-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
796 lines (667 loc) · 37.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
# -*- coding: utf-8 -*-
import argparse
import os
import shutil
import time
import yaml
import math
import random
import torch
import torch.optim
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.distributed as dist
import torchvision.transforms as transforms
import numpy as np
import utils.supernet_utils as nasnet_utils
import matplotlib.pyplot as plt
import matplotlib as mpl
from easydict import EasyDict
from datetime import datetime, timedelta
from tensorboardX import SummaryWriter
from datasets import ImageNetDataset
from utils.distributed_utils import get_rank
from utils.scheduler import CosineLRScheduler
from utils.misc import DistributedSampler, DistributedGivenIterationSampler, AverageMeter, load_state, param_group_no_wd
from utils.distributed_utils import dist_init
plt.rcParams["figure.figsize"] = (13, 10)
plt.style.use('bmh')
mpl.rcParams['figure.dpi'] = 120
parser = argparse.ArgumentParser(description='PyTorch')
parser.add_argument('--config', default='experiments/NSE/config_NSE27.yaml')
parser.add_argument('--balance_s_rate', type=float, default=0.5)
parser.add_argument('--dist_mode', default=False, action='store_true')
parser.add_argument('--load-path', default='', type=str, help='path to checkpoint')
class Env(object):
def __init__(self):
self.args = args
self.start_epoch = 0
self.iters_per_epoch = 0
self.batch_size = config.batch_size
self.workers = config.workers
self.local_id, self.rank, self.world_size = dist_init()
assert (self.batch_size % self.world_size == 0)
assert (self.workers % self.world_size == 0)
self.batch_size = self.batch_size // self.world_size
self.workers = self.workers // self.world_size
assert args.dist_mode # only distributed trainig is supported
if self.rank == 0:
self.tb_logger = SummaryWriter(config.save_path + '/events')
# >>> seed initialization
seed = config.get('seed', 233)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
def get_gpumodel(self, model):
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[self.local_id],
output_device=self.local_id, find_unused_parameters=True)
return model
def get_model(self):
raise NotImplementedError(f"not implemented")
def get_w_optim(self, model):
if config.optim_W.no_wd:
params = param_group_no_wd(model)
else:
params = model.parameters()
lr_init = config.optim_W.lr if config.optim_W.warm_epochs == 0 else config.optim_W.lr_warm
if config.optim_W.optim == 'SGD':
return torch.optim.SGD(params, lr=lr_init, momentum=config.optim_W.momentum,
weight_decay=config.optim_W.weight_decay)
elif config.optim_W.optim == 'RMSprop':
return torch.optim.RMSprop(params, lr=lr_init, alpha=0.9, eps=0.02,
weight_decay=config.optim_W.weight_decay, momentum=config.optim_W.momentum)
elif config.optim_W.optim == 'SGD_nesterov':
return torch.optim.SGD(params, lr=lr_init, momentum=config.optim_W.momentum,
weight_decay=config.optim_W.weight_decay, nesterov=True)
else:
raise NotImplementedError(f"not supported optimizer: {config.optim_W.optim}")
def get_w_scheduler(self, optimizer):
if config.optim_W.decay == 'cos':
lr_scheduler = CosineLRScheduler(optimizer, self.iters_per_epoch * config.epochs, config.optim_W.lr,
config.optim_W.lr_final, self.iters_per_epoch * config.optim_W.warm_epochs,
config.optim_W.lr_warm,
last_iter=self.iters_per_epoch * self.start_epoch - 1)
return lr_scheduler
else:
raise RuntimeError(f'not implemented lr decay: {config.optim_W.decay}')
