diff --git a/runs.ipynb b/runs.ipynb
index 5ef9f463..0809f447 100644
--- a/runs.ipynb
+++ b/runs.ipynb
@@ -61,7 +61,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -98,186 +98,694 @@
"datasets = ['op', 'replogle2', 'nakatake', 'norman', 'adamson']"
]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# new metric"
- ]
- },
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
- "text/plain": [
- "(8,)"
- ]
- },
- "execution_count": 21,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from src.metrics.wasserstein.script import main, par\n",
- "output_dir = 'output'\n",
- "datasets = ['adamson', 'norman']\n",
- "models = ['pearson_corr', 'grnboost2','portia', 'ppcor','scenic']\n",
- "n_maxs = [500, 1000, 5000, 10000, 50000]\n",
- "\n",
- "\n",
- "# for dataset in datasets:\n",
- "dataset = 'adamson'\n",
- "par['evaluation_data'] = f'resources/datasets_raw/{dataset}_sc_counts.h5ad'\n",
- "evaluation_data = ad.read_h5ad(par['evaluation_data'])\n",
- "tf_all = np.loadtxt(par['tf_all'], dtype='str')\n",
- "available_tfs = np.intersect1d(evaluation_data.obs['perturbation'].unique(), tf_all)\n",
- "available_tfs.shape"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "pearson_corr\n",
- "grnboost2\n",
- "portia\n",
- "ppcor\n",
- "scenic\n"
- ]
- }
- ],
- "source": [
- "n_edges_list = []\n",
- "for model in models:\n",
- " print(model)\n",
- " try:\n",
- " grn = pd.read_csv(f'resources/grn_models/{dataset}/{model}.csv')\n",
- " except:\n",
- " pass\n",
- " n_edge = grn[grn['source'].isin(available_tfs)].shape[0]\n",
- " n_edges_list.append(n_edge)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "adamson\n",
- "Remaining net size: (893, 4) TF size: 8 common TFs: (8,)\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 38%|███▊ | 3/8 [01:32<02:17, 27.44s/it]"
- ]
- }
- ],
- "source": [
- "print(dataset)\n",
- "scores_all = []\n",
- "for model in models:\n",
- " par['evaluation_data'] = f'resources/datasets_raw/{dataset}_sc_counts.h5ad'\n",
- " par['prediction'] = f'resources/grn_models/{dataset}/{model}.csv'\n",
- " if not os.path.exists(par['prediction']):\n",
- " print(f'Skip {dataset}-{model}')\n",
- " continue\n",
- " for n_max in [int(np.min(n_edges_list))]:\n",
- " par['max_n_links'] = n_max\n",
- " \n",
- " _, wasserstein_distances, links = main(par)\n",
- " for score, link in zip(wasserstein_distances, links):\n",
- " scores_all.append({'model':model, 'n_max':n_max, 'link':link, 'score':score})\n",
- "scores_all = pd.DataFrame(scores_all)\n",
- "# scores_all.to_csv(f'{output_dir}/scores_{dataset}.csv')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "adamson_bulked.h5ad\tnorman_bulked.h5ad op_multiome_sc_counts.h5ad\n",
- "adamson_sc_counts.h5ad\tnorman_sc_counts.h5ad op_perturbation_sc_counts.h5ad\n",
- "nakatake_bulked.h5ad\top_bulked.h5ad\t replogle2_bulked.h5ad\n"
- ]
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " S1 | \n",
+ " S2 | \n",
+ " reg2-theta-0.0 | \n",
+ " reg2-theta-0.5 | \n",
+ " reg2-theta-1.0 | \n",
+ " ws-theta-0.0 | \n",
+ " ws-theta-0.5 | \n",
+ " ws-theta-1.0 | \n",
+ "
\n",
+ " \n",
+ " model | \n",
+ " dataset | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " negative_control | \n",
+ " nakatake | \n",
+ " -0.000815 | \n",
+ " -0.000943 | \n",
+ " 0.000528 | \n",
+ " 0.036090 | \n",
+ " 0.049519 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " positive_control | \n",
+ " nakatake | \n",
+ " 0.000583 | \n",
+ " 0.001637 | \n",
+ " 0.047672 | \n",
+ " 0.228367 | \n",
+ " 0.109110 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " pearson_corr | \n",
+ " nakatake | \n",
+ " 0.002103 | \n",
+ " 0.005836 | \n",
+ " 0.042262 | \n",
+ " 0.214351 | \n",
+ " 0.097166 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " portia | \n",
+ " nakatake | \n",
+ " -0.000014 | \n",
+ " -0.000900 | \n",
+ " 0.054315 | \n",
+ " 0.111542 | \n",
+ " 0.074570 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " ppcor | \n",
+ " nakatake | \n",
+ " 0.000236 | \n",
+ " 0.001367 | \n",
+ " 0.007070 | \n",
+ " 0.040884 | \n",
+ " 0.051819 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " grnboost2 | \n",
+ " nakatake | \n",
+ " -0.000561 | \n",
+ " -0.000869 | \n",
+ " 0.026039 | \n",
+ " 0.216881 | \n",
+ " 0.153740 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " scenic | \n",
+ " nakatake | \n",
+ " 0.003915 | \n",
+ " 0.006797 | \n",
+ " 0.005072 | \n",
+ " 0.098020 | \n",
+ " 0.096053 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " negative_control | \n",
+ " norman | \n",
+ " -0.007578 | \n",
+ " -0.007739 | \n",
+ " 0.226943 | \n",
+ " 0.225465 | \n",
+ " 0.221143 | \n",
+ " 0.534537 | \n",
+ " 0.508109 | \n",
+ " 0.481342 | \n",
+ "
\n",
+ " \n",
+ " positive_control | \n",
+ " norman | \n",
+ " -0.000811 | \n",
+ " -0.000844 | \n",
+ " 0.467082 | \n",
+ " 0.291245 | \n",
+ " 0.253576 | \n",
+ " 0.869771 | \n",
+ " 0.796315 | \n",
+ " 0.635768 | \n",
+ "
\n",
+ " \n",
+ " pearson_corr | \n",
+ " norman | \n",
+ " 0.002122 | \n",
+ " 0.002160 | \n",
+ " 0.460778 | \n",
+ " 0.285892 | \n",
+ " 0.251586 | \n",
+ " 0.754553 | \n",
+ " 0.728115 | \n",
+ " 0.608357 | \n",
+ "
\n",
+ " \n",
+ " portia | \n",
+ " norman | \n",
+ " -0.002871 | \n",
+ " -0.002932 | \n",
+ " 0.177901 | \n",
+ " 0.168319 | \n",
+ " 0.202656 | \n",
+ " 0.531691 | \n",
+ " 0.546637 | \n",
+ " 0.542537 | \n",
+ "
\n",
+ " \n",
+ " ppcor | \n",
+ " norman | \n",
+ " -0.000423 | \n",
+ " -0.000432 | \n",
+ " 0.368073 | \n",
+ " 0.243492 | \n",
+ " 0.227529 | \n",
+ " 0.678237 | \n",
+ " 0.617060 | \n",
+ " 0.528040 | \n",
+ "
\n",
+ " \n",
+ " grnboost2 | \n",
+ " norman | \n",
+ " -0.020135 | \n",
+ " -0.021026 | \n",
+ " 0.471299 | \n",
+ " 0.287400 | \n",
+ " 0.257120 | \n",
+ " 0.841719 | \n",
+ " 0.806641 | \n",
+ " 0.706450 | \n",
+ "
\n",
+ " \n",
+ " scenic | \n",
+ " norman | \n",
+ " -0.005517 | \n",
+ " -0.016267 | \n",
+ " 0.417424 | \n",
+ " 0.237397 | \n",
+ " 0.223512 | \n",
+ " 0.823765 | \n",
+ " 0.560026 | \n",
+ " 0.496490 | \n",
+ "
\n",
+ " \n",
+ " negative_control | \n",
+ " adamson | \n",
+ " 0.022322 | \n",
+ " 0.022322 | \n",
+ " 0.603468 | \n",
+ " 0.587685 | \n",
+ " 0.422097 | \n",
+ " 0.507197 | \n",
+ " 0.508057 | \n",
+ " 0.513410 | \n",
+ "
\n",
+ " \n",
+ " positive_control | \n",
+ " adamson | \n",
+ " -0.008409 | \n",
+ " -0.010662 | \n",
+ " 0.726083 | \n",
+ " 0.639341 | \n",
+ " 0.445448 | \n",
+ " 0.849907 | \n",
+ " 0.788776 | \n",
+ " 0.684532 | \n",
+ "
\n",
+ " \n",
+ " pearson_corr | \n",
+ " adamson | \n",
+ " 0.000403 | \n",
+ " 0.000497 | \n",
+ " 0.723972 | \n",
+ " 0.637175 | \n",
+ " 0.445036 | \n",
+ " 0.853280 | \n",
+ " 0.800740 | \n",
+ " 0.669585 | \n",
+ "
\n",
+ " \n",
+ " portia | \n",
+ " adamson | \n",
+ " -0.003033 | \n",
+ " -0.003122 | \n",
+ " 0.515763 | \n",
+ " 0.528298 | \n",
+ " 0.409887 | \n",
+ " 0.800722 | \n",
+ " 0.672963 | \n",
+ " 0.571839 | \n",
+ "
\n",
+ " \n",
+ " ppcor | \n",
+ " adamson | \n",
+ " -0.000198 | \n",
+ " -0.000200 | \n",
+ " 0.662980 | \n",
+ " 0.611728 | \n",
+ " 0.432406 | \n",
+ " 0.651777 | \n",
+ " 0.561396 | \n",
+ " 0.528788 | \n",
+ "
\n",
+ " \n",
+ " grnboost2 | \n",
+ " adamson | \n",
+ " -0.013015 | \n",
+ " -0.015618 | \n",
+ " 0.743707 | \n",
+ " 0.667363 | \n",
+ " 0.460709 | \n",
+ " 0.887559 | \n",
+ " 0.840426 | \n",
+ " 0.730553 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "!ls resources/datasets_raw"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# adata = ad.read_h5ad('resources/datasets_raw/norman_sc_counts.h5ad')\n",
- "\n",
- "# sc.pp.normalize_total(adata)\n",
- "# sc.pp.log1p(adata)"
+ "pd.read_csv('output/default_scores.csv', index_col=0).set_index(['model','dataset']).style.background_gradient()"
]
},
{
- "cell_type": "code",
- "execution_count": 4,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "# tf = 'HOXA13'\n",
- "# gene = 'MALAT1'\n",
- "# mask_gene = adata.var_names==gene\n",
- "# adata_ctr = adata[adata.obs['is_control']]\n",
- "# adata_tf = adata[adata.obs['perturbation']==tf]\n",
- "# print(adata_ctr.shape, adata_tf.shape)\n",
- "\n",
- "# for pert in adata_ctr.obs['perturbation'].unique():\n",
- "# mask = adata_ctr.obs['perturbation']==pert\n",
- "# X = adata_ctr[mask, :].X[:, mask_gene].todense().A.flatten()\n",
- "\n",
- "# plt.hist(X, label=pert, bins=100)\n",
- "# X = adata_tf.X[:, mask_gene].todense().A.flatten()\n",
- "# plt.hist(X, label=tf, bins=100)\n",
- "# plt.legend()"
+ "# new metric"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
@@ -301,71 +809,65 @@
" \n",
" \n",
" | \n",
- " Unnamed: 0 | \n",
- " model | \n",
- " n_max | \n",
- " link | \n",
- " score | \n",
- " dataset | \n",
" source | \n",
" target | \n",
+ " ws_distance | \n",
+ " ws_distance_pc | \n",
+ " theta | \n",
+ " dataset | \n",
+ " model | \n",
"
\n",
" \n",
" \n",
" \n",
- " 0 | \n",
- " 0 | \n",
+ " 1008 | \n",
+ " BHLHE40 | \n",
+ " CMTM6 | \n",
+ " 0.226386 | \n",
+ " 0.960 | \n",
+ " theta-0.0 | \n",
+ " adamson | \n",
" pearson_corr | \n",
- " 500 | \n",
- " AHR_CYP1A1 | \n",
- " 0.054984 | \n",
- " norman | \n",
- " AHR | \n",
- " CYP1A1 | \n",
"
\n",
" \n",
- " 1 | \n",
- " 1 | \n",
+ " 1019 | \n",
+ " BHLHE40 | \n",
+ " CSRNP1 | \n",
+ " 0.018026 | \n",
+ " 0.528 | \n",
+ " theta-0.0 | \n",
+ " adamson | \n",
" pearson_corr | \n",
- " 500 | \n",
- " AHR_AC005477.1 | \n",
