmJurVV1/Vp59+qsjISE2ePFkOh0MTJkzQrFmzNHnyZDmdTl188cXasWOHwsPDlZ6erssuu0wbNmzQgAED9MsvvyguLk5t27bV+PHj9dBDD8nHx0ePPfaY5s6dqzvuuEOrV6/WhAkTNGbMGAUFBVX7/P/85z+rZ8+e2rZtmyRpwYIFevbZZzVixAgVFBRo2LBhuu6663T33XersLBQQ4cO1fTp0/Xss89q7NixateunZKSkrRlyxatWbNGu3bt0ty5c8vVNmvWLM2aNUvLly93vTEBAAAANFVciQ7ALW7kB8BKhnQaoscTH1doYGil6wN9Axu4IlidzWbTLbfcIklq1aqVrr/+ei1btkzff/+9Xn31Vc2cOVN2e+np8JQpU5Senq7U1FRJ0qxZs3Tddde59jN27NhyV3OXGTx4sCIjIyVJ//znP9WzZ0/t27dPe/fulSQ5HA49++yzOvfccyVJixcvVnx8vAYMGCBJOuOMMzRhwgQtWLCg3H5DQ0M1ePBgSVJiYqKOHz+uXbt2VfucN27cqE2bNumOO+5wjU2dOlWDBg2SJL388sv69ddfNWPGDEmSn5+fZsyYoRdffFH795f/f/7VV18tSYqKitIrr7ziGm/Xrp0uueQSSdI111yjm266qdq6AAAAgMaMK9EBuMWN/ABYzZBOQ5QUmVTuRsfrMtbpte9f032f3qe3LntLwX7BZpfZpLXwdSj9gWEebbs545CuXr6l2u2Sr+mr+C5tPDp2TYSFhSkgIMC13K1bN+Xl5Wnt2rUyDEPTp0+Xr6+va32nTp104EDp/9MKCwt18803Kz09XX5+fjpy5Ei5KVnKnHHGGRXGFi5cqNtuu02vv/66xo8fr8mTJ6tNm9Lnt337dldDvUxUVJT+/ve/q6ioyFVPRESEa33Z1ee5ubnVPuft27fL4XCoS5currE2bdro1ltvda3v0KGDAgP/eNMpKipKTqdT6enpCgsLq/K5VTUOAAAANFU00QG4xY38AFiRw+5Q3/C+ruVz2p6jzzI/009Hf9LizYu1YMCCKh6NurLZbB5NqSJJA7u3V4eQAGXl5Fc6L7pNUnhIgAZ2by+H3f18996yYsWKcs3mk40YMUI9evTQxo0b5e/vr9TUVCUlJVXYzuGo2Ni/6aabdPnll2vFihV64YUX9MgjjyglJUXnn3++x7WdvF+brfRn4+mc8PWlsudW1TgAAADQVDGdCwC3uJEfgMYg0DdQCwYskN1m1+rdq/XhTx+aXRJ+57DbNG9UtCRV+D9J2fK8UdFea6BnZ2eroKDAtbx7924FBgZqxIgRkqSdO3eW2/6+++7Tjh07dPDgQaWnp2v06NHy9/eXVHpluqfeeOMNhYWF6fbbb9c333yjmJgYrVixQpIUExNTYVqW3bt366yzzip3VXxtxcTEyOl0uqaTkaTffvtNzzzzjGt9Zmam8vLyyh3f4XAoOjq6zscHAAAAmiKa6ADcKruRnyS3jfQrz7qSG/kBMF1saKwmnTNJknT//+7XofxDJleEMsNjOmjZxDiFhwSUGw8PCdCyiXEaHtPBa8d2OBxatmyZJOnYsWN64YUXNHXqVJ155pkaP368HnnkEeXn50uSNm3apDfffFNRUVFq06aNwsLC9OGHf7wh89Zbb3l83Ouuu06ZmZmu5eLiYp155pmSpNmzZ2vz5s3atGmTJGnfvn16+eWXdc8999T5+UpSUlKS+vfvr8cee8w19uijj2rfvn2SpAkTJigiIkJPPfWUJKmoqEhLly7VtddeW24qFwAAAAB/oIkOoErubuTn7yi9Mm/ldyuVdbziHLEA0NBuib1FUa2jdCj/kB767KEGn/oC7g2P6aBPZg/SK9dfoKXjYvXK9Rfok9mDvNpAl0rnRA8MDNSwYcMUExOj8847Tw8++KAk6bnnnlP37t0VGxurpKQkLVq0SG+//bZ8fHxks9n0xhtvaNu2berVq5cuu+wy+fn5SSq9yeeBAwc0btw4bdu2TcnJya6bbJa56aabdMkllygpKUn9+vXTRRdd5Lr5ZnR0tP773/9q+vTpOv/88zV8+HDNnTtX48ePlyQtWrRIycnJ2rZtm6666irl5OQoMTFRkjRjxgx98MEH1T7vN998U/v371dsbKwGDBigo0ePav78+ZIkf39/rV+/Xqmpqerdu7fi4uJ09tln68knn5QkrVu3znXT0cTERL3xxhuu/Z5cW2Jiokc3OgUAAACaApvRzF5h5ubmKiQkRDk5OQoO5sZjgKecJc5yN/LrcVoPXb3+an1/+HtFt43Wv4b/SwE+AdXvqAFZ/e/d6vUBjVH6wXT99d2/qtgo1uKBi/Wnrn8yuyRJ1v57r6q2/Px8ZWRkqEuXLuVu0NkYJCcna/78+dqzZ4/ZpTRbjfn3pylrrHkEoGmx+t+71esDUH88/XvnSnQAHim7kd+fuv5JfcP7Ksg/SEuTlqq1f2ulH0zXvE3zuOoTgOmi20ZrSq8pkqQFny9Qdl62yRUBAAAAABo7mugAau2MoDP0WMJjctgcei/jPSV/m2x2SQCg63pep+i20cotzOUNvmZq6dKlWrRokbKyspSYmKgTJ06YXRIAAACARowmOoA6ie8Qr9nxsyVJT2x9Qh//8rHJFQFo7nztvnp4wMPys/vpk32f6K0fPL8hJJqG6dOna8eOHcrPz1dqaqpatGhhdkn1pmw+8sq+7r33XrPLAwAAAJokH7MLAND4jTtrnHYe2qk3f3hTs/9vtlaOXKkuIV3MLgtAM9atdTfdGnerHv3iUT2y5RFdEHGBTm91utllAXUWGxur1NRUs8sAAAAAmhWuRAdQZzabTfecf4/OCz1PR4uO6tYPb9XRwqNmlwWgmZt49kTFhcYprzhP935yr0qMErNLAgAAAAA0QjTRAdQLX4evHk98XGGBYdqTu0ez/2+2nCVOs8sC0Iw57A49dOFDauHTQl/s/0Ivf/ey2SUBAAAAABohmugA6k27Fu20dNBS+Tv89fG+j/X/vvx/ZpcEoJmLDI7UrD6zJElPpj2pjJwMkysCAAAAADQ2NNEB1Ktz2p6jB/o/IEl6cfuLeu/H90yuCEBzd8WZV6hfh34qcBbo3k/uVXFJsdklAQAAAAAaEZroAOrdn7r+SZNjJkuS7tt0n749+K3JFQFozmw2mx648AEF+Qbp69++1vLty80uCQAAAADQiNBEB+AVt553qwacPkAFzgJN/3C6fjvxm9klAWjGwluGa875cyRJz3z1jHYe2mlyRWjMUlNTlZycXG4sPz9fkZGR2rJlizlFAQAAAPAamugAvMJhd2jxRYvVObiz9uft18zUmSpyFpldFoBmbFTXURoUOUjFJcW6+5O7yaSGVuKUMj6Wvnmj9N9GfPPpyprovr6+OuussxQcHGxOUQAAAAC8hiY6AK8J9gvWU4OeUivfVvoy+0st+HyBDMMwuywAzZTNZtPcfnN1mv9p+v7w91r21TKzS2o+0ldLT8ZI/7pEevPa0n+fjCkdbyIcDodSUlJ01llnmV0KAAAAgHpGEx2AV3UJ6aLFFy2WTTa9+cOb+s/O/5hdEoBmrF2Ldrr3gnslld78+OsDX5tcUTOQvlp67Sop99fy47mZpeNeaKQvXbpUPXr0UOfOnbVkyRINGTJEnTt31qRJk3TixAlJ0rFjxzRlyhT17NlTcXFxGjVqlPbs2SNJ2rVrlxITE2Wz2fTiiy9q7Nix6tmzp1q3bq3HH39cycnJ2rZtmxITE5WYmKgTJ05o6NChat26tebPn++q4/XXX9eFF16opKQkxcfHa+bMmSooKKj35wsAAADAu2iiA/C6i864SDN6z5AkLd68WFuymC8WgHmGdh6qP3X5k0qMEt3zyT06UXzC7JIaF8OQCo979pWfK629U1Jln0L6fWzd7NLtPNmfh59mmj59uubMmaNffvlFNptNKSkp2r59u9LS0jR37lxJ0pQpU/TLL7/oyy+/VFpamnr27KmRI0fK6XQqKipKqampkkob4StXrtRXX32ls846SzNnztTVV1+t2NhYpaamKjU1VS1atND777+v2NjYcnX85z//0d13362NGzfq008/VXp6uhYvXly7nzsAAAAA0/iYXQDcc5YY2pxxSNlH8xUaFKD4Lm3ksNvMLguolWvOuUY7D+3UexnvaWbqTL16yas6vdXpZpfVKFghC6xQA1Cf7j7/bn2R9YX25O7RU2lPaXb8bLNLajyK8qSHI+ppZ0bpFeqLIj3b/O5fJb+WHu/dZrPplltukSS1atVK119/ve666y5NmTJFr776qj744AP5+JSeDt9xxx1atGiRVq1apbFjx7r2MX78ePn7+0uSPv/8c4+PLUlPPPGEzjjjDEmlc6aPGTNGycnJuu+++2q0HwAAAADmooleBTObRuu2Z+r+NenKzMl3jXUICdC8UdEaHtOhQWoA6pPNZtP9/e9XRk6Gvjv0nW798Fb9e8S/FegbaHZplmaFLLBCDUB9C/EP0fz+83XThpu04rsVGtRxkPqG9zW7LNSzsLAwBQQEuJa7deumvLw8rV27VoZhKCoqyrXutNNOU5s2bfTNN9+Ua6KXNcFrIzc3VxMmTNDevXvl5+enrKwspnMBAAAAGiFLNNFXrVqlhx9+WAEBAbLb7XrmmWd0zjnn1Nv2tWFm02jd9kxNXZFW4YPPWTn5mroiTcsmxjVY44qrT1GfAnwC9NSgpzTunXH6/vD3uvfTe/VYwmOy2fidqowVssAKNZQhj1DfBp4xUJd3v1xv/vCm7v3kXr112Vtq6ev5Vc7Nlm9g6RXhnti7SVo5tvrt/vqG1Km/Z8duYA6Ho1aPO378uAYNGqS//OUvWrlypex2u5KTk8vNmQ4AAACgcTC9ib5582ZNmjRJW7duVffu3fXSSy9p2LBh+u677xQUFFTn7WvDzKaRs8TQ/WvS3c4capN0/5p0XRwd7vXmEVefwhvCW4briaQnNHn9ZH2w9wM9+/WzurHXjWaXZTn1nQWGYchZYshpGCopkYpLSlRSIjl/Hy8pW//798UlhoqKS3Tvf7eTR2jS7uh7hz7L/Ez7ju3Tki1LNL//fLNLsj6bzfMpVboNkoIjSm8iWmma2ErXdxsk2WvXrK5Kdna2CgoKXNOx7N69W4GBgRoxYoRmzJihXbt2qVOnTpKkw4cP69ChQ+rZs2e1+7Xb/7itUH5+vhwOh3x9fctts2PHDmVnZ+uKK65wbV9YWFhfTw0AAABAAzK9ib5o0SKNHDlS3bt3lyRNnDhRd955p5KTkzVt2rQ6b19T1TWuJOmO17/W9n05chpSsbNERU5DRc4SFTsNFZWU/ltcUjpe7CwpbUaVrf99++KS8tuXjeUXOZVfVOK2PkNSZk6+/vr8Z+oW2kptWvqpdaCfTgv01WmBfmr9+7+nBfopKMBH9lo2tqx09alKnKVXsh3bL7UKK71SzQsvtC1dg9nHr2fnhZ6ne8+/V/P/N19/3/Z3nXnamRrUcZDZZVnK5oxD5RrGpyrLgvgFH8jHYZezRK5GeMnvzfLik7738F58NVJWw9DHP1Jk20C1CfTTaS391KZlaQa1aen7+7+l461b+MrHUfP7WZNHFjq+VWqoRy19W+rBCx/U5PWT9eYPb2pwx8EaeMZAs8tqOuwOafhi6bWrVPrW28l/yb+fowxf5LXfIYfDoWXLlmnGjBk6duyYXnjhBU2dOlVnnnmmxo8fryeeeEKJiYlyOBx67LHHdPbZZ2v06NHV7rd9+/Y6fPiwJGnmzJkaOXKkRo4cWW6bzp07q0WLFtqwYYMGDhwop9Opt99+2xtPEwAAAICXmd5E37BhQ7mbK9ntdvXu3VspKSmVNsVrun1NVde4kqSjBcV6euPuOh+rLj7LOKTPMg5VuY3dJrU+pbF+WqBvaTPLNeb7exP+j+8ddptlroZX+mpp3ezSm46VCY4ofUEefal3j22VGsw+vpdcfubl2nl4p17Z8Yru+vgurfjTCnU/rbvZZVlG9tGqc6jMweNF9XI8h90mh81W+q/dJrut9E3F44XOah+7+7fj2v3bcY+OE9LC9/cmu6/atPQvbbS39PujAX9SI75NoJ8C/RzkkVWOb5UavKBveF9NPHuiVny3QvM2zdOqy1YpxD/E7LKajuhLpStfcvO7s8irvzthYWEKDAzUsGHDtHPnTiUkJOjBBx+UJD333HOaOXOmYmNj5evrq4iICL377rvy8fFRVlaWxo0bJ0maMWOGLrnkEj300EOu/V5++eVavny5BgwYoJCQEA0ZMkRDhw7Vtm3btGfPHhUXF+uhhx7SypUrNWfOHK1du1YREREKCwvThg0bNHjwYG3YsMFrzxsAAABA/TK1iX7w4EHl5uYqLCys3Hh4eLi2bNlS5+1rw9PG1cDu7dQ9NEi+Dpt8HDb52O2/f2+Xj90mPx+7fOx2+ThspeNl611jpdv5OOzl1m/fl6PbXvuq2uNP6tdJIYF+OpJXqEPHC3Ukr0iH8/74N6/QqRJDOnS8dL3kWYNLkgJ87Movrv5q+M0Zh9SvW1uP91tj6at/v3LtlPZZbmbp+JUveb9pY3YNZh/fy+7oe4d2H9mtzVmbdeuHt+rVS16lcfW70KCA6jeStGB0jHpFtj6p+V36r4/dJvvvjXG7Xa4Gub1sXVnD3GZz+4mV/+0+qPHPf1ZtDXcMO1OhQQE6nFeoQ8eLdPh4oQ7lFZb798iJIhmGlHOiSDknipTh4c/BbpNKqriKvtnkkdnHt0oNXjQ9bro+2feJ9uTu0cOfP6zFFy02u6SmJfpSqcdIUz7FMGXKFE2ZMqXCeKtWrfTcc89V+pjw8HClpqa63WdoaKg2b95cbuz999+vsN2YMWM0ZsyYcmP//Oc/PagaAAAAgJWY2kTPy8uTJNc8lWX8/f1d6+qyvSQVFBSooKDAtZybm1tlTZ42rm5KjPJKw6Zr+1Z6ZP1OZeXku5s5VOEhAbpv1DlVXnVZUOx0NdQPHy/SkbxCHXYtl35fOvZH4z3nRJFKDFXZQD+Zp2841EqJs/SKtaquP103W+qa6L0X4CVOae2d5tXg0fHnlDYlGulUCr52Xz2a8KjGvztevxz7RbM+mqVlQ5bJx276h2S8oiZ5FN+ljTqEBFSbBePiO3rtCmxPa7gxIaraGoqdJco5UeRqtB86Xvj794WnNN1Lm/CHjxfqaEFxlQ30kzXpPDI7izyuoXHnUYBPgB4e8LAmrp2o9zLe0+COgzW081Czy/KKmp4b1Ru7Q+rCVDkA/mBaHgHAKcgjANUxtVMVGBgoSeWCqmy5bF1dtpekhQsX6v777/e4Jk+bRvFd2ni8z5pw2G2aNypaU1ekuZs5VPNGRVfbsPL3cSgs2KGwYM/eFJCkkhJDuflF2rgj26Or4T19w6FW9m4q/5HvCozS9YsivVdDtcyuwZBy95X+rBpxU+K0gNO0NGmp/rb2b/os8zM99sVjmh0/2+yyvKImeVRfWVAX9VmDj8Outq381baVf7XbliksLtGG7/Zr6sq0ardt3nlk9vHLamj8edSzfU9dG3Otnv/meT302UOKC4tTuxbtzC6r3tX03KgxWrp0qZYtW6asrCwlJiZq7dq1atGihdllAThFc8gjAI0DeQSgOjW/w1s9atu2rUJCQrR///5y41lZWeratWudt5eku+66Szk5Oa6vn3/+ucqayppG0h9NojIN1bgaHtNByybGKTykfFMoPCTAqzfQs9ttah3op0tjT1eHkIAKz7+MTVIHL76RIKn0o97wzP9v7/6Da7rzP46/7r1CEiRZXUkaJVFZrB/DyiRKRK6ISvdLS1tFvnZRs9tti6ZqV6hatPpllaqa8p21ZRU11W7tUsKXZe2U1VRG24zylQpLS6NfqaQiEcnn+0e+7rd3I3EjP85J8nx0zOSec+4573vmnldn3vd8PqcJnKtu7bpp0aBFkqSNn2/Utpxt1hZUT2qaR1ZlgV1qaNnCqft7hpNHjUkTOFdP9nlSXX/QVfkl+Vp4eKFMfTyV12I1zaLG6JlnntGJEydUXFysAwcO0EAHbKo55BGAxoE8AnA7ls+ZkJSUpKNHj3peG2OUlZWl559/vk62b9WqVaXpX27nZtNowfbjXg8ZDQ/2129H9miwxtWwHuH6KPey8gqLFdq2oklU7w/Okz3ugFWbsNtvI0n//m7FnKr14ewhadOj1tXg6/F9PVc2NyxymH7V51da88kaLTy8UJ2DO6tP+z5Wl1Wn7jSPrMoCO9RAHsn6LKpJDU0gj/xcfnp50Msa98E47T+3X9tPb9eDXRrvXO+3cidZBAD1gTwCYBfkEYDbsbyJnp6ermHDhiknJ0fR0dHatGmTXC6XJk6cKEkaNGiQEhMTtWjRIp+2ryt2aFy5nI76fVBeNSz/ISFyoBQUUfHAuqom1gmKkLok1d/8u12SrK3B1+PXV9PMAk/2eVL/ffm/9ddzf1Xa/jRt+bctCmvd+JtytWVlFtihhmafR1ZnUU1qaCJ51K1dNz3d92m9lvWaFh9ZrLjwOIW3Dre6LAAAAACARSxvosfFxWn9+vUaN26cAgIC5HQ6tXv3brVt21ZSxcNEvz8H+u22r0t2aFxZydIfEpwuKWWJ9M7PparuP01ZXL8PsLO6BquPbwGnw6mXE17WhJ0TlPNtjtL2p2n9A+vVysUdAc1ds84jq49vlxoa2KSek7T/n/v16Tefat6H8/Sfw/5TDkfD/ZAOAAAAALAPh2mKk31Wo6CgQMHBwbpy5YqCgoKsLge3c/wvUsYs74f6BXWoaNb0aKDh9VbXYPXxLXCu8JzGfzBeV0quaOS9I7Vo0KI7al7Z/Xq3e334F1Zfi1Yf3y41NKDcK7kas32MSspKNLf/XI3tPvaO92Xn67262oqLi5Wbm6vOnTvL378eH+CLJonvjz011jwC0LTY/Xq3e30A6o6v17vld6ID1erxoNT93yrm4/3u64r5diMHNuzdjlbXYPXxLdCxbUe9kviKfvVfv9L209vVrV03TexZt1M2ATVm9bVo9fHtUkMD6hzcWWn90rQkc4mWHV2mgRED1TGoo9VlAQAAAAAaGE102J/TJXVOaN41WH18C9x39336deyvtfijxVp+dLmiQ6J13933KSsvS5eKLql9YHv1C+0nVxNt3sGmrL4WrT6+XWpoQKk/TtVfz/1VmRczNffDuXpz+JvkDgAAAAA0M06rCwCAqqR2T9Wo6FEqN+VKO5Cm5K3Jenz345r191l6fPfjGv7ecO09u9fqMgE0YU6HUy/Gv6jAFoHKysvSxs83Wl0SbGLy5MkKDw/XpEmTLK1j/vz5OnPmjNeyd955R/fff7+GDh2q2NhYjRkzptI2AAAAAHxHEx2AbTkcDr1w3wuKDIpU8Y1ifVP8jdf6vKI8zTgwg0Y6gHrVoU0H/Sb2N5KklVkrlZOfY3FFjVNZeZkyL2Zq5+mdyryYqbLyMqtLqpV169YpJSXF6jK0YMGCSg3yCRMm6LnnntO+fft05MgRBQQEKCUlRSUlJdYUCQAAADRyNNEB2JrL4VJRadEt1xlVPBd5yUdLGn0zBoC9Pfyjh5XQIUHXy6/r+Q+fV/GN4ibVEK5ve8/u1fD3hjOaqIE89NBDGj58uCTJ6XRq+vTpOnnypLKysiyuDAAAAGicaKIDsLWsvCxdunapyvVGRheLLiorj8YAgPrjcDg0f+B8BbUM0vH/OS73O24awj7ae3avZhyYoa+LvvZa3hCjib777julpqaqc+fOSk5O1rJlyxQVFaXu3bvrpZdeUt++feVwOLRz506NHDlSERERGjVqlObOnauoqCi53W4tXbpUQ4cOVXR0tDZs2FDpGGVlZXr22WeVmJioqKgoLV261Gv9qVOn9MADDygmJka9e/fW1KlTVVxc7Fl/48YNpaenq1evXoqNjdWQIUP0ySefeNafPn1aKSkpGjx4sBISEvTYY4/p5MmTunz5stxutyQpLS1Nbrdbq1evliRt3brVqwZ/f39J4k50AAAA4A7RRAdga5eKqm6g38l2AHCnQgND9VCXhyRJV0uveq1rTtNLGWNUVFrk07/CkkL9x0f/4Rk55LWf//tv8UeLVVhS6NP+jKm8n+rMnDlTOTk5On78uPbu3avy8nKdP39e6enpmjt3rlasWCFJyszM1Pbt23Xw4EEFBATopZde0qRJk3T06FH169dP+/bt0/Lly/XUU0+psLDQ6xjbtm3TuHHj9Le//U0ZGRmaN2+eduzYIamiaT18+HAlJCTo6NGjOnr0qLKzs/XMM8943j9v3jzt2bNH//jHP5SZmanx48dr2LBhunLliiRp6tSpiouL08GDB/X3v/9dAQEBOnz4sNq1a6cDBw5IklasWKEDBw7oySefvOV5OHz4sCIiIhQfH1+j8wcAAACgQgurCwCA6rQPbF+n2wHAnSorL9Oes3tuuc7IyCGHlny0REM6DpHL6Wrg6hrOtRvX1H9z/zrb39dFX2vgloE+bXsk9YgC/QJ92va7777TunXrtGbNGgUEBEiSpk2bpjlz5lTa9ubDQaOjo/X22297loeGhmro0KGSJLfbratXryonJ0c/+clPPNv07dtX/ftXnI/u3bvrgQce0MqVKzVixAht3rxZX331ldLS0iRJLVu2VFpamh599FEtXLhQQUFBevXVV7Vq1Sq1adNGkjRlyhTNmTNHv//97zVz5kx9+eWXCgsLU1lZmVwulxYtWiSHw+HTOZAqGvlLly7VqlWr5Ofn5/P7AAAAAPw/7kQHYGv9QvspLDBMDt26YeCQQ+GB4eoX2q+BKwPQ3GTlZVWakuT7mF7KXr744gtdv35d9957r2eZv7+/QkNDK217zz333HIfERERnr/btm0rSSooKPDaJjIy0ut1ly5d9Pnnn0uSsrOzdffddysw8P8b/9HR0SorK9Px48eVk5Oj4uJiRUdHe9a7XC5FRUXps88+k1Tx4NB3331XXbp0UXp6uoqKitShQwefzoEkPfHEExo7dqxGjx7t83sAAAAAeONOdAC25nK6lB6XrhkHZsghh9eUADcb67PiZjXpuz4B2APTS1UIaBGgI6lHfNr26NdH9dS+p2673RtD31BMWIxPx66tW93F7XLd+v8h319+8301nVKmtkaNGqXz589ry5YtWrt2rZYtW6atW7dq1KhRt31venq6AgMD9eKLL9Z/oQAAAEATxp3oAGwvOTJZy93LFRroffdgWGCYlruXKzky2aLKADQnTC9VweFwKNAv0Kd/AyMG+jSaaGDEQJ/2V5NpTLp06SI/Pz+dPn3as6ykpERff131aII78c9//tPr9RdffKEf//jHkqRevXrpwoULKioq8lrvcrnUo0cPRUdHy9/fXzk5OZ71ZWVlOnPmjHr37i1JevfddxUcHKwnnnhCmZmZGj16tP7whz94tv/+Ofn+fO2LFy/WuXPntGrVKknyzMkOAAAAoOZoogNoFJIjk7X7kd16c/ibWpKwRG8Of1MZj2TQQAfQYJhequZujiaSVOm81fdoojZt2ujxxx/X6tWrde3aNUnS6tWr1aJF3Q7EPHLkiDIzMyVJJ06c0K5duzR9+nRJUmpqqiIiIrRy5UpJUmlpqV577TVNmTJFYWFhCggI0LPPPqs33nhDV69WPKx23bp1cjqd+sUvfiFJmjVrlrKzsz3HKy0tVdeuXT2v27dvr/z8fOXl5SkpKUmStGbNGm3cuFHTpk1TVlaWPv74Y23fvt0zRQwAAACAmmE6FwCNhsvpUmx4rNVlAGimmF7qztwcTbT4o8Vec8qHBYZpVtysev0x9JVXXtEvf/lL9ejRQ127dtWYMWMUGhoqPz8/ZWRkKD29osHvdrs1depUPfroo5Iq7uJev369vv32W/385z/X66+/roceekiSlJaWpqVLl2rz5s3KyMjQww8/rLVr1+q5557T2bNntWDBAo0YMUKS1KpVK+3evVvTpk3T1q1bdf36dQ0ePFivvPKKp8aFCxeqvLxc/fv3V0BAgFq3bq09e/YoODhYkjR9+nRNnjxZrVu31rVr19SzZ08tWLDA8/65c+dq9uzZCg4O1uzZs1VYWKinn35a5eXlGjBggNf5WLduXb2dawAAAKApc5iGntjRYgUFBQoODtaVK1cUFBRkdTkA6pHdr3e71wfg1vae3VupIRweGF5tQ9jO13t1tRUXFys3N1edO3eWv79/rY5TVl6mrLwsXSq6pPaB7dUvtF+9/+CQn5+voKAgz9zm5eXlat26tfbu3av4+Ph6PTbq9vuDutNY8whA02L3693u9QGoO75e79yJDgAAUAPJkcka0nFIgzeEGzsrRhMtWrRIvXv31sSJEyVJa9euVadOnRQby6gmAAAAAL6jiQ4AAFBDTC/VOCQnJ+vFF1/UunXrdOPGDYWEhGjHjh1q2bKl1aUBAAAAaERoogMAAKBJSklJUUpKitVlAAAAAGjknFYXAAAAAAAAAACAXdFEBwAAAAAAAACgCjTRAQAAUC1jjNUloBHiewMAAICmgiY6AAAAbsnPz0+SVFRUZHElaIxufm9ufo8AAACAxooHiwIAAOCWXC6XQkJClJeXJ0kKDAyUw+GwuCrYnTFGRUVFysvLU0hIiFwul9UlAQAAALVCEx0AAABVCg8PlyRPIx3wVUhIiOf7AwAAADRmNNEBAABQJYfDobvvvluhoaEqLS21uhw0En5+ftyBDgAAgCaDJjoAAABuy+Vy0RQFAAAA0CzxYFEAAAAAAAAAAKpAEx0AAAAAAAAAgCo0u+lcjDGSpIKCAosrAVDfbl7nN697uyGPgObDznlEFgHNC3kEwA7snEUSeQQ0J77mUbNrohcWFkqSOnbsaHElABpKYWGhgoODrS6jEvIIaH7smEdkEdA8kUcA7MCOWSSRR0BzdLs8chi7/uxXT8rLy/XVV1+pbdu2cjgcVpcDoB4ZY1RYWKiIiAg5nfabvYo8ApoPO+cRWQQ0L+QRADuwcxZJ5BHQnPiaR82uiQ4AAAAAAAAAgK/s93MfAAAAAAAAAAA2QRMdAAAAAAAAAIAq0EQHAAAAAAAAAKAKNNFRa1FRUXK73XK73brvvvvkcDjUt29fz7KQkBDl5OTI7XbL4XDowIEDtTre/PnzdebMmTt+/wcffKCePXvK4XAoJiZGhw8f9lrvdrsVGBio+++/v9r9zJ492/PZAdgDeeS+41oA1C3yyH3HtQCoO2SR+45rAVC3yCP3HdcCmzBALUVGRnr+zs3NNZLM/v37PcsSExNNbm6uMcZUWncn6mIfZ8+eNQ6Hw6xYsaLSutzcXJOSkuLTfn7729+axMTEWtUCoO6QR4m1qgVA3SGPEmtVC4C6QRYl1qoWAHWHPEqsVS2wHneio9bS0tKqXT9p0iSFhIQ0SC2+6tSpk+Lj47Vp06ZK695++22NHz/egqoA1BZ5BMAuyCMAdkAWAbAL8giNHU101FpNg/DUqVMaM2aM+vbtq5SUFF2+fNlr+w0bNqhfv34aPHiw4uPj9f7770uSLl++7Bn+kpaWJrfbrdWrV0uStm7dqvj4eA0ZMkRxcXGaMWOGSkpKqq1r/PjxyszM1KlTp7yWb9u2TaNHj1Z+fr4mT56suLg4JSYmKiEhQR9++GGV+zt27JhnSNLNIUOzZ89WeHi4Jk2a5LXtrl27FBcXp0GDBmngwIFas2ZNtbUC8A15VIE8AqxHHlUgjwBrkUUVyCLAeuRRBfKoEbP6Vng0LbcakvN9kszIkSNNaWmpKSsrM3FxcWbevHme9RkZGeauu+4y586dM8YYk5OTY1q3bm0OHTrktY9/3f8jjzxiduzYYYwx5vr162b48OFmwYIF1dZ66dIl06JFCzN//nzPsk8//dQ89thjxhhjPvvsMzNgwABTWlpqjDHm4MGD5q677jL5+fme7f91SM7Nz39zCJIxxkycONFMnDjR8zo7O9sEBgaaY8eOeero0KGD2bx5c7X1AqgZ8og8AuyCPCKPADsgi8giwC7II/KoMeJOdDS4MWPGqEWLFnI6nYqPj9exY8c8615++WWNGzdO99xzjySpS5cuGjJkiN54441q9/nqq6/qpz/9qSTJz89Po0eP1q5du6p9zw9/+EMNGzbMa1jO5s2blZqaKkn60Y9+pPfff18tWrSQJCUkJMjPz09Hjhyp8Wf+vt/97ncaMmSI+vTp46lj9OjRt/2MAOoeeUQeAXZBHpFHgB2QRWQRYBfkEXlkNy2sLgDNT0REhOfvoKAgFRQUeF5nZ2fr/PnzXk8t/uabb9S9e/dq91lQUKDU1FSdPXtWLVu21MWLF287JEeSUlNT9bOf/UyZmZmKjY3V7t27tWDBAkkVgbpp0yZt27ZNkuR0OpWfn6+LFy/W4NNWlp2drYsXL3p9xm+//Vb+/v612i+AmiOPyCPALsgj8giwA7KILALsgjwij+yGJjoanMvl8nptjPF6PWHCBE8Y+eLq1atKSkrS2LFjtWnTJjmdTq1fv17z58+/7XtHjRqlgIAAbd68WaWlpYqJiVHLli0lScuWLdOiRYv08ccfKzo6WpIUFRVVqd7vczgclZaVlZVV+szJycn64x//6PNnBFA/yCPyCLAL8og8AuyALCKLALsgj8gju2E6F9hKr169dPLkSa9l+/fv9zwEQvIOm8LCQp04cUJ5eXkaM2aMnM6Kr/T169d9Ol6bNm00cuRIbdmyRW+99ZZnOI4kHTx4UDExMZ4Q9GW/bdu29dR105dffnnbz5idna2FCxf6VDOAhkEeAbAL8giAHZBFAOyCPIIVaKLDVp5//nn95S9/0SeffCKp4pfCOXPmeA3Jad++vfLz85WXl6ekpCRFRUUpICBA+/btk1Tx692f//xnn4+ZmpqqixcvateuXUpMTPQs79Gjhz799FNdunRJknTo0CFduHCh2n21a9dOnTp10qFDhyRJJ06c8Jq3S5JmzZqlrKws7dmzR5JUWlqqF154QZGRkT7XDKD+kUcA7II8AmAHZBEAuyCPYAmrnmiKpmfXrl2mf//+RpLp06ePef311z3rLly4YBITEz3r9u3bZ1asWGEiIyNNcHCwSU1N9Wz71ltvmd69e5sBAwaY+Ph4s3HjRq/jrFy50nTr1s3ExcWZ9957zxhjzJ/+9CfTtWtXExcXZ0aNGmUmT55sWrVqZZKSkm5bd0lJifnBD35gZsyY4bX8ypUrZuzYsaZTp05mxIgRJi0tzYSHh5tu3bqZDRs2mPT0dE/9Dz74oOd9O3fuNN26dTODBw82M2fONBMmTDBhYWFmypQpnm0yMjJMTEyMiY2NNfHx8Wb58uU1O9kAqkUeVSCPAOuRRxXII8BaZFEFsgiwHnlUgTxqfBzGVDNJDwAAAAAAAAAAzRjTuQAAAAAAAAAAUAWa6AAAAAAAAAAAVIEmOgAAAAAAAAAAVaCJDgAAAAAAAABAFWiiAwAAAAAAAABQBZroAAAAAAAAAABUgSY6AAAAAAAAAABVoIkOAAAAAAAAAEAVaKIDAAAAAAAAAFAFmugAAAAAAAAAAFSBJjoAAAAAAAAAAFWgiQ4AAAAAAAAAQBX+FwpLWha39mWIAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNMElEQVR4nOzdeXxU5d3+8WtmskMWCGRhC0tADEEwSBQFWQUUUWypC6XiUrXYWpSqYK2CtlasVavtI49Vf1IfrK1LLaKAGBSrdQGJqBCVLSxCQoBsQPaZ8/tjmJExC5NkZs5M5vPuKy+YM2fOfZ9pzmX45sz3thiGYQgAAAAAAAAAADRiNXsCAAAAAAAAAAAEK4roAAAAAAAAAAA0gyI6AAAAAAAAAADNoIgOAAAAAAAAAEAzKKIDAAAAAAAAANAMiugAAAAAAAAAADSDIjoAAAAAAAAAAM2giA4AAAAAAAAAQDMoogMAAAAAAAAA0AyK6EAznn32WSUkJGjx4sVmTwUAAMDnxo8fr7S0NFksFrOnAiBMkUMAzBaKOVRTU6PbbrtNVqtV69evN3s6YYMiOsLG559/riuvvFJDhw7V8OHDdcYZZ+jss8/Wrbfeqk2bNrn3O3jwoC655BL9z//8j44ePWrijAF0JN5kUFVVlf7f//t/GjdunE4//XRlZ2dr+PDh+tOf/qS6ujqTzwDAyZYtW6Zly5a1+fW7d+/W4sWLtXv37kbP3Xnnnerfv7+qqqraPsGTbN68WYsXL1Z5ebnH9nfffVc/+9nPfDKGS0vn1V4Oh0N/+MMflJWVpTPOOENnnHGGnn32Wa9fX1NTo4ULF+q0007TGWecobPOOkuvv/66z+cJBAo51LRgzaHdu3erc+fOGj58eKOv999/3+dzBQKBHGqaP3No06ZNGjFihNavXy/DMFr9en4eagcDCANffPGFERMTY/zqV78yamtr3dvXrl1rxMXFGXfffbd7269//WvjiSeeMHbt2mVIMhYtWmTCjAF0JN5m0IsvvmhEREQYr7/+unufvLw8IzIy0vjBD34Q8HkDaN7YsWONsWPHtvn17777riHJePfddxs99/DDDxtjx471yIv2eO655wxJRmFhYaPnFi1aZPjynwQtnVd73X777UZKSoqxc+dOwzAMY+PGjUZMTIzxP//zP169fubMmcbgwYONQ4cOGYZhGK+//rphs9mMlStX+nyuQCCQQ00L1hwqLCxs1/9fQDAih5rmzxy65JJLjLy8PPf5tHYMfh5qO+5ER1j429/+ppqaGt1zzz2Kiopyb7/gggt0/fXXe+x733336ZZbbgmpj/IACG6tyaCLLrpI06dPdz+eOHGifvSjH+lf//qXdu3aFbA5AzDP7bffrvXr13vkRbjbuXOnHnvsMc2fP1/9+/eXJJ111lmaM2eO7rrrLh07dqzF17/33nt65ZVXtHjxYnXr1k2SNH36dE2aNEnz5s1r051cQEdGDjXW3hwC0DrkUNNeffVVTZw4sU2v5eeh9qGIjrDQ0NAgSU1+lOaBBx7Q7bff7n4cERERqGkBCBPeZtDll1+uV199tdE+vXr1kiSVlZX5b5IAPGzbtk0zZszQ8OHDdeaZZ2rkyJFavHixKioqNHz4cH366af69NNP3R/FX7JkiSSpsLBQN9xwg4YNG6acnBwNGzZM8+bNU0VFhfvYDz/8sH76059Kkn7605+6j1FeXq5rr71Wffr0kcViaZQZeXl5GjNmjPr3769hw4bpnHPO0R/+8IcWCze33Xab7r33XknOX9INHz5c5557bqP9Nm/erKlTp+q0005TVlaW3nzzzUb7fPPNN5oxY4YyMjKUmZmpMWPG6N133/XqvCTp6aef1pgxY3TWWWdp2LBhGj16tNauXevF/xvSv/71L9nt9kb/aJw4caIqKyu1evXqFl//0ksvuff//ut37dqlTz/91Kt5AIFEDnWsHAJCETkUXDkkta9mxc9D7WT2rfBAIKxcudKQZGRkZBjPPvusUVFRccrXFBYW0s4FgE+0JYNOdumllxopKSlGTU2Nn2YI4PsyMzONxYsXux9/+OGHRnR0tPsjwM19fPnFF180zj//fOPYsWOGYRjGsWPHjMsuu8yYMWOGx34tfcy3qY8br1ixwrBarcZf//pX97b/+7//MyQZn332WYvn4s3Hl2+88Uajrq7OMAzDuO2224z4+HijrKzMvd+uXbuMrl27GldeeaVRX19vGIZhPPHEE0ZkZKTx/vvve3VegwcP9mhX9e677xpxcXHGpk2bWpy/YRjGrFmzDElGaWmpx/ZNmzYZkjxa8zXl3HPPNRISEhptf/XVVw1JxtNPP33KOQCBRg51rBwqLCw0Bg8ebPzkJz8xcnNzjczMTGP69OnG22+/fcqxAbOQQ8GVQ02dT2vaufDzUPtwJzrCwsUXX6wHH3xQBw8e1PXXX69u3bpp4sSJWrp0qcdvQgHAH9qTQbt379bq1av1+9//XtHR0QGaMRDeDh8+rB07digzM9O9bdSoUXrggQeUkJDQ4munTJmil156SZ06dZIkderUSTfeeKP+/e9/q6SkpE3zMQxD8+bN07Bhw3TDDTe4t8+ePVvnnHOObDZbm457shtvvFGRkZGSpKuuukpHjx7Vxo0b3c+77jp79NFH3XdA/eIXv1CfPn20aNEir8Z47bXXPNpVjRs3TkOHDtUzzzxzytceOnRIkhq9/67Hrudben1T/995+3og0MihjpdDNptNDodDN9xwgz755BN9+eWXGj58uCZPnuzV+ECgkUPBl0Ptxc9D7UPfCoSNhQsX6mc/+5n++c9/auXKlXrnnXf0zjvv6J577tHLL7+s8ePHmz1FAB1YWzKotrZWV199ta655ppGvdMB+E9ycrKGDx+um266SZ9++qmuuOIK5ebm6le/+tUpX5uQkKBnn31WL7zwgo4cOaKIiAj3x4t37typlJSUVs9n27Zt2r17t6ZMmdLouY8++qjVx2vK4MGD3X9PTk6WJBUXF7u3rV27VgMGDFB6erp7m8ViUXZ2tlavXq36+nr3PzqbY7Vade2112rz5s1yOByyWCzasWOHEhMTfXIOQEdCDnW8HOrdu7e++eYb9+OYmBjdf//9WrNmjW6//Xb95Cc/4YYJBBVyqOPlENqHO9ERVpKSknTTTTfpjTfe0KFDh/SXv/xFx44d09VXX2321ACEgdZkUH19va666ir17dtXS5cuNWG2QPiyWCxav369brvtNr366qsaNWqU+vTpo8cee+yUCy4tWrRIt9xyi+655x5t2bJFmzdvdt9ZVFtb26b5HD58WJLUtWvXFvdz9dx0fR04cMDrMVx3iknOf9xJkt1u95jD/v37G43x+eefq0uXLqdcs6GoqEijR49WeXm53nvvPX3++efavHmzzjrrLI/35eTeocOHD9frr78uSe7FryorKz2O63rcvXv3Fsfv1q1bo9e25vVAoJFDHS+HmnPOOeeooqJCW7ZsadPrAX8hh4Ivh9qLn4fahzvRERY+/fRT2e12nX322e5tnTp10s9//nN3mJeUlLTpt6EAcCqtzaDa2lrNnDlTPXv21NKlS2WxWMyaOhC2EhMT9dvf/lb333+/3n//ff3hD3/Q/PnzlZCQ0OInQ5577jldcMEFmjRpks/m4irclJaWtrjf5s2bfTZmU3NIS0vTZ5991qbXu355ePfdd7f4EfDmPso8fPhwvfjii9q1a5dGjBjh3r5r1y5J0rBhw1ocf/jw4froo4905MgR951lrXk9YAZyqPEcQjmHKioqFBUVpdjYWI/trhYUDofDq/MAAokcajwHM3Oovfh5qH24Ex1h4Y033tCjjz7a5HM2m01RUVGn7OkFAG3VmgyqqqrSxRdfrMzMTP3v//6vu4B+33336Y033gjYnIFwVlJSonnz5kly3oV1/vnna8WKFUpKStLnn38uSYqMjHTfhXX8+HH3HUK1tbXuO5dcioqKGo3h+qiv6xibNm3Stm3bmpzPoEGD1LdvX23YsKHRc5deeqnWr1/f4vl8f6z3339f3377bYuv+b4pU6Zox44d7o9iu3z44Ye6+eabmx3LdV6uu6u8eW+a8sMf/lA2m03r1q3z2L5u3TolJCRo6tSpLR738ssvd+///df3799fZ511llfzAAKFHGos1HNo3rx5euyxxxod99NPP1VcXJyGDBni1TyAQCGHGjM7h1qLn4d8iyI6wsarr76qf/7znx4fO3rrrbe0fPly3XTTTYqJiTFxdgA6Om8yqLKyUlOmTNHhw4c1YsQILV++3P21bt0690cYAfhXVVWVli5dqvfee8+9bdOmTTp69Kj7jqp+/fpp//79MgxDH3zwgW699VZJ0vTp0/X222/r008/lSSVlZXpkUceaTRG3759ZbFY3P94u+WWW/Txxx83OR+LxaLHH39cn3/+uZ5++mn39qeeekpff/21zjnnnBbPp1+/fpKkb7/9Vg0NDfrxj3/svuPIW4sXL1Z0dLRuvfVW1dfXS3L+w+znP/+5srKyTnlekydPVnR0tP74xz+6X//88883+w/l7xswYIBuu+02PfrooyosLJTk/P/kb3/7m37/+98rPj7eve+DDz6oHj166J///Kd727hx4zRz5kwtXrzYnaVvvvmm3n77bf3pT3/iEz8IOuRQY6GeQ5K0dOlSj/GWLl2qDz74QPfee6/i4uJa9X4A/kYONWZ2DrUGPw/5gQGEga+//tr4zW9+Y5x77rlGVlaWccYZZxh9+/Y1zjrrLOPxxx83Ghoa3Pt+9tlnxrBhw4zTTz/dkGSkpqYaw4YNM+677z4TzwBAKPM2gx5//HFDUrNfzz33nLknAoSJqqoqY/HixUZOTo4xbNgwY9iwYcaIESOM559/3r3PN998Y4wcOdIYPHiwkZ2dbbzxxhuGYRhGRUWFccMNNxg9evQwcnJyjClTphiLFy82JBkDBgwwHnzwQfcxFi1aZPTp08fIzs42Zs6cadTU1BjXXHON0bt3b0OScfrppxuPP/64e/+3337bGD16tNG3b1/jjDPOMH70ox8Ze/bs8eqcbrjhBiMjI8PIysoybr75ZsMwDGPGjBlGamqqIckYNmyY8Z///Md4+eWX3T8D9e7d27jlllvcx9i2bZvxwx/+0OjZs6cxfPhwY+TIkcYzzzzTaKymzsswDGPVqlXGmWeeafTs2dMYO3as8atf/co466yzjE6dOhnDhg0zysrKWjwHu91uLFmyxBg8eLAxdOhQIzs7u8nxn376aSM+Pt5Yu3atx/bq6mpjwYIFxqBBg4yhQ4caOTk5xooVK7x6/4BAI4c6Xg598cUXxrx584yhQ4caZ5xxhtGnTx/j7LPPNpYvX+7V+wcEGjkUnDn09NNPG8OGDXO/PwMGDDCGDRtmvPnmm4324+ch37IYxilWAwAAAAAAAAAAIEzRzgUAAAAAAAAAgGZQRAcAAAAAAAAAoBkU0QEAAAAAAAAAaAZFdAAAAAAAAAAAmkERHQAAAAAAAACAZlBEBwAAAAAAAACgGRFmTyAYORwOHThwQPHx8bJYLGZPB4AfGIaho0ePqkePHrJag+/3ieQQ0PGRQwDMRg4BMBs5BMBs3uYQRfQmHDhwQL179zZ7GgACYN++ferVq5fZ02iEHALCBzkEwGzkEACzkUMAzHaqHKKI3oT4+HhJzjcvISHB5NkA8IfKykr17t3bfb0HG3II6PjIIQBmI4cAmI0cAmA2b3OIInoTXB/RSUhIICSBDi5YP5JHDgHhgxwCYDZyCIDZyCEAZjtVDgVfwykAAAAAAAAAAIIERXQAAAAAAAAAAJpBER0AAAAAAAAAgGbQEx0hxW63q76+3uxpIERERUXJauV3hfAtcgit0dFzyOFwqK6uzuxpIERERkbKZrOZPQ0A7UT2ozXIfvgDOYTW8FUOUURHSDAMQ8XFxSovLzd7KgghVqtV/fr1U1RUlNlTQQdADqEtOnIO1dXVqbCwUA6Hw+ypIIQkJSUpLS0taBeQA9Aysh9tQfbDl8ghtIUvcogiOkKCq3CVkpKiuLg4/uOLU3I4HDpw4ICKiorUp08fvmfQbuQQWqsj55BhGCoqKpLNZlPv3r079N328A3DMFRVVaWSkhJJUnp6uskzAtBaZD9ai+yHr5FDaC1f5hBFdAQ9u93uLlwlJyebPR2EkO7du+vAgQNqaGhQZGSk2dNBCCOH0FYdNYcaGhpUVVWlHj16KC4uzuzpIETExsZKkkpKSpSSksLH+4EQQ/ajLch++BI5hLbwVQ7xKxsEPVfvYQISreVqn2C3202eCUIdOYS26qg55DqfjtimBv7lylHWlgBCD9mPtiL74SvkENrKFzlEER0hoyN9DB6BwfcMfI3vKbRWR/+e6ejnB9/jewYIfVzHaC2+Z+BrfE+htXzxPUMRHQAAAAAAAACAZlBEBwAAAAAAAACgGSwsirBhdxjaUFiqkqM1SomPUW6/rrJZ+QgQgMAhhwBPXBMAEH7IfgBmI4fQFhTRERbWbCnSfSsLVFRR496WnhijRdOzNDU73cSZAQgX5BDgiWsC8D27w678knwdqjqk7nHdlZOSI5vVZva0ADeyH4DZyCG0Fe1c0OGt2VKkucvzPQJSkoorajR3eb7WbCkyaWYAwgU5BHjimoAZ7A67NhZv1Kpdq7SxeKPsDnuHGi9vT56mvDpF1711nRa8v0DXvXWdprw6RXl78vw6LuAtsh+A2cghtAdFdIQcwzBUVdfg1dfRmnoten2rjKaOc+LPxa8X6GhNvVfHM4ymjtS0xx9/XIMHD1bfvn318MMPa9KkSerbt6/mzJmj6upqSdKxY8d0ww036Mwzz9TYsWM1Y8YM7d27132Md955R+PHj9e4ceM0atQoXXPNNSovL3c/f/HFFyspKUl33nmn5s6dqzFjxshisWjz5s3Kz8/X2LFjNW7cOJ177rm67rrrVFxc7H7tmjVrlJubq7PPPltnnHGG/vKXv7if+81vfqO+fftq3LhxevjhhzVx4kRlZmbq+eef9/r8Dx48qMsvv1zDhw/X6NGjNWHCBK1evdr9/Pbt23XhhRdqxIgRGjp0qH7xi1+opsb5H7JXXnlFw4cPl8Vi0apVqzR9+nT16NFDM2bM8JjbH//4R02ZMkWdOnXSn/70J6/nBrQXOVTufp4cIockrgmuieC/JgJdYDZjvPnr5+tg1UGP7SVVJZq/fj6FdPgF2V/ufp7sD87sR8cXCjlEBnWcDKKdC0JOdb1dWfe+5ZNjGZKKK2s0dPFar/YvuH+K4qK8u2zmzZunxMRE/fSnP5XFYlFeXp6OHTumUaNG6Z577tEf//hH3XjjjZKkTZs2yWq16sEHH9SFF16oL774QjabTatWrdLMmTP185//XIZh6MYbb9T8+fP1//7f/5MkvfHGGxo3bpz+8Y9/6L///a969+6t6667TjabTbNmzdLtt9+u6667Tna7XRdccIG+/vprpaWlqaCgQJdeeqnWrVun0aNH69tvv1VOTo6Sk5N11VVX6Xe/+50iIiL0yCOP6J577tEdd9yh119/XbNmzdJll12m+Pj4U57/D37wAw0dOlSbN2+WJD3wwAN66qmndOGFF6q2tlZTpkzRT3/6U/36179WXV2dJk+erHnz5umpp57SzJkz1a1bN40fP14bN27UypUrtWPHDt1zzz0ec7v99tt1++2367nnnnP/xwcIBHKIHCKHPHFNcE0E8zXhKjAb3/tns6vA/Oi4RzUpY1JIjecwHKqz16nOUafq+mo98MkDjcaTJEOGLLLooQ0PaXzv8bR2gU+R/WR/MGc/wkMo5BAZ1HEyiCI64GcWi0W/+MUvJEmdO3fWDTfcoLvuuks33nij/vGPf2jDhg2yWp0fCrnxxhv161//WuvXr9fEiRN1++23q0uXLu7jzJw5U9dcc02jMSZOnKjevXtLkjtE9+/frz179kiSbDabnnrqKSUnJ0uSHnroIeXm5mr06NGSpF69emnWrFl64IEHdNVVV7mPm5KSookTJ0qSxo0bp+PHj2vHjh0688wzWzznd999Vx9++KHHbyfnzp3rDti///3vOnDggG699VZJUlRUlG699VbNnDlT999/v1JTU92vc51vZmamXnzxRff2bt266eKLL5YkXXvttS3OBwh35JATOQQXrgmncLgm7A67lmxY0qYCs8NwqN5Rrzp7neod9aq31zv/PPnL7vlnrb1W9390f7PjSdLdH9ytjw58JLthdxfC6+31Hn96bD/xd9c86ux1shvet4YxZKi4qlj5JfkamTayle8g0HGQ/U7hkP1AMCKDnEI5gyiiI+TERtpUcP8Ur/bdUFiqa57beMr9ll07Urn9uno1dmulpqYqJibG/XjAgAGqqqrS6tWrZRiG5s2bp8jISPfzGRkZOnTokCSprq5OP//5z1VQUKCoqCiVl5d7fOzGpVevXo22Pfjgg7rtttv08ssv66qrrtJ1112nrl