def get_a_optim(self, params):
if config.optim_A.optim == 'Adam':
return torch.optim.Adam(params, config.optim_A.lr, betas=(config.optim_A.beta1, config.optim_A.beta2))
else:
raise NotImplementedError(f"not implemented optimizer: {config.optim_A.optim}")
def save_checkpoint(self, state, is_best, round=-1, filename='checkpoint.pth.tar'):
if self.rank != 0:
return
filename = os.path.join(config.save_path, filename)
torch.save(state, filename)
if is_best:
if round >= 0:
bestname = os.path.join(config.save_path, f'model_final_{round}.pth.tar')
else:
bestname = os.path.join(config.save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
def printlogs(self, input):
if self.rank != 0:
return
logname = os.path.join(config.save_path, 'log.txt')
with open(logname, 'a') as f:
f.write(input + '\n')
def accuracy(self, output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Env_ImageNet_AHPO(Env):
def __init__(self):
super(Env_ImageNet_AHPO, self).__init__()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform_train = transforms.Compose([
transforms.RandomResizedCrop(config.input_size),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.2, 0.2, 0.2, 0.1),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.Resize({224: 256, 299: 333, 331: 367}[config.input_size]),
transforms.CenterCrop(config.input_size),
transforms.ToTensor(),
normalize,
])
if self.rank == 0:
print(f"building dataset from {config.train_meta}")
self.train_dataset = ImageNetDataset(
config.train_root,
config.train_meta,
transform=transform_train,
read_from='fs')
self.train_sampler = DistributedSampler(self.train_dataset)
self.train_loader = torch.utils.data.DataLoader(
self.train_dataset, batch_size=self.batch_size, shuffle=False,
num_workers=self.workers, pin_memory=False, sampler=self.train_sampler, drop_last=True)
self.iters_per_epoch = len(self.train_loader)
if self.rank == 0:
print(f"building dataset from {config.arch_val_meta}")
self.val_dataset = ImageNetDataset(
config.train_root,
config.arch_val_meta,
transform=transform_test,
read_from='fs')
self.val_sampler = DistributedSampler(self.val_dataset, round_up=False)
self.val_loader = torch.utils.data.DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=False,
num_workers=self.workers, pin_memory=False,
sampler=self.val_sampler, drop_last=False)
def get_model(self):
if config.algo == 'NSE':
model = nasnet_utils.AMBImageNet(scale=config.scale, channel_dist=config.channel_dist,
input_size=config.input_size, alloc_space=config.alloc_space,
cell_plan=config.cell_plan, alloc_plan=config.alloc_plan,
K=config.K)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
else:
raise NotImplementedError("unimplemented algo")
return model
@staticmethod
def get_share_net(alphas, sub_space, alloc_plan, alloc_space=(1, 4, 4, 8, 4)):
if alloc_plan == 'NR':
back = ""
for i in alloc_space:
back += "N" * i + "R"
back = back[:-1]
elif alloc_plan == 'NER':
back = (lambda x: "N" * x[0] + "R" +
"N" * x[1] + "R" +
"N" * x[2] + "R" +
"N" * x[3] + "E" +
"N" * x[4] + "R" +
"N" * x[5] + "E")(alloc_space)
depth = [0] * len(alloc_space)
valid = [list(alphas[i].argsort()[len(alphas[i]) - sum(alphas[i] > 0):][::-1]) for i in range(len(alphas))]
depth_index = 0
for i, branches in enumerate(valid):
if back[i] == "N":
if len(branches) > 0:
depth[depth_index] += 1
else:
depth_index += 1
final = [[] for _ in range(len(valid))]
for i, branches in enumerate(valid):
for branch in branches:
final[i].append(sub_space[i].tolist()[branch])