- " 0.033213 | \n",
- " norman | \n",
- " AHR | \n",
- " AC005477.1 | \n",
"
\n",
" \n",
- " 2 | \n",
- " 2 | \n",
+ " 1153 | \n",
+ " BHLHE40 | \n",
+ " ZBTB38 | \n",
+ " 0.163079 | \n",
+ " 0.916 | \n",
+ " theta-0.0 | \n",
+ " adamson | \n",
" pearson_corr | \n",
- " 500 | \n",
- " AHR_CTTNBP2 | \n",
- " 0.287646 | \n",
- " norman | \n",
- " AHR | \n",
- " CTTNBP2 | \n",
"
\n",
" \n",
- " 3 | \n",
- " 3 | \n",
+ " 1197 | \n",
+ " BHLHE40 | \n",
+ " TNFSF10 | \n",
+ " 0.053323 | \n",
+ " 0.628 | \n",
+ " theta-0.0 | \n",
+ " adamson | \n",
" pearson_corr | \n",
- " 500 | \n",
- " AHR_RGS6 | \n",
- " 0.068533 | \n",
- " norman | \n",
- " AHR | \n",
- " RGS6 | \n",
"
\n",
" \n",
- " 4 | \n",
- " 4 | \n",
+ " 1597 | \n",
+ " BHLHE40 | \n",
+ " EGR1 | \n",
+ " 0.089262 | \n",
+ " 0.737 | \n",
+ " theta-0.0 | \n",
+ " adamson | \n",
" pearson_corr | \n",
- " 500 | \n",
- " CEBPA_CLC | \n",
- " 1.986679 | \n",
- " norman | \n",
- " CEBPA | \n",
- " CLC | \n",
"
\n",
" \n",
" ... | \n",
@@ -376,177 +878,315 @@
" ... | \n",
" ... | \n",
" ... | \n",
- " ... | \n",
"
\n",
" \n",
- " 26666 | \n",
- " 26666 | \n",
- " ppcor | \n",
- " 50000 | \n",
- " ZNF326_ALDH2 | \n",
- " 0.103516 | \n",
- " adamson | \n",
- " ZNF326 | \n",
- " ALDH2 | \n",
+ " 1018 | \n",
+ " SPI1 | \n",
+ " SLC15A2 | \n",
+ " 0.002758 | \n",
+ " 0.654 | \n",
+ " theta-1.0 | \n",
+ " norman | \n",
+ " scenic | \n",
"
\n",
" \n",
- " 26667 | \n",
- " 26667 | \n",
- " ppcor | \n",
- " 50000 | \n",
- " ZNF326_ZKSCAN1 | \n",
- " 0.122790 | \n",
- " adamson | \n",
- " ZNF326 | \n",
- " ZKSCAN1 | \n",
+ " 4183 | \n",
+ " SPI1 | \n",
+ " HOXB4 | \n",
+ " 0.069025 | \n",
+ " 0.893 | \n",
+ " theta-1.0 | \n",
+ " norman | \n",
+ " scenic | \n",
"
\n",
" \n",
- " 26668 | \n",
- " 26668 | \n",
- " ppcor | \n",
- " 50000 | \n",
- " ZNF326_STAC3 | \n",
- " 0.060547 | \n",
- " adamson | \n",
- " ZNF326 | \n",
- " STAC3 | \n",
+ " 881 | \n",
+ " SPI1 | \n",
+ " RP11-266J6.2 | \n",
+ " 0.000387 | \n",
+ " 0.450 | \n",
+ " theta-1.0 | \n",
+ " norman | \n",
+ " scenic | \n",
"
\n",
" \n",
- " 26669 | \n",
- " 26669 | \n",
- " ppcor | \n",
- " 50000 | \n",
- " ZNF326_AC002480.3 | \n",
- " 0.000494 | \n",
- " adamson | \n",
- " ZNF326 | \n",
- " AC002480.3 | \n",
+ " 686 | \n",
+ " SPI1 | \n",
+ " AC108051.3 | \n",
+ " 0.000058 | \n",
+ " 0.263 | \n",
+ " theta-1.0 | \n",
+ " norman | \n",
+ " scenic | \n",
"
\n",
" \n",
- " 26670 | \n",
- " 26670 | \n",
- " ppcor | \n",
- " 50000 | \n",
- " ZNF326_P2RX6 | \n",
- " 0.003553 | \n",
- " adamson | \n",
- " ZNF326 | \n",
- " P2RX6 | \n",
+ " 2092 | \n",
+ " SPI1 | \n",
+ " RAI2 | \n",
+ " 0.000000 | \n",
+ " 0.000 | \n",
+ " theta-1.0 | \n",
+ " norman | \n",
+ " scenic | \n",
"
\n",
" \n",
"\n",
- "113399 rows × 8 columns
\n",
+ "117897 rows × 7 columns
\n",
""
],
"text/plain": [
- " Unnamed: 0 model n_max link score dataset \\\n",
- "0 0 pearson_corr 500 AHR_CYP1A1 0.054984 norman \n",
- "1 1 pearson_corr 500 AHR_AC005477.1 0.033213 norman \n",
- "2 2 pearson_corr 500 AHR_CTTNBP2 0.287646 norman \n",
- "3 3 pearson_corr 500 AHR_RGS6 0.068533 norman \n",
- "4 4 pearson_corr 500 CEBPA_CLC 1.986679 norman \n",
- "... ... ... ... ... ... ... \n",
- "26666 26666 ppcor 50000 ZNF326_ALDH2 0.103516 adamson \n",
- "26667 26667 ppcor 50000 ZNF326_ZKSCAN1 0.122790 adamson \n",
- "26668 26668 ppcor 50000 ZNF326_STAC3 0.060547 adamson \n",
- "26669 26669 ppcor 50000 ZNF326_AC002480.3 0.000494 adamson \n",
- "26670 26670 ppcor 50000 ZNF326_P2RX6 0.003553 adamson \n",
+ " source target ws_distance ws_distance_pc theta dataset \\\n",
+ "1008 BHLHE40 CMTM6 0.226386 0.960 theta-0.0 adamson \n",
+ "1019 BHLHE40 CSRNP1 0.018026 0.528 theta-0.0 adamson \n",
+ "1153 BHLHE40 ZBTB38 0.163079 0.916 theta-0.0 adamson \n",
+ "1197 BHLHE40 TNFSF10 0.053323 0.628 theta-0.0 adamson \n",
+ "1597 BHLHE40 EGR1 0.089262 0.737 theta-0.0 adamson \n",
+ "... ... ... ... ... ... ... \n",
+ "1018 SPI1 SLC15A2 0.002758 0.654 theta-1.0 norman \n",
+ "4183 SPI1 HOXB4 0.069025 0.893 theta-1.0 norman \n",
+ "881 SPI1 RP11-266J6.2 0.000387 0.450 theta-1.0 norman \n",
+ "686 SPI1 AC108051.3 0.000058 0.263 theta-1.0 norman \n",
+ "2092 SPI1 RAI2 0.000000 0.000 theta-1.0 norman \n",
"\n",
- " source target \n",
- "0 AHR CYP1A1 \n",
- "1 AHR AC005477.1 \n",
- "2 AHR CTTNBP2 \n",
- "3 AHR RGS6 \n",
- "4 CEBPA CLC \n",
- "... ... ... \n",
- "26666 ZNF326 ALDH2 \n",
- "26667 ZNF326 ZKSCAN1 \n",
- "26668 ZNF326 STAC3 \n",
- "26669 ZNF326 AC002480.3 \n",
- "26670 ZNF326 P2RX6 \n",
+ " model \n",
+ "1008 pearson_corr \n",
+ "1019 pearson_corr \n",
+ "1153 pearson_corr \n",
+ "1197 pearson_corr \n",
+ "1597 pearson_corr \n",
+ "... ... \n",
+ "1018 scenic \n",
+ "4183 scenic \n",
+ "881 scenic \n",
+ "686 scenic \n",
+ "2092 scenic \n",
"\n",
- "[113399 rows x 8 columns]"
+ "[117897 rows x 7 columns]"
]
},
- "execution_count": 3,
+ "execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "scores_all = []\n",
- "for dataset in ['norman','adamson']:\n",
- " scores = pd.read_csv(f'output/scores_{dataset}.csv')\n",
- " scores['dataset'] = dataset\n",
- " scores_all.append(scores)\n",
- "scores_all = pd.concat(scores_all)\n",
- "scores_all[['source','target']]=[item.split('_')[0:2] for item in scores_all['link']]\n",
+ "scores_all = pd.read_csv('resources/scores/ws_distance.csv', index_col=0)\n",
"scores_all"
]
},
{
"cell_type": "code",
- "execution_count": 40,
- "metadata": {},
- "outputs": [],
- "source": [
- "n_maxs = [500,1000]\n",
- "scores_all = scores_all[scores_all['n_max'].isin(n_maxs)]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAEmCAYAAADiGtAlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcLklEQVR4nO3deXhM59vA8e/MJJkkshGEUIJYag2R2GWhYqkWVUW1oUpfSinaRmlLW43W0mq1uvBrqqWLogtFa6fUkkhrX0JqjSUkkT0zc94/hmFkMTPJSBr357rOxZxzz5nnniRzz3POc56jUhRFQQghhBAFUpd2A4QQQoiyTAqlEEIIUQQplEIIIUQRpFAKIYQQRZBCKYQQQhRBCqUQQghRBCmUQgghRBGkUAohhBBFkEIphBBCFMGhtBsgyp7Vjg1LuwnF1mV1VGk3oUSs8ows7SaUiOP/ygRgZcXkARqbn2vtZ0OvvKM2v1ZZIoVSCCGERVSOqtJuQqmQQimEEMIiGhfbe6P/ZVIohRBCWETtID1KIYQQolBy6FUIIYQogvQohRBCiCJIj1IIIYQogvQohRBCiCKoNFIohRBCiEKppVAKIYQQhVOppVAKIYQQhdI4yYQDQgghRKGkRymEEEIUQc5RCiGEEEWQUa9CCCFEEVTq+/MWxlIorTRs2DDWrFlD9+7diYmJKbV2TJs2jaFDh+Ln52da98MPP7Bw4UL0ej1paWn4+fkxa9Yssxh78Hm0K/5R/4chOwfFYODA2OmkHzpRaLzK0ZEG016g7oRn2NyoG1n/nssX49GyMQ3ffBGNsxZt9arkXLjE389OLjC2pGz4+yiLft+Jk4MDarWKVwd0w796lULj83R6Pl69jcUbd/Hr689Rw9srX0x6Vg6zVmzgp7/+4e+P7H+PzIN7/2DLr5/j4KhFpVLxSOTr+NSsX6z4Ewd2sGXVFyiKgdTkJCpXq83A599H61LBbnk0qAHtH1Sj04OiwLo4A1fSSia+bzs1jR5QEf2D3j6Nt7Fd1sbfyzxuul/PUd6fXw+K4csvv6R79+6l3QymT59OYmKi2bohQ4YwceJENmzYwK5du3BxcaF79+7k5OTYrR2eQc1o8b932ffURHaGPcmZL38kePUiNG4Ff4i61K5Bu41f41y9CmqHgr+nVWhYl9Y/fszhl6L566Gn2RbUB61PZbTVKtstj/2J53ntm9VERz5CzItD6Nu2OaM++YGM7ILfu3PJKTwzbwlX0tLRGwq+KfHhM0k8+9FSMnNy7dbu251J+Ifln09mwKhZjJz6Da1DHiNm1ghysjJsjj95eDe/fPUmj//fuzw7+Suee30pZ0/uJzcn0255VK8EDwer+fkvA99sMvD3KYUnOqtxKuRrvTXx/tWhto/dmm5zu6yNv5d53E6tUVm1lBdSKMuRRx99lIiICADUajUvvPACR48eJS4uzm6v6f/SSC79tpnME/8CcG7JL6gcNDwQ2bfAeI2bK/FDX+ZMzIpC99lw+jjOLf2F9CMnATBkZRM3eLzpsT3874+/6NS4HrWrVgKgV1BT9HoDP+/aX2B8Zk4eM57uzaNtmxW6zzydnvn/9zgdG9e1S5vvtHXVFzQMCKFyNT8AWrR/BINBT9y2lTbHr/n2PTr2fAYPr6oAuHl48/TET3Gp4Gm3PNo1UpNwQeFauvHxgX8V1Cpo5lfwB6+l8Y4a6NxMzV9HCv5iU9LKSx63U6lVVi3lRbkslOnp6QwePJg6derQtWtX5syZg5+fH40aNeLtt98mICAAlUrFb7/9Ru/evfH19aVPnz5MnToVPz8/QkNDmTVrFl26dMHf35/Fixfnew29Xs+LL75ISEiI6RDn7Y4fP06PHj0IDAykWbNmjBkzhuzsbNN2nU5HVFQUTZs2JSgoiLCwMP7++2/T9pMnT9K9e3c6d+5Mp06dGDBgAEePHuXq1auEhoYCMH78eEJDQ1mwYAEAy5YtM2uDs7MzgF17lN7h7UiNPXBrhaKQFncQ7/D2BcanHzxOZsLpQvencnSkaq8wrm7ba7b++oFj6FKvl0ibC7L72L80rlXN9FitVtH4gWrsOppYYHx93yrUqlKxyH02r1ODyh5uJdnMIiUc+osadZqaHqvVanz9GnPi4E6b4lOunOd84kHqNGxt9rwH6rXAwdHJDhkY1a4KF66ar0u6Bn4+BX/wWhrfuamKfQkKGdncE+Ulj9up1GqrlvKi/GRym0mTJnHixAkOHTrE+vXrMRgMnD17lqioKKZOncoHH3wAwJ49e/j111/ZunUrLi4uvP322wwdOpTY2FhatWrFhg0bmDt3LqNHj+b6dfMP6Z9++omBAweyZcsW1q5dy+uvv86qVasAY2GKiIigU6dOxMbGEhsby4EDBxg3bpzp+a+//jq///47f/31F3v27GHQoEE89NBDpKamAjBmzBiCg4PZunUr27Ztw8XFhZ07d1KpUiU2b94MwAcffMDmzZsZNWpUge/Dzp078fX1pUOHDiX8Dhs5VvLC0dOd3EvJZutzLl7BtU5Nm/ZZwb8WGmctjpU8CVw2n/Zbv6X1igV4BTcviSYXKCUji/TsHLw9zA8Xe3tU4Fxyqt1etyRlXr9GTlY6bh7eZuvdPStz7cpZm+IvnjsOwNXLZ4iZPZLP3hzEd/Nf5PKFU3bKAlycwNlJla8IZGQreBVwNN/SeB8vqF7JWGDuhfKSx500jmqrFmutXLmSoKAgOnXqREhICAcPHiwyPjc3l6ioKBwcHPKdirrTpEmTUKlUd40rSLkrlOnp6Xz55ZeMGjUKFxcXAMaOHYtKlf9b3NChQwHw9/fn22+/Na2vWrUqXbp0ASA0NJSMjAxOnDAfnBIQEECbNm0AaNSoET169ODDDz8EYOnSpZw/f57x48cD4OTkxPjx41m0aBEXL14kKyuL999/n+effx43N2OPY/jw4RgMBr744gsAzp07x5kzZ9DrjSfqZ8yYwUMPPWTx+5CTk8OsWbOYP38+jo6OFj/PGhpXY49Vf8c5OENOLhoXZ5v26VjReEiv4fTxHJr4Djs6DyLpp99pt2kJbg/WK16DC5GdmweA0x3nTJ0cNKZtZV1urvETVnNHT0/j4EReTv6uhyXxWRnGUSQbVn7MgOfeZeRrS6lSw59Ppw8kI+2Ork8Jcbgx8cud5331BuMhR1vjI1qpWRdnKMmmFqm85HEnex563b17N5GRkSxdupRt27YxfPhwIiIi8nVSbkpMTCQkJIQLFy6YPicLEx8fz1dffWVVe25X7gplQkICubm51K1767yQs7MzVatWzRdbs2bBvR5fX1/T/93d3QFISzMfela7dm2zx/Xq1ePw4cMAHDhwgOrVq+Pq6mra7u/vj16v59ChQ5w4cYLs7Gz8/f1N2zUaDX5+fuzfbzwnNn36dH788Ufq1atHVFQUmZmZ1KhRw6L3AOC5557jiSeeoG/fgs8V3pSTk0NaWprZkqdY9oeoz7zxYas1/7BVa53QZ9l2XEi58Qt/dsnPZJ0+b/z/4pVkJp6j9v8Ntmmfd+PsZPwikavTma3P1elN28o6J6cbX1ryzL+06HW5OGrzf2mxJF5949BZm/CBuLpXRKVSEdJ7BAa9jrjtP5V0CgDobnzeae74kNWoIa+Az0JL4lvXV3HmisLle3hwoLzkcSd7HnqdOXMmvXr1on5946jrIUOGoNPpCr26ID09na+//pphw4YVuV+DwcDzzz/PG2+8YVV7blfuCmVhCupRajQFz1t4+/qbz1OUe3uoo0+fPpw9e5bJkyezYcMGmjRpwk8//WTRc6OionB1deWtt966a2x0dDSenp5myw8Gy3oLeVdTyEtJw6mq+eE7rU9lMk+esWgfd8o+m2T89/xFs/VZp8/j6mfb4dy78arggruLluQ089GhyWkZ1Czgko+yyNW9Is6u7qSnmR8Gv556hUpVHrAp3qNitRv/3hpe6eDghLtXZa5dzn84tyRk5UJ2rkKFO2p7BWcVKQUM3rUkvo6PipqVVQwOVTM4VE27Rsa/6cGhah7vaJ+PwPKSx53s2aPcsGEDrVvfOh+uVqsJDAxk/fr1BcY3bdrUrLNRmPnz59OpUyeaNm1619jClLtCWa9ePRwdHTl58tYIyZycHC5evFjEs6x3+rT5gJSEhAQefPBBwPgDvHDhApmZmWbbNRoNjRs3xt/fH2dnZ7PDuXq9nsTERJo1M46i/PHHH/H09OS5555jz5499O3bl0WLFpniby/8tx+amDlzJmfOnGH+/PkApnOkhZk8eTKpqalmywB1JYvfh+RNf+HZqonZOo+WjbmycYfF+7hd9rmLZCScxrma+fWLWp/KZJ25YNM+LRFUvzaHz9z6HVEUhcNnk2jT0M9ur1nS6j7YhnOnbp3TURSF84mHqNeknU3xNeo0wUnryvWUy6YYg8FAxvVreHlXt1MW8O8lqHbHOKlqFSHxYsFfVu8Wv2y7ga83Gli62bjsvDFadOlmA8u22+8wZnnJ43b2KpTJycmkpaXh42N+zUu1atU4dcr2c+Lnzp1j0aJFvP766zbvA8phoXRzc+OZZ55hwYIFZGVlAbBgwQIcCrlmz1a7du1iz549ABw5coQ1a9bwwgsvADB48GB8fX1N5yzz8vKYN28ew4cPx8fHBxcXF1588UU++eQTMjKMXxe//PJL1Go1I0aMAOCVV17hwIFbo0nz8vJo0KCB6XGVKlW4du0aly5dIjw8HIBPP/2Ub775hrFjxxIXF8fevXv59ddfTYdzC6LVavHw8DBbHFWW/1qcmPU5VXuG4lqvFgA1Bj+CojdwdvFPALTbvJSGb463eH8ACbM+p8aTj+Lg5QGAd1hb3BrV5fQX31m1H2s881Bbth1M4PTlawCs3nsQtVrNI22M30Ij3/+Gj37dYrfXLwmdHx7B0b+3kHzReKnO3zt+Ra3W0KpjHwA+f+tJfl/2gcXxjk7OtOv2FHs2/0BernHkdNy2FSiKQkCHR+2Wx84jBupVV1HxxoDhJrVUGBTYn2gsDEPC1HRuqrI4vrSUlzxuZ22hLOjUTkGj8G92KrRardl6rVZr1uGw1tixY4mOjjY7DWaLcjkzz+zZsxk5ciSNGzemQYMGPP7441StWhVHR0fWrl1LVJRxhpTQ0FDGjBlD//79AWNvLCYmhpSUFJ5++mk++ugjHn3U+IEwfvx4Zs2axdKlS1m7di39+vVj4cKFTJw4kX///Zfp06fz8MMPA8Yf7rp16xg7dizLli0jNzeXzp07M3v2bFMb33zzTQwGA23atMHFxYUKFSrw+++/4+lpHMzywgsvMGzYMCpUqEBWVhZNmjRh+vTppudPnTqVyZMn4+npyeTJk7l+/TrPP/88BoOBdu3MexBffvml3d7r1D37+Xt4FC2XvI8hKxvFYGB3r+Ho041fADSuzqhvO4epcnSkzZpFpiLYcslcss8kETfo1ojgM4uW4eDuRrsNX6NLM15UtrvXs6T9fcRueTTz8+XNIT155cuf0ToaZ+ZZMHoAFZyNf7jZuXnk6m6dXMrT6fm/j7/jepbxj/6VmF+o5uXO7OG3zglfuJrK1K9XceXGId3h85bg71uFyY93s0sOD9RrzmMj3uG7jyfi6OSMSqVi6EtfmGbQyc3NQq/LtTgeoOtjY/lj2QcsmD4AF1d3NA5ODJ8cg0fF/Of8S8qFq7B6j4FH296aoeb7rQZyb5xCdnS4NfjFkvjbDQ5V4+Z86/8nkxS7XY9YXvK4nbXnHaOjo80+twDeeOMNpk2bZrbuZiG7s4jm5OTYXOR++eUXHBwc6Nmzp03Pv51Kudcn3+6Ba9eu4eHhYTrXaDAYqFChAuvXr7fbpRLlyWrHhqXdhGLrstr+08XdC6s8I0u7CSXi+L/l7mPmP2vyANvvKZnwdC+r4mt+sSJf8dNqtfl6jgBeXl689tprTJw40bSuV69eODo6Fjk+Y/PmzYSFhXHq1Cmz6Tqfe+459u3bZyq0KSkp/P3337Rp0wZnZ2dWrVpluurgbsplj3LGjBk0a9aMyEjjh8zChQupVasWQUFBpdwyIYT477J2gE5hRbEg4eHhZuMpFEUhLi6OKVOmWPWaN3322Wdmj28W1O+++87q+a/LZaHs2rUrb731Fl9++SU6nQ4vLy9WrVqFk5P9ZhMRQojyTu1ge2/0bqKionjooYc4ceIE/v7+LFmyBI1GY+rwdOzYkZCQEGbMmGG3NhSmXBbK7t27l4mJy4UQojyx5/ytwcHBxMTEMHDgQFxcXFCr1axbt850LXtmZqbZYdzc3Fy6detGSkoKAAMHDuSBBx7IN5XnzW1Hjhwx/b9t27amGdosUS4LpRBCiJJn7/lb+/btW+gkKXfe3MHJyck0nefdfPdd8UbMS6EUQghhkfJ0RxBrSKEUQghhkfJ0RxBrSKEUQghhmQKmAr0fSKEUQghhETn0KoQQQhRBDr0KIYQQRZAepRBCCFEE6VEKIYQQRVA7SKEUQgghCic9SiGEEKJwKrk8RAghhCicnKMUQgghiiCjXoUQQoiiSI9SCCGEKJz0KIW4IejvJaXdhGL7U9+0tJtQIjb/cb20m1AifGu4lXYTRAlQqaRHKYQQQhROepRCCCFE4dQOmtJuQqmQQimEEMIy9+mh1/szayGEEFZTqVVWLdZauXIlQUFBdOrUiZCQEA4ePFhkfG5uLlFRUTg4OJCYmGi2TafTsXDhQsLCwggPDycwMJBnn32WK1euWN0u6VEKIYSwjB0vD9m9ezeRkZHExsZSv359Fi9eTEREBIcPH8bd3T1ffGJiIoMGDaJBgwbo9fp825OSkhg7diy7du2iefPm5OTk0LNnT/r378/mzZutapv0KIUQQlhEpVJZtVhj5syZ9OrVi/r16wMwZMgQdDodMTExBcanp6fz9ddfM2zYsAK3Ozk58cwzz9C8eXMAtFoto0aNYsuWLVy4cMGqtkmhFEIIYRm12rrFChs2bKB169a3vZSawMBA1q9fX2B806ZN8ff3L3R/VatW5eOPPzZb5+zsDEBOTo5VbZNCKYQQwiL2OkeZnJxMWloaPj4+ZuurVavGqVOnSqz9O3fuJCgoCD8/P6ueJ+cohRBCWMbKUa85OTn5em9arRatVmu2LjMz07Ttztib24rrypUrLFq0iF9++cXq50qPUgghhGXUKquW6OhoPD09zZbo6Oh8u3V1dQXyHxLNyckxbSsOnU7HoEGDePvttwkODrb6+dKjFEIIYRGVxroJByZPnsyECRPM1t3ZawTw9vbG09OTixcvmq1PSkqibt261jf0NgaDgcjISLp27cqzzz5r0z6kRymEEMIiKrXaqkWr1eLh4WG2FFQoAcLDw4mNjTU9VhSFuLg4unbtWqw2P//889SqVYtXXnkFgPXr13Py5Emr9iGFUgghhGVUKusWK0RFRbF69WpOnDgBwJIlS9BoNERGRgLQsWNHpkyZYvU+jxw5wmOPPcbevXvZu3cvP/zwA6dPn7ZqP3LoVQghhGXsOOFAcHAwMTExDBw4EBcXF9RqNevWrTNNNpCZmWl2DjM3N5du3bqRkpICwMCBA3nggQdYtmwZAAcPHuTdd98FICgoyOy1Bg8ebFXbpFAKIYSwjJW9RGv17duXvn37FrgtLi7O7LGTk1ORM+w0adIERVFKpF1SKEWxbf1rD18v/wUnR0dUKhUTnxtGnVo1bY6/lpLKJ199y9mkJHJycqlZvRovjoikopenXfOI37WBtSsW4ejohEqtZuCIV/F9oPALmi2JP/LPX6xbsQiDYiAl+SJVq9dm+IT3cHapYJccmvs7EBGsJU8HCvD9hiySkg02x3dp7USzuo7o9OCqhcwc+GV7Nqcv5p8yrCQ1qAHtG6vR60FRYG2sgStpJRPfr72aRg+oeOd7++Zgbbusjb+XedyksmOPsiy7P7MWJebQsQRmfPgpr7/4PB+/8zoPdw1l4pszyczKsineYDDwyjtzQAWfvPMG/5v7Dh7ubkx9b55d80g8vp/F81/jmfHRTHw7hvbhfZn/1iiyszJsjj92YA/ffTGDoePe4cXpi5g04ysSTxwgJ7vg96a4alfT8FSEKzG/ZfHBDxns3J/L8/0qoHW0Pb5bsJalf2Qxf3kG7y3N4NxlPaP6umLPfkX1StC7jZqfdxr4eqOB+FMKA0PUOBXytd6aeP/qUNsn/3p7KC95mFGprVvKifKTiSgVS1b8QrvAljzgWw2AbiEd0OsN/LZxq03xh48ncPh4Ao8/3N00V+TjD3fnn8NH+fvQEbvlsW7l/2jaqhNVq9cGILhzLwwGPTs3/Wxz/IrFc+n6SCSeFasA4O7pzejJH+Hq5mGXHB4K0nLwVB6XU4w9wj2H89CooW0TJ5vjP1mRyaVrt3qYx8/qcHdV41zwwMUS0f5BNSfOK1xLNz4+kKigVkHzOgWXZ0vjHTUQ0lzNzsMlczjubspLHmasvI6yvCi1Qjlv3jwaNWqEn58fs2bNomvXrvj5+REZGUnWjd5Feno6I0aMoGXLloSEhNCnTx+z0UobN24kLCyM0NBQ2rVrx9ChQ00ndgEefvhhvLy8ePnllxk1ahSdOnVCpVIRHx9PXFwcISEhhIaG0r59e5555hmSkpJMz127di3BwcG0adOG5s2bM3/+fNO2qVOn4ufnR2hoKLNmzaJLly74+/uzePFii/O/ePEiAwYMICAggI4dOxIeHs6aNWtM248fP06PHj0IDAykWbNmjBkzhuzsbAB+/PFHAgICUKlU/Pbbb/Tu3RtfX1/69Olj1rbZs2cTERFBhQoV+OCDD6z9EVkkdv9BGvnXMT1Wq9U0qFeH2L8P2BR/8UoyAJVuO8zqXdELgL8P2q9QHj2wm1r1Gpu164G6jTn6zy6b4q9evsDpk4fwbxxo9rw6DZrj6Fhw4SquhrUczA6JKsDpi3oa1iq4C2NJ/L9Jt7a7Oqvo2NyJXQdzybJuqkyr1K4KF66Zr0u6Bn4+BX/wWhrfuZmKuBMKGdkl2drClZc8bqdSqa1ayotSy2TcuHFERUVx9uxZVCoV69ev58CBA8TFxfHaa68BMHLkSDIyMoiNjWXLli20adOGHj16mG6p8ttvv5lumbJjxw4cHR3NLm5dtWoVAQEBfPfdd7z66qts27aNYcOGodFoGDJkCJGRkWzevJlt27aRmJjIkSPGD+JDhw7x6KOPMnfuXHbt2sVvv/3Gm2++ybfffgvA22+/zdChQ4mNjaVVq1Zs2LCBuXPnMnr0aK5fv25R/v369aNSpUrEx8ezfft2unTpwmeffQYYZ6OIiIigU6dOxMbGEhsby4EDBxg3bhwA/fv3NxW+PXv28Ouvv7J161ZcXFzM2taoUSPWrVvH/PnzcXIq+Q/n1LTrZGRmUdHT/Nyht5cn5y9dtim+WhVj7+vi5Vv3jLt89SoAl5Kvlmj7b0q/nkJ2ZjruXt5m6z28vLly6ZxN8efPGIe4X7l4lvlvj2bWq0+zcO5LXDyXaJccKjircNGquJ5p3stIy1Tw9sz/Z25NvEoFEwdVYMZId9IyFZb8YZ9DxwAuTuDspMpXBNKzFbwKOK1rabyPF/hWUrEv4d70wspLHvloNNYt5USpl3yVSsWYMWMAcHNzY8SIESxYsIBjx47x3XffMWHCBNQ3TiCPHDmSQ4cOmUY6TZo0yTTTgkqlon///ma9spu6dOnCAw88AMD//vc/mjVrxrlz5/j3338B0Gg0fPbZZ6bbsbz77rsEBwfTsWNHAGrWrMngwYOZMWOG2X6rVq1Kly5dAAgNDSUjI8N0DVBRNm3axI4dO3jppZdM60aNGkV4eDgAS5cu5fz584wfPx4wju4aP348ixYtyjdzxdChQwHw9/c3FXKAypUr8/DDDwMwbNgwRo8efdd2WSs7N9fYPkfzk2COjo7k5OTaFP9g/bo0aeDP18t/ITcvD51ez9c//oyDgwaDofBBKcWRm2P8dHJ0MP8y4eDoRF5u/q/tlsRnphtHYKz+YQFDx73DpBlfUb1mPd57dQjXU0u+4Dve6ATqdOYfoDqdglMB5yitiVcUmPNtBq9+loaXm4pRfYo/pVhhHG58tur15u3SG25tsyU+IlDN2lj7/P4UpLzkkY8dr6Msy0p91KuPj4/p1icA9erVIzMzkzVr1qAoCuPGjcPxtg/W2rVrc/mysfeRm5vL888/z6FDh3ByciIlJcXs8OlNNWvmH4EZHR3Niy++yLJlyxg0aBDPPPMMlSpVAuDAgQOmonmTv78/H3/8MXl5eab2+Pr6mrbfvNYnLa2IIW03HDhwAI1GQ506tw5BVqpUiRdeeMG0vXr16mZzHPr7+6PX6zl06JDZDPsF5VbU+jsVNGlxTm4uWgt6oM43YnLz8szW5+XlodXmf74l8SqVilmvvcwXS37ghalvo3VyokeXzhw+noC7m31Gijppjb9/eTrz4q7Ly8XRydmm+Jtf7jp3G4CbuxcAEX2Hs/6XGP7a/CsPPRpZojnk6Yz/OjiYfzg5OKjIzSt+PEBWDizbmM0bz7jTpI4DB0/pitvsfHQ3jvRqNCqMB4NvPFbf2mZtfFB9FWevKFxOLfHmFqq85JHPfTrqtdQL5d188803ZgXldj169KBRo0Zs2rQJrVbL5s2bCQsLyxenKeAQwOjRo3nsscf45ptvWLhwIe+99x7r16+nTZs2Frft9v3eHHhSUtft2NIGS9bfKTo6munTp5utmzR6BC89P/Kuz/X0cMfN1ZVrqeZ/uckpqfj6VLU53t2tAhOeu3UzVkVRmPtZDHVrPWBRTtZyc/fCxdWd6ynJZuvTUpKp7JP/C4cl8V7exi8znpVu5eXg6IiHVxWSCzicW1wZ2QqZ2QruruaFz8NVxZXU/D0QS+JVGDsFhtt+pS+nGNDrFap5qzlYcnc/MsnKhexchQp3fD9xc1aZBrlYG1+nmgpnJ3gyTHVjm3H9k2FqcnWwbFvJ99DKSx75lKPzjtYo9awvXbpk1qNJSEjA1dWVHj16AHD06FGz+Ndff50jR46QnJzMoUOH6NOnj2nuwNzc/If7CvPjjz/i4+PDxIkT2b9/P02bNuWbb74BjDcEvfMQakJCAg0bNjTr3dqqadOm6PV606FfMN4C5pNPPjFtv3DhgtntZRISEtBoNDRu3Djf/opj8uTJpKammi0vjBhq8fNbNWvM0YRbn5iKonDsZCKtWzS1OX7fgUNmzzl2MhGDwUC7wACL22WtBk2DOH3ysFm7zpw8TKPmBX9xult8rbqN0Tq7kJZy61yrwWAgPe0alSpXs0sOx87oqOVj/gXpgaoajp4uuOd3t3j/mhoeCzP/5HZzUaHRqEhNt98Xwn8vQfWK5uuqVYTEiwW/5t3if9hmYPEGA0s2GZcdN0aLLtlksGtxKS95mJFRr6VDo9GwYMECwDjKdeHChYwaNYoGDRowaNAg3nvvPdNozx07drB8+XL8/f2pVKkSPj4+bNy40bSvFStWWPy6zz77LBcuXDA91ul0NGjQAIBXXnmF3bt3s2PHDgDOnTvH0qVLrZ5nsDBhYWG0b9+eOXPmmNbNnj2bc+eMPY3Bgwfj6+vLhx9+CBgPTc6bN4/hw4fnu7FpcRU4abEVA3+e7PcIO2PjOXvBeMj79y1/olGr6BHWCYDRk6fz+Tc/WBwP8P7nXxF/0FiEcnJz+eyb7xn2RD883N2KnW9hIvo+w4G4bVy6YBxVvXvbatRqNW1DHwFgztRIfl76kcXxTlpnQns+yfY/lpOXa/wiuHPTTygoBIc8bJcc/tiTQ5M6jlT2Mv5ZBz3oiEGBXQeNXyBffKICvTtoLY4HaNXAkUoexg88FfBwBy2p6QYOJZb8Ydebdhw2UK+6ioo3ftxNaqswKLA/0VgYngpXE9JMZXF8aSkveZi5T6+jLPVDrz4+Pri6uhIREcHRo0cJCQnhrbfeAuDzzz9n4sSJBAQEUL16ddzd3fn5559xcDA2+8cff2Ts2LG0aNECPz8/atc2XtMWGhrKsmXLGDt2LPHx8SQmJrJ3715WrVplet3Ro0fz8MMP4+HhQXp6Op07dzYNeGncuDE//fQT48aNQ61Wk5mZyWuvvcagQYMAmDlzJjExMaSkpPD000/z0Ucf8eijjwIwfvx4Zs2axUMPPVRk3suXL2fs2LEEBATg5uZGixYtTCNZtVot69atY+zYsSxbtozc3Fw6d+7M7NmzAeOlK1FRUaZcx4wZQ//+/fO1LTQ0lIULF+LvX/jsMsXVuEE9Xh37HNPmzEfr5IRKpWLO61G4urgAxgE8ebo8i+MBgls2I/qjz6niXRGDQaFLp3Y81rOb3XIA8KvfjKeff5P/vf8Kjk5aVGo1Y15bYJpBJzcnG11ersXxAL2fGM0v337Eu1FP4lrBHQdHJ8ZPW4hXpfyHpUvCv0l6vl6XyTM9Xci9MdPOxysyyLnx9js5qHDQqCyOP3fFwI79uYzoXYGcPAUnB7iWrvDRjxlkZtvvw/vCVVi120Cfdmp0N2ao+W6LgdwbtdnRwXjuztL42z0ZpjY7ZHnygsLOI/bJpbzkYaYcDdCxhkq51yfVbhMTE8O0adNITEwsrSaIAlw6tLe0m1Bs+/UFH/r9r1n5hx0vWLyHfGvY72iAsM6rT9h+2Ub2qgVWxTs/PMrm1ypLSr1HKYQQ4j/iPu1RlurMPDNnziQpKYnQ0FDTbDxCCCHKKDlHeW+NGzfONNNMeRMfH2+aLOBOHTt25O233763DRJCiJJQjmbbsYYcerWDgICAIu+TJoQQ/0nlqJdoDSmUQgghLHOfnqOUQimEEMIy9+kUdvdn1kIIIaymqFRWLdZauXIlQUFBdOrUiZCQEA4ePFhkfG5uLlFRUTg4OBR6meFnn31GYGAgHTp0oFevXqaJXawhhVIIIYRl7Djqdffu3URGRrJ06VK2bdvG8OHDiYiIKPTWhYmJiYSEhHDhwgXTrRfvtGLFCqZPn866dev4888/adOmDQ8//LDVdyKSQimEEMIydiyUM2fOpFevXtSvXx+AIUOGoNPpiImJKTA+PT2dr7/+mmHDhhW4HYz3Do6MjKRy5cqA8WqLAwcOsHr1aqvaJoVSCCGERex56HXDhg20bt3a9FitVhMYGMj69esLjG/atGmR03NevXqVffv2me3T09OTBg0aFLrPwkihFEIIYRk79SiTk5NJS0vLd9OHatWqceqUbfdzu/m8ktinjHoVQghhGSsnHCjoxvBardZ0a8Sbbt5S8M71Wq3W7HaD1ijJfUqPUgghhEWsPfQaHR2Np6en2RIdHZ1vv66urgD5impOTo5pm7VKcp/SoxRCCGEZKwfoTJ48mQkTJpitu7OHB+Dt7Y2npycXL140W5+UlETdunWtbyeYnlfQPu92G8Q7SY9SCCGERRSV2qqlwBvDF1AoAcLDw4mNjb31WopCXFwcXbt2tamtFStWpGXLlmb7TEtL49ixY1bvUwqlEEIIy6hU1i1WiIqKYvXq1Zw4cQKAJUuWoNFoiIyMBIw3lJgyZYpV+5w6dSpfffUVycnJAHz44Yc0bdqUnj17WrUfOfQqhBDCIoodJ0UPDg4mJiaGgQMH4uLiglqtZt26dbi7uwPGwTm3n2/Mzc2lW7dupKSkADBw4EAeeOABli1bZorp168fly5d4qGHHsLZ2ZmKFSvy66+/orZyKj6VoihK8VMU5cmlQ3tLuwnFtl/ftLSbUCJW/pFz96D/AN8abqXdBHHDq0/Yfqus63t+syrePci6nltZJT1KkU+/VzJKuwklYFdpN0DcJr60GyBMXn0ixPYny222hBBCiMLZMtF5eSCFUgghhEUUle2Hbf/LpFAKIYSwiD0H85RlJZ513759S3qXQgghygI73j2kLLO4RxkeHm5RXHx8vK1tEUIIUYbJOcq7OHXqFEOHDr1rXGF3mRZCCPHfdr8eerW4UA4aNIg33njjrnF3TkArhBCinLhPe5TFmnAgLy+PCxcuUKtWLQwGg9WzHYiyqWPvLaXdBCGEnWz/1fbrKJMP7LAq3rtpe5tfqyyxqbJlZ2fzf//3f1SoUIGwsDAAnnnmGYYPH05WVlaJNlAIIUTZoKCyaikvbCqUkydP5ty5c3z33XdUrVoVgIULF/Lggw/mu6WKEEKI8sHau4eUFzZlsnfvXn7++Wf69euHi4sLAA4ODkyaNIkjR46UaAOFEEKUDYpKY9VSXtg04YBerzedj7zzFOfVq1eL3yohhBBlzv16eYhNPUpPT0+++OILAFQ33riMjAymTp1KjRo1Sq51Qgghyoz79dCrTT3KDz/8kIiICF566SX0ej116tThwoUL1KxZk3Xr1pV0G4UQQpQB5WmAjjVsKpT169fnyJEjLFmyhIMHDwLQtGlTBg8ejJOTU4k2UAghRNlQnnqJ1rB5UnQnJyeGDRuWb/3JkyepW7dusRolhBCi7Llfz1GW+N1Dnn32WTZu3FjSu72vbd68mcTERLMpBLOzs6lfvz4rVqwgKCio9BoHdG7rzVMDapGbq2BQFOYuOM6p05nFih86sDad2nqj1yucOZfF3E+Pk5Gplzzugxwkj7KXx03366FXi/vRarUajUZz12XLFpnVpaRt3ryZmJgYs3WOjo40bNgQDw+P0mnUDQ/Wd2fKi42YPusIz0fFs/r3JOZMb46LS8FDwy2Jf+LRmoS2r8yol+MZOXEfOp2B1yY0kjzugxwkj7KXx+3sPZhn5cqVBAUF0alTJ0JCQkyn9myN//fff3nssccICgqic+fOPPTQQ+zfv9/qdlmcSYsWLdi4cSMbN27k008/pXPnznzxxResW7eO33//nS+++IJ27drx/vvvW90IYT2NRsP69etp2LBhqbZjSP8H2LnnKmcvGGdkWrf5IhqNip5dfGyKV6uNMSt/O09urgGAb1eepWObytStXUHyKOc5SB5lL4/b2XNmnt27dxMZGcnSpUvZtm0bw4cPJyIiguvXr9scP2TIEFQqFbt27WLr1q08/PDD9OzZ0+o5yS0ulFOnTiUkJISQkBB+++031qxZwzPPPEPXrl3p0qULzzzzDH/88Qe///67VQ0oD+bNm0ejRo3w8/Nj1qxZdO3aFT8/PyIjI01T+qWnpzNy5EiaNWtGq1at6N27t+lOKydOnCA0NBSVSsWiRYvo378/zZo1w8vLi7lz5xITE0N8fDyhoaGEhoaSlZVFt27d8PLyYtq0aaZ2LFu2jA4dOhAWFkZwcDATJkyw+yT1gS0qcuTErV9MRYGjJ67TukVFm+Lr+blR0cuJI8dvxSSeySQzS0/rAC/7JGFBu6yNL408ykMOlrTL2njJo+TYs0c5c+ZMevXqRf369QFjkdPpdPmOplkTHx8fT3h4uOm6/4ceeoizZ89y6NAhq9pmcSaPPfaY6f9nz57F2dk5X4yLiwtJSUlWNaA8GDduHFFRUZw9exaVSsX69es5cOAAcXFxvPbaawCMHDmSs2fPsm/fPuLi4mjWrBm9evVCr9fj7+/P5s2bAWOxW7JkCX///TcNGzZkwoQJDB06lICAADZv3szmzZtxcXHh999/JyAgwKwd33//Pa+++iqbNm3izz//5NChQ7z77rt2y9vD3QG3Cg5cTck1W3/1Wi7VffL/flgS71vN+O+dMddSCt5nSSgPeZSHHCxtl7XxkkfJMag0Vi3W2LBhA61btzY9VqvVBAYGsn79epvjH3vsMVasWEFmpvE875IlS1Cr1VSuXNmqttk01jcvL48PPvjArLeSk5PD+++/j15/b04ql0UqlYoxY8YA4ObmxogRI1iwYAHHjh3ju+++Y+LEiTg4GMdPvfTSSxw+fJiVK1ea7WPQoEFotVrUajW7du2y6vXff/99evbsCRjPYfbt25c1a9YU+ZycnBzS0tLMFoM+t8jn3OSsNf4h5OUZzNbn6QymbdbGO2vVN2LMZ3zKzSt4nyWhPORRHnKwtF3WxkseJcfaQ68Ffb4UdJQrOTmZtLQ0fHzMD0tXq1aNU6dO2Ry/aNEiateuTY0aNahduzZz5swhOjqaBx54wKq8bSqUCxYsYMaMGVSsWJF69epRr149KlasSHR0NJ9++qktuywXfHx8zHra9erVIzMzkzVr1qAoCv7+/qZtFStWpFKlSvlOLNesWdPm109LS2Pw4MG0b9+e0NBQ3n///bv28KOjo/H09DRbzp5YYtHrZecYvxQ5Opr/Gjk6qE3brI3PzjHciDE/v+HkWPA+S0J5yKM85GBpu6yNlzxKjqJSWbUU9PkSHR2db783e3xardZsvVarNW2zJX7o0KGcPn2aM2fOkJiYyNdff02jRtYPfrLp8pB27dqRmJjIkiVLTJOgP/jggwwePJgKFe7NSeXySqOx7ZthRkYG4eHhPPHEE6bDCzExMWbnMAsyefLkfHd86T7Qsp5s2nUd19N1VPIyn2SiUkUnzl/Mtin+fJLx30peTlxOvtWzrejlZNpW0spDHuUhB0vbZW285FFyFMW6AToFfb7cWdwAXF1dAfL1NnNyckzbrI2Pj4/nm2++Yfv27bi5uQHwyCOP4O3tzdq1a+nYsaPFedg8zUKFChUYOXIkc+fOZe7cuYwYMeK+L5KXLl0y+8ElJCTg6upKjx49AOOgnZuuXbvG1atXadas2V33e/sNsbOzs8nLy8sXc+TIES5dusTjjz9uis/NvfshVK1Wi4eHh9mi1lg+u1LcP9do6O9mtq5BPTf2xl+zKT4hMZ1rKbk09Hc3ba9d0xVXF02h+ywJ5SGP8pCDJe2yNl7yKDkKaquWgj5fCiqU3t7eeHp6cvHiRbP1SUlJBU5gY0n8sWPHAPDz8zNt12q1VKtWjeXLl1uVt82F8q+//uKRRx6hTp061KlTh0ceecTqc2rljUajYcGCBYBxlOvChQsZNWoUDRo0YNCgQWbncOfMmcODDz5Inz597rrfKlWqcO2a8Q9hwoQJBY4s9vPzw8XFhQ0bNgDGO7z8/PPPJZRZ4b758QztWntTo7rxkHO30KoYDLBmo/EX+JN3Axj5lJ/F8QaDMaZvT1+cnIy/ngP71mT7ritFXqgteZSPHCSPspfH7ex5eUh4eDixsbG3XktRiIuLo2vXrjbF37xBx4ULF0wxer2eS5cuFdhLLYpNh15//PFHnn76aSIiIujfvz9g7D2Fh4ezePFisxGy9xMfHx9cXV2JiIjg6NGjhISE8NZbbwHw+eefM2HCBAICAnB0dMTX15fVq1fj4OBAUlISAwcOBGD8+PE8/PDDvP3226b9PvbYY3z55Zd07NgRT09PunbtSrdu3YiPjycxMRGdTsfbb7/NkiVLiIqKYs2aNfj6+uLj48OGDRvo0qWLqYCWtMPHr/POB0eY/lJjcnINGBSFiW/8Q1aW8QuBVqs2O+9yt3iA738+i4uLhgXvBaDXK5w9n8Xb79v3PqflIY/ykIPkUfbyuJ09Z+aJiorioYce4sSJE/j7+7NkyRI0Gg2RkZEAdOzYkZCQEGbMmGFRfHBwME2aNGHOnDmm01GffPIJWVlZ9OvXz6q2qZQ7byhpgcDAQL766iuaNm1qtv7gwYM8/fTTZlX+fnHzfODNayP/yzr2ltmVhCivtv8aYvNzjySctSq+UT3rBieuXLmSGTNm4OLiYipsTZo0AaBVq1aEh4cze/Zsi+LBODPPSy+9xKlTp0xXHLz22mumqwMsZVOP0snJKV+RBGjSpIncPUQIIcope8/12rdvX/r27Vvgtri4OKviAWrXrs0PP/xQ7HbZdI4yOzvbbGDKTQkJCWRn35vRV2XJvHnzmDlzJklJSaaZc4QQorwxKGqrlvLCph7lhAkTaNWqFX379jVdG3jixAl+/vln5s+fX6IN/C8YN24c48aNK+1mCCGEXd2vdw+xqVA+9dRT+Pj48M4777B69WrAeOPmZcuW8dBDD5VoA4UQQpQNUiit1K1bN7p165Zv/eDBg1m6dGmxGiWEEKLssXbCgfLCpkKZmprKhx9+yL59+0hNTeX2gbPx8fEl1TYhhBBliEF6lJZ74oknSE9Pp3379vlm4ykPl0cIIYTITw69WuHy5cuFXivp4eFRrAYJIYQom+7XQ682jd9t2bJloZeBVK9evVgNEkIIUTbZcwq7ssymHuXcuXN5+eWXqVatGtWrVze748XMmTNN07EJIYQoP+7XHqVNhXL+/Pl8/PHHVK5cOd/ksnfO5i6EEKJ8KE+TCFjDpkK5aNEijhw5Qv369fNti4iIKHajhBBClD2G0m5AKbGpUDZp0qTAIgnw/fffF6tBQgghyqb79dCrTf3o5557jg8++IDz589z581HrL19iRBCiP8GGcxjhd69ewMwceLEEm2MEEKIsut+7VHaVChbtGjBBx98kG+9oii8+OKLxW2TEEKIMqg89RKtYVOhnDp1KiEhBd/8c+bMmcVqkBBCiLLJoNw9pjxSKXeeZBT3vakxuaXdhGK7cCa1tJtQIo7tPVLaTRDlzLafO9n83C0HM62KD2nieveg/wCb7x4ihBDi/nK/nqO8P68eFUIIYTW9orJqsdbKlSsJCgqiU6dOhISEcPDgwWLHr1+/ni5duhAWFoa/vz89e/bk+vXrVrVLepRCCCEsYs8e5e7du4mMjCQ2Npb69euzePFiIiIiOHz4MO7u7jbFb968mdGjR7NlyxaqV6/OpUuXaNy4MRkZGQXuszDSoxRCCGERRbFuscbMmTPp1auXaTKbIUOGoNPpiImJsTl+0qRJTJo0yXSzjqpVq7J69WoqVqxoVdukUAohhLCIPScc2LBhA61btzY9VqvVBAYGsn79epviT58+TWxsLJ07dzZ7Xps2bdBqtVa1TQqlEEIIixgU65acnBzS0tLMlpycnHz7TU5OJi0tDR8fH7P11apV49SpUzbFHzhwAICTJ0/So0cP2rdvzxNPPMHRo0etzlsKpRBCCIsoisqqJTo6Gk9PT7MlOjo6334zM42XndzZ09NqtaZt1sZfu3YNgGnTpvHNN9/w559/0rhxY9q2bcvly5etylsKpRBCCItYe45y8uTJpKammi2TJ0/Ot9+bt2u8s7eZk5OT71aOlsbfvE/yqFGj8Pb2RqVSMXnyZPLy8vjqq6+syltGvQohhLCIwcrzjlqt1qLzgd7e3nh6eua7n3FSUhJ169a1Kb5mzZoA1KhRw7TdycmJ6tWrF3g4tyjSoxRCCGERe456DQ8PJzY29rbXUoiLi6Nr1642xQcGBlKhQgUuXLhgijEYDFy+fJlatWpZ1TYplEIIISxi7TlKa0RFRbF69WpOnDgBwJIlS9BoNERGRgLQsWNHpkyZYnG8i4sL48aN4/PPPyc7OxuAL7/8EkVReOqpp6xqmxx6FUIIYRG9wX77Dg4OJiYmhoEDB+Li4oJarWbdunWmiQEyMzPNzkneLR7gzTffZMqUKQQHB+Pl5YVWq2XTpk34+vpa1TaZFF3kI5Oilx0yKbooacWZFH3FbusqZb/g8nHQUnqUQgghLHK/3mZLCqUQQgiL3K/HH6VQCiGEsIgUSiFs9GAtFSHNNej0xj+kX//Scyml8L+ou8V3bKKm0QNq9AZwdoLsXFgXq+d8sn3/Sls2dKJXR1fydMah5t+sSef8Zb1N8U4OEBroQsuGThgUcNGqOJKYx09bMsjNs18Ondp681T/B8jNNaAoMOfTEySeKfxmu5bED32iFp3aeKPTK5w9n8Xcz06QkVn4+yJ5lL88bjLI/SiFsF6Nyioe6+jAsi06Fq7REXvcQORDDjgV8hXMkvjOzTX8tEPHl7/rWLBKx4WrCk93dbDyUmfr1PF1YPij7ny+8jrvfpXCtvhsXhzsibNTwa96t/ha1R3o3t6Vz1deZ9bXqcz6OpWm/k4M6WH5rX2s9WB9N6aMa8Cbc44w5tV/WLU+iTnTmuLiorE5/olHahDSzptRUX/z3Evx5OkMTH2xod1ykDzKXh63s+d1lGWZFEpRLJ2baTh21kDyjfug/p1gQK2GVv4F/2pZEr/4Dx1X0m4951SSATcXFVone2UBPTq48s/xXC5dNX4z/+ufHDRqFe1bFDyryN3is3MVNuzJ4tp14yjBrByFP+Ozad1Yi8pOFf/Jxx5g596rnL1gvGbs982X0GhU9Az3sSlerYYnH6vJyjUXyM015vHdT+foGOxN3dr5pxWTPMpnHreTQimKbd68eTRq1Ag/Pz9mzZpF165d8fPzIzIykqysLCZPnoyfnx8hISG8/PLLhIWFUatWLSZOnIjBcGvY9cWLFxkwYAABAQF07NiR8PBw1qxZY9p+/PhxevToQWBgIM2aNWPMmDGmC2p//PFHAgICUKlU/Pbbb/Tu3RtfX1/69Oljl5zrVVdx7rZDogpw/opCPd+Cf7UsiT975dZ2FycIbqhh3wk92Xa8auVBP0cSL+jM2vXvhTwa1ym4Ot8t/uxFPau3mx8yy9MpaNSgtlOhDGzuxZET6bfapMCxhHQCW3jZFF+vdgUqejmZxSSeySQzS0/rQvZZEiSPguNLK4/bWXv3kPJCCmUJGjduHFFRUZw9exaVSsX69es5cOAAcXFxvPbaa0RHRzN06FD+/PNPgoKC2LRpE7t372bp0qV88sknpv3069ePSpUqER8fz/bt2+nSpQufffYZYJz0NyIigk6dOhEbG0tsbCwHDhxg3LhxAPTv358PPvgAgD179vDrr7+ydetWXFxcSjxfFy04O6lIzzJfn56lUNGtePEqFTzXy4GXn3AkPUth5Z/2OwdTwUWFq7OatAzza8RS0w1U9sp/mMza+Jvq1XRk39Ecu1y07eHugFsFB66lmH+bSL6Wi6+Ps03xvtWM/94Zcy0ll+oF7LMkSB5lK487GQwqq5byQgqlHahUKsaMGQOAm5sbI0aMYMGCBeh0xh5I9erVefzxxwHj/dMGDRrEhx9+CMCmTZvYsWMHL730kml/o0aNIjw8HIClS5dy/vx5xo8fDxgn+R0/fjyLFi3KN0Hw0KFDAfD39+fbb78tsK0F3S9Ol5f/fnEFcbpRE3R686+OOgM4OuT/I7EmXlHgs9U63v0+D/cKKp7qar9xZ06OxtfW6e5ol/7WtuLEA1Tz1tCkrhPL1meURJPzcdYa/5Rz88zblJdnQKvN/2duSbyzVnNj3R0xOsW0raRJHmUrjztJj1KUGB8fH5ydb33Dq1evHpmZmfz7778A1K5d2yy+Xr16JCQkkJeXx4EDB9BoNNSpU8e0vVKlSrzwwguA8Wak1atXN7v1jL+/P3q9nkOHDpnt9+bs+UUp6H5xO1a/Z1GeuTc6eQ4a8+LgoDb+8RY3HowjXlf/paN+DTUNatrnG+rNDyeHO4q1gyb/B5ct8c5OKkb2dWfhz2kkp9pnDrDsHON+7yzUjo5qcnLyv6Yl8dk5+hvr7ohxUJm2lTTJo2zlcSc5RynKnZv3YytKQfeLa9/rZYv2n5UDWbkKbncc1XVzUXE13bZ4FfnP4SVfB71BoaqnfQplRpZCZrYBjwrmfw6ebmqupOT/ALIm3kEDYwZ4sHZnFgcS7HddSNp1HdfTdVT0Mj+n6l3RifNJWTbFn08ynve+M6ail5NpW0mTPMpWHneSQilKzKVLl8wm701ISMDV1dXUkzx9+rRZfEJCAvXq1cPR0ZGmTZui1+tNvU+AK1eumM5hNm3alAsXLpjd9TshIQGNRkPjxo2tbqtWq8XDw8NscXC8+/3jbjp5QcHX27yA+XqrSDhfcM/pbvF+1VT0DDYv8BWcQaNWcT3/50uJOZyYR+3q5od3a1Vz4NDJgkcQWRKvVsGo/h7sOZTD7oPG34fWDzrh6myfgh+3P4WG9cxP9jao68bev1Nsik/4N4NrKblmMbVruuDqoil0nyVB8ig4vrTyuJ0cehUlRqPRsGDBAgDS09NZuHAho0aNwsHB+MGanJzMihUrAOONRr/77jvTodWwsDDat2/PnDlzTPubPXs2586dA2Dw4MH4+vqazmnm5eUxb948hg8fjo9PwcPO7Wnrfj0Na6qpdOPywBZ11RgU2HfCWPhG9HCga0uNxfEATf3UeN34LFABXVtquJ6pcOys/W5dsObPTJr7O1G1ovFPom0zLQYFdvxjLHBRkV70DXO1OF4FDH/UnexchcQLOmpXd6B2dQfaNXfGRWufQrlk+Rnata5EjRuDPrqFVEFvUFiz6RIAH0c3Z8SQ2hbHGwywZPlZ+vaojpOTMc+BfWqyfXcyp04XftG85FG+8rjd/dqjlJl57MDHxwdXV1ciIiI4evQoISEhvPXWW6btQUFBHDp0iI8//pjjx48zaNAgRo8ebdq+fPlyxo4dS0BAAG5ubrRo0cI0klWr1bJu3TrGjh3LsmXLyM3NpXPnzsyePRuAtWvXEhUVBUBoaChjxoyhf//+dsv13BWF5dt1PBHiQN6NmXa++kNH7o0rJxwdjIcfLY1PuqoQe9zA4DAHcvOMz0/NhP+tyyPLjpeHnDqv43+/XOe5fh7k3php5/2lqWTnGv/anRzB8bZzq3eLb+bvRNtmxg+8tk3NRyQuXVvAcekScPh4Ou98eIxpLzUiJ8c4s8vEaQfIyjIeDnbWanB0UFscD/D9L+dwcdGwYGYL40wwF7KY8cFRu7Rf8iibedzOYL/vqmWa3GarhMXExDBt2jQSExML3D5t2jQ2b97M5s2b72m7rCG32So75DZboqQV5zZbn66zLv7/Imx+qTJFepRCCCEscr92q+QcZQmaN28eM2fOJCkpidDQULKyzEefTJ48mZiYGOLj43n00UdLqZVCCGEbvUGxaikv5NCryEcOvZYdcuhVlLTiHHr9aLV15WJsr/IxO4/0KIUQQljEYLBusdbKlSsJCgqiU6dOhISEcPDgwRKL79+/Pyob70gg5yiFEEJYxJ7HH3fv3k1kZCSxsbHUr1+fxYsXExERweHDh3F3z397OmviV61axYYNG2xum/QohRBCWMSeEw7MnDmTXr16Ub9+fQCGDBmCTqcjJiamWPEZGRlMmTLFdNmcLaRQCiGEsIg9JxzYsGEDrVu3Nj1Wq9UEBgayfv36YsW/9tprjBo1qlgTskihFEIIYRHFoFi1FHR3otun97wpOTmZtLS0fMWsWrVqnDp1yub4ffv2sXv3bkaOHFmsvKVQCiGEsIi1h14LujtRdHR0vv3enLtaqzWfZ1qr1ZrNa21NvMFgYPTo0XzyySeo1cUrdTKYRwghhEWsPZw6efJkJkyYYLbuzuIGmG4beGdvMycnx+yWgtbEf/TRR3Ts2JHmzZtb1+gCSKEUQghhEb3eukqp1WoLLIx38vb2xtPTM9/N55OSkqhbt65N8b///jvXrl0jNDTUtA2Mc2C7ubmxatUqi/OQQimEEMIi9rw8JDw8nNjY2NteSyEuLo4pU6bYFL969Wqz+JiYGIYNG2bTPNtyjlIIIYRFDIpi1WKNqKgoVq9ezYkTJwBYsmQJGo2GyMhIADp27GhWNO8WX5KkRymEEMIiih1vsxUcHExMTAwDBw7ExcUFtVrNunXrTJMHZGZmmp2TvFv87UJDQ80OvXbv3t2q6yplrleRj8z1WnbIXK+ipBVnrtfp3+RZFf/GEEebX6sskR6lEEIIi9yvN26WQimEEMIi9+sBSCmUQgghLFKObjFpFSmUIp9hnc+WdhOK7WxWtdJuQsnoF1jaLRDCRLlPK6UUSiGEEBa5T4+8SqEUQghhGb3+/hzNI4VSCCGERex5HWVZJoVSCCGERaydbae8kEIphBDCInJ5iBBCCFEEg4x6FUIIIQp3n3YopVAKIYSwjFxHKYQQQhRBBvMIIYQQRZAepRBCCFEEvV4KpRBCCFEo6VEKIYQQRZDrKIUQQogi3K/XUapLuwFCCCH+GxRFsWqx1sqVKwkKCqJTp06EhIRw8OBBm+MzMzOZO3cunTt3JiwsjFatWjFp0iQyMjKsbpf0KP/D9uzZQ79+/Th+/DjOzs6l1o4df/7J999/j5OTEyqViufHjKF27do2x1+8eJEvvviCy5cu4aTV4ujoyIgRI6hTp45d89j310Z+W74IRyctKpWKJ0e+im+tejbFX7l0nplRT1Othp/Zc86dTiC0++M8Omi05CB5/GfyuMme5yh3795NZGQksbGx1K9fn8WLFxMREcHhw4dxd3e3Oj4uLo53332X2NhYatasSUpKCh06dODKlSvExMRY1TYplP9h7u7uNGzYEEdHx1Jrw9GjR5kzZw4ffvQRNWrUYMP69UydMoXPPv8cV1dXm+Jnz5qFl5cX73/wAWq1mp9++ok3Xn+dRYsW4ejkZJc8Th0/wJcfvc6UWUvw8a3Nzk2/8sGbo3nzoxU4u1SwKb5Jy/YMG/um6Tl6vY5XRvQgqEOE5CB5/GfyuJ09C+XMmTPp1asX9evXB2DIkCG8/PLLxMTEMHbsWKvj3d3deeGFF6hZsyYAXl5eDBs2jNdvfJZoNBqL2yaHXv/DGjVqxPr16636gZe0ZT/8QHBwMDVq1AAgLDwcg8HA+j/+sDn+5MmTtAgIQK02/nq2atmSK1eucPr0abvlsXbFlzQL7IiPr7Fn2yakFwaDnh0bf7Ep3qtSFfoMHmP2nIP7dlCpsk+RPYr7PQfJo+zlcTuDoli1WGPDhg20bt3a9FitVhMYGMj69ettim/RogVTpkwxe46zszM6nQ6Dwbr7hUmhLKalS5cSFBREWFgY7dq1Y/LkyaZts2fPplmzZnTu3JnAwEDeeOMNdDodADqdjldeeYWAgABCQkLo1q0bBw4cAODEiROEhoaiUqn44osvePzxx2nRogXdu3fn6tWrABw6dMgUs3nzZtNrXrx4kQEDBhAQEEDHjh0JDw9nzZo1dss/Pj7e9I0OjL+s/v7+xMfH2xzfoUMHdvz5J9nZ2QBs2rQJtVqNh6enXXIAOLx/N7XrNTZrV626D3L4n102xTs4OFLRu6rZc3Zs+pUOXR61Q+sta5O18aWRgyXtsjZe8ig5ikGxasnJySEtLc1sycnJybff5ORk0tLS8PHxMVtfrVo1Tp06Vez4m3bu3EmfPn2sPgonhbIYzp8/z9NPP83333/Ppk2b+OWXX/j8888B+Pzzz/nwww/ZsGEDW7du5dtvv2X27Nmkp6cD8Prrr/PXX3+xa9cutmzZwrBhwwgLC+P69ev4+/ubit+vv/7Kt99+S1xcHMnJycybNw+Axo0bmxXIm/r160elSpWIj49n+/btdOnShc8++8wu+aelpZGZmYlXxYpm6ytWrEhSUpLN8ePGj6dq1ao8/dRTREZGsmLFCiKHDqVKlSp2ySP9egrZmel4eHmbrfes6M2VS+eLHQ+QcT2Vw3//RVDH7iXX8GK0qSzmYEu7JA/75nEnvd5g1RIdHY2np6fZEh0dnW+/mZmZAGi1WrP1Wq3WtK048QBHjhzh999/Z9asWVbnLecoi+HixYvo9XoSExOpW7cuVapU4bfffgNgxowZREZGUrWq8RtggwYNeOONN3ByciIrK4v333+fr7/+2vSDHjRoECNHjuSHH35g+PDhptd4/PHHcXAw/pg6depUaE8NjD2vHTt2sHjxYtO6UaNGFXgivCTc/GZ457czR0fHAr81Who/d+5crl27xleLF+Ps7Mz27dvteh42N8fYc3VwND//6eDgZNpWnHiAPdvX0SywI64V7POzKA852NIuycO+edzJ2nOUkydPZsKECWbr7ixugGl8wp2fGzk5OQWOdbA2/vr16wwePJivv/66yIGGhZEeZTEEBATw1FNP0bVrV8LDw/n8889p2rQp169f5/Tp0/j7+5vFv/zyy7i6unLixAmys7OJjo4mNDTUtPj4+HDt2jWz5/j6+pr+7+7uTlpaWqHtOXDgABqNxmx0aKVKlXjhhRcKfY6lh0YKcvMXPi8vz2x9Xl5egX8MlsQnJCSwaeNGnnzySVxcXFCpVLRt04b33n2XgzcOTZc0J61xxLAuL9dsvU6Xa9pWnHiAHZt+oX2Y/Q6RlYccbGmX5HHvDruC9ZeHaLVaPDw8zJaCPhu8vb3x9PTk4sWLZuuTkpKoW7duseKzs7Pp06cPL730Et2729b7lkJZDCqVisWLF7N//34CAwOZMmUKAQEBpKSkWPT82bNns3nzZtNy4sQJJk2aZBZz+0AdlUpV4jNjFHRo5NNPP7XouR4eHlSoUIGUO4r7tWvXqFa9uk3x586dAzA79+Do5ETFihX5888/rcrNUm7uXri4upGWkmy2PvVaMpV9ahQ7/vyZBNJSkmnUPLhkG16MNpXFHGxpl+Rh3zzupBgMVi3WCA8PJzY29tZrKQpxcXF07drV5nidTseAAQMYMGAAgwYNAmDZsmX5OiR3I4WyGM6dO8fOnTtp0qQJs2bN4uDBg5w/f57du3dTq1YtTp48aRa/cOFCzp8/j7+/P87Ozhw9etRs+/z589m6davN7WnatCl6vZ5///3XtO7KlSt88sknhT5n8uTJpKammi3/93//Z/FrtmjRguMnTpgeK4rCiRMnaBkQYFO8t7fxHM3NQUsAer2elJSUAr+JlpRGzYI5ffKwWbtOnzzCg83bFDt+56ZVtAvrbRrFay/lIQdr22VtvORRPAaDYtVijaioKFavXs2JG58PS5YsQaPREBkZCUDHjh3NRrHeLd5gMBAZGYmbmxuBgYHs3buXvXv3snjxYlJTU61qmxTKYjh+/DgvvfSS6VCiwWBAURTq16/PlClTWLx4MZcvXwbg77//5r333qNq1aq4uLjw4osvMn/+fNM3m+PHjzNv3jyaNGlic3vCwsJo3749c+bMMa2bPXu2qZdWEEsPjRTm8QED2LN7N+fPGwcc3Byh2uXGt7pJEyfy1W0X994tvmHDhtSuXZuVK1aYhnCvXrWK3Nxc2nfoYHG7rNW93zD+id3OpQvGS1B2bf0NtVpN+7DeALz76jBWLplvcfxNBr2eXVt/o33YI3Zre3nKQfIoe3nczp4z8wQHBxMTE8PAgQPp1KkTX3zxBevWrTONscjMzDQ7LXS3+DVr1rB06VK+/fZbgoKCTMuqVauszlsG8xRDo0aNqF+/Pu3atcPNzY2MjAw+/vhjmjdvTvPmzUlNTSU8PJyKFSui1WpZsWKFaWDOm2++iaIotGvXDh8fH5ycnPj222/x9vYmKSmJgQMHAjB+/Hjmzp3L/v37iYmJISUlhSeffJIpU6YwevRoU8zUqVPp378/y5cvZ+zYsQQEBODm5kaLFi344IMP7PYeNGzYkAkTJjBz5ky0N2baeXvGDLOT7befk7xbvIODA9OmT2fRokW8OH686dDz66+/bnZZSUmrU78pw8ZM54u5UTg6OaNSqRj/+iemC71zc7LNzh/dLf6mQ3//RdXqD1ClWk27tb085SB5lL08bmfvu4f07duXvn37FrgtLi7OqvhevXqV2KkqlXK/TgcvCpVwxyHj/6KzWdVKuwlClEkhTfKPCrVU/3HWfTb8OC//QJz/IulRCiGEsIhBsW6ATnkhhVIIIYRFDDoplEIIIUSh7tczdVIohRBCWMTaycTLCymUQgghLGLvUa9llRRKIYQQFlFkMI8QQghROOlRCiGEEEWQQimEEEIUQa6jFEIIIYogPUohhBCiCNbeOqu8kEIphBDCIga9vrSbUCqkUAohhLCItfeYLC+kUAohhLCIHHoVQgghiiCDeYQQQogiyMw8QgghRBGkRymEEEIU4X49R6lS7tcbjIlSk5OTQ3R0NJMnT0ar1ZZ2c2xSHnKA8pFHecgByk8e5ZEUSnHPpaWl4enpSWpqKh4eHqXdHJuUhxygfORRHnKA8pNHeaQu7QYIIYQQZZkUSiGEEKIIUiiFEEKIIkihFPecVqvljTfe+E8PWCgPOUD5yKM85ADlJ4/ySAbzCCGEEEWQHqUQQghRBCmUQgghRBGkUAohhBBFkEIpSsS0adMICAggNDTUtPTr18+0XVEU3nzzTVq1akVwcDBDhgwhNTXVbB+pqak89dRTBAcH06pVK6ZPn469T6Hn5uYSFRWFg4MDiYmJ+bZ/9tlnBAYG0qFDB3r16sW5c+fyPX/cuHG0bt2awMBAXnjhBXJzc81izp07x8MPP0yHDh1o1aoVn376aYm1/16974cOHSI0NJTOnTvTunVrVqxYUey2l5X3fvv27bRt25aQkBDatm3Ltm3bLGp/WXrvV65cSVBQEJ06dSIkJISDBw9alIOwkCJECXjjjTeUTZs2Fbp9zpw5SvPmzZXMzExFURRl2LBhSu/evc1ievfurTz77LOKoihKRkaG0qRJE2XOnDl2a/OpU6eUtm3bKk8//bQCKKdOnTLbvnz5cqV69erK5cuXFUVRlOnTpysBAQGKXq83xYwdO1aJiIhQdDqdotPplK5duypjx441bdfr9UpAQIDy9ttvK4qiKJcuXVJ8fHyU5cuXl0gO9+J9T0tLU2rUqKF88803iqIoytGjRxU3Nzdl165dNre7rLz3iYmJioeHh7J161ZFURRl8+bNioeHh5KYmHjXHMrKe79r1y7F3d1dOXbsmKIoivLVV18pNWrUUNLS0u6ag7CMFEpRIor60NDpdEqVKlWUTz/91LTu4MGDCqD8888/iqIoyt9//60AypEjR0wxH3/8sVKlShVFp9PZpc379+9Xjh8/rmzatKnAD+uWLVsqUVFRpscpKSmKg4OD8ssvvyiKoihXrlxRHB0dlbVr15piVq9erTg6OirJycmKoijKzz//rDg6OirXr183xbz00ktKq1atSiSHe/G+z5s3T6levbpiMBhMMY8//rjSr18/m9tdVt77F198UWnbtq3ZawcFBSkTJky4aw5l5b3v27evMnDgQNNjvV6v+Pj4KB9++OFdcxCWkUOvwu7++ecfLl++TOvWrU3rHnzwQSpUqMD69esB2LBhA25ubjRs2NAUExQUxOXLl/nnn3/s0q6mTZvi7+9f4LarV6+yb98+szZ7enrSoEEDU5u3bt1KXl6eWUxQUBB5eXls2bIFMObVsGFD3NzczGLi4uK4du2aPdIyKan3fcOGDQQGBqJSqcxiNmzYYHPbysp7v2HDBrN93Iy5+Tq2upfv/Z05qNVqAgMDi52DuEUKpSgx//vf/wgNDaVDhw5ERkaSkJAAwMmTJwHw8fExxapUKnx8fDh16pQp5vbtANWqVQMwxdxLN1+zoDbd3mYHBwe8vb1N26tUqYJGo7mnedn7fS8sJjU1latXr5ZIDre7l+99YTGW/mxK+71PTk4mLS2tWDmIu5NCKUpErVq1aNmyJevXr2fbtm3UqVOHwMBAzp07R2ZmJkC+GUe0Wq1pW2ZmZoHbb2671yxts5OTU77nOjk53bO87sX7fq9/NvfyvS8sxpK8ysJ7b8nriOKTQilKxDPPPMOLL76Ig4MDarWa1157DWdnZz755BNcXV0B4/32bpeTk2Pa5urqWuD2m9vuNUvbfOcoSzCOxrxXed2L9/1e/2zu5XtfWIwleZWF996S1xHFJ4VS2IVGo8HPz4+EhATq1q0LwMWLF81iLl68aNpWt27dfNuTkpJM2+61wtqclJRk1madTkdycrJp++XLl9Hr9RblVadOnRJvtz3e98JiPD09qVSpUonncC/f+8JibPmdK4333tvbG09PzxLLQRRMCqUoEePGjcu37vz589SqVYvmzZtTpUoVYmNjTdsOHz5MRkYGXbt2BaBLly6kp6dz7NgxU8zevXupWrUqzZs3t38Cd6hYsSItW7Y0a3NaWhrHjh0ztblz5844OjqaxezduxdHR0c6d+4MGPM6evQo6enpZjGBgYFUrFix2O28F+97ly5diIuLM7u+b+/evaZ9lLR7+d536dLFbB/W5FZW3vvw8HCz11EUhbi4OLv9fO5LpTzqVpQTfn5+ys8//2x6/MUXXyjOzs7K4cOHFUUxXlPWokUL0zVlw4cPL/CaspEjRyqKoiiZmZlKs2bN7Hod5U2FXaKwfPlyxdfXV7ly5YqiKIry1ltvFXgtX48ePRS9Xq/o9XqlW7duZtfy6XQ6JSAgQHnnnXcURVGUy5cvK9WqVSux6yjvxft+81q+pUuXKoqiKMeOHVPc3d2LdR3lTaX93t+8jnL79u2KoijK1q1bLb6Osqy897t27VI8PDyU48ePK4qiKF9//bVcR1nCpFCKErFkyRIlLCxMCQkJUdq1a6eEhoaaPnwURVEMBoMyffp0pWXLlkpQUJAyePBg5dq1a2b7uHbtmvLkk08qwcHBSkBAgDJt2jSz68dKWk5OjhISEqK0aNFCAZQ2bdoo/fv3N4tZsGCB0rJlS6Vdu3ZKz549lTNnzphtz87OVsaOHau0atVKadWqlTJmzBglOzvbLObMmTNKr169lPbt2ystW7ZUPvnkkxLL4V697wcOHFA6d+6sdOzYUQkMDCx2oS9L7/3WrVuVNm3aKJ06dVKCg4NNkw/cTVl671esWKEEBgYqHTt2VDp37qwcOHDAohyEZeQ2W0IIIUQR5BylEEIIUQQplEIIIUQRpFAKIYQQRZBCKYQQQhRBCqUQQghRBCmUQgghRBGkUAohhBBFkEIphBBCFEEKpRBCCFEEKZRCCCFEEaRQCvEf8eOPPxIQEIBKpWLVqlU88sgj1K9fn7Fjx1r93N69e1OnTh1mzJhBamoqw4cPp1WrVkRERHDt2jXT8+Lj4+nZsyedOnWiY8eO9O3bl7NnzwJw9OhRWrVqhUqlomXLluj1ep577jlcXV3p0qWL3d4HIe650p5sVghhuZt323j33XcVRVGUixcvKlqtVtm4caPFz715d4qjR48qKpVKef7555WMjAxFr9cr7du3V6ZNm2Z6zkcffaRMmjTJ9PjNN99UwsLCTI/z8vKUFi1aKAMHDlQURVG+//575eWXXy6RXIUoKxxKu1ALIaw3aNAgAKpWrUrjxo2Jj48nLCzMoucOGDAAgAYNGlC5cmWqVauGq6srAO3bt2ffvn2m2MGDB+Pk5GT23DfeeIOsrCxcXFxwcHBg4cKFtG3blpCQEL766is2btxYUmkKUSZIoRTiP8jX19f0f3d3d9LS0ix+bvXq1U3/d3V1NXtcoUIFUlNTTY8VReG1115j9+7dODg4kJOTg6IoXLp0idq1awPQunVrxo8fz6hRo1i1ahUuLi7FSU2IMkcKpRD/QRqNxvR/lUqFYsXd8m5/bkGPb9/X008/zdWrV/n9999xd3cnMTGROnXq5Hu9gIAAHB0dWbt2Lb169bImFSHKPBnMI4Qo1NatW+nZsyfu7u4A5Obm5ou5evUqCxcu5JdffmHBggXs3LnzXjdTCLuSQimEKFTjxo3ZsmULOp0OgOXLl+eLmTRpEu+88w7du3dn6NChPPvsswUWVCH+q6RQCvEfsXbtWsaPHw9AaGgoV69eZdiwYcTHxxMTE8OsWbOsem63bt1ISkpi5syZLF26lLlz5xITE0N8fDwDBw4E4H//+x/Z2dk0bdqUPn36kJKSAsDAgQPZv38/nTt3ZtmyZaxbt46srCz27dvHoUOHCA4OZvfu3fZ8O4S4Z1SKNSc3hBBCiPuM9CiFEEKIIkihFEIIIYogl4cIUU6EhoYWuN7NzY1Vq1bd28YIUY7IOUohhBCiCHLoVQghhCiCFEohhBCiCFIohRBCiCJIoRRCCCGKIIVSCCGEKIIUSiGEEKIIUiiFEEKIIkihFEIIIYrw/5Agw1hQS2KNAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAEmCAYAAADiGtAlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOHElEQVR4nO3deVxU9frA8c/MMAw77iBuqLjmgiKYhoJo4lapWVfNwqXsp2maS0FZaVnYNUtbtEWLSr111bxdd6+7ZrlglriLYm6IK8g2MDPn98fk5MjizACC4/N+vc7r5ZzznDPfZwSe+X7POd+jUhRFQQghhBCFUpd3A4QQQoiKTAqlEEIIUQwplEIIIUQxpFAKIYQQxZBCKYQQQhRDCqUQQghRDCmUQgghRDGkUAohhBDFkEIphBBCFMOlvBsgKp5V2ibl3YQSa/ZUo/JuQqkIGPx4eTdBOBm37sMc3tfevw298486/F4ViRRKIYQQNlFpVeXdhHIhhVIIIYRNNO6a8m5CuZBCKYQQwiZqF+lRCiGEEEWSoVchhBCiGNKjFEIIIYohPUohhBCiGNKjFEIIIYqh0kihFEIIIYqklkIphBBCFE2lvj8Lpcz1KoQQwiYaV41di72WL19OaGgonTp1IiIigoMHDxYbn5eXR2xsLC4uLqSkpFhtMxgMzJ8/ny5duhAVFUVISAjPPvssly9ftrtd0qMUQghhk7LsUe7evZuYmBgSExNp1KgR3377LdHR0Rw+fBhvb+8C8SkpKQwaNIjGjRtjNBoLbE9NTWXs2LHs2rWLVq1aodfr6dWrFwMGDGDLli12tU16lEIIIWyi1qjsWuwxY8YMevfuTaNG5gcaDBkyBIPBQEJCQqHxmZmZfPfddwwbVvgk766urgwfPpxWrVoBoNPpGDVqFFu3buXChQt2tU0KpRBCCJuoNCq7Fnts3LiRdu3aWV6r1WpCQkLYsGFDofEtWrQgKCioyOPVqFGDTz/91Gqdm5sbAHq93q62SaEUQghhE5VabddiqytXrpCRkYGfn5/Ven9/f06dOlVq7f/ll18IDQ0lMDDQrv3kHKUQQgib2HuOUq/XF+i96XQ6dDqd1brs7GzLtttjb24rqcuXL7NgwQL++9//2r2v9CiFEELYxN5zlPHx8fj6+lot8fHxBY7r4eEBFBwS1ev1lm0lYTAYGDRoENOnTycsLMzu/aVHKYQQwib29ijj4uKYMGGC1brbe40AVatWxdfXl4sXL1qtT01NpUGDBvY39BYmk4mYmBi6devGs88+69AxpEcphBDCJvaeo9TpdPj4+FgthRVKgKioKBITEy2vFUVh3759dOvWrURtfuGFF6hbty6vvPIKABs2bODkyZN2HUMKpRBCCJtotGq7FnvExsayatUqTpw4AcCiRYvQaDTExMQAEB4ezmuvvWb3MY8cOcLjjz/O3r172bt3L//+97/5888/7TqODL0KIYSwSVlOOBAWFkZCQgIDBw7E3d0dtVrNunXrLJMNZGdnW53DzMvLo3v37ly/fh2AgQMHUqdOHZYsWQLAwYMHee+99wAIDQ21eq/Bgwfb1TYplHYaNmwYa9asoUePHkXeCHs3TJ06laFDh1pd5vzvf/+b+fPnYzQaycjIIDAwkJkzZ9p9KbS9/B7rRlDs/2HK1aOYTCSNnUbmoRNFxqu0WhpPfZEGE4azpWl3ck6fs9peO6Y/tZ56DEwmNF4eoCgcm/Yxlzf8XKZ5eLTtQKU+T6Dk54Ni4vK388g/X8w3T40LVfo/hW+P/px55TkMl9P+3qZW4x3eDa8OkaAoqD080Z9O5uqSbzBlZpRZDht/P8qC9b/g6uKCWq3i1Se7E1SzusPxV25k8eF/NnPm0jVy8vOpV70KsU88TFVvzzLLQfKoeHncZM8tH47o168f/fr1K3Tbvn37rF67uroWO8POAw88gKIopdIuGXq109dff02PHj3KuxlMmzatwNyGQ4YMYeLEiWzcuJFdu3bh7u5Ojx497L651h6+oS1p/dV7/Pb0RH7p8hRnvl5K2KoFaLwK/8V1r1eLDpu+w61mddQuhX9PazjxWY6/9TG7egxjZ/g/OP/9Stotn4e2auUyy0NXvzE1nnuJtM/f50L8K9zY9j9qTnoLlZt7ofEu1WoQEDcDjW8VVJqCc1pqfCtTdcjzXFn0BRf++Rrnpk9CW90fvzFxZZbDgZTzvL5wFfExj5Lw0hD6PdiKUXP/TVZu4f//d4o3mRRe/HwpKiDhpSH8+5Xh+Hq6M3H+8jLLQfKoeHncSqVW2bU4CymUTuSxxx4jOjoaMM9q8eKLL3L06NEC38RKU9DkkaSt3kL2idMAnFv0X1QuGurEFP6tUOPlwf6hL3Mm4ccij/n7s7Fc3bHX8vrK1t1o3HS41/Yrcp+SqtR7ANm/78Fw8TwAmb9sBo0G7/CuhcardO6kfTGLGzsKnzVEMRi4sf1/5J1NMa8wGMjYtBr3pi3R+JZNwf/qf7/SqXlD6tWoAkDv0BYYjSZ+2nXAofik0+dJOn2BwZHtUKnMf/SeimjHbyfPsu/EmTLJQfKoeHncSgqlE8nMzGTw4MHUr1+fbt26MWvWLAIDA2natCnTp08nODgYlUrF6tWreeSRRwgICKBv375MmTKFwMBAIiMjmTlzJl27diUoKIhvv/22wHsYjUZeeuklIiIiLEOctzp+/Dg9e/YkJCSEli1bMmbMGHJzcy3bDQYDsbGxtGjRgtDQULp06cLvv/9u2X7y5El69OhB586d6dSpE08++SRHjx7l6tWrREZGAjB+/HgiIyOZN28egGVs/iZHp2uyR9WoDqQnJv29QlHI2HeQqlEdC43PPHic7OTiT6Rf3/2H5d8aD3cCxz7D5c2/knHgWKm0uTDuzVujT7lluFhRyEs5gXvz4ELj88+dxpBW9HyRphvpXPnuM6t1Sn4eYB56Lgu7j52meV1/y2u1WkXzOv7sOpriUPyFa+Yh4qo+f48OVPM1/zsxuez+MEsehceXVx63kkLpRCZNmsSJEyc4dOgQGzZswGQycfbsWWJjY5kyZQqzZ88GYM+ePaxYsYJt27bh7u7O9OnTGTp0KImJibRt25aNGzfywQcfMHr0aG7cuGH1Hv/5z38YOHAgW7duZe3atbzxxhusXLkSMBem6OhoOnXqRGJiIomJiSQlJTFu3DjL/m+88Qbr16/n119/Zc+ePQwaNIiHH36Y9PR0AMaMGUNYWBjbtm1j+/btuLu788svv1ClShXLuPzs2bPZsmULo0aNKvRz+OWXXwgICOChhx4q5U/YTFulElpfb/LSrlit11+8jEf92iU+fsjST+l2fie66lVJHPACmEwlPmZh1J7eqD08MaZfs1pvSL+GS/XS68XqgpqSe/KY9bnMUnI9K4fMXL3VH1Ew/1E9dyXdofiAKr4ApF79+5xq2vVMAC5et/59KC2SR8XK43ZlNYVdRec8mfwlMzOTr7/+mlGjRuHubj6/NHbsWMtQxa2GDh0KQFBQEP/6178s62vUqEHXruYht8jISLKysiyXLN8UHBxM+/btAWjatCk9e/bko48+AmDx4sWcP3+e8ePHA+aTzuPHj2fBggVcvHiRnJwcPvzwQ1544QW8vLwAGDFiBCaTiS+//BKAc+fOcebMGcvjY9555x0efvhhmz8HvV7PzJkz+eSTT9CWUQ9G42HusRr1eVbrTfo8NO5uJT5+4oAX+J//g+Rdu86DmxaiLoVjFkb1131diiHfar2Sn4/atfB7vuyl9vLBu3P3Ar3M0pKbZ267623nfV1dNJZt9sa3qFeTVoEBzF//C3n5BgxGE/PX78RFo8ZURl9aJI+KlcftyvLpIRWZ0xXK5ORk8vLyrGZzcHNzo0aNGgVia9cuvNcTEBBg+ffNS5MzMqyvVKxXr57V64YNG3L48GEAkpKSqFmzptXUS0FBQRiNRg4dOsSJEyfIzc21mvleo9EQGBjIgQPm8xHTpk1j6dKlNGzYkNjYWLKzs6lVq5ZNnwHA888/zz/+8Y8iryC7Sa/Xk5GRYbXkK7b90hmzzUPJGp2r1Xq1zhVjTm5hu9jNlKvn4LjpeDVpQJ2h/UvlmLdT/hqaVrlYf6FQabWY8kph2Fqtpsb/Tebasu/Qnyqb4WM3V3Pb8wwGq/V5BqNlm73xKpWKT0c9iX9lH0Z8tJj/+/R7OjZrQEAVX7w9yuZLi+RRsfK43f069Hrf3B5SWI9SU8jVirevv7lfaV1mbKu+ffty9uxZvv/+e+bPn8+sWbNYsmQJffv2veO+sbGxeHh48Pbbb98xNj4+nmnTplmtG6SqwlOaanfcN//qdfKvZ+Bao6rVep1fNbJPOn7OROXignLLHwxjZha55y7i1azoR+qUhCnrBsbszAIX2bj4VsZwKbVkB1epqP7cBHIO7efGtvUlO1YxKnm64+2u40pGltX6KxlZ1K5ayeF4Hw83Xn2yu+W1oii8++/1NAoo+haHkpA8KlYet1O7FP4309k5XY+yYcOGaLVaqymK9Hp9gTkES+r2mR2Sk5Np1qwZYH5O2oULF6xmvU9OTkaj0dC8eXOCgoJwc3OzGs41Go2kpKTQsmVLAJYuXYqvry/PP/88e/bsoV+/fixYsMASf2vhv/X86YwZMzhz5gyffPIJgOUcaVHi4uJIT0+3Wp5UV7H5c7iy+Vd82z5gtc6nTXMub9pp8zFu5V6vFiFLP7FeqVbjWr0K+vOlf27vptxDf6Cr19BqnWu9huQc/L2IPWxT7elRGK5cIn31MsB80VBpnve8VWijehw+8/fPuaIoHD6bSvsmgQ7H7zl+2mqfI2cvYjKZ6NTc+rMqTZJH0fHlkcet7tcepdMVSi8vL4YPH868efPIyckBYN68ebgUcc+eo3bt2sWePXsAOHLkCGvWrOHFF18EzLM+BAQEWM5Z5ufnM2fOHEaMGIGfnx/u7u689NJLzJ07l6ws8zfIr7/+GrVazXPPPQfAK6+8QlLS31eT5ufn07hxY8vr6tWrc+3aNdLS0oiKigLgs88+Y+HChYwdO5Z9+/axd+9eVqxYYRnOLUxhczFqVbb/WJyY+QU1ekXi0bAuALUGP4piNHH22/8A0GHLYpq8Nd7m4wFUi+qAzy3FN+jlkag0as4vWW3XcexxfdVSPFqH4lKjJoB5ogCTiRs/bwQg4NX3qPz403Yds8oTMWhr1iZr78+4BgbhGhiEZ1gnXKoWPA1QGoY//CDbDybz5yXzRUmr9h5ErVbzaPsWAMR8uJCPV2y1OR4gfsn/SDxh/lKozzcw579beb5nOL6ehd9fKnk4Xx63ul8v5nHKodf333+fkSNH0rx5cxo3bswTTzxBjRo10Gq1rF27ltjYWMB8oc6YMWMYMGAAYO6NJSQkcP36dZ555hk+/vhjHnvsMcB8K8bMmTNZvHgxa9eupX///syfP5+JEydy+vRppk2bRp8+fQBz8Vm3bh1jx45lyZIl5OXl0blzZ95//31LG9966y1MJhPt27fH3d0dT09P1q9fj6+v+cq2F198kWHDhuHp6UlOTg4PPPCA1RDplClTiIuLw9fXl7i4OG7cuMELL7yAyWSiQ4cOVp/H119/XWafdfqeA/w+IpY2iz7ElJOLYjKxu/cIjJnmLwAaDzfUt5zDVGm1tF+zAJdKPgC0WfQBuWdS2TfIfEWwPvUSx9+ZS8tPp2HMyTWf77yRxe6ew+94W0lJ6E8dI23+bPxGvYwpLw8UExfefwMl1/xlS+Wqsz6HqXGh5uS3UXuYr1KsMeplDFcvk/bpDAC0AXWp1PsJAGpPnW31Xpm/bqUstAwM4K0hvXjl65/Qac0zu8wb/SSebuYLknLz8skzGG2OB+jYtD5vLFpNDV8vTAr0aNuMQREhZdJ+yaNi5nErZ+ol2kOl3O2Tb3fBtWvX8PHxsZxrNJlMeHp6smHDhjK7VcKZrNI2Ke8mlFizpxqVdxNKRcDgx8u7CcLJuHUf5vC+Z8c8YVd87U+W3DnoHuA8feNbvPPOOyxcuNDyev78+dStW7fAxLhCCCHsoFLZtzgJpxx67datG2+//TZff/01BoOBSpUqsXLlSlxdXe+8sxBCiELdr0OvTlkoe/ToUSEmLhdCCGfiTBfo2MMpC6UQQojSJz1KIYQQohjSoxRCCCGKoXaRQimEEEIUTXqUQgghRNEKmzP7fiCFUgghhE3kHKUQQghRDLnqVQghhCiO9CiFEEKIokmPUgghhCiGyo5H8DkTKZRCCCFsIz1KIYQQomhqF015N6FcSKEUQghhGxl6FUIIIYomF/MIIYQQxZHbQ4QQQoiiyRR2QgghRHGkRymEEEIUTc5RCiGEEMWRq16FEEKIYkiPUgizFsOalXcTSszTv2p5N6FU5CTuKe8mCCfj1n2Yw/uqNDLhgBBCCFEkeR6lEEIIUZz79PaQ+/PrgRBCCPup1fYtdlq+fDmhoaF06tSJiIgIDh48WGx8Xl4esbGxuLi4kJKSUmjM559/TkhICA899BC9e/fm3LlzdrdLCqUQQgjbqFT2LXbYvXs3MTExLF68mO3btzNixAiio6O5ceNGofEpKSlERERw4cIFjEZjoTE//vgj06ZNY926dfz888+0b9+ePn36YDKZ7GqbFEohhBA2UanVdi32mDFjBr1796ZRo0YADBkyBIPBQEJCQqHxmZmZfPfddwwbVvTFSdOnTycmJoZq1aoBMG7cOJKSkli1apVdbZNCKYQQwjYqtX2LHTZu3Ei7du0sr9VqNSEhIWzYsKHQ+BYtWhAUFFTk8a5evcpvv/1mdUxfX18aN25c5DGLIoVSCCGEbdQq+xYbXblyhYyMDPz8/KzW+/v7c+rUKYeaenO/0jimXPUqhBDCJio7e4l6vR69Xm+1TqfTodPprNZlZ2dbtt0ee3ObvUrzmNKjFEIIYRuNxq4lPj4eX19fqyU+Pr7AYT08PAAKFFW9Xm/ZZq/SPKb0KIUQQtjGzitZ4+LimDBhgtW623t4AFWrVsXX15eLFy9arU9NTaVBgwb2txMs+xV2zIcfftiuY0mPUgghhG3svI9Sp9Ph4+NjtRRWKAGioqJITEy0vFYUhX379tGtWzeHmlq5cmXatGljdcyMjAyOHTtm9zGlUAohhLBNGV71Ghsby6pVqzhx4gQAixYtQqPREBMTA0B4eDivvfaaXcecMmUK33zzDVeuXAHgo48+okWLFvTq1cuu48jQqxBCCNuU4dNDwsLCSEhIYODAgbi7u6NWq1m3bh3e3t6A+eKcW8835uXl0b17d65fvw7AwIEDqVOnDkuWLLHE9O/fn7S0NB5++GHc3NyoXLkyK1asQG3nPZ4qRVGUkqconMnpkX3Luwkl5ixPD9G4Fz5MJYSjKsfNdXjf3J8+sSve7bExDr9XRSI9SiGEELa5TydFl0IphBDCNvKYLSGEEKIY0qMUQgghimHnlazOQgqlEEII22g05d2CciGFUgghhG2kRymEEEIUQ85RCiGEEMWQq16FcIx7cHt8ew1Ayc8HxcTVRZ+Tf+FM0TtoXKj06CB8uvfl3JRRGK+kFQhRublT5ckReIV3u2sTILg2a4N7595gyAdFIXPFQoyXzhe9g0aDR1Rf3DtGc21OHKbrVwqEqHRuePYYiFtIJy6/MaIMW2+mbdwat449UP7KIXvd95guXyh6B7UG98590LXvRsZnb2JKv1owxtUNj24D0LXuyLX40WXX+Fs4Qx7OkMPtlPu0R3l/fj0QpcY1sBHVho3j8vwPuDjzVTJ3bKDG+DdR6dwKjddUrYH/pOlofCujKuLCAG2d+vhNnI7Kzb0sm27FpVZ9vPqN4MaSL0hf8B65idvxeeYlVK6F56GuVBXf4a+g9vItMg+Nf118h00u8rMobZqa9fDs8wxZP31F5sIPyPt9J97/GAOuhc/uo/atgveQl1B5+aJSF5GDX228B49HVcQxyoIz5OEMORSqDOd6rcicJxNRLnx79CfnwF4MaeZvylm7tqJSa/Dq2LXQeLXOjctfzSZz56Yij6ly0ZL28dvkHEgsMqa0uXfqSf6xPzBdNfdu9X/8ikqtQdemY+FtdHXjxrL56H/7uchjqlxcSF84h7xjB8qkzbdz6xBNfnISpmuXAMhL2m1+gkPLDoXvoNWRteIb8v74peiDalzIXDKX/OSDZdDiwjlDHs6QQ6GkUN5dc+bMoWnTpgQGBjJz5ky6detGYGAgMTEx5OTkAJCZmclzzz1HmzZtiIiIoG/fvvz555+WY2zatIkuXboQGRlJhw4dGDp0qGWCXIA+ffpQqVIlXn75ZUaNGkWnTp1QqVTs37+fffv2ERERQWRkJB07dmT48OGkpqZa9l27di1hYWG0b9+eVq1a8cknf89xOGXKFAIDA4mMjGTmzJl07dqVoKAgvv32W5vzv3jxIk8++STBwcGEh4cTFRXFmjVrLNuPHz9Oz549CQkJoWXLlowZM4bc3FwAli5dSnBwMCqVitWrV/PII48QEBBA3759rdr2/vvvEx0djaenJ7Nnz7b3v8gmbs1aoT+d/PcKRUH/ZzJuzVoVGp9//k8Ml1IL3XZT3qljmDKul2Ir70zboBmG8yl/r1AUDBdOo23QvNB4Y9o5S1EtiuHsSZTMjFJsZfG09ZpguPDnLWsUjKlncAlsUmi86fIFyx/yohjPp6Bk3b0cwDnycIYcCqOoVHYtzqLcCuW4ceOIjY3l7NmzqFQqNmzYQFJSEvv27eP1118HYOTIkWRlZZGYmMjWrVtp3749PXv2xGg0ArB69WoGDBjAli1b2LlzJ1qt1uohoStXriQ4OJjvv/+eV199le3btzNs2DA0Gg1DhgwhJiaGLVu2sH37dlJSUjhy5AgAhw4d4rHHHuODDz5g165drF69mrfeeot//etfAEyfPp2hQ4eSmJhI27Zt2bhxIx988AGjR4/mxo0bNuXfv39/qlSpwv79+9mxYwddu3bl888/B8xP4I6OjqZTp04kJiaSmJhIUlIS48aNA2DAgAGWwrdnzx5WrFjBtm3bcHd3t2pb06ZNWbduHZ988gmurq4l/0+7jdrTG7W7Z4GiZkq/jks1v1J/v7KicvdE7eaB6baiZrqRjqZytXJqlX1U7p6o3NxRsqx//kxZGagr3Rs5gHPk4Qw5FEl6lOVDpVIxZox5hnkvLy+ee+455s2bx7Fjx/j++++ZMGGC5ZEoI0eO5NChQ2zZsgWASZMm8eyzz1qOM2DAAKte2U1du3alTp06AHz11Ve0bNmSc+fOcfr0aQA0Gg2ff/45rVqZe0HvvfceYWFhhIeHA1C7dm0GDx7MO++8Y3XcGjVq0LWreYgxMjKSrKwsy7PUirN582Z27tzJ5MmTLetGjRpFVFQUAIsXL+b8+fOMHz8eAFdXV8aPH8+CBQsKPK176NChAAQFBVkKOUC1atXo06cPAMOGDWP06MJP/Ov1ejIyMqwW/V9fRO7k5rkSxZBvtV4x5JfveRQ7qbTmLxGK0WC1XjEaLNsqPJebOdz2f2E0oNJqy6NFjnGGPJwhh6JoNPYtTqLcr3r18/PDze3vix0aNmxIdnY2a9asQVEUxo0bh/aWH6569epx6dJf4/55ebzwwgscOnQIV1dXrl+/bjV8elPt2rULrIuPj+ell15iyZIlDBo0iOHDh1OlShUAkpKSLEXzpqCgID799FPy8/Mt7QkICLBsv/nMtIyMOw+NJCUlodFoqF+/vmVdlSpVePHFFy3ba9asiYeHh9X7G41GDh06hJ/f3721wnIrbv3t4uPjmTZtmtW6cW2b8FJI0zvuq+SZnw2ncrH+5Ve5aC3b7gVKfh4AKo31r4NK42LZVuEZbuZw2/+FxsV8NfK9whnycIYciuBMw6n2KPdCeScLFy60Kii36tmzJ02bNmXz5s3odDq2bNlCly5dCsRpCvlmM3r0aB5//HEWLlzI/Pnz+ec//8mGDRto3769zW279biqv36A7vbjPQvLrbj1t4uLi7MargZIfekpm/Y1Zd3AlJ2F2qeS1Xq1byUMly8WvlMFpORkYcrJRu3lY7Ve7e2L8drlcmqVfZScLEy52ag8va3Wqz19MF2/N3IA58jDGXIokhMNp9qj3LNOS0uzemp1cnIyHh4e9OzZE4CjR49axb/xxhscOXKEK1eucOjQIfr27YtOZx7my8uz/dv/0qVL8fPzY+LEiRw4cIAWLVqwcOFCAFq0aFFgCDU5OZkmTZpY9W4d1aJFC4xGo2XoF+Dy5cvMnTvXsv3ChQtkZ2dbvb9Go6F588IvLnGUTqfDx8fHatHZMWSSe+QPdHUbWq1zrduA3MO/l2o7y1r+qcNoAupZrXOpWZf85EPl1CL7GU4fw8W/rtU6jX8dDClHyqlFjnGGPJwhh8IoKrVdi7Mo90w0Gg3z5s0DzFe5zp8/n1GjRtG4cWMGDRrEP//5T8vVnjt37mTZsmUEBQVRpUoV/Pz82LTp79sMfvzxR5vf99lnn+XChb9v/jUYDDRu3BiAV155hd27d7Nz504Azp07x+LFi3nttddKnC9Aly5d6NixI7NmzbKse//99zl37hwAgwcPJiAggI8++giA/Px85syZw4gRI6yGXSuC9LU/4t4qBJfq/gB4to8Ak8ly+4ffy+9Sqa9tPdTylLN9Da6NW6GuUgMAXasHUUwm9PvNPwO+I2Lx6NqvPJt4R7m/rEPbsAXqytUBcH0gDEwm9Ad+BcB7yATcOj9ank20iTPk4Qw5FEqlsm9xEuU+9Orn54eHhwfR0dEcPXqUiIgI3n77bQC++OILJk6cSHBwMDVr1sTb25uffvoJFxdzs5cuXcrYsWNp3bo1gYGB1Ktn7hFERkayZMkSxo4dy/79+0lJSWHv3r2sXLnS8r6jR4+mT58++Pj4kJmZSefOnS0XvDRv3pz//Oc/jBs3DrVaTXZ2Nq+//jqDBg0CYMaMGSQkJHD9+nWeeeYZPv74Yx577DEAxo8fz8yZM3n44YeLzXvZsmWMHTuW4OBgvLy8aN26teVKVp1Ox7p16xg7dixLliwhLy+Pzp078/777wPmW1diY2MtuY4ZM4YBAwYUaFtkZCTz588nKCioxP9PRclLOc7lrz+i2nOTzOfzFBNps6eh6M1fblSuOrj1HKbGBb/xU1F7eAJQ/bmJGK5d5vLnM/8OqVKNasPGo/GtBIDfxOnknTvNte+/LLM8DOdOkbn8K7yfeN58jklRyPj2Q5S8v/LQut6WhwbfZyagcjOfR/Z+4nlM6de48e95lhC1bxW8+49A5eULgO+wyRguniNr9eIyycF44TRZq77F87HhltlgbvzwCdw8X6x1ReVyy6+8WoPXwLGWiR08HxuBKeMaWf+ZbwlR+VTGs0+MZVjaa/B4jJfOk/O/f5dJDs6ShzPkUBhn6iXaQ6Xc7ZNqt0hISGDq1KmkpKSUVxNEIe7WlHFlydO/ank3oVRo3O+dq4fFvaFy3FyH972xZ7Vd8d6hvRx+r4qk3HuUQggh7hH3aY+yXGfmmTFjBqmpqURGRlpm4xFCCFEx3a8z85Rbj3LcuHGWmWaczf79+y2TBdwuPDyc6dOn390GCSFEKVBUzjOJgD1k6LUMBAcHW2YPEkIIZ3G/XsxT6ln361exL6EXQgjhoPt0rlebe5Q35yG9k/379zvaFiGEEBWYM513tIfNhfLUqVOWCbiLI7d6CCGEc7pfh15tLpSDBg3izTffvGPcrdPRCSGEcCL3aY/S5q8H7777boF1+fn5lgcpm0ymIuOEEELc+2SuVzvk5ubyf//3f3h6elqe1jF8+HBGjBgh90MKIYSTUlDZtTgLhwplXFwc586d4/vvv6dGDfMk0vPnz6dZs2YFHtkkhBDCOUiP0g579+7lp59+on///ri7myfxdXFxYdKkSRw5cm8/RkYIIUThFJXGrsVZODThgNFoRK0219jb51S/evVqyVslhBCiwrlfbw9xqEfp6+vLl1+aH3mk+uuDy8rKYsqUKdSqVav0WieEEKLCuF+HXh3qUX700UdER0czefJkjEYj9evX58KFC9SuXZt169aVdhuFEEJUAM50gY49HCqUjRo14siRIyxatIiDBw8C0KJFCwYPHoyrq2upNlAIIUTF4Ey9RHs4PCm6q6srw4YNK7D+5MmTNGjQoESNEkIIUfHIOcpS8uyzz5b2IYUQQlQAZX0f5fLlywkNDaVTp05ERERYRiwdjT99+jSPP/44oaGhdO7cmYcffpgDBw7Y3S6be5Rqtdpy4Y4QQoj7T1kOve7evZuYmBgSExNp1KgR3377LdHR0Rw+fBhvb2+H4ocMGYKfnx+7du1CrVYzZ84cevXqxYkTJ9DpdDa3zeasW7duzaZNm9i0aROfffYZnTt35ssvv2TdunWsX7+eL7/8kg4dOvDhhx/a/OZCCCHuHWXZo5wxYwa9e/emUaNGgLnIGQwGEhISHI7fv38/UVFRltsZH374Yc6ePcuhQ4fsapvNhXLKlClEREQQERHB6tWrWbNmDcOHD6dbt2507dqV4cOH87///Y/169fb1QAhhBD3hrK8PWTjxo20a9fO8lqtVhMSEsKGDRscjn/88cf58ccfyc7OBmDRokWo1WqqVatmV9tsHnp9/PHHLf8+e/Ysbm5uBWLc3d1JTU21qwFCCCHuDaYymm3nypUrZGRk4OfnZ7Xe39+fPXv2OBy/YMECRo4cSa1atfDx8eHixYvEx8dTp04du9rn0FWv+fn5zJ49m1GjRlnGefV6PXPnzsVoNDpySCGEEBWcvcOper2+wKMXdTpdgfODN3t8t6/X6XSWbY7EDx06lNTUVM6cOYOnpydLly6169zkTQ4Vynnz5vHoo4/y6quvUrNmTQAuXLiAl5cXK1ascOSQogKp2rZZeTehxE52fam8m1AqbuR7lHcThJN5qAT72nt7SHx8PNOmTbNa9+abbzJ16lSrdR4e5p/z24uqXq+3bLM3fv/+/SxcuJAdO3bg5eUFwKOPPkrVqlVZu3Yt4eHhNufhUKHs0KEDKSkpLFq0yDIJerNmzRg8eDCenp6OHFIIIUQFpyj2Fcq4uLgCT5QqrEdXtWpVfH19uXjxotX61NTUQu/LtyX+2LFjAAQGBlq9t7+/P8uWLSv7Qgng6enJyJEjHd1dCCHEPUax89b7woZZixIVFUViYuLf76Uo7Nu3j9dee82h+Jvzjl+4cMHyb6PRSFpaWqG91OI4fFPMr7/+yqOPPkr9+vWpX78+jz76KLt27XL0cEIIISq4srw9JDY2llWrVnHixAnAfIWqRqMhJiYGgPDwcKuieaf4sLAwHnjgAWbNmoXJZAJg7ty55OTk0L9/f7va5lCPcunSpTzzzDNER0czYMAAAJKTk4mKiuLbb7+1ukJWCCGEcyjLSdHDwsJISEhg4MCBuLu7o1arWbdunWXygOzsbKtzkneK12q1rFq1ismTJ9O+fXtcXMzl7qeffiIkJMSutqmU2x8oaYOQkBC++eYbWrRoYbX+4MGDPPPMM1bdYXHvyfwsrrybUGJyMY8QhXuouZfD+x5JPmtXfNOGtR1+r4rEoR6lq6trgSIJ8MADD8jTQ4QQwkndr4/ZcugcZW5urmVc+FbJycnk5uaWuFFCCCEqHpOitmtxFg71KCdMmEDbtm3p168fQUFBAJw4cYKffvqJTz75pFQbKIQQomK4X3uUDhXKp59+Gj8/P959911WrVoFmB/cvGTJEh5++OFSbaAQQoiKQQqlnbp370737t0LrB88eDCLFy8uUaOEEEJUPPZOOOAsHCqU6enpfPTRR/z222+kp6dz64Wz+/fvL622CSGEqEBM0qO03T/+8Q8yMzPp2LFjgSnrUlJSSqNdQgghKhgZerXDpUuXirxX0sfHp0QNEkIIUTHdr0OvDl2/26ZNmyJvA7n5NBEhhBDOpSynsKvIHOpRfvDBB7z88sv4+/tTs2ZNNJq/H+Y5Y8YMBg4cWGoNFEIIUTHcrz1KhwrlJ598wqeffkq1atUKzMJ++2NPhBBCOAdnmkTAHg4VygULFnDkyBEaNWpUYFt0dHSJGyWEEKLiMZV3A8qJQ4XygQceKLRIAvzwww8lapAQQoiK6X4denWoH/38888ze/Zszp8/z+0PH7H3OV9CCCHuDXIxjx0eeeQRACZOnFiqjRFCCFFx3a89SocKZevWrZk9e3aB9Yqi8NJLzvEcQCGEENacqZdoD4cK5ZQpU4iIiCh024wZM0rUIFHQli1bSElJYejQoZZ1ubm5NGrUiB9//JHQ0NDyaxyw6cQ5vt59FFeNBrVKRWxUMA2rFT3xRL7RxLydh1iYeJz/DOtOgK9ngZhlf5zkxwMp6DRqvNy0TOnWlhpe7mWZBrt2bmP5ku/Qal1RqVU8N2oiderVdzj+Uloq38z/hMuXLuLqqsNFqyXm2THUC2xYZjkk/rqJVcu+NrdJpebp52OpVbfo9ysu/nLaeaa/MpSatQKt9jn35wm69HiCfoNHSR73SR43mZQ7xzgjhwrl448/XuQ2ueq19G3ZsoUtW7ZYFUqtVkuTJk3KfSakpNSrTF2XyMLBUdSt7MXKQ6cZs3wHS2MextNVWyD+fHoWr67ZQ91KXhiVwn/rNh0/xxe/HuH7p7tS2V3HF78eZvx/drLwqSjUqrL5Rnv86CE+/fAd3ps9n5q16rB141qmvzGR2fMW4n7bLVC2xn/0/tv4VqrMu7M+R61Ws+qnJcRPfZmPv/wXWm3pP+D85LEkFnw0lTffX4hfQF1+3rySD94aw/SPl+LuXvDLiC3xLdt0YMSL0yz7GI0GJj3Xi7Dwgg9EkDycM49b3a89yvvzphgnoNFo2LBhA02aNCnXdiTsOUZ4fX/qVvYCoFezuhhNCisO/llofHa+gbd7tOPRB+oVecz5u4/Qp3ldKrvrABjUJogTVzLYcTK19BP4y3+WLqJtaAdq1qoDQKcu3TEajWzZuNrh+JRTx2nZOgS12vxr1qpNO65cTuPsnyllksPqHxNoFRKOX0BdADpE9MJoNPLzphUOxVeqUp3+T71gtc+BfTupUtW/2F6R5OFcedxKUVR2Lc5CCmUpmDNnDk2bNiUwMJCZM2fSrVs3AgMDiYmJIScnB4DMzExGjhxJy5Ytadu2LY888ohlAvkTJ04QGRmJSqViwYIFDBgwgJYtW1KpUiU++OADEhIS2L9/P5GRkURGRpKTk0P37t2pVKkSU6dOtbRjyZIlPPTQQ3Tp0oWwsDAmTJiAXq8v09x3/5lGM7/KltdqlYqmfpXY/WdaofFB1XypU8mryOOl5+ZxNC2d5rcc01unpV4lL3YVcczScOD3RBoGNbW8VqvVNAhqzB/7C5/T2Jb49h0j2LVzK/q/pnvcvuV/qNRqvH18yySHwwd2ExjUzKpNgQ2bcuj33Q7Fu7hoqVy1htU+OzevJLzro2XQetvbZW+85FF6jIrKrsVZSKEsBePGjSM2NpazZ8+iUqnYsGEDSUlJ7Nu3j9dffx2AkSNHcvbsWX777Tf27dtHy5Yt6d27N0ajkaCgILZs2QKYi92iRYv4/fffadKkCRMmTGDo0KEEBwdbhmDd3d1Zv349wcHBVu344YcfePXVV9m8eTM///wzhw4d4r333iuzvK/n6MnKM1DVQ2e1vpqHG+cyshw65vl0835VbjtmVU83zjt4zDu5kZFOTnYWvpUrW62vVLkqaRfPOxw/6sVYqtXw5/mYfowaNoCVy3/gqWdGUq26X6nnkJlx3dwm36pW630qVeNy2rkSxwNk3kjn4O+7aN+p7E6vSB4VK4/bSY9SlJhKpWLMmDEAeHl58dxzzzFv3jyOHTvG999/z8SJE3FxMZ8Wnjx5MocPH2b58uVWxxg0aBA6nQ61Ws2uXbvsev8PP/yQXr16AeZzmP369WPNmjWlkFnhcg1G83tprH+MtBo1uflGx475136utx3TtQTHvBO93tzju/28oVarLbRHbmv8p7Pf5fKli8xLWMbcr5YwduIUAuoUPeRcEnl55ja5aK3PC2u1WvL0BR9gYG88wO4d62gV8hAent6l0eRCSR4VK4/bKYp9i7OQQlmK/Pz8cHNzs7xu2LAh2dnZrFmzBkVRCAoKsmyrXLkyVapU4cCBA1bHqF27tsPvn5GRweDBg+nYsSORkZF8+OGHpKYWf15Pr9eTkZFhtejzDTa9n5uLeTL8fKP1xFb5RhNuWk1hu9z5mH/tl3fbMfNKcMw70enM/2f5+XlW6/Pz89HpdA7Fnzp5nO2b1/Pk4GG4u3ugUqlo1/4h5sx8i8MH/yj1HFxdzW0y5OcXaJOrzq3E8QA/b1pJeFTZDvNJHhUrj9vdrxMOSKGsYG59Eos9srKyiIqKonr16uzYsYMtW7YQGxtbYOak28XHx+Pr62u1zFr3i03vWcldh5dOy5Vs617X5excahVyy4ctbu539bZjXsly/Jh34u3ji4enF+nXrlmtv37tCn7+AQ7FXzh3BoDqNf5+7JxW60qlylXYtXNLKWcAXj6VcPfwIj39itX6jOuXqe5Xq8Tx586cJCP9Cs1ahZVuw0vYLsmjbPO4nUmxb3EWUihLUVpamtXQW3JyMh4eHvTs2RMwX7Rz07Vr17h69SotW7a843FvXjUJ5vsn82/71glw5MgR0tLSeOKJJyzxeXl5BeJuFxcXR3p6utUyMbrDHfe7KbROdQ5f/LtgKIrCkYvXaV+3RjF7Fc3HzZUmNXytjpmpz+f09UzCHDymLVq0akty8lHLa0VROJV8jJat2zkUX6VqNcBcPG8yGo1kXL9WZA+hpJq1DOV08mGrNp0+eYTmrduXOH7n5pV0jOxj9bNYViSPO8ffzTxuJecoRYlpNBrmzZsHmK9ynT9/PqNGjaJx48YMGjSIDz/8EKPRfJ5t1qxZNGvWjL59+97xuNWrV+faX72XCRMmsH79+gIxgYGBuLu7s3HjRsD8R/mnn36647F1Oh0+Pj5Wi05r++21Q0Mbs+NUKmeuZwKw5sgZNGoVfZqbL3Ef/sNWPv35oM3HA3g2rCkrD/3J9Rzzl47v9ycTVNWH8Pr+dh3HHn0HPMW+Pb9w4fxZALZvWY9arSGyq/lLzpSXR7P42y9sjg9q3Jw6deuzYvn3mEzmYeT1q5eTl6enfcfCJ+soqV79h/JH4g4uXjD3Zn/duga1WkPHLn0AeDduOMsWfmpz/E0mo5Fft63hoahHyqTdkkfFzuNW9+s5SocmHBCF8/Pzw8PDg+joaI4ePUpERARvv/02AF988QUTJkwgODgYrVZLQEAAq1atwsXFhdTUVMvDrsePH0+fPn2YPn265biPP/44X3/9NeHh4fj6+tKtWze6d+/O/v37SUlJwWAwMH36dBYtWkRsbCxr1qwhICAAPz8/Nm7cSNeuXS0FtLS18K/C1OgQ4lbtRudinpnnk37hlskGcg0Gq/ON+UYTL/y4gxt6c684bvVu/Lw9+Gefv781RzWqxdVsPaN/3IFOo8HbTcuHj3Uos8kGABo1ac4L419l9j+n4uqqQ6VWMeWtWZbJA/L0uVbnj+4U7+LiQtzUf/LdV3N5deLzqNXmIfWXp8TTMKhs7n1t0LgFw8dO5bNZceY2qdRMeOMTy83qeXm5GAx5NsffdPD3XdTwr0MNf8fPn0se924etzI50XlHe6iUO53EEjZJSEhg6tSplnsj72WZn8WVdxNK7GRX55hz+EZ+wVmBhCiJh5oXfR/znaxItO1Cv5seCXGOvphzZCGEEKLMOdN5R3vIOcpSMGfOHGbMmEFqaqpl5hwhhHA2RpN9i7OQHmUpGDduHOPGjSvvZgghRJlypnsj7SGFUgghhE2c6d5Ie0ihFEIIYZP79dJPKZRCCCFsIoVSCCGEKIbpPr3qVQqlEEIIm0iPUgghhCjG/Voo5T5KIYQQNinrp4csX76c0NBQOnXqREREBAcPFj9PtC3xGzZsoGvXrnTp0oWgoCB69erFjRs37GqX9CiFEELYxGQqu3OUu3fvJiYmhsTERBo1asS3335LdHQ0hw8fxtu74MOpbYnfsmULo0ePZuvWrdSsWZO0tDSaN29OVlZWoccsivQohRBC2KQse5QzZsygd+/eNGrUCIAhQ4ZgMBhISEhwOH7SpElMmjSJmjXNz4WtUaMGq1atonLlyna1TQqlEEIIm5TlY7Y2btxIu3Z/P/9VrVYTEhLChg0bHIr/888/SUxMpHPnzlb7tW/fHp1OZ1fbpFAKIYSwSVkVyitXrpCRkYGfn5/Ven9/f06dOuVQfFJSEgAnT56kZ8+edOzYkX/84x8cPXq0wPHuRAqlEEIIm9g79KrX68nIyLBa9Hp9geNmZ2cDFOjp6XQ6yzZ7428+7H7q1KksXLiQn3/+mebNm/Pggw9y6dIlu/KWQimEEMIm9vYo4+Pj8fX1tVri4+MLHNfjrwee315E9Xq9ZZu98RqN+WHpo0aNomrVqqhUKuLi4sjPz+ebb76xK2+56lUIIYRNTHY+OisuLo4JEyZYrSvs/GDVqlXx9fXl4sWLVutTU1Np0KCBQ/G1a9cGoFatWpbtrq6u1KxZs9Dh3OJIj1IIIYRN7O1R6nQ6fHx8rJaiLqSJiooiMTHxlvdS2LdvH926dXMoPiQkBE9PTy5cuGCJMZlMXLp0ibp169qVtxRKIYQQNinLq15jY2NZtWoVJ06cAGDRokVoNBpiYmIACA8P57XXXrM53t3dnXHjxvHFF1+Qm5sLwNdff42iKDz99NN2tU2GXoUQQtjEaPd0O7ZPUBAWFkZCQgIDBw7E3d0dtVrNunXrLBMDZGdnW52TvFM8wFtvvcVrr71GWFgYlSpVQqfTsXnzZgICAuzLQlHu19n7RFEyP4sr7yaU2MmuL5V