2d57hlyxadccYZHvtnZmbqf/7nf1RfX++eT48ePdzPu0KusrLylOe8ZcsW2Ww29evXz72ta9eu+uUvf+l+Pj09XXFxcR7j2+12FRQUeARlU+fW0nYgEMghcqil7eGIa4JroqXtZsovyW/U4uRkrgLzuJfGyWqxehTKW1Oobo2qhiq9tO0lvxy7JYeqDgV8THRsZD/Z39J2IBBCKYfIIKdQziCK6Ag5FovF64/ujRnYXemJMSquqGmy75VFUlpijMYM7C6b1eLTeXpr+fLlHoFysgsvvFCDBw/Wu+++q+joaK1fv17jx49vtJ/N1ji8b775Zv3whz/U8uXL9cwzz+gPf/iD8vLydPbZZ3s9t5OPa7E435/W9B/0habOraXtQCCQQ+RQS9vDEdcE10RL283kbeG4vLb8lPtEWCIUaYtUhDVCkdZIRdmiFGmN9Pg6Wn9Ueyr3nPJYE3tP1OnJpyvKFuU+TpQtSlHWqCa3RdoiPf507RNljdJnJZ/p+rXXn3LM7nHdvXkrAK+R/WR/S9uBQOhIOUQGeT8Hb7b7AwuLokOzWS1aND1LkjMQT+Z6vGh6ll8DsqSkRLW1te7HO3fuVFxcnC688EJJ0jfffOOx/7333quvv/5aR44cUUFBgWbMmKHo6GhJzt8+euuVV15RamqqfvWrX+nLL79Udna2li9fLknKzs7Wjh07PPbfuXOnTjvtNI/ffLZVdna27Ha7+yNDknT48GE9+eST7ueLiopUVVXlMb7NZlNWVla7xweCCTlEDsET1wTXRCB5Wzi+55x79K9L/qWVM1ZqzQ/XaN2P1uk/V/xHH131kTbN3qTPr/5cn139mTb8eIM+vOpDvXfFe3p75tta9YNVWjFjhV655BW9ePGLWjRqkVfj/Tjrx7pp2E26Nvta/fj0H+vy0y7XjMwZuqj/RZqUMUnn9zpfo3qM0ojUERrafagGdx2s/kn91Tu+t1I7papLTBd1iuykSFukRqSOUGpcqiyNrigniyxKi0tTTkqO1+8b4GtkP9kPmM3sHCKDnEI5gyiio8Obmp2upbNzlJYY47E9LTFGS2fnaGp2ul/Ht9lsWrp0qSTnisvPPPOM5s6dq0GDBumqq67SH/7wB/fKwx9++KFeffVVZWZmqmvXrkpNTdU777zjPta//vUvr8f96U9/qqKiIvfjhoYGDRo0SJK0YMECbdiwQR9++KEkZ4+sv//977r77rvbfb6SNH78eJ177rl65JFH3Nv++Mc/av/+/ZKkWbNmqUePHnriiSckSfX19Xr88cd1/fXXe3xcB+goyCEncgguXBNOXBP+l5OS41WB+YcDf6iBXQaqb2Jf9ezcUylxKeoS00WdozoryhYlq8W7fzZ5O54vC9o2q00Lcxe6j//98SRpQe4CFhWF6ch+J7IfMI+ZOUQGOYV0BhlopKKiwpBkVFRUmD0VGIZRXV1tFBQUGNXV1e06ToPdYXy447Dx78++NT7ccdhosDt8NMPmPffcc0ZGRobx1FNPGZMnTzYyMjKMq6++2qiqqjIMwzCOHj1q3HjjjcZpp51mjBs3zpg+fbqxfft29+vff/99Y/jw4cYZZ5xhXHLJJcYtt9xiSDLGjh1rlJSUGFdccYWRmJhoZGRkGNOmTfMY+6677jJycnKMcePGGWeddZYxf/58o6Ghwf38qlWrjLPOOsvIzc01srOzjT//+c/u5x588EEjIyPDSExMNH7yk58Y5eXlxtixYw1JxrBhw4y1a9ee8tyLioqMmTNnGsOGDTPOO+884+abbzbq6urcz2/bts2YMmWKkZOTY2RnZxs333yz+31ZvXq1MWzYMPe5vvzyy03ObezYsR7v1/e19L0T7Nd5sM8v3JBD5BA55IlrgmvCH9eEv7y9+21j6LKhxtBlQ43sZdnuL9e2t3e/HdLjnTzuxJcmeow56aVJLY4XyjmEwCP7yX5+HoLZQjWHyCBzM8gwfJNDFsMIcBObEFBZWanExERVVFQoISHB7OmEvZqaGhUWFqpfv34eizCEgmXLlmnx4sXavXu32VMJSy197wT7dR7s8ws35BDaqqPmENcE2sqs7528PXlasmGJxyKjaXFpWpC7QJMyJoX8eC52h135Jfk6VHVI3eO6Kyclp8U70EM5hxB4ZD/aqqP+PITAC9UcIoPM54scYmFRAAAAAB3apIxJGt97fKsKzKE0novNatPItJF+HQMAACAc0RMd8JPHH39cS5YsUXFxscaNG6fq6mqzpwQgzJBDgCeuifDmKjBf1P8ijUwbGbCCdqDGA9A0sh+AmcigjoM70QE/mTdvnubNm2f2NPxi8+bNuvXWW5t8bvTo0frd734X2AkBaBI5BHjimgCA8EP2AzATGdRxBEUR/bXXXtPvf/97xcTEyGq16sknn9SQIUPavP+ePXs0f/587d27V7GxsYqOjtajjz6qoUOHBuJ0gA5v+PDhWr9+vdnTABDGyCHAE9cEAIQfsh+AmcItg0wvom/YsEFz5szRpk2bNHDgQD3//POaMmWKvvrqK8XHx7dp/9mzZys1NVWffPKJrFarHn/8cV100UXasWOHoqOjA32KAAAAAAAAAIAQZXpP9CVLlmjatGkaOHCgJGcBvKGhQcuWLWvz/ps3b9aECRNktTpP74ILLtC3336rgoICv54LAAAAAAAAAKBjMb2Ivm7dOp111lnux1arVSNGjFBeXl6b9//hD3+of/3rX6qqqpIkvfDCC7JarerWrZufzgIAAAAAAAAA0BGZWkQ/cuSIKisrlZqa6rE9LS1NhYWFbd7/2WefVUZGhnr27KmMjAw98sgjevDBB9W7d2//nAgAAAAAAAAAoEMytSe6607x7/cpj46Odj/Xlv2vueYaFRcXa9++ferUqZNeeeWVFnuh19bWqra21v24srKy9ScDAO1ADgEwGzkEwGzkEACzkUMAmmPqnehxcXGS5BFQrseu51q7/+bNm7V8+XItXrxYnTt3lsVi0SWXXKJZs2bpgw8+aHIeDz74oBITE91f3LGOULB+/fpGawfU1NSod+/e2rhxozmTQpuRQwhF5FDHQg61H9cE0D7kEEIR2d+xkEMINWRQ4JhaRE9OTlZiYqIOHjzosb24uFj9+/dv0/7btm2TJPXt29f9fHR0tNLS0vTqq682OY+77rpLFRUV7q99+/a157QQrBx2qfB96ctXnH867GbPqF2aCsrIyEiddtppSkhIMGdSaDNyKEyQQwhipuQQ1wSAk/DzUJgg+xHEyKEw0YFyiAwKHFPbuUjShAkTtGnTJvdjwzCUn5+vu+++u0379+zZU5JUVFTk/rvdbldJSUmTd7dLziJ7S+1e0AEUvC6tWSBVHvhuW0IPaepDUtYl5s3Lx2w2W7OL8iK4kUNhgBxCkAt4DnFNAPgefh4KA2Q/ghw5FAbCIIfIIP8w9U50SVq4cKHefPNN7dixQ5L0wgsvyGazac6cOZKk0aNHexTUT7V/bm6uhgwZokceeUQOh0OS9OSTT6q6ulo/+MEPAnlqCBYFr0svXe0ZkJJUWeTcXvC6X4Z9/PHHNXjwYPXt21cPP/ywJk2apL59+2rOnDmqrq6WJB07dkw33nijhg4dqpycHE2fPl27d++WJO3YsUPjxo2TxWLRs88+q5kzZ2ro0KFKSkrSo48+qmXLlmnz5s0aN26cxo0bp+rqak2ePFlJSUlavHixex4vv/yyzjvvPI0fP165ubmaP39+o5ZIAPyMHCKH4IlrgmsCQPgh+8l+wGwm5BAZ1HGYfid6bm6uli1bpiuvvFKxsbGyWq166623FB8fL8m5mOjJ/6eeav/IyEi9+eabuuOOO3T22WcrIsJ5iitWrNCIESMCf4LwPcOQ6hsvPNskh11afacko6kDSbI4fwPZf5xktZ36eJFxksXi1dDz5s1TYmKifvrTn8pisSgvL0/Hjh3TqFGjdM899+iPf/yjbrzxRpWXl+uzzz5TRESEfv3rX2vatGn64osvlJmZqfXr18tisejll1/WihUrFBkZqVGjRmn+/PmqrKzU+vXrtX79eveYa9eu1bhx4zzm8c9//tN93Pr6ek2fPl0PPfSQ7r33Xq/OA0ATyCFyCJ64JrgmAIQfsp/sB8wWAjlEBnUcphfRJemyyy7TZZdd1uRz+fn5rdpfkjIyMvTSSy/5bH4IMvVV0u97+OhghvM3kEu8XCzk1wekqE6tGsFisegXv/iFJKlz58664YYbdNddd+nGG2/UP/7xD7399tvuX/bccccdWrJkiV577TXNnDnTfYyrrrrK/ZGyTz75pFXjP/bYY+rVq5ck5y+ZLrvsMi1btoygBNqDHGrV+ORQGOCaaNX4XBMAOgSyv1Xjk/2AH4RQDpFBoS8oiuhAR5aamqqYmBj34wEDBqiqqkqrV6+WYRjKzMx0P9elSxd17dpVX375pUdQuoKuLSorKzVr1izt2bNHUVFRKi4u5iM7QJghhwBPXBMAEH7IfgBmIoNCH0V0hJ7IOOdv/Lyx50PphZmn3u/Hr0gZ53o3tglsNi8+StSE48ePa8KECbriiiv0wgsvyGq1atmyZR59sQC0ATnkNXIoTHBNeI1rAkCHQfZ7jewH/CTMcogMMpfpC4sCrWaxOD8y483XgAnOVZbVXJ8qi5TQ07mfN8fzsu/eyUpKSjx+u7dz507FxcXpwgsvlCT3IrmSVFZWptLSUg0dOvSUx7Vav7t8a2pqVF9f32ifr7/+WiUlJfrRj37k3r+urq7V5wDge8ghSeQQTsI1IYlrAkCYIfslkf2AqUIoh8ig0EcRHR2b1SZNfejEg+8H3InHU5d4t2hEG9lsNi1dulSSc8XlZ555RnPnztWgQYN01VVX6bHHHpPdbpckPfLIIzr99NM1Y8aMUx63e/fuKisrkyTNnz9fa9eubbRP3759FRsbq3Xr1kmS7Ha7VqxY4aMzA+AVcogcgieuCa4JAOGH7Cf7AbOZnENkUOijiI6OL+sS6fLnpYR0z+0JPZzbsy7x6/CpqamKi4vTlClTlJ2drTPPPFO//e1vJUl//etf1aNHDw0fPlw5OTnavHmz3nzzTUVERKi4uNi9mvKtt96q3/zmNx7H/eEPf6jo6GiNHj1ae/bs0aRJkzR58mRt3rxZy5Yt029+8xslJyfrhRde0Isvvqizzz5bM2fOVGpqqoqLizVx4kS/njeAk5BD5BA8cU1wTQAIP2Q/2Q+YzcQcIoNCn8UwDMPsSQSbyspKJSYmqqKiQgkJCWZPJ+zV1NSosLBQ/fr181iEodUcdmcPrGMHpc6pzh5XfrzTQZK7x9Tu3bv9Og6a1tL3TrBf58E+v3BDDqGtOmoOcU2grXz2vQOfCOUcQuCR/WirjvrzEAIvVHOIDDKfL3KIhUURPqw2qd8Ys2cBIJyRQ4AnrgkACD9kPwCzkUNoA9q5AH7y+OOPa8mSJe6P3lRXV5s9JQBhhhwCPHFNAED4IfsBmIkM6ji4Ex3wk3nz5mnevHlmTwNAGCOHAE9cEwAQfsh+AGYigzoO7kQHAAAAAAAAAKAZFNEBAAAAAAAAAGgGRXQAAAAAAAAAAJpBER0AAAAAAAAAgGZQRAcAAAAAAAAAoBkU0QEAAAAAAAAAaAZFdCBEXXvttUpLS9M111xj6jwWL16s3bt3e2x76aWXNHnyZE2cOFEjR47Uj370o0b7AAh95BDgiWsCAMIP2Q/AbORQYFBER9iwO+zaWLxRq3at0sbijbI77GZPqV2ee+45TZ061exp6L777msUgLNnz9avfvUrrVu3Tp988oliY2M1depU1dbWmjNJIEiQQ/5BDoUurgn/4JoAEMzIfv8g+wHvkUP+0dFzKMLsCQCBkLcnT0s2LNHBqoPubalxqVqYu1CTMiaZOLOO6dJLL9WUKVMkSVarVb/85S81cuRI5efna9SoUSbPDjAHORRY5FDw45oILK4JAMGA7A8ssh9ojBwKrI6UQ9yJjg4vb0+e5q+f7xGQklRSVaL56+crb0+e38Y+duyYZs2apX79+mnSpEl65JFH1LdvXw0ePFi/+93vNHz4cFksFq1atUrTp09Xjx49NGPGDP3mN79R3759NW7cOD388MOaOHGiMjMz9fzzzzcaw26367bbbtPYsWPVt29fPfzwwx7Pb9++XRdeeKFGjBihoUOH6he/+IVqamrczzc0NGjhwoXKzs7WyJEjNX78eH3++efu53ft2qWpU6fq/PPP15gxY3T55Zfrm2++UWlpqcaNGydJuvXWWzVu3DgtXbpUkvTyyy97zCEmJkaSQvI3jYAvkEPkEDxxTXBNAAg/ZD/ZD5iNHCKH2sVAIxUVFYYko6KiwuypwDCM6upqo6CgwKiurjYMwzAcDodxvO64V1+VNZXGhJcmGNnLspv9mvjSRKOyptKr4zkcjlbN/aabbjJGjhxpVFVVGYZhGH/4wx8Mm81mPPfcc4ZhGMa7775rSDIWL15sGIZhbN++3bjyyisNwzCMRYsWGZ07dzby8vIMwzCMFStWGJ06dTIqKyvdx58zZ47RuXNn4+OPPzYMwzC++uorIyYmxli5cqVhGIZRU1Nj9OvXz3jggQcMwzCM2tpaY+zYscaNN97oPsZdd91lnHnmmcbRo0cNwzCMp556yujevbtRXl5uGIZhXHjhhcY999zj3v/qq692z98wDEOS8e6777b4Pvz1r381evToYdTV1Xn/5vnA9793Thbs13mwzy/ckEPkUFt11BzimuCaaKuWrgkEXijnEAKP7Cf726qj/jyEwCOHyKG28kUO0c4FIae6oVpn//1snx3vYNVBnfuPc73a95NZnyguMs6rfY8dO6bnnntO//u//6vY2FhJ0i233KJf//rXjfZ1Lf6QmZmpF1980b09JSVFEydOlCSNGzdOx48f144dO3TmmWe69xk+fLjOPtv5fgwePFgXXnihnnjiCV188cX6+9//rgMHDujWW2+VJEVFRenWW2/VzJkzdf/99yshIUGPPfaY/vKXv6hz586SpOuvv16//vWv9fTTT+v222/X/v37lZqaKrvdLpvNpgceeEAWi8Wr90By/nbx4Ycf1l/+8hdFRkZ6/TogmJFD5BA8cU1wTQAIP2Q/2Q+YjRwihwKJdi6An+zcuVN1dXXq37+/e1tMTIxSUlIa7durV68mj9GjRw/33+Pj4yVJlZWVHvtkZGR4PB4wYIC++uorSdKWLVuUnp6uuLjvgj0zM1N2u10FBQXasWOHampqlJmZ6X7eZrOpb9+++vLLLyU5F4Z45ZVXNGDAAC1cuFBVVVXq2bOnV++BJN1000264oordNlll3n9GgC+QQ45kUNw4Zpw4poAEE7IfieyHzAPOeQU6jnEnegIObERsfpk1ide7bvp4CbdvO7mU+735MQnNSJ1hFdjt1dTv6Wz2WxN7nvydtfrDMNo9xxaY8aMGfr222/1j3/8Q88884weeeQRvfzyy5oxY8YpX7tw4ULFxcXpt7/9rf8nCgQQOUQOwRPXBNcEgPBD9pP9gNnIIXIokLgTHSHHYrEoLjLOq69ze5yr1LhUWdT0x0sssigtLk3n9jjXq+O15mMqAwYMUGRkpHbt2uXeVltbq4MHD7bwqtbbu3evx+OdO3fq9NNPlyRlZ2erqKhIVVVVHs/bbDZlZWUpMzNTMTEx2rFjh/t5u92u3bt3a+jQoZKkV155RYmJibrpppu0ceNGXXbZZXr22Wfd+5/8nhw9etT99yVLlmjfvn36y1/+IknatGmTNm3a5MMzB8xDDnkih8A14YlrAkA4IPs9kf1A4JFDnsgh/6KIjg7NZrVpYe5CSWoUlK7HC3IXyGZt+jd97dG5c2ddd911Wrp0qaqrqyVJS5cuVUSEbz8A8sknn2jjxo2SpK+//lqrV6/WL3/5S0nSrFmz1KNHDz3xxBOSpPr6ej3++OO6/vrrlZqaqtjYWN1222168skndfz4cUnSc889J6vVqhtuuEGStGDBAm3ZssU9Xn19vQYNGuR+3L17d5WVlamkpEQTJkyQJP3v//6vli9frltuuUX5+fn69NNPtXLlSvdHgIBwQg6RQ/DENcE1ASD8kP1kP2A2cogcajc/LHga8lh9Obi0tIKut97e/bYx8aWJHqsuT3ppkvH27rd9ONPGjh49alx11VVG3759jcmTJxtPP/200adPH2P58uXG6tWrjWHDhhmSjLFjxxovv/yy+3UPPvigkZGRYSQmJho/+clPjPLycmPs2LGGJGPYsGHG2rVrjWuuucZITU01rrzySuPGG280xowZY/Tp08d46KGHPOawbds2Y8qUKUZOTo6RnZ1t3Hzzze7VoA3DMOrr640FCxYYQ4YMMc466yxj7NixxmeffeZ+/k9/+pN7e25urnHttde6V2o2DMN44oknjNNOO83Izc01Xn31VaOystKwWq2GpEZfJ6/aHAisAg9fIYfIobbqqDnENcE10Va++N6B74RyDiHwyH6yv6066s9DCDxyiBxqK1/kkMUwAtxAJwRUVlYqMTFRFRUVSkhIMHs6Ya+mpkaFhYXq16+fYmJi2nwcu8Ou/JJ8Hao6pO5x3ZWTkuOX3zCerKysTAkJCe7eVQ6HQ506dVJeXp7OO+88v46Nlr93gv06D/b5hRtyCG3VUXOIawJt5avvHfhGKOcQAo/sR1t11J+HEHjkENrKFznEwqIIGzarTSPTRgZ0zAceeEBDhw7VnDlzJEnPPPOM+vTpo5EjAzsPAMGBHAI8cU0AQPgh+wGYjRxCW1BEB/xo0qRJ+u1vf6vnnntODQ0NSkpK0htvvKGoqCizpwYgTJBDgCeuCQAIP2Q/ALORQ6GPIjrgR1OnTtXUqVPNngaAMEYOAZ64JgAg/JD9AMxGDoU+q9kTAAAAAAAAAAAgWFFER8hgDVy0Ft8z8DW+p9BaHf17pqOfH3yP7xkg9HEdo7X4noGv8T2F1vLF9wxFdAS9yMhISVJVVZXJM0GoqaurkyT36tdAW5FDaKuOmkOu83GdH+AtV466chVA6CD70VZkP3yFHEJb+SKH6ImOoGez2ZSUlKSSkhJJUlxcnCwWi8mzQrBzOBw6dOiQ4uLiFBFB1KF9yCG0RUfOoYiICMXFxenQoUOKjIyU1cp9GWiZYRiqqqpSSUmJkpKSOtwvloBwQPajtch++Bo5hNbyZQ51rH/RocNKS0uTJHcBC/CG1WpVnz59KHbCJ8ghtEVHzSGLxaL09HQVFhZqz549Zk8HISQpKcmdpwBCC9mPtiL74SvkENrKFzlEER0hwRWUKSkpqq+vN3s6CBFRUVH8Zho+Qw6hLTpyDkVFRWngwIF8nBZei4yM5C5EIMSR/Wgtsh++Rg6htXyVQxTREVJsNhv/AQZgKnII+I7ValVMTIzZ0wAABBDZD8Bs5BDMQBEdAAAAaIHdYWhDYalKjtYoJT5Guf26ymbtWC16AAAAADSPIjoAAADQjDVbinTfygIVVdS4t6UnxmjR9CxNzU43cWYAAAAAAqVjNukEAAAA2mnNliLNXZ7vUUCXpOKKGs1dnq81W4pMmhkAAACAQKKIDgAAAHyP3WHovpUFMpp4zrXtvpUFsjua2gMAgPBkd9i1sXijVu1apY3FG2V32M2eEgD4BO1cAAAAgO/ZUFja6A70kxmSiipqtKGwVKMGJAduYgCAkGV32JVfkq9DVYfUPa67clJyZLP6b8H6QI+XtydPSzYs0cGqg+5tqXGpWpi7UJMyJvltXAAIBIroAAAAgKR6u0NfFx1V/t4yrfx8v1evKTnafKEdAACXQBeYzRhv/vr5Mr73Ga6SqhLNXz9fj457lEI6gJBGER0AAABh6dDRWuXvLVP+3jJ9tqdcX+wvV029o1XHSImP8dPsAAAdRaALzIEez+6wa8mGJY3GkyRDhiyy6KEND2l87/F+vRMeAPyJIjoAAABCit1haENhqUqO1iglPka5/brKZrW0+Jp6u0MFByr12d4y5e8tV/7eMn1bVt1ov4SYCJ3Zp4uG9U7U8o/2qqyqrsm+6BZJaYnOsQEAaM6pCsySdO9/79W3R79VpC1SEZYI2aw22Sw2RVgjFGGNkM1ik81qa/RcU9tlkR74+IEWx/vtx79VfFS86ux1qrPXqdZeq1p7rfvvdY461TTUNP2cvU41ds/nKmsrVVJd0ux7YMhQcVWx8kvyNTJtpI/eWQAILIroAAAACBlrthTpvpUFHv3K0xNjtGh6lqZmp7u3lVTWnLjLvFyf7S3TF99WqLbB8y5zi0UalBKvnIwkndmni3L6JKl/t86ynijIZ6UnaO7yfFkkj1KEq1y/aHrWKYv3AIDwll+S79FSpSlH64/qkU2PBGhGUmlNqX669qcBG8/lUNWhgI8JAL5CER0AAAAhYc2WIs1dnt/o3rriihr9bHm+fjSil6rr7fpsb7n2lze+yzwpLlJn9nYVzJ13m8fHRDY73tTsdC2dndOoaJ/WRNEeAICmeFs4Ht59uFI7pcrusKvBaJDdYZfdsDd63OBocG///uMGo0HVDdWqbmj838DvS4lNUXJssqJt0Yq2RSvKFuX+MyYiRlHWKI/t39/HtS06Ilq7ynfpwQ0PnnLM7nHdvXovACAYUUQHAABA0LM7DN23sqDJ1iqubS9v+ta9zWqRBqXGKyeji87snaScjC7q362TLJbW3Tk+NTtdF2Sltbp9DAAAkveF41/m/NInrU42Fm/UdW9dd8r9lpy/xGetVUamjtT/2/L/VFJV0mQbGYssSo1LVU5Kjk/GAwAzUEQHAABA0NtQWOpxN3hzLj+rl2YM76kzeiepc7RvftS1WS0aNSDZJ8cCAISXnJQcpcalBqzAHOjxJMlmtWlh7kLNXz9fFlk8xrWcaIK2IHcBi4oCCGlWsycAAAAAnMrG3Ue82u+8zG46N7ObzwroAAC0h6vALH1XUHbxR4E50OO5TMqYpEfHPaqUuBSP7alxqXp03KOalDHJp+MBQKDxrwsAAAAErb1HqvSHt77WG18UebV/SnyMn2cEAEDruArMSzYs8VhkNDUuVQtyF/i8wBzo8U4ed3zv8covydehqkPqHtddOSk53IEOoEOgiA4AAICgU15Vp7+8s0N/+2i36u3Oj4XHRtpUXW9vcn+LnAt+5vbrGsBZAgDgnUAXmM0qaNusNp/1WgeAYEIRHQAAAEGjtsGu//toj/78zg5VVNdLksYM7KZfX3S69hw5rrnL8yXJo8ur68Pqi6ZnseAnACBoBbrATEEbAHyHIjoAAABMZxiGVn1ZrIfWfK29pVWSpMFp8brrotM1dlB3SdLp6QlaOjtH960s8FhkNC0xRoumZ2lqdropcwcAAADQsVFEBwAAgKk27SnV7978Sp/tLZckpcRH6/bJp+mHI3o1urN8ana6LshK04bCUpUcrVFKvLOFC3egAwAAAPAXiugAAAAwxe7Dx/XQmq+1ekuxJCkuyqabzh+gG87vp7io5n9MtVktGjUgOVDTBAAAABDmKKIDAAAgoMqO1+mJd7Zr+cd7VG83ZLVIV4zsrdsmDVJKQozZ0wMAAAAADxTRAQAAEBA19XY9/9Fu/fmdHTpa0yBJGndad9114ek6LS3e5NkBAAAAQNMoogMAAMCvHA5DK784oD+s+Ub7y6slORcJ/fVFgzVmYHeTZwcAAAAALaOIDgAAAL/5ZNcR/X7VV/r82wpJUlpCjG6fcpouO7Mni4ECAAAACAkU0QEAANBmdoehDYWlKjlao5T4GOX26yqb1aJdh45pyeqvtbbgoCSpU5RNc8cN0PWj+ys2ymbyrAEAAADAexTRAQAA0CZrthTpvpUFKqqocW9LiY9WVnqCPthxWA0OQzarRVeO7K1bJw1S9/hoE2cLAAAAAG1DER0AAACttmZLkeYuz5fxve0lR2tVcvSQJGni4BQtvHCwBqayaCgAAACA0EURHQAAAK1idxi6b2VBowL6yZI7RemvV59F33MAAAAAIc9q9gQAAAAQWjYUlnq0cGnKkeN12lBYGqAZAQAAAID/UEQHAABAq5QcbbmA3tr9AAAAACCYUUQHAABAq6TEx/h0PwAAAAAIZhTRAQAA0Cq5/boqPTFGzXU7t0hKT4xRbr+ugZwWAAAAAPgFC4sCAACgVWxWixZNz9Lc5fmySB4LjLoK64umZ7GoKAAAABBE7A678kvydajqkLrHdVdOSo5sVluHGc+fY1JEBwAAQKtNzU7X0tk5um9lgccio2mJMVo0PUtTs9NNnB0AAACAk+XtydOSDUt0sOqge1tqXKoW5i7UpIxJIT+ev8cMinYur732mkaOHKkxY8Zo7Nix2rp1a7v3z8vL08SJEzV+/HhlZmbqoosu0tGjR/11CgAAAGFnana6PlgwQS/ecI4ev3K4XrzhHH2wYAIFdAAAACCI5O3J0/z18z2Ky5JUUlWi+evnK29PXkiPF4gxTb8TfcOGDZozZ442bdqkgQMH6vnnn9eUKVP01VdfKT4+vk37r1+/XjfffLPee+89paenq6SkRFlZWTp+/HiTxwQAAEDb2KwWjRqQbPY0AAAAADTB7rBryYYlMjyaMDoZMmSRRQ9teEjje4/3SduTQI8XqDFNL6IvWbJE06ZN08CBAyVJs2fP1p133qlly5bplltuadP+t99+u26//XalpzvvgkpJSdGbb76pLl26BOisAAAAAAAAAMBc+SX5je7OPpkhQ8VVxZqzeo66xHSRLJJFFlktVllkkcXiXOfI9XerrO59LBaL3P878ffD1Ye9Gu/6tdcrMSpRDsOhBqNBDsMhu8Muu2H/bpvDIbvh3OZ6zv2848RrDLtq7bU6Xn/8lGPml+RrZNrINr2PphfR161bp3vvvdf92Gq1asSIEcrLy2uyiH6q/ffu3atNmzbp/PPP93jd2Wef7b+TAAAAAAAAAIAgc6jqkFf7fX74cz/PxNOmg5sCOp7k/XvRFFOL6EeOHFFlZaVSU1M9tqelpWnjxo1t2n/Lli2SpF27dum2225TRUWFevfurfvvv1+nnXZak/Oora1VbW2t+3FlZWW7zgsAWoscAmA2cgiA2cghAGYjh9ARdY/r7tV+1wy5Rn0T+sqQIYfhkCQZhiHX/xpt+/6fJ/6+7+g+vbr91VOO9+PTf6z+if1ls9hktVgVYY2Q1WKVzWKTzXpim+XENqvNuf3Ec66/u54rOFKge/57j8/ei6aYWkSvqqqSJEVHR3tsj46Odj/X2v3LysokSYsXL9bq1avVtWtX3X///TrnnHO0bds2de/e+M168MEHdd9997X/hACgjcghAGYjhwCYjRwCYDZyCB1RTkqOUuNSVVJV0mTPcIssSo1L1a05t/qsJ/oH+z845Xh3nHWHz3qiD0gcoL989pdTjpmTktPmMaztmWB7xcXFSZLHb/lcj13PtXZ/m8355s+dO1fJycmyWCy66667VF9fr7/97W9NzuOuu+5SRUWF+2vfvn3tOzEAaCVyCIDZyCEAZiOHAJiNHEJHZLPatDB3oSRnMflkrscLchf4rKAd6PECNaapRfTk5GQlJibq4EHPZvPFxcXq379/m/bv1auXJKlnz57u56OiopSenq7CwsIm5xEdHa2EhASPLwAIJHIIgNnIIQBmI4cAmI0cQkc1KWOSHh33qFLiUjy2p8al6tFxj2pSxqSQHi8QY5q+sOiECRO0adN3jeQNw1B+fr7uvvvuNu0/YsQIderUSUVFRe59HA6HDh06pD59+vjpLAAAAAAAAAAgOE3KmKTxvccrvyRfh6oOqXtcd+Wk5Pj0jnAzx/P3mKYX0RcuXKgLLrhAO3bsUGZmpl544QXZbDbNmTNHkjR69GiNHTtWDzzwgFf7x8bGat68efrrX/+qK664QjExMXruuedkGIZ+8pOfmHaeAAAAAAAAAGAWm9WmkWkjO+x4/hzT9CJ6bm6uli1bpiuvvFKxsbGyWq166623FB8fL8m5mOjJPdBPtb8k3X///br77ruVm5urpKQkRUdH691331WPHj0Cfn4AAAAAAAAAgNBlMQyj8ZKlYa6yslKJiYmqqKig/xXQQQX7dR7s8wPQfsF+nQf7/AC0X7Bf58E+PwDtF+zXebDPD0D7eXudm7qwKAAAAAAAAAAAwYwiOgAAAAAAAAAAzaCIDgAAAAAAAABAMyiiAwAAAAAAAADQDIroAAAAAAAAAAA0gyI6AAAAAAAAAADNoIgOAAAAAAAAAEAzKKIDAAAAAAAAANAMiugAAAAAAAAAADSDIjoAAAAAAAAAAM2giA4AAAAAAAAAQDMoogMAAAAAAAAA0AyK6AAAAAAAAAAANIMiOgAAAAAAAAAAzaCIDgAAAAAAAABAMyiiAwAAAAAAAADQDIroAAAAAAAAAAA0gyI6AAAAAAAAAADNoIgOAAAAAAAAAEAzIsyeAAAAAICTOOzSng+lYwelzqlSxrmS1daxxjTjHAEAAIA2oogOAAAABIuC16U1C6TKA99tS+ghTX1IyrqkY4xpxjkCAAAA7UA7FwAAACAYFLwuvXS1Z3FZkiqLnNsLXg/9Mc04RwAAAKCduBMdAAAAMJvD7rw7W0YTTxqSLM7n+4/zXdsTh11afWfgxvRqvIXS4Gm0dgEAAEBQoYgOAAAAmG3Ph43vzvZgOJ9f0jtgUwr8mIZUud/5XvQbE6AxAQAAgFOjnQsAAABgtmMHzZ5B8OC9AAAAQJDhTnQAAADAbJ1Tvdvvx69IGef6Zsw9H0ovzAzcmN6O5+17AQAAAAQIRXQAAADAbBnnSgk9nAtsNtkz3OJ8fsAE3/ULHzAhsGN6O56vfkkAAAAA+AjtXAAAAACzWW3S1IdOPLB878kTj6cu8e2Cm4Ee04xzBAAAAHyAIjoAAAAQDLIukS5/XkpI99ye0MO5PeuS0B/TjHMEAAAA2ol2LgAAAECwyLpEGjzN2T/82EFnf/CMc/17d3agxzTjHAEAAIB2oIgOAAAABBOrTeo3pmOPacY5AgAAAG1EOxcAAAAAAAAAAJrBnegAAAAAAAQxu8PQhsJSlRytUUp8jHL7dZXN+v0FegEAgL9QRAcAAAAAIEit2VKk+1YWqKiixr0tPTFGi6ZnaWp2eguvBAAAvkI7FwAAAAAAgtCaLUWauzzfo4AuScUVNZq7PF9rthSZNDMAAMILRXQAAAAAALxkdxj6aOcRrdi8Xx/tPCK7w/DbOPetLFBTR3dtu29lgd/GBwAA36GdCwAAAAAAXvBHa5W6BocOlFdrX1mV9pVW69uyKu0rq1bBgYpGd6CfzJBUVFGjDYWlGjUguU1jAwAA71BEBwAAAADgFFytVb5/37ertcrS2TlNFtLtDkPFlTX6ttRZHN9XWqV9ZVX69kTBvLiyRu25mbzkaPOFdgAA4BsU0QEAAAAAaIE3rVXu/vcWVdfZdaCixnk3eanz7vID5dWqt7dcJY+JtKpXlzj17hKr3l3j1LtLnKrqGvRY3vZTzi0lPqb1JwQAAFqFIjoAAAAAAC3YUFjaYmsVSTpyrE63vfR5k89FWC3q2SVWvbvEqdeJQnmvkwrm3TpHyWKxeLzG7jD0j437VFxR02Tx3iIpLTFGuf26tvGsAACAtyiiAwAAAABwkroGh7aXHNXWA5UqOFCp/2w75NXrBnTrpGF9ktS7S5xHoTwtIUY2q+XUBziJzWrRoulZmrs8XxbJo5DuOtKi6VmtPi4AAGg9iugAAAAAgJBldxjaUFiqkqM1Sol33pndmsLy8doGfV1cqa0HKrV1f6W2FlVoW/Ex1dkdrZ7L7y4b6tNFPqdmp2vp7JxGi5mmtXMxUwAA0DoU0QEAAAAAIWnNlqJGBeb0FgrMpcfrtPVAhbNgfqBSWw9UqPDwcRlN9EuJj4nQkB4JGtIjUaenxWvJmq915FhdwFurTM1O1wVZae36RQEAAGgfiugAAAAAgJCzZkuR5i7Pb1TULq6o0dzl+frdjGx1i48+0ZLFWThvrq95Sny0u2Du+rN311iPPuWdYyJMa61