final = [i for i in final if len(i) > 0]
return final, depth
def is_pareto_efficient_simple(self, costs):
"""
Find the pareto-efficient points
:param costs: An (n_points, n_costs) array
:return: A (n_points, ) boolean array, indicating whether each point is Pareto efficient
"""
is_efficient = np.ones(costs.shape[0], dtype=bool)
for i, c in enumerate(costs):
if is_efficient[i]:
is_efficient[is_efficient] = np.any(costs[is_efficient] < c, axis=1) # Keep any point with a lower cost
is_efficient[i] = True # And keep self
return is_efficient
def pretty_print_front(self, code, alloc_plan, alloc_space=(1, 4, 4, 8, 4)): # retrieve architecture code in list
if alloc_plan == 'NR':
back = ""
for i in alloc_space:
back += "N" * i + "R"
back = back[:-1]
elif alloc_plan == 'NER':
back = (lambda x: "N" * x[0] + "R" +
"N" * x[1] + "R" +
"N" * x[2] + "R" +
"N" * x[3] + "E" +
"N" * x[4] + "R" +
"N" * x[5] + "E")(alloc_space)
depth = [0] * len(alloc_space) if not 'I' in alloc_plan else [0] * len(alloc_space[0])
if 'E' in alloc_plan:
depth = depth + [0] * 2
depth_index = 0
for i, branches in enumerate(code):
if back[i] in ["N", "D", "I"]:
if len(branches) > 0:
depth[depth_index] += 1
else:
depth_index += 1
code = [i for i in code if len(i) > 0]
return code, depth
def train_model(self):
if not os.path.exists(config.save_path) and self.rank == 0:
print("env make dir: " + config.save_path)
try:
os.makedirs(config.save_path)
except Exception as e:
print(e)
pass
self.printlogs(str(config))
self.printlogs(str(args))
model = self.get_model()
netpara = model.netpara
self.printlogs(' Total params: %.2fM' % (netpara))
model = self.get_gpumodel(model)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = self.get_w_optim(model)
arch_optimizer = self.get_a_optim(model.module.arch_parameters)
start_round = 0
if args.load_path:
states = load_state(args.load_path, model, optimizer, a_optim=self.get_a_optim)
if states is not None:
self.start_epoch, arch_optimizer, start_round = states
args.load_path = None
if config.get("contind", False): # second space init | final optimized search space states which delivers NSENet-27
model.module.prev_best = [[0], [9, 6], [0, 3], [0], [], [16, 13], [3], [9, 12], [9], [17, 10, 11, 13],
[9, 2], [9, 15], [12], [1, 10, 6], [9, 12], [15], [0, 9], [17, 13, 14], [10, 21],
[3, 19], [13], [3, 19, 14, 7]]
model.module.prev_bests = [
[[], [6], [3], [0], [], [16], [3], [], [9], [11, 13, 17], [9], [15], [], [6], [9, 12], [], [9],
[17, 14], [21], [19], [13], [19, 3, 14]],
[[], [6], [3], [0], [], [16, 13], [3], [], [9], [11, 17], [9, 2], [15], [], [6], [9, 12], [15], [9],
[17, 14], [21], [19], [], [19, 3, 14]],
[[], [6, 9], [3], [0], [], [13], [], [9], [9], [11, 17], [9], [15], [], [1, 6], [12], [], [9], [17, 14],
[21], [19], [13], [19, 3, 14]],
[[0], [6], [3], [0], [], [16], [3], [12], [9], [10, 11, 17], [9, 2], [], [], [1, 6], [12], [15], [9],
[17, 13, 14], [21], [19], [13], [19, 3, 14]],
[[], [6, 9], [3, 0], [0], [], [16], [3], [], [9], [11, 17], [9, 2], [15], [], [10, 6], [9, 12], [15],
[], [17, 14], [21], [3, 19], [13], [19, 3, 14]],
[[0], [6, 9], [3], [0], [], [16], [3], [], [9], [11, 17], [9, 2], [15], [], [6], [9, 12], [], [0, 9],
[17, 14], [21], [19], [13], [19, 3, 14]],
[[], [6], [3], [0], [], [16, 13], [], [9], [9], [11, 17], [9], [15], [12], [1, 6], [12], [], [9],
[17, 14], [21], [19], [13], [19, 3, 14]],
[[0], [6, 9], [3, 0], [], [], [16], [3], [], [9], [11, 17], [9, 2], [15], [], [1, 6], [12], [], [0, 9],