3E0rFjfyCFzIIURIPNfdyeN+PV9lXLsb2do6njUiPUgghhE3svZjHWUihFEIIYZP7dfxRCqUQQgibOPJEEGcghVIUMP7KxPJuQokdmVD843mEuF/tWBHh8L7SoxRCCCGKoZThVa8VmRRKIYQQNpGhVyGEEKIYMvQqhBBCFMNovD8rpRRKIYQQNpEepRBCCFEM031aKaVQCiGEsIkiM/MIIYQQRbtfpwaXQimEEMImMterEEIIUQzpUQohhBDFkAkHhBBCiGLYP4Wdc5BCKYQQwib36cirFEohhBC2MRrvz6t5pFAKIYSwidxHKYQQQhRDZuYRQgghiiG3hwghhBDFMMlVr0IIIUTR7tMOpRRKIYQQtpH7KIUQQohiyMU8QjioTRNXenV0J99gHppZtDaT85eNpRL/f/29addMx7PvXC6r5lt0frAqTz9Zl7w8BZOi8MG845z6M9vh+EH9avNQWFUMBgUvTxcyswzM++YkR09kSg6Sxz2Vx03SoxTCAfUDXBj+iBdvL7hO2jUTHVrqGD/Ih9c/v44+r+AvlT3xrYK0NAvU3pU8mjXy5rWXmjJi/D7OXsihRxc/Zk1rxVOj95CTU7CI2xL/9BN1eX7yb5w5lwPAmOENeP/Nljz6zC9lcq7HGXKQPCpeHrcyGu/PQqku7waIe1vPDu78cSKftGvmO5F/PaBHo1bxUCtdieJdtdAv0pM1v+SUbQJ/GTKgDr/sucrZC+b3W7flIhqNil5d/RyOnzT1gOUPGsBvB9KpXMkVTw+N5CB53DN53EoxKXYtzkIKZSmaM2cOTZs2JTAwkJkzZ9KtWzcCAwOJiYkhJyeHuLg4AgMDiYiI4OWXX6ZLly7UrVuXiRMnYrrlQW8XL17kySefJDg4mPDwcKKiolizZo1l+/Hjx+nZsychISG0bNmSMWPGkJubC8DSpUsJDg5GpVKxevVqHnnkEQICAujbt2+Z5Nw0UMvpCwbLawU4nWqgWf3Ce4K2xveN8GTLvlwysu7OVCAhrStz5MSNv9ulwNETN2jXurLD8YeO/b3d28uFx3rWZM3GVDKzih6WLglnyMHWdtkbL3mUDkVR7FqchRTKUjRu3DhiY2M5e/YsKpWKDRs2kJSUxL59+3j99deJj49n6NCh/Pzzz4SGhrJ582Z2797N4sWLmTt3ruU4/fv3p0qVKuzfv58dO3bQtWtXPv/8cwD0ej3R0dF06tSJxMREEhMTSUpKYty4cQAMGDCA2bNnA7Bnzx5WrFjBtm3bcHd3L/V8Pd1VeLipCxSz9EwT1X0LfsO1Nb6On4b6AS5s25db6m0ujI+3C16eLly9nme1/uq1PGr6uZUoXq2Gz2e24T/fdODqtTxmfHys9BOws032xt+tHOxtl73xkkfJmUyKXYuzkEJZBlQqFWPGjAHAy8uL5557jnnz5mEwmHtSNWvW5IknngDA39+fQYMG8dFHHwGwefNmdu7cyeTJky3HGzVqFFFRUQAsXryY8+fPM378eABcXV0ZP348CxYs4OLFi1btGDp0KABBQUH861//KvU8XV1UAOQbrH8hDEYFV63KoXgVMKSHF4vWZnK3fs3cdOYinZ9vXcDzDSbLNkfjTSZ4fvJv9H3mF6pX1fHPN1qUZtMdapO98XcrB3vbZW+85FFy0qMUpcbPzw83t7+/BTZs2JDs7GxOnz4NQL169aziGzZsSHJyMvn5+SQlJaHRaKhfv75le5UqVXjxxRcBSEpKombNmnh4eFi2BwUFYTQaOXTokNVxa9eufce26vV6MjIyrBajQW9Tnnl/FTyti3VRdNGoyMsv+EtiS3xUqBvHz+RzNu3uDCUB5OrN76XVWv86aF3Ulm0liQe4kWXgw89P0L5tFTq0q1IazS5RmypiDo60S/Io2zxuJ+cohdPRaO58gj8+Ph5fX1+r5fetc2w6flaOQnauCR9P6x8jXy81l64X/OW2Jf6BBq4E1dEyeYgvk4f40rODech48hBfxj7pY1O77JVxw8CNTANVKrlara9S2ZXzFwsO/9oSr1KB5rbfrrMXcjAYTATW8aC0OUMOtrbL3njJo/RIoRSlJi0tDb3+715ZcnIyHh4elp7kn3/+aRWfnJxMw4YN0Wq1tGjRAqPRaOl9Aly+fNlyDrNFixZcuHCB7Oxsq/01Gg3Nmze3u61xcXGkp6dbLa0jxtm8/5GUfOr5Wxfkuv4uHErJdyj+ox8ymPFNOjMXmpebV73OXJjOx//OsCc1u+z74xpNgrys1jVu6MXe/dccig9+wJcXnwuy2l7JV4uLi5rLV63PQ5UWZ8jBlnbZGy95lB6Toti1OAsplGVAo9Ewb948ADIzM5k/fz6jRo3CxcV82+qVK1f48ccfAUhNTeX777+3DK126dKFjh07MmvWLMvx3n//fc6dOwfA4MGDCQgIsJzTzM/PZ86cOYwYMQI/v8IvOy+OTqfDx8fHatG4FH5rR2HW/JJDyyBXalQ2/yg92EKHyaSw8w/zF4VXnvGlX6SHzfHlZeHSM3RoV5VaNc1D5t0ja2AywZpN5vO+c98LZuTTgTbHA0SFV8e/hvmzVKnguSGBXL6q59fEq5KD5HHP5HGr+7VHKRMOlAE/Pz88PDyIjo7m6NGjRERE8Pbbb1u2h4aGcujQIT799FOOHz/OoEGDGD16tGX7smXLGDt2LMHBwXh5edG6dWvLlaw6nY5169YxduxYlixZQl5eHp07d+b9998HYO3atcTGxgIQGRnJmDFjGDBgQJnleuq8ga9XZjKynzd5+eZL2mf/K8MyeYCrVoWLxvb4W00e4ouPp8ry76TkvDK7r/Lw8Ru8O/sI0yY3R59nwqQoTHzzD8uN3jqd2ur80Z3iT6RksWJ9Ku+8+gA5OUbcdBrSrugZP+UPbmQaCm2D5CB5VMQ8bmU03p9PblYpznRpUgWQkJDA1KlTSUlJKXT71KlT2bJlC1u2bLmr7bLH3Zgurqwd+fVgeTdBiAppx4oIh/d9Ku6cXfGL4ms5/F4ViQy9CiGEsElZ3x6yfPlyQkND6dSpExERERw8WPwXXnviBwwYgEpV8LY1W0ihLEVz5sxhxowZpKamEhkZSU6O9TBhXFwcCQkJ7N+/n8cee6ycWimEEI5RTCa7Fnvs3r2bmJgYFi9ezPbt2xkxYgTR0dHcuHGjxPErV65k48aNDuUMMvQqCiFDr0I4r5IMvf5j0uk7B93ih/fr3TnoL/3790en01kmRzGZTAQEBPDaa68xduxYh+OzsrLo2LEjgwcPJjY21qGervQohRBC2KQsh143btxIu3btLK/VajUhISFs2LChRPGvv/46o0aNcuiuAMuxHd5TCCHEfaWsbg+5cuUKGRkZBYqZv78/p06dcjj+t99+Y/fu3YwcOdLOTK3J7SFCCCFsYu+9kXq93mryFTDf4qbTWd+rfXMCldvX63Q6q8lV7Ik3mUyMHj2azz//HLW6ZH1C6VEKIYSwiUkx2bUUNkVmfHx8gePenLv69qKq1+ut5rW2J/7jjz8mPDycVq1alThv6VEKIYSwiclg35WscXFxTJgwwWrd7b1AgKpVq+Lr61vgCUipqak0aNDAofj169dz7do1IiMjLdvAPBGLl5cXK1eutDkPKZRCCCFsYu8FOoUNsxYlKiqKxMREq/fat28fr732mkPxq1atsopPSEhg2LBhDk32IkOvQgghbGIymexa7BEbG8uqVas4ceIEAIsWLUKj0RATEwNAeHi4VdG8U3xpkh6lEEIIm5TlROdhYWEkJCQwcOBA3N3dUavVrFu3Dm9vb8B8Ac+t5yTvFH+ryMhIq6HXHj16WObEtoVMOCAKkAkHhHBeJZlwoPezSXbFr5rfwuH3qkikRymEEMImzvToLHtIoRRCCGETKZRCCCFEMUzK/fk8SimUQgghbCI9SiGEEKIY9j46y1lIoRRCCGETk9FY3k0oF1IohRBC2MQkQ69CCCFE0WToVQghhCiGXMwjhBBCFEOR20OEEEKIokmPUgghhCjG/XqOUiZFF3edXq8nPj6euLg4m59VV9E4Qw7gHHk4Qw7gPHk4IymU4q7LyMjA19eX9PR0fHx8yrs5DnGGHMA58nCGHMB58nBG8uBmIYQQohhSKIUQQohiSKEUQgghiiGFUtx1Op2ON998856+YMEZcgDnyMMZcgDnycMZycU8QgghRDGkRymEEEIUQwqlEEIIUQwplEIIIUQxpFCKUjF16lSCg4OJjIy0LP3797dsVxSFt956i7Zt2xIWFsaQIUNIT0+3OkZ6ejpPP/00YWFhtG3blmnTplHWp9Dz8vKIjY3FxcWFlJSUAts///xzQkJCeOihh+jduzfnzp0rsP+4ceNo164dISEhvPjii+Tl5VnFnDt3jj59+vDQQw/Rtm1bPvvss1Jr/9363A8dOkRkZCSdO3emXbt2/PjjjyVue0X57Hfs2MGDDz5IREQEDz74INu3b7ep/RXps1++fDmhoaF06tSJiIgIDh48aFMOwkaKEKXgzTffVDZv3lzk9lmzZimtWrVSsrOzFUVRlGHDhimPPPKIVcwjjzyiPPvss4qiKEpWVpbywAMPKLNmzSqzNp86dUp58MEHlWeeeUYBlFOnTlltX7ZsmVKzZk3l0qVLiqIoyrRp05Tg4GDFaDRaYsaOHatER0crBoNBMRgMSrdu3ZSxY8dathuNRiU4OFiZPn26oiiKkpaWpvj5+SnLli0rlRzuxueekZGh1KpVS1m4cKGiKIpy9OhRxcvLS9m1a5fD7a4on31KSori4+OjbNu2TVEURdmyZYvi4+OjpKSk3DGHivLZ79q1S/H29laOHTumKIqifPPNN0qtWrWUjIyMO+YgbCOFUpSK4v5oGAwGpXr16spnn31mWXfw4EEFUP744w9FURTl999/VwDlyJEjlphPP/1UqV69umIwGMqkzQcOHFCOHz+ubN68udA/1m3atFFiY2Mtr69fv664uLgo//3vfxVFUZTLly8rWq1WWbt2rSVm1apVilarVa5cuaIoiqL89NNPilarVW7cuGGJmTx5stK2bdtSyeFufO5z5sxRatasqZhMJkvME088ofTv39/hdleUz/6ll15SHnzwQav3Dg0NVSZMmHDHHCrKZ9+vXz9l4MCBltdGo1Hx8/NTPvroozvmIGwjQ6+izP3xxx9cunSJdu3aWdY1a9YMT09PNmzYAMDGjRvx8vKiSZMmlpjQ0FAuXbrEH3/8USbtatGiBUFBQYVuu3r1Kr/99ptVm319fWncuLGlzdu2bSM/P98qJjQ0lPz8fLZu3QqY82rSpAleXl5WMfv27ePatWtlkZZFaX3uGzduJCQkBJVKZRWzceNGh9tWUT77jRs3Wh3jZszN93HU3fzsb89BrVYTEhJS4hzE36RQilLz1VdfERkZyUMPPURMTAzJyckAnDx5EgA/Pz9LrEqlws/Pj1OnTllibt0O4O/vD2CJuZtuvmdhbbq1zS4uLlStWtWyvXr16mg0mruaV1l/7kXFpKenc/Xq1VLJ4VZ387MvKsbW/5vy/uyvXLlCRkZGiXIQdyaFUpSKunXr0qZNGzZs2MD27dupX78+ISEhnDt3juzsbIACM47odDrLtuzs7EK339x2t9naZldX1wL7urq63rW87sbnfrf/b+7mZ19UjC15VYTP3pb3ESUnhVKUiuHDh/PSSy/h4uKCWq3m9ddfx83Njblz5+Lh4QGYn7d3K71eb9nm4eFR6Pab2+42W9t8+1WWYL4a827ldTc+97v9f3M3P/uiYmzJqyJ89ra8jyg5KZSiTGg0GgIDA0lOTqZBgwYAXLx40Srm4sWLlm0NGjQosD01NdWy7W4rqs2pqalWbTYYDFy5csWy/dKlSxiNRpvyql+/fqm3uyw+96JifH19qVKlSqnncDc/+6JiHPmZK4/PvmrVqvj6+pZaDqJwUihFqRg3blyBdefPn6du3bq0atWK6tWrk5iYaNl2+PBhsrKy6NatGwBdu3YlMzOTY8eOWWL27t1LjRo1aNWqVdkncJvKlSvTpk0bqzZnZGRw7NgxS5s7d+6MVqu1itm7dy9arZbOnTsD5ryOHj1KZmamVUxISAiVK1cucTvvxufetWtX9u3bZ3V/3969ey3HKG1387Pv2rWr1THsya2ifPZRUVFW76MoCvv27Suz/5/7UjlfdSucRGBgoPLTTz9ZXn/55ZeKm5ubcvjwYUVRzPeUtW7d2nJP2YgRIwq9p2zkyJGKoihKdna20rJlyzK9j/Kmom5RWLZsmRIQEKBcvnxZURRFefvttwu9l69nz56K0WhUjEaj0r17d6t7+QwGgxIcHKy8++67iqIoyqVLlxR/f/9Su4/ybnzuN+/lW7x4saIoinLs2DHF29u7RPdR3lTen/3N+yh37NihKIqibNu2zeb7KCvKZ79r1y7Fx8dHOX78uKIoivLdd9/JfZSlTAqlKBWLFi1SunTpokRERCgdOnRQIiMjLX98FEVRTCaTMm3aNKVNmzZKaGioMnjwYOXatWtWx7h27Zry1FNPKWFhYUpwcLAydepUq/vHSpter1ciIiKU1q1bK4DSvn17ZcCAAVYx8+bNU9q0aaN06NBB6dWrl3LmzBmr7bm5ucrYsWOVtm3bKm3btlXGjBmj5ObmWsWcOXNG6d27t9KxY0elTZs2yty5c0sth7v1uSclJSmdO3dWwsPDlZCQkBIX+or02W/btk1p37690qlTJyUsLMwy+cCdVKTP/scff1RCQkKU8PBwpXPnzkpSUpJNOQjbyGO2hBBCiGLIOUohhBCiGFIohRBCiGJIoRRCCCGKIYVSCCGEKIYUSiGEEKIYUiiFEEKIYkihFEIIIYohhVIIIYQohhRKIYQQohhSKIUQQohiSKEU4h6xdOlSgoODUalUrFy5kkcffZRGjRoxduxYu/d95JFHqF+/Pu+88w7p6emMGDGCtm3bEh0dzbVr1yz77d+/n169etGpUyfCw8Pp168fZ8+eBeDo0aO0bdsWlUpFmzZtMBqNPP/883h4eNC1a9cy+xyEuOvKe7JZIYTtbj5t47333lMURVEuXryo6HQ6ZdOmTTbve/PpFEePHlVUKpXywgsvKFlZWYrRaFQ6duyoTJ061bLPxx9/rEyaNMny+q233lK6dOlieZ2fn6+0bt1aGThwoKIoivLDDz8oL7/8cqnkKkRF4VLehVoIYb9BgwYBUKNGDZo3b87+/fvp0qWLTfs++eSTADRu3Jhq1arh7++Ph4cHAB07duS3336zxA4ePBhXV1erfd98801ycnJwd3fHxcWF+fPn8+CDDxIREcE333zDpk2bSitNISoEKZRC3IMCAgIs//b29iYjI8PmfWvWrGn5t4eHh9VrT09P0tPTLa8VReH1119n9+7duLi4oNfrURSFtLQ06tWrB0C7du0YP348o0aNYuXKlbi7u5ckNSEqHCmUQtyDNBqN5d8qlQrFjqfl3bpvYa9vPdYzzzzD1atXWb9+Pd7e3qSkpFC/fv0C7xccHIxWq2Xt2rX07t3bnlSEqPDkYh4hRJG2bdtGr1698Pb2BiAvL69AzNWrV5k/fz7//e9/mTdvHr/88svdbqYQZUoKpRCiSM2bN2fr1q0YDAYAli1bViBm0qRJvPvuu/To0YOhQ4fy7LPPFlpQhbhXSaEU4h6xdu1axo8fD0BkZCRXr15l2LBh7N+/n4SEBGbOnGnXvt27dyc1NZUZM2awePFiPvjgAxISEti/fz8DBw4E4KuvviI3N5cWLVrQt29frl+/DsDAgQM5cOAAnTt3ZsmSJaxbt46cnBx+++03Dh06RFhYGLt37y7Lj0OIu0al2HNyQwghhLjPSI9SCCGEKIYUSiGEEKIYcnuIEE4iMjKy0PVeXl6sXLny7jZGCCci5yiFEEKIYsjQqxBCCFEMKZRCCCFEMaRQCiGEEMWQQimEEEIUQwqlEEIIUQwplEIIIUQxpFAKIYQQxZBCKYQQQhTj/wFGxraBWcKYPQAAAABJRU5ErkJggg==",
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " theta-0.0 | \n",
+ " theta-0.5 | \n",
+ " theta-1.0 | \n",
+ "
\n",
+ " \n",
+ " model | \n",
+ " dataset | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " pearson_corr | \n",
+ " adamson | \n",
+ " 0.871673 | \n",
+ " 0.789311 | \n",
+ " 0.679417 | \n",
+ "
\n",
+ " \n",
+ " grnboost2 | \n",
+ " adamson | \n",
+ " 0.890446 | \n",
+ " 0.848208 | \n",
+ " 0.750937 | \n",
+ "
\n",
+ " \n",
+ " portia | \n",
+ " adamson | \n",
+ " 0.798303 | \n",
+ " 0.682459 | \n",
+ " 0.573197 | \n",
+ "
\n",
+ " \n",
+ " ppcor | \n",
+ " adamson | \n",
+ " 0.652354 | \n",
+ " 0.565645 | \n",
+ " 0.536111 | \n",
+ "
\n",
+ " \n",
+ " pearson_corr | \n",
+ " norman | \n",
+ " 0.769007 | \n",
+ " 0.712658 | \n",
+ " 0.607553 | \n",
+ "
\n",
+ " \n",
+ " grnboost2 | \n",
+ " norman | \n",
+ " 0.847457 | \n",
+ " 0.793154 | \n",
+ " 0.704702 | \n",
+ "
\n",
+ " \n",
+ " portia | \n",
+ " norman | \n",
+ " 0.553482 | \n",
+ " 0.563131 | \n",
+ " 0.546728 | \n",
+ "
\n",
+ " \n",
+ " ppcor | \n",
+ " norman | \n",
+ " 0.694157 | \n",
+ " 0.637654 | \n",
+ " 0.532154 | \n",
+ "
\n",
+ " \n",
+ " scenic | \n",
+ " norman | \n",
+ " 0.890269 | \n",
+ " 0.586951 | \n",
+ " 0.513064 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
"text/plain": [
- "