forked from edizquierdo/CE_locomotion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNervousSystem.h
executable file
·86 lines (67 loc) · 3.09 KB
/
NervousSystem.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// ************************************************************
// A nervous system class (based on the CTRNN class)
//
// RDB
// 1/15 Created
// ************************************************************
#include "VectorMatrix.h"
#include "random.h"
#include <iostream>
#include <math.h>
#pragma once
// An entry in a sparse weight matrix
struct weightentry {int from; double weight;};
// The sigmoid function
inline double sigmoid(double x)
{
return 1/(1 + exp(-x));
}
// The inverse sigmoid function
inline double InverseSigmoid(double y)
{
return log(y/(1-y));
}
// The NervousSystem class declaration
class NervousSystem {
public:
// The constructor
NervousSystem(int size = 0, int maxchemconns = -1, int maxelecconns = -1);
// The destructor
~NervousSystem();
// Accessors
int CircuitSize(void) {return size;};
void SetCircuitSize(int newsize, int maxchemconns, int maxelecconns);
double NeuronState(int i) {return states[i];};
void SetNeuronState(int i, double value) {states[i] = value;outputs[i] = sigmoid(gains[i]*(states[i] + biases[i]));};
double NeuronOutput(int i) {return outputs[i];};
void SetNeuronOutput(int i, double value) {outputs[i] = value; states[i] = InverseSigmoid(value)/gains[i] - biases[i];};
double NeuronBias(int i) {return biases[i];};
void SetNeuronBias(int i, double value) {biases[i] = value;};
double NeuronGain(int i) {return gains[i];};
void SetNeuronGain(int i, double value) {gains[i] = value;};
double NeuronTimeConstant(int i) {return taus[i];};
void SetNeuronTimeConstant(int i, double value) {taus[i] = value; Rtaus[i] = 1/value;};
double NeuronExternalInput(int i) {return externalinputs[i];};
void SetNeuronExternalInput(int i, double value) {externalinputs[i] = value;};
double ChemicalSynapseWeight(int from, int to);
void SetChemicalSynapseWeight(int from, int to, double value);
double ElectricalSynapseWeight(int from, int to);
void InternalSetElectricalSynapseWeight(int from, int to, double value);
void SetElectricalSynapseWeight(int n1, int n2, double value);
// Input and output
friend ostream& operator<<(ostream& os, NervousSystem& c);
friend istream& operator>>(istream& is, NervousSystem& c);
// Control
void RandomizeCircuitState(double lb, double ub);
void RandomizeCircuitState(double lb, double ub, RandomState &rs);
void RandomizeCircuitOutput(double lb, double ub);
void RandomizeCircuitOutput(double lb, double ub, RandomState &rs);
void EulerStep(double stepsize);
//void RK4Step(double stepsize);
int size, maxchemconns, maxelecconns;
TVector<double> states, outputs, biases, gains, taus, Rtaus, externalinputs;
TVector<double> paststates;
TVector<int> NumChemicalConns, NumElectricalConns;
TMatrix<weightentry> chemicalweights, electricalweights;
TVector<double> TempStates,TempOutputs,k1,k2,k3,k4;
};