[17, 13, 14], [21], [19], [13], [19, 3, 14]],
[[0], [6, 9], [3, 0], [], [], [13], [3], [9], [9], [11, 17], [9], [15], [], [1, 6], [9, 12], [], [9],
[17, 13, 14], [10, 21], [19], [13], [19, 3, 14]],
[[], [6, 9], [3], [0], [], [13], [3], [9], [9], [11, 17], [9, 2], [15], [], [1, 6], [9, 12], [], [9],
[17, 14], [21], [19], [13], [19, 3, 7, 14]],
[[0], [6], [3], [], [], [16], [3], [9], [9], [11, 17], [9], [9, 15], [], [10, 6], [12], [], [9],
[17, 14], [21], [19], [], [19, 3, 14]],
[[0], [6, 9], [3], [0], [], [13], [3], [], [9], [11, 17], [9, 2], [15], [], [6], [9, 12], [], [9],
[17, 14], [10, 21], [19], [13], [19, 7, 14]],
[[0], [6], [3], [0], [], [13], [3], [9], [9], [11, 17], [9, 2], [15], [], [1, 6], [9, 12], [], [],
[17, 14], [21], [], [13], [19, 3, 14]],
[[0], [6], [3, 0], [0], [], [16], [3], [], [9], [11, 17], [9, 2], [15], [12], [1, 6], [12], [], [],
[17, 14], [21], [19], [], [19, 3, 14]],
[[], [6], [3, 0], [], [], [16], [3], [9], [9], [11, 17], [9, 2], [15], [], [6], [12], [], [9], [17, 14],
[10, 21], [19], [], [19, 3, 14]],
[[0], [6], [3], [], [], [13], [3], [9], [9], [11, 17], [9, 2], [], [], [6], [9, 12], [15], [], [17, 14],
[21], [19], [13], [19, 3, 14]],
[[0], [6], [3], [0], [], [16], [3], [], [9], [11, 17], [9, 2], [], [12], [1, 6], [9, 12], [], [9],
[17, 14], [21], [3], [13], [19, 3, 14]]] # <--- NSENET-27
model.module.pending_space = []
for _, _ in enumerate(model.module.cells):
curr_order = torch.tensor(np.random.permutation(45) + 27).cuda()
dist.broadcast(curr_order, src=0)
curr_order = curr_order.tolist()
model.module.pending_space.append(curr_order)
model.module.update_space()
for round in range(model.module.total_rounds):
if round < start_round:
continue
if round == config.get('max_rounds', None):
self.printlogs('search finished\n')
return
if config.get('balance', False):
model.module.clean_space(config.drop_threshold, preserve=config.get('preserve_prev', True))
self.printlogs(
f"Search Round [{round + 1}/{model.module.total_rounds}], Sub search space: {list(map(lambda x: x.tolist(), model.module.sub_space))}")
lr_scheduler = self.get_w_scheduler(optimizer)
for epoch in range(0, config.epochs):
if epoch < self.start_epoch:
continue
# train for one epoch
self.train(model, criterion, optimizer, arch_optimizer, lr_scheduler, epoch, round)
# save
self.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'arch_params': model.module.arch_parameters,
'optimizer': optimizer.state_dict(),
'arch_optimizer': arch_optimizer.state_dict(),
'round': round,
'pending_space': model.module.pending_space,
'sub_space': model.module.sub_space,
'prev_space': model.module.prev_best,
'prev_archs': model.module.prev_bests
}, epoch + 1 == config.epochs, round=round)
front_stat, cost_stat = [], []
sample_num = config.get('sample_num', 500)
extra_sample_num = config.get('extra_sample_num', 100)
extra_sample_drift = config.get('extra_sample_drift', 10)
if config.latency_alpha != 0:
model.module.batch_sampler(sample_num, 72, 6, extra_sample_num, 2, latency=True,
non_alpha=config.get("uniform_sample", False),
balance_s_rate=args.balance_s_rate)
else:
model.module.batch_sampler(sample_num, config.mac_target + config.get("mac_target_calibration", 0),
config.mac_drift, extra_sample_num,
extra_sample_drift, non_alpha=config.get("uniform_sample", False),
balance_s_rate=args.balance_s_rate)
top1_before, top1_after, top1_diff = [], [], []
top1_before_stat, top1_after_stat = [], []
for index in range(sample_num + extra_sample_num):
