diff --git a/nncf/experimental/torch/fx/nncf_graph_builder.py b/nncf/experimental/torch/fx/nncf_graph_builder.py index ba3fed90ecb..f7501a3fd55 100644 --- a/nncf/experimental/torch/fx/nncf_graph_builder.py +++ b/nncf/experimental/torch/fx/nncf_graph_builder.py @@ -138,7 +138,6 @@ def get_edge_params( if tensor_shape is None: # TODO(dlyakhov): Refactor algorithms to always have knowns edges shapes. nncf_logger.debug(f"Edge shape between {source_node.name} and {dist_node.name} is unknown.") - tensor_shape = None input_port_id = dist_node.all_input_nodes.index(source_node) return input_port_id, output_port_id, tensor_shape diff --git a/nncf/experimental/torch/fx/statistics/aggregator.py b/nncf/experimental/torch/fx/statistics/aggregator.py index 7b03377b4c3..9f109147d83 100644 --- a/nncf/experimental/torch/fx/statistics/aggregator.py +++ b/nncf/experimental/torch/fx/statistics/aggregator.py @@ -75,8 +75,14 @@ def _get_statistic_collector_name(tp: PTTargetPoint, module_to_insert: torch.nn. :param module_to_insert: Given statistic collection module. :return: Unique statistic collector name according to given target point and module. """ - tp_name = "_".join([tp.target_node_name, str(tp.input_port_id), str(tp.target_type.value)]) - return f"{tp_name}_{str(id(module_to_insert))}" + return "_".join( + [ + tp.target_node_name, + str(tp.input_port_id), + str(tp.target_type.value), + str(id(module_to_insert)), + ] + ) def _get_transformation_layout_extra_outputs( self, statistic_points: StatisticPointsContainer