diff --git a/nncf/quantization/algorithms/min_max/onnx_backend.py b/nncf/quantization/algorithms/min_max/onnx_backend.py index 276defe2b0f..4e0d659f849 100644 --- a/nncf/quantization/algorithms/min_max/onnx_backend.py +++ b/nncf/quantization/algorithms/min_max/onnx_backend.py @@ -42,7 +42,8 @@ from nncf.quantization.algorithms.min_max.backend import MinMaxAlgoBackend from nncf.quantization.fake_quantize import FakeConvertParameters from nncf.quantization.fake_quantize import FakeQuantizeParameters -from nncf.quantization.range_estimator import RangeEstimatorParameters, AggregatorType +from nncf.quantization.range_estimator import AggregatorType +from nncf.quantization.range_estimator import RangeEstimatorParameters class ONNXMinMaxAlgoBackend(MinMaxAlgoBackend): @@ -214,7 +215,7 @@ def get_statistic_collector( kwargs = { "num_samples": num_samples, "aggregation_axes": aggregation_axes, - "tensor_processor": ONNXNNCFCollectorTensorProcessor + "tensor_processor": ONNXNNCFCollectorTensorProcessor, } if params.aggregator_type == AggregatorType.MEAN_NO_OUTLIERS: kwargs.update({"quantile": params.quantile_outlier_prob}) diff --git a/nncf/quantization/algorithms/min_max/openvino_backend.py b/nncf/quantization/algorithms/min_max/openvino_backend.py index dfed19632a6..8407462dfb3 100644 --- a/nncf/quantization/algorithms/min_max/openvino_backend.py +++ b/nncf/quantization/algorithms/min_max/openvino_backend.py @@ -199,7 +199,7 @@ def get_statistic_collector( kwargs = { "num_samples": num_samples, "aggregation_axes": aggregation_axes, - "tensor_processor": OVNNCFCollectorTensorProcessor + "tensor_processor": OVNNCFCollectorTensorProcessor, } if params.aggregator_type == AggregatorType.MEAN_NO_OUTLIERS: kwargs.update({"quantile": params.quantile_outlier_prob}) diff --git a/nncf/quantization/algorithms/min_max/torch_backend.py b/nncf/quantization/algorithms/min_max/torch_backend.py index 60dd7ee311b..8e8367af62c 100644 --- a/nncf/quantization/algorithms/min_max/torch_backend.py +++ b/nncf/quantization/algorithms/min_max/torch_backend.py @@ -33,7 +33,8 @@ from nncf.quantization.algorithms.min_max.backend import MinMaxAlgoBackend from nncf.quantization.fake_quantize import FakeConvertParameters from nncf.quantization.fake_quantize import FakeQuantizeParameters -from nncf.quantization.range_estimator import RangeEstimatorParameters, AggregatorType +from nncf.quantization.range_estimator import AggregatorType +from nncf.quantization.range_estimator import RangeEstimatorParameters from nncf.torch.graph.graph import PTNNCFGraph from nncf.torch.graph.graph import PTTargetPoint from nncf.torch.graph.transformations.command_creation import create_quantizer_insertion_command @@ -198,7 +199,7 @@ def get_statistic_collector( kwargs = { "num_samples": num_samples, "aggregation_axes": aggregation_axes, - "tensor_processor": PTNNCFCollectorTensorProcessor + "tensor_processor": PTNNCFCollectorTensorProcessor, } if params.aggregator_type == AggregatorType.MEAN_NO_OUTLIERS: kwargs.update({"quantile": params.quantile_outlier_prob})