this_code = model.module.get_next_pin_paths()
curr_top1, curr_mac, curr_lat = self.validate(model, index, bulk=True)
top1_before.append(curr_top1)
front_stat.append([curr_mac if config.latency_alpha == 0 else curr_lat.item(), curr_top1])
cost_stat.append([curr_mac if config.latency_alpha == 0 else curr_lat.item(), -curr_top1])
self.printlogs(f"Corresponding model code: {this_code}")
self.printlogs(f"Corresponding raw model code: {model.module.paths_pin}")
if round > 0:
for index in range(len(model.module.prev_bests)):
this_code = model.module.get_next_prev_pin_paths()
prev_top1, prev_mac, prev_lat = self.validate(model, index, prev=True)
top1_before.append(prev_top1), top1_before_stat.append(prev_top1)
front_stat.append([prev_mac if config.latency_alpha == 0 else prev_lat.item(), prev_top1 + 1e-10])
cost_stat.append([prev_mac if config.latency_alpha == 0 else prev_lat.item(), -prev_top1 + 1e-10])
self.printlogs(f"Corresponding prev_best model code: {this_code}")
self.printlogs(f"Corresponding raw prev_best model code: {model.module.prev_paths_pin}")
front_stat, cost_stat = np.array(front_stat), np.array(cost_stat)
pareto_front = self.is_pareto_efficient_simple(cost_stat)
######### plot pareto front
if self.rank == 0:
fig, _ = plt.subplots(1, 1)
plt.scatter(*list(zip(*(front_stat[pareto_front]))))
plt.scatter(*list(zip(*(front_stat[~pareto_front]))))
self.tb_logger.add_figure(f'Pareto Front: top-1_mac/lat', fig, round)
######### print pareto front architectures
pareto_front[sample_num:sample_num + extra_sample_num] = False
assert sum(pareto_front[sample_num:]) == sum(pareto_front[sample_num + extra_sample_num:])
model.module.set_front(pareto_front)
self.printlogs(
f"Old Pareto Points: {sum(pareto_front[sample_num:])}, New Pareto Points: {sum(pareto_front[:sample_num])}")
for i in range(sum(pareto_front[:sample_num])):
self.printlogs(
f"New Pareto Front Point: {front_stat[pareto_front][i]} \ncode: {self.pretty_print_front(model.module.prev_bests[i], config.alloc_plan, config.alloc_space)}")
for i in range(sum(pareto_front[sample_num:])):
self.printlogs(
f"Old Pareto Front Point: {front_stat[pareto_front][i + sum(pareto_front[:sample_num])]} \ncode: {self.pretty_print_front(model.module.prev_bests[i + sum(pareto_front[:sample_num])], config.alloc_plan, config.alloc_space)}")
###########################
model.module.update_space()
if round + 1 == model.module.total_rounds or round + 1 == config.get('max_rounds', None):
self.printlogs(f"Final Result: {list(map(lambda x: x.tolist(), model.module.sub_space))}")
model.module.re_init()
optimizer = self.get_w_optim(model)
arch_optimizer = self.get_a_optim(model.module.arch_parameters)
self.start_epoch = 0
self.save_checkpoint({
'epoch': 0,
'state_dict': model.state_dict(),
'arch_params': model.module.arch_parameters,
'optimizer': optimizer.state_dict(),
'arch_optimizer': arch_optimizer.state_dict(),
'round': round + 1,
'pending_space': model.module.pending_space,
'sub_space': model.module.sub_space,
'prev_space': model.module.prev_best,
'prev_archs': model.module.prev_bests
}, is_best=False, filename=f'model_final_sampled_{round}.pth.tar')
self.printlogs('search finished\n')
return
def train(self, model, criterion, optimizer, arch_optimizer, lr_scheduler, epoch, rounds):
self.train_sampler.set_epoch(epoch)
val_sampler = DistributedGivenIterationSampler(self.val_dataset,
math.ceil(len(self.train_dataset) * 1.0 / self.batch_size),
self.batch_size, seed=epoch)
