forked from edizquierdo/CE_locomotion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_data.py
107 lines (71 loc) · 3.06 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#####
# Script to load generated data on worm motion/cell activity & generate graphical output
#####
import numpy as np
from matplotlib import pyplot as plt
import random
N_muscles = 24; # Number of muscles alongside the body
N_units = 10; # Number of neural units in VNC
N_neuronsperunit = 6; # Number of neurons in a VNC neural unit (6 neurons)
N_stretchrec = 10; # Number of stretch receptors
N_neurons = N_neuronsperunit*N_units
fig, axs = plt.subplots(4, 2, figsize=(14,8))
title_font_size = 10
### Worm neuron/muscle activation
act_data = np.loadtxt('act.dat').T
offset=1
sr = act_data[offset:N_stretchrec+offset]
axs[0, 0].set_title('Stretch receptors', fontsize=title_font_size)
axs[0, 1].set_title('Stretch receptors', fontsize=title_font_size)
for i in range(offset,N_stretchrec+offset):
axs[0, 0].plot(act_data[0], act_data[i],label='SR %i'%(i-offset), linewidth=0.5)
axs[0, 0].xaxis.set_ticklabels([])
plt.legend()
axs[0, 1].imshow(sr, aspect='auto', interpolation='nearest')
axs[0, 1].xaxis.set_ticklabels([])
offset+=N_stretchrec
axs[1, 0].set_title('Neurons', fontsize=title_font_size)
axs[1, 1].set_title('Neurons', fontsize=title_font_size)
for i in range(offset,N_neurons+offset):
axs[1, 0].plot(act_data[0], act_data[i],label='Neu %i'%(i-offset), linewidth=0.5)
axs[1, 0].xaxis.set_ticklabels([])
plt.legend()
neu = act_data[offset:N_neurons+offset]
axs[1, 1].imshow(neu, aspect='auto', interpolation='nearest')
axs[1, 1].xaxis.set_ticklabels([])
offset+=N_neurons
axs[2, 0].set_title('Muscles', fontsize=title_font_size)
axs[2, 1].set_title('Muscles', fontsize=title_font_size)
for i in range(offset,N_muscles+offset):
axs[2, 0].plot(act_data[0], act_data[i],label='Mu %i'%(i-offset), linewidth=0.5)
axs[2, 0].xaxis.set_ticklabels([])
plt.legend()
mus = act_data[offset:N_muscles+offset]
axs[2, 1].imshow(mus, aspect='auto', interpolation='nearest')
axs[2, 1].xaxis.set_ticklabels([])
### Worm body curvature
curv_data = np.loadtxt('curv.dat')
curv_data_less_time = curv_data.T[1:,:]
axs[3, 1].set_title('Body curvature', fontsize=title_font_size)
axs[3, 1].imshow(curv_data_less_time, aspect='auto')
### Body position
body_data = np.loadtxt('body.dat').T
tmax = 1520
num = 60.
axs[3,0].set_title('2D worm motion', fontsize=title_font_size)
for t in range(1,tmax,int(tmax/num)):
f = float(t)/tmax
color = "#%02x%02x00" % (int(0xFF*(f)),int(0xFF*(1-f)*0.8))
color2 = "#%06x" % random.randint(0, 0xFFFFFF)
point_start = 1
for i in range(point_start,50):
x= body_data[i*3+1][t]
y=body_data[i*3+2][t]
y1=body_data[i*3+2][t]
print("%s + Plotting %i at t=%s (%s,%s), %s"%('\n' if i==point_start else '', i, t,x,y, color))
axs[3, 0].plot([x],[y],'.',color=color,markersize=3 if t==1 else 0.4)
#print("%s - Plotting %i at t=%s (%s,%s), %s"%('\n' if i==point_start else '', i, t,x,y1, color))
#plt.plot([x],[y1],'.',color=color)
axs[3, 0].set_aspect('equal')
plt.savefig("ExampleActivity.png", bbox_inches="tight", dpi=300)
plt.show()