-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathshow_image_from_tfrecord.py
43 lines (35 loc) · 1.39 KB
/
show_image_from_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
import numpy as np
import tensorflow as tf
from core import utils
from PIL import Image
from core.dataset import Parser, dataset
sess = tf.Session()
IMAGE_H, IMAGE_W = 416, 416
BATCH_SIZE = 1
SHUFFLE_SIZE = 1
train_tfrecord = "../data/train_dome_data/images_train.tfrecords"
anchors = utils.get_anchors('../data/raccoon_anchors.txt', IMAGE_H, IMAGE_W)
classes = utils.read_coco_names('../data/raccoon.names')
# print(classes)
num_classes = len(classes) # 识别的种类
parser = Parser(IMAGE_H, IMAGE_W, anchors, num_classes, debug=True)
trainset = dataset(parser, train_tfrecord, BATCH_SIZE, shuffle=SHUFFLE_SIZE)
is_training = tf.placeholder(tf.bool)
example = trainset.get_next()
for l in range(1):
image, boxes = sess.run(example)
# print(image)
# print(sess.run(example))
image, boxes = image[0], boxes[0]
n_box = len(boxes)
for i in range(n_box):
image = cv2.rectangle(image, (int(float(boxes[i][0])),
int(float(boxes[i][1]))),
(int(float(boxes[i][2])),
int(float(boxes[i][3]))), (255, 0, 0), 1)
label = classes[boxes[i][4]]
image = cv2.putText(image, label, (int(float(boxes[i][0])), int(float(boxes[i][1]))),
cv2.FONT_HERSHEY_SIMPLEX, .6, (0, 255, 0), 2)
image = Image.fromarray(np.uint8(image))
image.show()