local_val_loader = iter(torch.utils.data.DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=False,
num_workers=self.workers, pin_memory=False,
sampler=val_sampler))
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
val_batch_time = AverageMeter()
val_data_time = AverageMeter()
val_losses = AverageMeter()
val_latency_losses = AverageMeter()
val_param_losses = AverageMeter()
val_mac_losses = AverageMeter()
val_top1 = AverageMeter()
val_top5 = AverageMeter()
# switch to train mode
model.train()
model.module.sp_val_flag = False
end = time.time()
for i, (input, target) in enumerate(self.train_loader):
# measure data loading time
data_time.update(time.time() - end)
curr_iter = epoch * self.iters_per_epoch + i + rounds * config.epochs * self.iters_per_epoch
real_curr_iter = epoch * self.iters_per_epoch + i
lr_scheduler.step(real_curr_iter)
current_lr = lr_scheduler.get_lr()[0]
if config.get('balance', False):
model.module.clean_space(config.drop_threshold, preserve=config.get('preserve_prev', True))
if not config.pure_arch_opt and (not config.get('merged_arch_update', False) or i % config.Aiter != 0):
target = target.squeeze().cuda().long()
input = input.cuda()
# weight update
output, latency, param, mac = model(input, balance=config.get('balance', False),
balance_s_rate=args.balance_s_rate)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = self.accuracy(output.data, target, topk=(1, 5))
loss /= self.world_size
reduced_loss = loss.data.clone()
reduced_prec1 = prec1.clone() / self.world_size
reduced_prec5 = prec5.clone() / self.world_size
dist.all_reduce(reduced_loss)
dist.all_reduce(reduced_prec1)
dist.all_reduce(reduced_prec5)
losses.update(reduced_loss.item(), input.size(0))
top1.update(reduced_prec1.item(), input.size(0))
top5.update(reduced_prec5.item(), input.size(0))
if self.rank == 0:
print(
f'sample forward latency: {(latency + model.module.get_back_time()).detach().cpu().item()}\tparams: {param + model.module.get_back_param()}M\tmacs: {mac + model.module.get_back_mac()}M')
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
dist.barrier()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
remain_secs = (self.iters_per_epoch * config.epochs - real_curr_iter) * batch_time.avg
remain_time = timedelta(seconds=round(remain_secs))
finish_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time() + remain_secs))
if i % config.print_freq == 0 or config.get('merged_arch_update',
False) and i % config.print_freq == config.print_freq - 1:
if self.rank == 0:
self.tb_logger.add_scalar('Train Loss', losses.val, curr_iter)
self.tb_logger.add_scalar('Train Top1', top1.val, curr_iter)
self.tb_logger.add_scalar('Train Top5', top5.val, curr_iter)
self.tb_logger.add_scalar('LR', current_lr, curr_iter)
self.printlogs(f'Epoch: [{epoch}][{i}/{self.iters_per_epoch}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
f'Loss {losses.val:.4f} ({losses.avg:.4f})\t'
f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
f'Learning rate: {current_lr:.4f}'
f'Supernet Remaining Time {remain_time} ({finish_time})')
end = time.time()
if i % config.Aiter != 0:
continue
#################################################################################
# importance indicator update
val_input, val_target = (input, target) if config.get('merged_arch_update', False) else next(local_val_loader)
val_data_time.update(time.time() - end)
val_target = val_target.squeeze().cuda().long()
val_input = val_input.cuda()
output, latency, param, mac = model(val_input, arch_update=True, round=rounds,
