This repository has been archived by the owner on Feb 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsynthesis.py
148 lines (128 loc) · 5.44 KB
/
synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import utils
def rhythm_preprocess(name2token: list,
words: list,
midi: list,
midi_dur: list,
is_slur: list):
tokens = []
midi_seq = []
midi_dur_seq = []
is_slur_seq = []
last_phoneme = 'SP'
for i in range(len(words)):
if not is_slur[i]:
for ph in words[i]:
tokens.append(name2token.index(ph))
midi_seq.append(midi[i])
midi_dur_seq.append(midi_dur[i])
is_slur_seq.append(False)
last_phoneme = words[i][-1]
else:
tokens.append(name2token.index(last_phoneme))
midi_seq.append(midi[i])
midi_dur_seq.append(midi_dur[i])
is_slur_seq.append(True)
tokens = np.array(tokens, dtype=np.int64)
midi_seq = np.array(midi_seq, dtype=np.int64)
midi_dur_seq = np.array(midi_dur_seq, dtype=np.float32)
is_slur_seq = np.array(is_slur_seq, dtype=np.bool_)
return tokens[None], midi_seq[None], midi_dur_seq[None], is_slur_seq[None]
def rhythm_infer(model: str, providers: list, tokens, midi, midi_dur, is_slur):
session = utils.create_session(model, providers)
ph_dur = session.run(['ph_dur'], {'tokens': tokens, 'midi': midi, 'midi_dur': midi_dur, 'is_slur': is_slur})[0]
return ph_dur
def rhythm_postprocess(ph_seq, midi_dur, ph_dur, all_vowels):
for i in range(len(ph_dur)):
if ph_seq[i] in all_vowels:
if i < len(ph_dur) - 1 and ph_seq[i + 1] not in all_vowels:
ph_dur[i] = midi_dur[i] - ph_dur[i + 1]
if ph_dur[i] < 0:
ph_dur[i] = 0
ph_dur[i + 1] = midi_dur[i]
else:
ph_dur[i] = midi_dur[i]
def predict_rhythm(notes: list, name2token: list, all_vowels: set, configs: dict):
tokens, midi_seq, midi_dur_seq, is_slur_seq = rhythm_preprocess(
name2token=name2token,
words=[note.get('phonemes') for note in notes],
midi=[note['key'] for note in notes],
midi_dur=[note['duration'] for note in notes],
is_slur=[note['slur'] for note in notes]
)
ph_dur = rhythm_infer(
model=configs['rhythmizer']['filename'], providers=configs['providers'],
tokens=tokens, midi=midi_seq, midi_dur=midi_dur_seq, is_slur=is_slur_seq
)
ph_seq = [name2token[tok] for tok in tokens[0].tolist()]
midi_seq = midi_seq[0].tolist()
midi_dur_seq = midi_dur_seq[0].tolist()
is_slur_seq = is_slur_seq[0].tolist()
ph_dur = ph_dur[0].tolist()
rhythm_postprocess(
ph_seq=ph_seq, midi_dur=midi_dur_seq,
ph_dur=ph_dur, all_vowels=all_vowels
)
i = 0
while i < len(ph_seq):
if is_slur_seq[i]:
ph_dur[i - 1] += ph_dur[i]
ph_seq.pop(i)
midi_seq.pop(i)
midi_dur_seq.pop(i)
is_slur_seq.pop(i)
ph_dur.pop(i)
else:
i += 1
return ph_seq, ph_dur
def acoustic_preprocess(name2token: list,
phonemes: list,
durations: list,
f0: list,
frame_length: float,
f0_timestep: float):
tokens = [name2token.index(ph) for ph in phonemes]
tokens = np.array(tokens, dtype=np.int64)
ph_dur = np.array(durations)
ph_acc = np.around(np.add.accumulate(ph_dur) / frame_length + 0.5).astype(np.int64)
ph_dur = np.diff(ph_acc, prepend=0)
t_max = (len(f0) - 1) * f0_timestep
f0_seq = np.interp(
np.arange(0, t_max, frame_length, dtype=np.float32),
f0_timestep * np.arange(len(f0), dtype=np.float32),
np.array(f0, dtype=np.float32)
).astype(np.float32)
required_length = ph_dur.sum()
actual_length = f0_seq.shape[0]
if actual_length > required_length:
f0_seq = f0_seq[:required_length]
elif actual_length < required_length:
f0_seq = np.concatenate((f0_seq, np.full((required_length - actual_length,), fill_value=f0_seq[-1])))
return tokens[None], ph_dur[None], f0_seq[None]
def acoustic_infer(model: str, providers: list, tokens, durations, f0, speedup):
session = utils.create_session(model, providers)
mel = session.run(['mel'], {'tokens': tokens, 'durations': durations, 'f0': f0, 'speedup': speedup})[0]
return mel
def vocoder_infer(model: str, providers: list, mel, f0, force_on_cpu=True):
session = utils.create_session(model, providers, force_on_cpu=force_on_cpu)
waveform = session.run(['waveform'], {'mel': mel, 'f0': f0})[0]
return waveform
def run_synthesis(request: dict, name2token: list, acoustic: str, configs: dict):
tokens, durations, f0 = acoustic_preprocess(
name2token=name2token,
phonemes=[ph['name'] for ph in request['phonemes']],
durations=[ph['duration'] for ph in request['phonemes']],
f0=request['f0']['values'],
frame_length=configs['vocoder']['hop_size'] / configs['vocoder']['sample_rate'],
f0_timestep=request['f0']['timestep']
)
speedup = np.array(request['speedup'], dtype=np.int64)
mel = acoustic_infer(
model=acoustic, providers=configs['providers'],
tokens=tokens, durations=durations, f0=f0, speedup=speedup
)
waveform = vocoder_infer(
model=configs['vocoder']['filename'], providers=configs['providers'], mel=mel, f0=f0,
force_on_cpu=configs['vocoder']['force_on_cpu']
)
return waveform[0]