From aceebdaa6dff910264a18aa301a52f4e4483f9ec Mon Sep 17 00:00:00 2001 From: Songki Choi Date: Tue, 21 Nov 2023 09:57:20 +0900 Subject: [PATCH] Fix CPU training issue on non-CUDA system (#2655) Fix bug that auto adaptive batch size raises an error if CUDA isn't available (#2410) --------- Co-authored-by: Sungman Cho Co-authored-by: Eunwoo Shin --- .../common/adapters/mmcv/utils/automatic_bs.py | 5 +++++ .../common/adapters/mmcv/utils/test_automatic_bs.py | 13 +++++++++++++ 2 files changed, 18 insertions(+) diff --git a/src/otx/algorithms/common/adapters/mmcv/utils/automatic_bs.py b/src/otx/algorithms/common/adapters/mmcv/utils/automatic_bs.py index c01cf8abc76..9b95d58195f 100644 --- a/src/otx/algorithms/common/adapters/mmcv/utils/automatic_bs.py +++ b/src/otx/algorithms/common/adapters/mmcv/utils/automatic_bs.py @@ -8,6 +8,7 @@ from typing import Callable, Dict, List import numpy as np +from torch.cuda import is_available as cuda_available from otx.algorithms.common.adapters.torch.utils import BsSearchAlgo from otx.algorithms.common.utils.logger import get_logger @@ -53,6 +54,10 @@ def adapt_batch_size(train_func: Callable, cfg, datasets: List, validate: bool = not_increase (bool) : Whether adapting batch size to larger value than default value or not. """ + if not cuda_available(): + logger.warning("Skip Auto-adaptive batch size: CUDA should be available, but it isn't.") + return + def train_func_single_iter(batch_size): copied_cfg = deepcopy(cfg) _set_batch_size(copied_cfg, batch_size) diff --git a/tests/unit/algorithms/common/adapters/mmcv/utils/test_automatic_bs.py b/tests/unit/algorithms/common/adapters/mmcv/utils/test_automatic_bs.py index f9e1eb7d231..d590b74faf2 100644 --- a/tests/unit/algorithms/common/adapters/mmcv/utils/test_automatic_bs.py +++ b/tests/unit/algorithms/common/adapters/mmcv/utils/test_automatic_bs.py @@ -109,6 +109,19 @@ def test_adapt_batch_size( assert len(mock_train_func.call_args_list[0].kwargs["cfg"].custom_hooks) == 1 +def test_adapt_batch_size_no_gpu(mocker, common_cfg, mock_dataset): + # prepare + mock_train_func = mocker.MagicMock() + mock_config = set_mock_cfg_not_action(common_cfg) + mocker.patch.object(automatic_bs, "cuda_available", return_value=False) + + # execute + adapt_batch_size(mock_train_func, mock_config, mock_dataset, False, True) + + # check train function ins't called. + mock_train_func.assert_not_called() + + class TestSubDataset: @pytest.fixture(autouse=True) def set_up(self, mocker):