strict_prev=config.get('strict_prev', False),
arch_sample_balance=config.get('arch_sample_balance', False))
loss = criterion(output, val_target)
prec1, prec5 = self.accuracy(output.data, val_target, topk=(1, 5))
full_lat = latency + model.module.get_back_time()
latency_losses = ((full_lat - config.latency_target) ** config.latency_beta) * config.latency_alpha
full_para = param + model.module.get_back_param()
param_losses = ((full_para - config.param_target) ** config.param_beta) * config.param_alpha
full_mac = mac + model.module.get_back_mac()
mac_losses = ((full_mac - config.mac_target) ** config.mac_beta) * config.mac_alpha
loss /= self.world_size
reduced_loss = loss.data.clone()
reduced_prec1 = prec1.clone() / self.world_size
reduced_prec5 = prec5.clone() / self.world_size
dist.all_reduce(reduced_loss)
dist.all_reduce(reduced_prec1)
dist.all_reduce(reduced_prec5)
val_losses.update(reduced_loss.item(), input.size(0))
val_latency_losses.update(latency_losses.item(), input.size(0))
val_param_losses.update(param_losses.item(), input.size(0))
val_mac_losses.update(mac_losses.item(), input.size(0))
val_top1.update(reduced_prec1.item(), input.size(0))
val_top5.update(reduced_prec5.item(), input.size(0))
final_loss = loss + latency_losses / self.world_size
final_loss += param_losses / self.world_size
final_loss += mac_losses / self.world_size
# compute gradient and do SGD step
if self.rank == 0:
print(
f'val expected latency: {full_lat.detach().cpu().item()}\tparams: {full_para.detach().cpu().item()}M\tmacs: {full_mac.detach().cpu().item()}M')
arch_optimizer.zero_grad()
final_loss.backward()
for params in model.module.arch_parameters:
if type(params) == list:
for param in params:
dist.all_reduce(param.grad.data, async_op=True)
else:
dist.all_reduce(params.grad.data, async_op=True)
dist.barrier()
arch_optimizer.step()
# measure elapsed time
val_batch_time.update(time.time() - end)
remain_secs = (self.iters_per_epoch * config.epochs - real_curr_iter) * \
(val_batch_time.avg / config.Aiter + batch_time.avg)
remain_time = timedelta(seconds=round(remain_secs))
finish_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time() + remain_secs))
if i % config.print_freq == 0:
if self.rank == 0:
self.tb_logger.add_scalar('Val Loss', val_losses.val, curr_iter)
self.tb_logger.add_scalar('Val Latency Loss', val_latency_losses.val, curr_iter)
self.tb_logger.add_scalar('Val Param Loss', val_param_losses.val, curr_iter)
self.tb_logger.add_scalar('Val Mac Loss', val_mac_losses.val, curr_iter)
self.tb_logger.add_scalar('Val Latency ', full_lat.detach().cpu().item(), curr_iter)
self.tb_logger.add_scalar('Val Param ', full_para.detach().cpu().item(), curr_iter)
self.tb_logger.add_scalar('Val Mac ', full_mac.detach().cpu().item(), curr_iter)
self.tb_logger.add_scalar('Val Top1', val_top1.val, curr_iter)
self.tb_logger.add_scalar('Val Top5', val_top5.val, curr_iter)
self.printlogs(f'Epoch: [{epoch}][{i}/{self.iters_per_epoch}]\t'
'Arch update\t'
f'Time {val_batch_time.val:.3f} ({val_batch_time.avg:.3f})\t'
f'Data {val_data_time.val:.3f} ({val_data_time.avg:.3f})\t'
f'Loss {val_losses.val:.4f} ({val_losses.avg:.4f})\t'
f'Latency Loss {val_latency_losses.val:.4f} ({val_latency_losses.avg:.4f})\t'
f'Param Loss {val_param_losses.val:.4f} ({val_param_losses.avg:.4f})\t'
f'Mac Loss {val_mac_losses.val:.4f} ({val_mac_losses.avg:.4f})\t'
f'Prec@1 {val_top1.val:.3f} ({val_top1.avg:.3f})\t'
f'Prec@5 {val_top5.val:.3f} ({val_top5.avg:.3f})'