is1p8eoc7AABoHYroAAAAAICQYncYum9lQZN3hbu23f3vLU2+tm9ynIb0SFRWjwR3wbx7fPQpx6S1CgAA4YsiOgAAAAAgpGwoLG32rvKT9ekap9x+Xb9ry5Ier/iYyDaPS2sVAADCE0V0AAAAAEBIKTl66gK6JP1q8iBdOrynT8emtQoAAOHHavYEAAAAAABojZT4GJ/uBwAA0BKK6AAAAACAkJLbr6vSE2PUXBMVi6T0RGerFQAAgPaiiA4AAAAACCk2q0WLpmdJUqNCuuvxoulZ9CoHAAA+QREdAAAAABBypmana+nsHKUlerZsSUuM0dLZOZqanW7SzAAAQEfDwqIAAAAAgJA0NTtdF2SlaUNhqUqO1igl3tnChTvQAQCAL1FEBwAAAACELJvVolEDks2eBgAA6MBo5wIAAAAAAAAAQDMoogMAAAAAAAAA0AyK6AAAAAAAAAAANIMiOgAAAAAAAAAAzWBhUQAAAAAA8B2HXdrzoXTsoNQ5Vco4V7LaOtaYZpwjACBkUUQHAAAAAABOBa9LaxZIlQe+25bQQ5r6kJR1SccY04xzBACENNq5AAAAAAAAZ3H5pas9i8uSVFnk3F7weuiPacY5AgBCHneiAwAAAAAQ7hx2593ZMpp40pBkcT7ff5zv2p447NLqOwM3plfjLZQGT6O1CwDAA0V0AAAAAADC3Z4PG9+d7cFwPr+kd8CmFPgxDalyv/O96DcmQGMCAEIBRXQAAAAAAMLdsYNmzyB48F4AjdgdhjYUlqrkaI1S4mOU26+rbFaL2dMCAoYiOgAAAAAA4a5zqnf7/fgVKeNc34y550PphZmBG9Pb8bx9L4AwsWZLke5bWaCiihr3tvTEGC2anqWp2ekmzgwIHIroAAAAAACEu4xzpYQezgU2m+wZbnE+P2CC7/qFD5gQ2DG9Hc9XvyQAOoA1W4o0d3l+oyumuKJGc5fna+nsHArpCAtWsycAAAAAAABMZrVJUx868eD7LRpOPJ66xLcLbgZ6TDPOEfADu8PQRzuPaMXm/fpo5xHZHU39Uqj9aurtunfF1maX4pWk+1YW+G18IJhwJzoAAAAAAJCyLpEuf15as8BzkdGEHs7ictYloT+mGeeIDi+Q/cJ90VrFMAxVVjeouLJGxZU1OlhZo4MV3/3d+WetDh2tbfk4kooqarShsFSjBiS357SAoEcRHQAAAAAAOGVdIg2e5uwffuygsz94xrn+vTs70GOacY7osALZL9yb1ioTBqc6i+InCuHuwviJInnJiSJ5Tb3DZ/MqOVpz6p2AEEcRHQAAAAAAfMdqk/qN6dhjmnGO6HAC0S+83u5QRXW9So/X6e7XtrTYWuXmF/LVms4qibGRSkuIUWpijNISopWaEKPUhBilJcQoLTFG35ZV6WfL8095nJT4GO8HBUKU6UX01157Tb///e8VExMjq9WqJ598UkOGDPHJ/jNnztSrr74qw6A3EwAAAAAAAHzD7jB038qCZovaFjn7hV+QleZsn1LToPKqOlVU17u/Kk/8WV5V77Hd9Vx5db2q6uxez8lVQI+yWZWSEO0ukKfGxygtMdqjQJ4SH6PYqJY/fXF6eoLSE2NUXFHT3FK8Skt0tq8BOjpTi+gbNmzQnDlztGnTJg0cOFDPP/+8pkyZoq+++krx8fHt2v+NN97QunXrAnUqAAAAAAAACBMbCks9Wrh8n6tf+JBFa3zSOiUmwqqahlMf54EZ2Zp1dh9ZLO3vyW6zWrRoepbmLs+XRfIopLuOvmh6lt/6vwPBxNQi+pIlSzRt2jQNHDhQkjR79mzdeeedWrZsmW655ZY273/8+HHdfffdWrhwoRYuXBiYkwEAAAAAAEBY8LYP+MkF9M7REUqMjVRCbKSSYiOV6PqKi3RvT/z+c7GRio+J0MbdZbrq6Y9POV7/7p19UkB3mZqdrqWzcxr1fU/zU993IFiZWkRft26d7r33Xvdjq9WqESNGKC8vr8kiurf733PPPZo7d65iYujJBAAAAAAAAN/ytg/4Y5cP09jTUpQQE6EIm7XN4+X262paa5Wp2em6ICtNGwpLVXK0RinxznG4Ax3hpM1Xb319vfbu3StJcjha/7GUI0eOqLKyUqmpqR7b09LSVFhY2Ob9P/vsM23YsEE33nhjq+cEAG3V3kwEgPYihwCYjRwCYLZA5pCrqN1cGdkiKT0xRpcM76munaLaVUCXvmut4jr298eS/NtaxWa1aNSAZF06vKdGDUimgI6w0+oruLa2Vj/72c/UqVMnjR8/XpJ03XXX6frrr1d1dbXXx6mqqpIkRUdHe2yPjo52P9fa/R0Oh26++WY9+eSTslq9P7Xa2lpVVlZ6fAGAN3yVieQQgLYihwCYjRwCYDYzcsiMorartUpaoudd8GmJMVo6O6djtVZx2KXC96UvX3H+6fB+gdWQGdOMc0SbtbqIvnDhQu3fv1//+Mc/lJKSIkl65plndPrpp2v+/PleHycuLk6SM6BOVltb636utfv/+c9/1ujRo3XGGWd4f0KSHnzwQSUmJrq/evfu3arXAwhfvspEcghAW5FDAMxGDgEwm1k5ZEZRe2p2uj5YMEEv3nCOHr9yuF684Rx9sGBCxyqgF7wu/Slb+tvF0qvXO//8U7Zze0cZ04xzRLtYDMNoqpVSs8aMGaP33ntPVqtVEyZM0DvvvON+bvz48Xr33Xe9PlZSUpLuuece/epXv3JvmzZtmiIjI/Xvf/+71ftPmzZNZWVlioqKkiQVFxfrm2++0dixY9W5c2e98cYbTc6jtrbWozhfWVmp3r17q6KiQgkJCV6fD4DQUVlZqcTExHZf577KRHIICD/kEACzkUMAzNZRcsjuMOgX7isFr0svXS016vx+4v28/Hkp65LQHtOMc0SzvM2hVi8sarfb3a1Svl9/Ly0tbdWxJkyYoE2bNrkfG4ah/Px83X333W3a/8033/TYf9myZbr22mu1fv36FucRHR3dqE0MAHjDV5lIDgFoK3IIgNnIIQBmMzuHXP3C0U4Ou7RmgRoXl3Vim8X5fP9xktXmuzFX3xm4Mb0ab6E0eJrvzhE+0eoiemJiop5++mndcMMNslicvyE5fvy4HnzwQfXs2bNVx1q4cKEuuOAC7dixQ5mZmXrhhRdks9k0Z84cSdLo0aM1duxYPfDAA17tDwCB5stMBIC2IIcAmI0cAmA2cqiD2POhVHmghR0M5/NLAtnuK9BjGlLlfud70W9MgMaEN1pdRH/iiSc0ZcoU3XHHHbLb7erXr5+KiorUq1cvvfXWW606Vm5urpYtW6Yrr7xSsbGxslqteuuttxQfHy/JuZjoyR+jOdX+Jxs3bpyKi4vdf586daoWLlzY2tMFgBb5MhMBoC3IIQBmI4cAmI0c6iCOHTR7BsGD9yLotLonuiTV1dXphRde0NatWyVJ2dnZmjVrlrsXeajzVU8uAMHLl9e5PzKRHAI6PnIIgNnIIQBmI4fgofB95wKbp/LjV6SMc30z5p4PpRdmBm5Mb8eb8wZ3ogeI33qiS1JUVJSuvfbaRturqqoUFxfXlkMCQMgiEwGYjRwCYDZyCIDZyKEOIONcKaGHVFmkpnuGW5zPD5jgu37hAyYEdkxvx/PVLwngM1ZfHuzii734bREAhAkyEYDZyCEAZiOHAJiNHAohVps09aETDyzfe/LE46lLfLvgZqDHNOMc4ROtvhO9f//+zT7n6kEOAOGCTARgNnIIgNnIIQBmI4c6kKxLpMufl9Ys8FxkNKGHs7icdUnoj2nGOaLdWl1Ej46O9lig0263a//+/Vq5cqXmzp3r08kBQLAjEwGYjRwCYDZyCIDZyKEOJusSafA0Z//wYwelzqnO9ib+vDs70GOacY5ol1YX0e+77z5dfvnljbbfdttt+tnPfuaTSQFAqCATAZiNHAJgNnIIgNnIoQ7Iagv8wpqBHtOMc0SbtbonelOhJEmdO3fWjh072j0hAAglZCIAs5FDAMxGDgEwGzkEwN9afSf6888/32jb0aNH9eGHH8pq9ek6pQAQ9MhEAGYjhwCYjRwCYDZyCIC/tbqIftNNNyktLc392GKxKD4+XsOHD9cLL7zg08kBQLAjEwGYjRwCYDZyCIDZyCEA/tbqIvo555yjd9991x9zAYCQQyYCMBs5BMBs5BAAs5FDAPyt1Z9paSmU9uzZ067JAECoIRMBmI0cAmA2cgiA2cghAP7m08ZQ1157rS8PBwAhjUwEYDZyCIDZyCEAZiOHAPiCV+1crFarLBaLv+cCACGBTARgNnIIgNnIIQBmI4cABJJXRfRhw4bpT3/6U4v7GIah2267zRdzAoCgRiYCMBs5BMBs5BAAs5FDAALJqyL6XXfdpbFjx3q1HwB0dGQiALORQwDMRg4BMBs5BCCQvOqJfvnll3t1sI0bN7ZrMgAQCshEAGYjhwCYjRwCYDZyCEAgeXUn+vd98MEHWr16tYqLi2UYhnv7mjVr9PDDD/tscgAQCshEAGYjhwCYjRwCYDZyCIA/eXUn+smeffZZXXHFFSosLNSqVatkGIZqa2u1du1aDRkyxB9zBICgRSYCMBs5BMBs5BAAs5FDAPyt1Xei//Wvf9Xnn3+ubt26afz48XruueckSUeOHGGxBgBhh0wEYDZyCIDZyCEAZiOHAPhbq+9Ej4uLU7du3SRJdrvdvT05OVlFRUW+mxkAhAAyEYDZyCEAZiOHAJiNHALgb14V0b/++mv336uqqlRSUiLJGVKvvfaaJOm9997T9u3b/TBFAAguZCIAs5FDAMxGDgEwGzkEIJC8KqJfffXVamhokCRdeOGFOu+887Rv3z794he/0I9+9CNFRUVpwoQJuu666/w6WQAIBmQiALORQwDMRg4BMBs5BCCQLMbJSxY3Iy0tTT179tSZZ56pWbNmacKECe7nPvnkE/33v/9VVlaWpk6d6tfJBkplZaUSExNVUVGhhIQEs6cDwA/ac50HIhPJIaDjI4cAmI0cAmA2cgiA2by9zr1aWPSqq67SY489po8//lh///vfdccdd2jcuHGaNWuWzj77bJ199tk+mzgABDsyEYDZyCEAZiOHAJiNHAIQSF7dif59DodDeXl5evHFF7V161ZNmzZNs2bN0sCBA/0xx4DjN41Ax+fL69wfmUgOAR0fOQTAbOQQALORQwDM5u117lVP9EYvslo1efJkPffcc3r//fdltVqVnZ2t3NzcNk8YAEIVmQjAbOQQALORQwDMRg4B8Cev2rk05cCBA3rxxRf197//XZ999pkiIiKUkpLiy7kBQMggEwGYjRwCYDZyCIDZyCEA/uLVnehPPfWUJKmiokLPPvusJk6cqIyMDN15553q1KmTnnzySRUVFemNN97w62QBIBiQiQDMRg4BMBs5BMBs5BCAQPKqJ3pmZqaGDRumVatWqba2VsOGDdOsWbN01VVXqVevXoGYZ0DR8wro+NpznQciE8khoOMjhwCYjRwCYDZyCIDZvL3OvWrnsmvXLlksFt1xxx266qqrdPrpp/tsogAQashEAGYjhwCYjRwCYDZyCEAgeVVEP/fcc/XBBx/4ey4AEBLIRABmI4cAmI0cAmA2cghAIHnVE/2ll17y9zwAIGSQiQDMRg4BMBs5BMBs5BCAQPKqiN6jRw9/zwMAQgaZCMBs5BAAs5FDAMxGDgEIJK+K6AAAAAAAAAAAhCOK6AAAAAAAAAAANIMiOgAAAAAAAAAAzaCIDgAAAAAAAABAMyiiAwAAAAAAAADQDIroAAAAAAAAAAA0gyI6AAAAAAAAAADNoIgOAAAAAAAAAEAzIsyeAAAA6PjsDrvyS/J1qOqQusd1V05KjmxWm9nTAgAAAADglCiiAwAAv8rbk6clG5boYNVB97bUuFQtzF2oSRmTTJwZAAAAAACnRjsXAADgN3l78jR//XyPAroklVSVaP76+crbk2fSzAAAAAAA8A5FdAAA4Bd2h11LNiyRIaPRc65tD214SHaHPdBTAwAAAADAaxTRAQCAX+SX5De6A/1khgwVVxUrvyQ/gLMCAAAAAKB1KKIDAAC/OFR1yKf7AQAAAABgBoroAADAL7rHdffpfgAAAAAAmIEiOgAA8IuclBylxqXKIkuTz1tkUVpcmnJScgI8MwAAAAAAvEcRHQAA+IXNatPC3IWS1KiQ7nq8IHeBbFZbwOcGAAAAAIC3KKIDAAC/mZQxSY+Oe1QpcSke21PjUvXouEc1KWOSSTMDAAAAAMA7EWZPAAAAdGyTMiZpfO/xemPXG/rNf3+jKGuUVv1glSJtkWZPDQAAAACAU+JOdAAA4Hc2q03T+k9TlDVKdY46FR8vNntKAAAAAAB4hSI6AAAIiAhrhAYkDZAkbSvbZvJsAAAAAADwDkV0IAzYHXZtLN6oVbtWaWPxRtkddrOnBCBMDewyUJK0rZwiOgAAAAAgNNATHejg8vbkacmGJTpYddC9LTUuVQtzF7KgH4CAG9RlkCRpe9l2k2cCAAAAAIB3uBMd6MDy9uRp/vr5HgV0SSqpKtH89fOVtyfPpJkBCFeuO9EpogMAAAAAQgVFdKCDsjvsWrJhiQwZjZ5zbXtow0O0dgEQUK470fce3avqhmqTZwMAAAAAwKlRRAc6qPyS/EZ3oJ/MkKHiqmLll+QHcFYAwl1yTLK6RHeRw3BoV/kus6cDAAAAAMApUUQHOqhDVYd8uh8A+ILFYnHfjb6tjMVFAQAAAADBjyI60EF1j+vu0/0AwFfcfdHL6YsOAAAAAAh+FNGBDionJUepcamyyNLk8xZZlBaXppyUnADPDEC4cxXRuRMdAAAAABAKKKIDHZTNatPC3IWS1KiQ7nq8IHeBbFZbwOcGILy52rlsL+NOdAAAAABA8KOIDnRgkzIm6dFxjyolLsVje0pcih4d96gmZUwyaWYAwtmApAGyyKLSmlIdrj5s9nQAAAAAAGgRRXSgg5uUMUlv/fAtPTv5WcVGxEqSHhv3GAV0AKaJjYhVn4Q+krgbHQAAAAAQ/CiiA2HAZrUpNz1Xw7sPlyR9VfqVuRMCEPYGJp1YXJQiOgAAAAAgyFFEB8JIVnKWJKngSIHJMwEQ7lyLi24vp4gOAAAAAAhuFNGBMDKk2xBJFNEBmM+1uOi2sm0mzwQAAAAAgJZRRAfCiOtO9O3l21VnrzN5NgDCmetO9J3lO2V32E2eDQAAAAAAzaOIDoSRHp16KDE6UQ2OBvoQAzBVr869FGOLUa29VnuP7jV7OgAAAAAANIsiOhBGLBaLsro670bfemSrybMBEM5sVpsykzIlsbgoAAAAACC4BUUR/bXXXtPIkSM1ZswYjR07Vlu3tlzca2n/qqoqPfroozr//PM1fvx45eTk6Pbbb9fx48f9fRpASKAvOoBgweKiAAAAAIBQEGH2BDZs2KA5c+Zo06ZNGjhwoJ5//nlNmTJFX331leLj41u9f35+vh566CFt2rRJvXr1Unl5uc477zwdPnxYy5YtC/wJAkHG1RedIjoAs7mK6NtKWVwUAAAAABC8TL8TfcmSJZo2bZoGDnT+Q3r27NlqaGhotuB9qv3j4+P1y1/+Ur169ZIkJSUl6dprr9VLL70ku52FywAWFwUQLAZ1GSSJO9EBAAAAAMHN9CL6unXrdNZZZ7kfW61WjRgxQnl5eW3af9iwYbr77rs9XhMTE6OGhgY5HA4/nAEQWlhcFECwcN2J/u3Rb1VVX2XybAAAAAAAaJqpRfQjR46osrJSqampHtvT0tJUWFjY7v1dPvroI82YMUORkZFNPl9bW6vKykqPL6CjslgsGpLs7IvO4qLBgxxCOOoa01XJMckyZGhH+Q6zpxP2yCEAZiOHAJiNHALQHFOL6FVVzrvOoqOjPbZHR0e7n2vP/pL09ddfa+3atXr44YebnceDDz6oxMRE91fv3r1bdR5AqKEvevAhhxCu3C1d+GSM6cghAGYjhwCYjRwC0BxTi+hxcXGSnL/pO1ltba37ufbsf/ToUc2aNUv/93//p4yMjGbncdddd6miosL9tW/fvlafCxBKKKIHH3II4crV0oW+6OYjhwCYjRwCYDZyCEBzIswcPDk5WYmJiTp48KDH9uLiYvXv379d+9fU1GjGjBm64447NHXq1BbnER0d3ejudqAjc7Vz2V6+XbX2WkXb+P43GzmEcOUqom8r22byTEAOATAbOQTAbOQQgOaYvrDohAkTtGnTJvdjwzCUn5+vSZMmtXn/hoYGXX755br88st11VVXSZJefvlllZWV+eksgNCS3ildSdFJLC4KwHQnt3MxDMPk2QAAAAAA0JjpRfSFCxfqzTff1I4dzgXFXnjhBdlsNs2ZM0eSNHr0aN19991e7+9wODRnzhx17txZI0aM0KeffqpPP/1Uzz//vCoqKgJ8dkBwslgstHQBEBT6J/aX1WJVeW25DlcfNns6AAAAAAA0Ymo7F0nKzc3VsmXLdOWVVyo2NlZWq1VvvfWW4uPjJTkXEz25B/qp9l+9erX+/ve/S5JefPFFj7H+/Oc/B+isgOCXlZylDw98SBEdgKliImLUJ76Pdlfu1raybeoe193sKQEAAAAA4MH0IrokXXbZZbrsssuafC4/P79V+0+bNo2PgwNecPVFp4gOwGyDugzS7srd2l62Xef1PM/s6QAAAAAA4MH0di4AzOFq57K9zLm4KACYxbW46PZy1mgAAAAAAAQfiuhAmHIvLmqwuCgAc7mK6NvKtpk8EwAAAAAAGqOIDoQpFhcFECwGdRkkSdpZvlMNjgaTZwMAAAAAgCeK6EAYc/VF33pkq8kzARDOenbuqdiIWNU76rWnco/Z0wEAAAAAwANFdCCMcSc6gGBgtVi/64tOeykAAAAAQJChiA6EMVcRfUfZDhYXBWCqgUn0RQcAAAAABCeK6EAYY3FRAMGCO9EBAAAAAMGKIjoQxiwWy3d90Q/TFx2AeVyLi24vp4gOAAAAAAguFNGBMOfui15KX3QA5nEV0fcf269jdcdMng0AAAAAAN+hiA6EORYXBRAMEqMTlRKbIknaUb7D5NkAAAAAAPAdiuhAmHO1c2FxUQBmG9iVxUUBAAAAAMGHIjoQ5tI6palLdBc1GA3aVkrhCoB5BiWd6IvO4qIAAAAAgCBCER0IcxaLhZYuAILCwC7ciQ4AAAAACD4U0QGwuCiAoOBaXHR7+XYZhmHybAAAAAAAcKKIDsDdF5070QGYqV9iP9ksNh2tO6qDVQfNng4AAAAAAJIoogPQd3eis7goADNF2aLUN6GvJFq6AAAAAACCB0V0ACwuCiBouFu6sLgoAAAAACBIUEQHwOKiAIKGa3HR7eUU0QEAAAAAwYEiOgBJ37V02Xpkq8kzARDOXEV02rkAAAAAAIIFRXQAklhcFEBwcLVzKawoVL293uTZAAAAAABAER3ACa470XeW72RxUQCmSe+Urs6RndXgaFBhZaHZ0wEAAAAAgCI6ACcWFwUQDCwWizKTMiWxuCgAAAAAIDhQRAcg6cTiot3oiw7AfK6WLhTRAQAAAADBgCI6ALesrs4iOn3RAZiJxUUBAAAAAMGEIjoANxYXBRAM3Heil3MnOgAAAADAfBTRAbgN6eYsou8s36mahhqTZwMgXGV2cfZELz5erMq6SpNnAwAAAAAIdxTRAbilxqWqa0xX5+KitFEAYJKEqASldUqTRF90AAAAAID5KKIDcLNYLDo9+XRJtHQBYC4WFwUAAAAABAuK6AA8sLgogGAwMMm5uChFdAAAAACA2SiiA/Dg6ou+9chWk2cCIJwN7OIsotNaCgAAAABgNoroADwMSWZxUQDmc7Vz2VG+Q4ZhmDwbAAAAAEA4o4gOwINrcVG7YecOUACm6ZvYVxHWCB2rP6ai40VmTwcAAAAAEMYoogPwwOKiAIJBpDVS/RL7SaKlCwAAAADAXBTRATTiaulCX3QAZnK1dAmVxUXtDrs2Fm/Uql2rtLF4o+wOu9lTAgAAAAD4QITZEwAQfLKSsyRxJzoAcw1MCp3FRfP25GnJhiU6WHXQvS01LlULcxdqUsYkE2cGAAAAAGgv7kQH0AiLiwIIBgO7OIvowX4net6ePM1fP9+jgC5JJVUlmr9+vvL25Jk0MwAAAACAL1BEB9AIi4sCCAaudi67K3erzl5n8myaZnfYtWTDEhkyGj3n2vbQhodo7QIAAAAAIYwiOoBGLBaLu6VLqPRFpxcx0PGkxqUqPipedsOuXRW7zJ5Ok/JL8hvdgX4yQ4aKq4qVX5IfwFkBAAAAAHyJnugAmpSVnKUP9n8QEn3R6UUMdEwWi0UDkwYqvyRf28u2a3DXwWZPqZFDVYd8uh8AAAAAIPhwJzqAJoXK4qL0IgY6NldLl2Dti949rrtP9wMAAAAABB+K6ACaFAqLi9KLGOj4XIuLBuv6DDkpOUqNS232eYssSotLU05KTgBnBQAAAADwJYroAJp08uKi35R9Y/Z0mkQvYqDjC/Y70W1WmxbmLmzyOYsskqQFuQtks9oCOS0AAAAAgA9RRAfQpJMXFw3Wli70IgY6vsykTElSSXWJymvKzZ1MMyZlTNLw7sMbbU+NS9Wj4x5lbQYAAAAACHEsLAqgWcG+uCi9iIGOr3NUZ/Xs3FP7j+3X9vLtGpk20uwpNVLdUO3+xM4959yjzpGd1T2uu3JScrgDHQAAAAA6AIroAJrl6ou+9chWk2fSNFcv4uZaulhkUWpcKr2IgRA3MGmg9h/br21l24KyiP7B/g9U3VCtnp176keDfiSLxWL2lAAAAAAAPkQ7FwDNcrVz2VW+KygXF6UXMRAeXIuLBmtf9LW710qSJmdMpoAOAAAAAB0QRXQAzQqFxUUnZUzS6V1Pb7SdXsRAxxHMi4vWNNTovW/fkyRdkHGBybMBAAAAAPgD7VwANMu1uKirL/qw7sPMnlIjh6oOuQv8vz/v97JZbfQiBjoYdxG9fLschkNWS/DcA+Bq5dKjUw9ld8s2ezoAAAAAAD+giA6gRUOSh+iD/R9o6+Hg7Iv+5q435TAcGt59uKZnTjd7OgD8oE9CH0VZo1TdUK39x/ard3xvs6fktnaPs5XLBRkX0MoFAAAAADqo4LmVC0BQcvVFLygtMHkmjRmGoRU7V0iSLs281OTZAPCXCGuE+if1lyRtK9tm8my+U9NQo/f2OVu5TO472eTZAAAAAAD8hSI6gBadvLhodUO1ybPxVHCkQDvKdyjaFq0pfaeYPR0AfhSMfdH/e+C/qmqoUnqndA3tNtTs6QAAAAAA/IQiOoAWpcalKjkm2bm4aGlwLS767x3/liRN7DNR8VHx5k4GgF8NTBooKbjuRF+7m1YuAAAAABAOKKIDaJFrcVHJeed3sKiz12lV4SpJ0qUDaOUCdHQDuziL6MFyJ3qtvVbvfUsrFwAAAAAIBxTRAZxSMBbR3/v2PVXWVSolLkVnp59t9nQA+Jmrncveo3tV01Bj8myk/+7/r47XH1dapzSd0e0Ms6cDAAAAAPAjiugATikYFxddscO5oOglAy6RzWozeTYA/K1bbDclRSfJYTi0s2Kn2dPR2j3OVi6T+kyilQsAAAAAdHAU0QGc0pDkIZKkneU7g2Jx0cPVh/XB/g8kOYvoADo+i8USNC1d6ux1Wr9vvSSxqDEAAAAAhAGK6ABOKSUuRckxyXIYjqBYXPTNXW/Kbtg1rPsw9UvsZ/Z0AASIq6WL2UX0Dw98qOP1x5USl6IzutPKBQAAAAA6OoroAE4pmBYXNQxD/97xb0nchQ6Em4FJzjvRt5VtM3Uea3c7W7lMzpgsq4UfpQAAAACgo+NffgC8EixF9K9Kv9KO8h2KskZpar+pps4FQGAFQzuXOnud3t33riRpct/Jps0DAAAAABA4FNEBeMXVF33rka2mzsO1oOjEPhOVEJVg6lwABFZmUqYssuhIzREdqT5iyhw+OvCRjtUfU0pcioZ1H2bKHAAAAAAAgUURHYBXXHei76rYZdrionX2Or1Z+KYk6dLMS02ZAwDzxEXGqVd8L0nS9nJz7kZfu8fZyuWCjAto5QIAAAAAYYJ//QHwSjAsLvqfb/+jitoKpcSm6Jz0c0yZAwBzufqim9HSpc5ep3f3Olu5XJBxQcDHBwAAAACYgyI6AK+cvLioWS1dVux0tnK5eMDFslltpswBgLkGdR0kyZwi+sdFH+to/VF1j+2uM1PODPj4AAAAAABzUEQH4LUh3Zx90c1YXPRw9WG9/+37kqRLB9DKBQhXrjvRt5VtC/jYa3c7W7lMyphEKxcAAAAACCP8CxCA17K6Ou9EN6OIvmrXKtkNu87odob6J/UP+PgAgsPALs4i+s7ynbI77AEbt95er3f2vSNJmpwxOWDjAgAAAADMRxEdgNfMWlzUMAz9e+e/JbGgaDiyOwx9tPOIVmzer492HpHdYZg9JZioT3wfRduiVWOv0bfHvg3YuB8XfayjdUfVLbYbrVwAAAAAIMxEmD0BBDe7w9CGwlKVHK1RSnyMcvt1lc1qMXtaMElKXIq6xXbT4erD+qb0Gw1PGR6Qcb8u/Vrby7YryhqlKX2nBGRMBIc1W4p038oCFVXUuLelJ8Zo0fQsTc1ON3FmMIvNatOApAEqOFKgbWXblJGQEZBx1+450cqlzyTWZAAAAACAMEMRHc0yrXjlsEt7PpSOHZQ6p0oZ50r+LFgEejyzxvQB1+Ki//n2P9p6ZGvAiuiv73xdkjS+z3glRicGZEyYb82WIs1dnq/v33deXFGjucvztXR2jv+yiBwKagOTBqrgSIG2l23XBRkX+H28eke93tl7opVLX1q5AAAAAEC4oYiOJplWvCp4XVqzQKo88N22hB7S1IekrEtCfzyzxvQhVxE9UH3R6+31enPXm5JYUDSc2B2G7ltZ0CiDJMmQZJF038oCXZCV5vtPx5BD/hnThwZ1GSQpcIuLflL0iSrrKpUck6yclJyAjAkAAAAACB5B0RP9tdde08iRIzVmzBiNHTtWW7dubdf+hmHo/vvvV05OjnJzczV79mxVVFT48xQ6lFMVryRn8crnfYkLXpdeutqzqCNJlUXO7QWvh/Z4Zo3pY4FeXPQ/+/+jstoydY/trlE9RgVkTJhvQ2Gpx6dgvs+QVFRRow2Fpb4dmBwKiRxyLS66vWx7QMZbu/tEK5cMWrkAAAAAQDgy/U70DRs2aM6cOdq0aZMGDhyo559/XlOmTNFXX32l+Pj4Nu3/2GOP6dVXX9XHH3+s2NhYXXfddfrJT36i118P/sJAMGhN8WrUgGTfDOqwO++KbOm+0zULpP7jfNNuwGGXVt8ZuPG8HnOhNHhaULdUGNJtiCTn4qJV9VWKi4zz63grdqyQJF3c/2JFWE2PLARIydHmM6gt+3mFHFKo5JDrTvR9R/f5PYfqHfV6Z9+JVi4ZtHIBAAAAgHBkekVqyZIlmjZtmgYOdN5VNnv2bN15551atmyZbrnlllbvb7fbtWTJEv32t79VbGysJOn222/XkCFD9OWXX2ro0KGBO7kQZUrxas+Hje+K9GA4n1/S23djtijQ47nG3O98L/qNCeC4rXPy4qLbyrb5tS96aU2p3v/2fUnSJQOCv8UEfCfC6t0HpVLiY3w3KDmkUMmh5NhkdY3pqtKaUu0s36mh3f333/aNRRtVUVuhrjFdNSJ1hN/GAQAAAAAEL9Pbuaxbt05nnXWW+7HVatWIESOUl5fXpv2/+OILHTp0yGOf008/XZ06dWr2mPjO8doGfbjziFf7+rR4deyg744V6kLgvchKdrZ02Xqk5dZL7bVq1yo1GA3KTs5WZpdMv46F4LHy8wO6619ftLiPRc6FjnP7dfXdwCFw7QVMCLwX7pYu5f5t6bJ2z4lWLn1o5QIAAAAA4crUO9GPHDmiyspKpaamemxPS0vTxo0b27T/rl27JMljH4vFotTUVBUWFvr6FDqMmnq7ln+8R0vX79SR43Ut7muRlObr4lXn1FPvI0k/fkXKOLf94+35UHphZuDGa82Y3r4XJgrU4qIrdjpbuVyayYKi4aCiql73vr5FKzY77wbPSI7TniNVssiz+YhrGdFF07N8u6goOfSdEMihQV0G6ZOiT/zaF73eUa91e9dJkib3pZULAAAAAIQrU4voVVVVkqTo6GiP7dHR0e7nWrt/a48pSbW1taqtrXU/rqysbM1phLS6Bof++ek+/eWd7TpY6XwPMpLjNGFwdy377x5JASpeZZwrJfRwLmzXZK9ei/P5ARN806d3wITAjteaMX1VLPOjIcnOvuj+LKJ/Xfq1vi79WpHWSF3Y70K/jRMswjmHJOm/Ow7r9pc/V1FFjawW6RfjM3XLxIFa99VB3beywGOdhrTEGC2anqWp2em+nQQ5pFDKoYFJzjvRt5Vt89sYG4s3qry2PGxauYR7DgEwHzkEwGzkEIDmmNrOJS7OuRDYyQHleux6rrX7t/aYkvTggw8qMTHR/dW7dyD7z5qjwe7QS5/u0/g/rtc9/96ig5W16pkUq4d+OFR588dq0fRsLZ2do7REz5YtaYkxWjo7x/fFK6tNmvrQiQffL86feDx1ie8KSYEez6wx/cTVzsW1uKg/uBYUHdd7nBKjE/0yRjAJxxySnJ+C+e0bBfrxM5+oqKJGfZPj9MrcczV/8mmKtFk1NTtdHyyYoBdvOEePXzlcL95wjj5YMMH3GSSRQyGWQ67FRbeXbZdhNPULgfZbu9vZymVin4lhsbBxuOYQgOBBDgEwGzkEoDmmFtGTk5OVmJiogwc9e68WFxerf//+bdrf9ef39zl48GCTx5Sku+66SxUVFe6vffv2tfmcgp3dYWjF5v264LH/6M5XvtD+8mqlxEfr/kuH6J3bx+qKkX0UaXN+WwS0eCVJWZdIlz8vJXzv+Ak9nNuzfLywZKDHM2tMP3AtLuowHH65C7TeUa9VhaskSTMyZ/j8+MEonHLIZcv+Ck3/8wd69gNnq60fn91Hq+aNUU6fLh772awWjRqQrEuH99SoAcm+/RTM95FDIZND/ZP6y2qxqqy2TEdqvFvLozUaHA16Z+87kqQLMi7w+fGDUTjmEIDgQg4BMBs5BKA5pt9WNWHCBG3atMn92DAM5efn6+67727T/meccYa6d++uTZs2acQI50evv/rqKx0/flyTJk1q8pjR0dGN2r90NIZh6K2txXr07W3advCYJKlrpyjdPG6AZp+ToZjIpu86dBWvAibrEmnwNGff3mMHnX15M871312RgR7PrDH9YEjyEL337XvaemSrhqcM9+mxP/j2A5XWlCo5Jlnn9gj+thK+EA455GJ3GPrf93bqT3nbVG831K1ztP4wc6gmDA6SPtzkUEiIjYhVn/g+2l25W9tKt6lbz24+Pf6nBz9VWW2ZukR30ci0kT49drAKpxwCEJzIIQBmI4cANMf0IvrChQt1wQUXaMeOHcrMzNQLL7wgm82mOXPmSJJGjx6tsWPH6oEHHvBqf5vNpoULF+rJJ5/UT37yE8XGxuqRRx7R9OnTlZ2dbdp5msUwDK3/5pAeefsbbdnv7OWVEBOhm8YO0Jxz+6pztOnfAo1ZbVK/MR13PLPG9LGs5Cy99+17fumL7lpQdPqA6WHRQiGc7D1Spfkvbdane8okSVOGpOr3lw1Vcucg+0GVHAoJA7sM1O7K3dpevl3n9vTtL9xcrVwm9JlADgEAAABAmDP9X4W5ublatmyZrrzySsXGxspqteqtt95SfHy8JOdCoSf3Nz/V/pJ022236dixYzrvvPMUERGhgQMH6vnnnw/4uZntwx2H9ce13yh/b7kkqVOUTdeP7qfrx/RXYmykuZNDyHP1Rfd1Eb20plTv7XtPknTJgNBoK4FTMwxDL326T/evLNDxOrs6R0do8SVD9MOcnrJY/NieBR3awC4D9faet33eVqrB0aB1e9dJkib3nezTYwMAAAAAQo/pRXRJuuyyy3TZZZc1+Vx+fn6r9pcki8Wie++9V/fee6/P5hhKNu4u1SNrv9HHu0olSTGRVs0Z1Vc3jR2grp2iTJ4dOorvLy4aF9n0wr2ttbpwtRqMBmUlZ2lgl4E+OSbMdfhYre7615d6u8C5VkVu36565PJh6t3VN98zCF+Dkr5bXNSXNh3cpNKaUiVFJyk3LdenxwYAAAAAhJ6gKKKHKrvD0IbCUpUcrVFKfIxy+3X174J3pxjzi2/L9cjabXpv2yFJUpTNqlln99HN4wcoJT7Gr/NC+EmJS1H32O46VH1I35R9ozNTzvTJcVfscLZyuXTApT45HsyVV3BQC//1hQ4fq1OkzaLbJ5+mn47p7/esRHhw/aJtZ/lONTgafNZ2xdXKZWKfibRyAQAAAABQRG+rNVuKdN/KAhVV1Li3pSfGaNH0LE3NTg/omNeP7qdPCkvdd3lGWC360Vm9dcuETPVIivXLXADJsy+6L4ro35R+o69Kv1KENUIX9bvIBzOEWY7VNuh3bxToHxudq9mflhqvx64YrqweCSbPDB1Jr/heio2IVXVDtfZW7lX/pP7tPqbdYVfe3jxJ0uQMWrkAAAAAACiit8maLUWauzxfxve2F1fUaO7yfC2dnePzQnpzYxZV1Oh3b34lSbJapBln9tS8iQOVkdzJp+MDTfH14qKv73xdkjS+93glxST55JgIvE17SnXbPz/X3tIqWSzSDWP6a/4FgxQTaTN7auhgrBarMpMy9eXhL7WtfJtPiuiuVi6J0YkamT7SB7MEAAAAAIQ6iuitZHcYum9lQaNitiT3tt/8e4vSE2Nls1pksUgWnfjz5L/L+djp5G0W93Oufe0OQ/es2NrkmC4xkVat+Pl5Oi2NuzwROK6+6FsPb233seod9Xpj1xuSWFC0NcxoK9WcugaHHl+3TUvX75TDkHomxeqPPxqmUQOSTZkPwsPALgP15eEvtb1su6b2ndru463d42zlMqH3BEVaWYQbAAAAAEARvdU2FJZ6tFNpyuFjdbr0f/4boBk51dQ7VHq8PqBjAq4iemFlYbsXF/3v/v+qtKZUXWO66rye5/lqih2aGW2lpKYL97sOHdOt/9ysrQcqJUk/yOmpxZcMUUIMRUj416AuzsVFt5Vta/ex7A678vacaOXSl1YuAAAAAAAniuitVHK05QK6S0JshGIibO67xw1DkgwZhvOOdcMwTvz53d9dO3//+QaHQ/X2lu5Db93cAF/x5eKirlYuF/e/mLs/vWBGWynXuN8v3CfERKiqzq4Gh6GkuEj9/rKhumio/4r4wMkGJjkXF91etr3dx8ovydeRmiNKiErQ2elnt/t4AAAAAICOgSJ6K6XEx3i131Ozz/JZC4OPdh7RVU9/fMr9vJ0b4Eu+WFy0vKZc7+57VxKtXLxxqrZSFkn3rSzQBVlpPm3t0lzhvrKmQZKUlZ6gZdeOVEoCWYTAGdjFWUTff2y/jtcfV6fItq8Jsnb3iVYufWjlAgAAAAD4DkX0Vsrt11XpiTEqrqhpsoBlkZSW6GxvEMpjAt5yFdHb0xd9VeEqNTgadHrX03Va19N8OLuO6VRtpQw5Fx0++/d5SoiNVJTNqugIq6JOfEVH2BRl++5xVITVcx/b9/aNsCrCatHilS2vzVBWVafkztE+P1+gJV1iurg/EbO9bLuGpwxv03HsDrvy9p5o5ZJBKxcAAAAAwHcooreSzWrRoulZmrs8XxbJo6Dkut9z0fQsn979acaYgLeGJA+RJBUcKWjzMVbsXCFJujTzUp/MqaPztnXT4WN1Onyszs+z+U5RRY02FJaykCgCbmCXgc4iennbi+iflXymw9WHFR8Vr3PSz/HtBAEAAAAAIY0iehtMzU7X0tk5jfoCp/lxQT8zxgS80d7FRbeXbVfBkQJFWCN0Ub+L/DHFDsfb1k2/vXSIBqXGq7bBoboGh+rsJ/5scKj25L832N1/b26f/eVV2lFy/JRjsjYDzDCoyyB9eODDdvVFX7vnRCuX3hMUaaOVCwAAAADgOxTR22hqdrouyErThsJSlRytUUq8s52KP+8GN2NM4FS6x3Vv1+KirgVFx/Yaqy4xXfwxxQ7H2xZPs87O8Fk+sDYDgpmrL/q2sm1ter3DcChvz4lWLn1p5QIAAAAA8GQ1ewKhzGa1aNSAZF06vKdGDUgOSDHbjDGBU3G1dGltX/QGR4NW7lwpSbp0AK1cvOVq8SR919LJxV8tnlyF++aOaJGUztoMMMnAJGcRfXvZdhlGS537m7a5ZLMOVR9SfGS8RqWP8vX0AAAAAAAhjiI6gHZztXRpbV/0Dw98qCM1R9Q1pqtG9xrtj6l1WK4WT2mJnnd+pyXGaOnsHJ+3eDKjcA94q39Sf9ksNlXWVaqkqqTVr3e1chnfZzytXAAAAAAAjdDOBUC7tbWI/u8d/5YkXdTvIkVaKVy1VqBbPLE2A4JVtC1aGQkZ2lWxS9vKtim1U6rXr3UYDr29+21J0uQMWrkAAAAAABqjiA6g3VxF9F0Vu7xeXLSitkLr962XJM3InOG/yXVwrhZPgcLaDAhWA7sM1K6KXdpevl1jeo3x+nWfH/pcJdUl6hzZWaN60MoFAAAAANAY7VwAtFv3uO5KiU2RIUNfl37t1WtWF65WvaNeg7sO1mldT/PzDOFLrM2AYDSoyyBJzr7orbF294lWLr3HK8oW5fN5AQAAAABCH0V0AD7R2pYuK3askMSCogB8w7W46LaybV6/xmE43P3QJ/ellQsAAAAAoGkU0QH4RGuK6DvKdmjLkS2KsEToov4X+XtqAMLAwC7OIvquil2qd9R79ZovDn2hkqoSdYrsRCsXAAAAAECzKKID8AlXEX3rka2n3Pf1na9Lksb0GqOuMV39Oi8A4aFH5x7qFNlJDY4G7a7Y7dVrXHehj+s9TtG2aD/ODgAAAAAQyiiiA/AJVxG9sKJQVfVVze7X4GjQG7vekCRdmkkrFwC+YbVYlZmUKcm7vugOw6G397wtSZqcQSsXAAAAAEDzKKID8AlvFxf96MBHOlR9SF2iu+j8nucHcIYAOjpXS5ft5acuon95+EsVHy9Wp8hOOq/nef6eGgAAAAAghFFEB+Az3vRFX7HTuaDoRf0vUqQtMiDzAhAeBnUZJMm7xUXX7na2chnbayytXAAAAAAALaKIDsBnsrq13Be9orZC7+x9R5J06QBauQDwrYFJJ+5EP0U7F8Mwvmvl0pdWLgAAAACAllFEB+AzQ5KHSGr+TvQ1hWtU76jXoC6DNLjr4EBODUAYcLVzKTpepKN1R5vd78vDX6roeJHiIuJ0Xg9auQAAAAAAWkYRHYDPnGpx0dd3vi7JeRe6xWIJ6NwAdHyJ0YlKjUuV1PLd6O5WLr3HKiYiJiBzAwAAAACELoroAHymW2y3ZhcX3VW+S18c/kIRlghN6z/NpBkC6Ojci4s2U0T3aOWSQSsXAAAAAMCpUUQH4FPN9UV3LSg6uudoJccmB3xeAMKDu4he3nQRfeuRrTpw/IBiI2I1uufoQE4NAAAAABCiKKID8ClXS5eT+6LbHXa9sfMNSdKlmSwoCsB/BnUZJEnaVratyefdrVx60coFAAAAAOAdiugAfKqpxUU/LvpYJdUlSopO0theY82aGoAwMDDJeSf6jrIdMgzD4znDMLR2j7OIPrkvrVwAAAAAAN6hiA7Ap05eXPR4/XFJ0oodzlYuF/W7SJG2SNPmBqDj65/YXxGWCB2tP6ri48UezxUcKdD+Y/tp5QIAAAAAaBWK6AB8qltsN6XEfbe4aGVdpdbtXSdJuiTzEpNnB6Cji7RFqm9iX0mNW7q8tectSdL5vc5XbERsoKcGAAAAAAhRFNEB+NzJfdHXFK5RnaNOmUmZyuqaZfLMAISDphYXNQzD3Q99cgatXAAAAAAA3qOIDsDnXEX0/3z7Hy3bukySdMmAS2SxWEycFYBw0dTiogWlzlYuMbYYWrkAAAAAAFqFIjoAn6u310tyLii67+g+SdL/Ffyf8vbkmTktAGHCVUTfXvbdnehv///27vc1y7L/A/jn2qblyrRMHVZO6IfRD5SJK1u6TVZJZChh5jBU+gdkBGpRaVBUkElBBfeT0rQgyopq1ldRhIwyhtke2K2g0g/XFs4c+f2q9zy+D3Z70bJLp07PTV+vR7uO47yO63OO7f3gc53nce75n4iImHzt5CgdUJpJXQAAAPRPmuhAr1q/d33864d/nTD++//+Hg2bGjTSgXPuxqFd27ns+WNPHOk80rWVy97/buUyxlYuAAAAnB5NdKDXdB7rjBe+feEf51KkiIh48dsXo/NY5/ksC7jIlF1WFoMHDI7/pP/E7j92x479O+Knjp/i0uJLY8o1U7IuDwAAgH5GEx3oNU2tTfHbod8KzqdI0XKoJZpam85jVcDFJpfL5R8u+u/2f+evQreVCwAAAGdCEx3oNW2H2nr1OIAzdbyJvrN9Z3y5579buZTbygUAAIDTV5J1AcCFY3jp8F49DuBM3TD0hoiIWLtrbRw4fCAGFg2MKdfaygUAAIDT50p0oNdUjKiIkaUjIxe5f5zPRS7KSsuiYkTFea4MuJis37s+3vj+jYiIOHD4QER0bfGy5dctGVYFAABAf6WJDvSa4qLiWFy5OCLihEb68deLKhdFcVHxea8NuDis37s+GjY1xP7/299t/HDn4WjY1BDr967PqDIAAAD6K010oFfVldfF8prlMaJ0RLfxkaUjY3nN8qgrr8uoMuBC13msM1749oVIkQoe8+K3L0bnsc7zWBUAAAD9nT3RgV5XV14XtdfVRlNrU7QdaovhpcOjYkSFK9CBc6qptSl+O/RbwfkUKVoOtURTa1NMLJt4HisDAACgP9NEB86J4qJiTSrgvGo71NarxwEAAECE7VwAgAvE8NLhvXocAAAARGiiAwAXiIoRFTGydOQJDzY+Lhe5KCsti4oRFee5MgAAAPozTXQA4IJQXFQciysXR0Sc0Eg//npR5SLPZwAAAOC0aKIDABeMuvK6WF6zPEaUjug2PrJ0ZCyvWR515XUZVQYAAEB/5cGiAMAFpa68Lmqvq42m1qZoO9QWw0uHR8WIClegAwAAcEY00QGAC05xUXFMLJuYdRkAAABcAGznAgAAAAAABWiiAwAAAABAAZroAAAAAABQgCY6AAAAAAAUoIkOAAAAAAAFaKIDAAAAAEABmugAAAAAAFCAJjoAAAAAABSgiQ4AAAAAAAVoogMAAAAAQAGa6AAAAAAAUEBJ1gX0RSmliIg4ePBgxpUA58rx/+/j/+99jRyCC58cArImh4CsySEgaz3NIU30f9DR0REREdddd13GlQDnWkdHRwwZMiTrMk4gh+DiIYeArMkhIGtyCMjaqXIol/rq130ZOnbsWPz6668xePDgyOVyWZcDnAMppejo6IhRo0ZFUVHf29lKDsGFTw4BWZNDQNbkEJC1nuaQJjoAAAAAABTQ977mAwAAAACAPkITHQAAAAAACtBEBwAAAACAAjTROefGjBkTNTU1UVNTE3feeWfkcrkYP358fmzo0KGxa9euqKmpiVwuF5s2bTqrz1u6dGns2bPnjN//2Wefxa233hq5XC4mTJgQX3/9dbf5mpqaKC0tjXvvvfek6yxZsiR/7kC25FDNGdcC9A45VHPGtQC9Qw7VnHEtQO+QQzVnXAt9QIJzrLy8PP/z7t27U0SkjRs35seqq6vT7t27U0rphLkz0Rtr7N27N+VyubRixYoT5nbv3p2mTZvWo3WeeeaZVF1dfVa1AGdPDlWfVS3A2ZND1WdVC3D25FD1WdUCnD05VH1WtZAtV6Jzzi1cuPCk8/Pnz4+hQ4eel1p6avTo0VFVVRWrV68+Ye7dd9+NOXPmZFAVcKbkEJA1OQRkTQ4BWZND9Gea6JxzpxuSO3fujFmzZsX48eNj2rRpsX///m7Hr1y5MioqKmLKlClRVVUVa9eujYiI/fv352+NWbhwYdTU1MQbb7wRERHvv/9+VFVVRW1tbVRWVkZDQ0McPnz4pHXNmTMntm7dGjt37uw2/tFHH8XMmTOjvb09FixYEJWVlVFdXR2TJ0+Or776quB627Zty9+udPx2oiVLlkRZWVnMnz+/27GNjY1RWVkZd999d9x1113x5ptvnrRW4OTkUBc5BNmRQ13kEGRHDnWRQ5AdOdRFDvVTWV8Kz8Xln27X+auISNOnT09Hjx5NnZ2dqbKyMj399NP5+XXr1qVhw4aln376KaWU0q5du9Jll12WtmzZ0m2Nv6//0EMPpU8//TSllNKRI0fSfffdl5YtW3bSWtva2lJJSUlaunRpfmz79u3p4YcfTiml9MMPP6RJkyalo0ePppRS2rx5cxo2bFhqb2/PH//323WOn//x25NSSmnevHlp3rx5+dfNzc2ptLQ0bdu2LV/HNddck9asWXPSeoGekUNyCLImh+QQZE0OySHImhySQ/2NK9Hpc2bNmhUlJSVRVFQUVVVVsW3btvzc888/H4888khce+21ERFx/fXXR21tbbz++usnXfOVV16J+++/PyIiBgwYEDNnzozGxsaTvufqq6+Oe+65p9stO2vWrIn6+vqIiLjxxhtj7dq1UVJSEhERkydPjgEDBsQ333xz2uf8Vy+99FLU1tbGuHHj8nXMnDnzlOcI9B45JIcga3JIDkHW5JAcgqzJITnUl5RkXQD83ahRo/I/X3HFFXHw4MH86+bm5vj555+7PdH4999/j5tvvvmkax48eDDq6+tj7969MXDgwGhpaTnl7ToREfX19fHoo4/G1q1bY+LEifHFF1/EsmXLIqIrbFevXh0fffRRREQUFRVFe3t7tLS0nMbZnqi5uTlaWlq6neOBAwfi0ksvPat1gZ6TQ3IIsiaH5BBkTQ7JIciaHJJDfYkmOn1OcXFxt9cppW6v586dmw+qnvjzzz9j6tSpMXv27Fi9enUUFRXFW2+9FUuXLj3le2fMmBGDBg2KNWvWxNGjR2PChAkxcODAiIh4+eWX47nnnovvvvsubrjhhoiIGDNmzAn1/lUulzthrLOz84Rzrquri7fffrvH5wj0LjkkhyBrckgOQdbkkByCrMkhOdSX2M6FfuW2226LH3/8sdvYxo0b8w+IiOgeRB0dHbFjx45obW2NWbNmRVFR15/8kSNHevR5l19+eUyfPj3ee++9WLVqVf5WnYiIzZs3x4QJE/IB2ZN1Bw8enK/ruF9++eWU59jc3BzPPvtsj2oGzi05BGRNDgFZk0NA1uQQ55smOv3Kk08+GZ988kl8//33EdH1LeITTzzR7Xad4cOHR3t7e7S2tsbUqVNjzJgxMWjQoNiwYUNEdH2z9/HHH/f4M+vr66OlpSUaGxujuro6P37LLbfE9u3bo62tLSIitmzZEvv27TvpWldddVWMHj06tmzZEhERO3bs6LanV0TEokWLoqmpKb788suIiDh69Gg89dRTUV5e3uOagXNHDgFZk0NA1uQQkDU5xHmX1RNNufg0NjamO+64I0VEGjduXHrttdfyc/v27UvV1dX5uQ0bNqQVK1ak8vLyNGTIkFRfX58/dtWqVen2229PkyZNSlVVVemdd97p9jmvvvpqGjt2bKqsrEwffPBBSimlDz/8MN10002psrIyzZgxIy1YsCBdcsklaerUqaes+/Dhw+nKK69MDQ0N3cb/+OOPNHv27DR69Oj0wAMPpIULF6aysrI0duzYtHLlyrR48eJ8/Q8++GD+fZ9//nkaO3ZsmjJlSnr88cfT3Llz08iRI9Njjz2WP2bdunVpwoQJaeLEiamqqiotX7789H7ZwD+SQ13kEGRHDnWRQ5AdOdRFDkF25FAXOdS/5FI6yQY9AAAAAABwEbOdCwAAAAAAFKCJDgAAAAAABWiiAwAAAABAAZroAAAAAABQgCY6AAAAAAAUoIkOAAAAAAAFaKIDAAAAAEABmugAAAAAAFCAJjoAAAAAABSgiQ4AAAAAAAVoogMAAAAAQAGa6AAAAAAAUMD/A93/gvQVtVAuAAAAAElFTkSuQmCC", "text/plain": [ "
" ]