f'Indicator Remaining Time {remain_time} ({finish_time})')
if config.algo in ["NSE"]:
alphas = model.module.arch_parameters[0].detach()
sub_alphas = []
if self.rank == 0:
for ith, alpha in enumerate(alphas):
if len(model.module.sub_space[ith]) > 0:
sub_alpha = alpha.index_select(0, model.module.sub_space[ith]).cpu().numpy()
else:
sub_alpha = np.array([-2])
self.tb_logger.add_histogram(f'alpha_{ith}', sub_alpha, curr_iter)
sub_alphas.append(sub_alpha)
self.printlogs(f'alphas: {alphas}')
self.printlogs(f'sub_alphas:')
for sa in sub_alphas:
self.printlogs(f'{list(sa)}')
self.printlogs(
f'OPs with indicator > 0: {self.get_share_net(sub_alphas, model.module.sub_space, config.alloc_plan, config.alloc_space)}')
else:
raise NotImplementedError("unimplemented algo")
end = time.time()
def validate(self, model, index, prev=False, bulk=False, skip_cali=False):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.module.sp_val_flag = True
# Do not switch to evaluate mode
# model.eval() We shall not use the eval mode as the running mean is volatile for supernet
criterion = nn.CrossEntropyLoss().cuda()
end = time.time()
with torch.no_grad():
if bulk:
model.module.pin_paths()
elif prev:
model.module.pin_prev_paths()
if not skip_cali:
model.train()
for i in range(config.get('val_fiter', 50)):
input, target = next(self.train_loader)
input = input.cuda()
output, latency, param, mac = model(input, balance=True, prev_val=prev, bulk_val=bulk)
if i % 40 == 0:
self.printlogs(f'PreTest: [{i}/{config.get("val_fiter", 50)}]\t')
model.eval()
for i, (input, target) in enumerate(self.val_loader):
input = input.cuda()
target = target.squeeze().view(-1).cuda().long()
# compute output
output, latency, param, mac = model(input, balance=True, prev_val=prev, bulk_val=bulk)
# measure accuracy and record loss
prec1, prec5 = self.accuracy(output.data, target, topk=(1, 5))
loss = criterion(output, target)
num = input.size(0)
losses.update(loss.item(), num)
top1.update(prec1.item(), num)
top5.update(prec5.item(), num)
# measure elapsed time
batch_time.update(time.time() - end)
if i % 20 == 0:
self.printlogs(f'Test: [{i}/{len(self.val_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {losses.val:.4f} ({losses.avg:.4f})\t'
f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})')
end = time.time()
total_num = torch.Tensor([losses.count])
top1_sum = torch.Tensor([top1.avg * top1.count])
top5_sum = torch.Tensor([top5.avg * top5.count])
dist.all_reduce(total_num)
dist.all_reduce(top1_sum)
dist.all_reduce(top5_sum)
final_top1 = top1_sum.item() / total_num.item()
final_top5 = top5_sum.item() / total_num.item()
model.module.sp_val_flag = False
self.printlogs(
f'*{"prev" if prev else "sample"} index: {index} val forward latency: {(latency + model.module.get_back_time()).detach().cpu().item()}\tparams: {param + model.module.get_back_param()}M\tmacs: {mac + model.module.get_back_mac()}M')
self.printlogs(
f' *{"prev" if prev else "sample"} index: {index} Prec@1 {final_top1:.3f} Prec@5 {final_top5:.3f}')
return final_top1, mac + model.module.get_back_mac(), latency + model.module.get_back_time()
if __name__ == '__main__':
global args, config
args = parser.parse_args()
print(args)
with open(args.config) as f:
config = EasyDict(yaml.load(f))
config.save_path = os.path.join(os.path.dirname(args.config),
f'search_{config.exp_name}_' + datetime.now().strftime("%F-%T"))
env = Env_ImageNet_AHPO()
env.train_model()
def print_debug(*args, **kw):
return
if get_rank() == 0:
print(*args, **kw)