This repository has been archived by the owner on Dec 23, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_visual.py
254 lines (229 loc) · 9.36 KB
/
train_visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import sys
import os
import logging
import datetime
import numpy as np
from visual.model import QNetwork
from visual_env import VisualEnvironment
from dbl_dqn import Agent
from p_dbl_dqn import Agent as PrioAgent
from moving_result import MovingResult
from q_metric import define_Q_metric, QMetric
ACTION_SIZE = 4
SEED = 0
# Logging
logger = logging.getLogger(__file__)
logger.setLevel(logging.DEBUG)
# Helpers
def save(agent, out_file, ep, it, avg_scores, scores, q_metrics, last_saved_score):
params = {
'episodes': ep,
'it': it,
'avg_scores': avg_scores,
'scores': scores,
'q_metrics': q_metrics,
'last_saved_score': last_saved_score
}
agent.save(out_file, run_params=params)
def evaluate_policy(env, agent, episodes=100, steps=2000, eps=0.01):
scores = []
for _ in range(episodes):
score = 0
state = env.reset()
for _ in range(steps):
action = agent.act(state, epsilon=eps)
state, reward, done = env.step(action)
score += reward
if done:
break
scores.append(score)
return np.mean(scores)
# https://stackoverflow.com/questions/31447442/difference-between-os-execl-and-os-execv-in-python
def reload_process():
if '--restore' not in sys.argv:
sys.argv.append('--restore')
sys.argv.append(None)
idx = sum([ i if arg == '--restore' else 0 for i, arg in enumerate(sys.argv)])
sys.argv[idx+1] = 'reload.ckpt'
os.execv(sys.executable, ['python', __file__, *sys.argv[1:]])
# Train
def train(episodes=2000,
steps=2000,
final_exp_ep=500,
env_file='data/Banana_x86_x64',
out_file=None,
restore=None,
from_start=True,
reload_every=1000,
ckpt_every=1000,
log_every=500,
state_stack=4,
update_frequency=4,
batch_size=64,
gamma=0.99,
lrate=5.0e-4,
tau=0.001,
replay_mem_size=10000,
training_starts=1000,
ini_eps=1.0,
final_eps=0.01,
save_thresh=5.0,
prio=False,
min_priority=1e-6,
alpha=0.1,
final_beta=1.0,
ini_beta=0.4
):
"""Train Double DQN
Args:
episodes (int): Number of episodes to run
steps (int): Maximum number of steps per episode
env_file (str): Path to environment file
out_file (str): Output checkpoint name
restore (str): Restore the specified checkpoint before starting the training
from_start (bool): Force the training to start from the start
reload_evey (int): Reload environment every # of episodes
Returns:
None
"""
# Define agent
logger.info('Creating agent...')
m = QNetwork(ACTION_SIZE, SEED)
m_t = QNetwork(ACTION_SIZE, SEED)
if prio:
agent = PrioAgent(m, m_t, ACTION_SIZE,
seed=SEED, batch_size=batch_size, gamma=gamma,
update_frequency=update_frequency, lrate=lrate,
replay_size=replay_mem_size, tau=tau, restore=restore,
min_priority=min_priority, alpha=alpha, training_starts=training_starts
)
else:
agent = Agent(m, m_t, ACTION_SIZE,
seed=SEED, batch_size=batch_size,
gamma=gamma, update_frequency=update_frequency,
lrate=lrate, replay_size=replay_mem_size, tau=tau, restore=restore
)
# Create Unity Environment
logger.info('Creating Unity virtual environment...')
env = VisualEnvironment(env_file, state_stack)
# Restore params from checkpoint if needed
if 'reloading' in agent.run_params:
from_start = agent.run_params['from_start']
if restore and not from_start:
logger.info('Restoring params...')
it = agent.run_params['it']
ep_start = agent.run_params['episodes']
scores = agent.run_params['scores']
avg_scores = agent.run_params['avg_scores']
last_saved_score = agent.run_params['last_saved_score']
q_metric = QMetric(agent.run_params['q_metric_states'], m)
q_metrics = agent.run_params['q_metrics']
else:
avg_scores = []
scores = MovingResult()
last_saved_score = 0
it = 0
ep_start = 0
q_metric = define_Q_metric(env, m, 100)
q_metrics = []
if 'reloading' in agent.run_params:
restore = agent.run_params['restore']
# Train agent
logger.info('Training')
for ep_i in range(ep_start, episodes):
score = 0
state = env.reset()
# Decay exploration epsilon (linear decay)
eps = max(final_eps, ini_eps-(ini_eps-final_eps)/final_exp_ep*ep_i)
bta = min(final_beta, ini_beta-(ini_beta-final_beta)/final_exp_ep*ep_i)
for _ in range(steps):
# Step agent
action = agent.act(state, epsilon=eps)
next_state, reward, done = env.step(action)
agent.step(state, action, reward, next_state, done, beta=bta)
score += reward
state = next_state
if done:
break
it+=1
# Update metrics
q_metrics.append((ep_i+1, q_metric.evaluate()))
scores.add(score)
logger.info(f'ep={ep_i+1}/{episodes}, it={it}, epsilon={eps:.3f}, reward={score:.2f}, score={scores.last:.2f}, q_eval={q_metrics[-1][1]:.2f}')
# Calculate score using policy epsilon=0.05 and 100 episodes
if (ep_i+1) % log_every == 0:
logger.info('Evaluating current policy...')
avg_score = evaluate_policy(env, agent)
avg_scores.append((ep_i+1, avg_score))
logger.info(f'Average score: {avg_score:.2f}')
# Save agent if score is greater than threshold & last saved score
if avg_score > save_thresh and avg_score > last_saved_score:
logger.info("Saving checkpoint...")
save(agent, out_file,
ep_i+1, it, avg_scores, scores, q_metrics, last_saved_score
)
# Save checkpoint if needed
if (ep_i+1) % ckpt_every == 0:
s = os.path.splitext(out_file)
tm = datetime.datetime.today().strftime('%Y-%m-%d_%H-%M-%S')
filename = f'{s[0]}_{tm}{s[1]}'
logger.info(f'Saving checkpoint {filename}...')
save(agent, filename,
ep_i+1, it, avg_scores, scores, q_metrics, last_saved_score
)
# Reload the environment to fix memory leak issues
if (ep_i+1) % reload_every == 0:
logger.info('Reloading environment...')
params = {
'episodes': ep_i+1,
'it': it,
'restore': restore,
'from_start': False,
'reloading': True,
'avg_scores': avg_scores,
'last_saved_score': last_saved_score,
'scores': scores,
'q_metric_states': q_metric.states.cpu().numpy(),
'q_metrics': q_metrics
}
agent.save('reload.ckpt', run_params=params)
env.close()
reload_process()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Unity - Visual Banana Collector')
parser.add_argument("--env_file", help="Location of Unity env. file", default='data/VisualBanana/Banana.exe')
parser.add_argument("--out_file", help="Checkpoint file", default='dbl_dqn_agent.ckpt')
parser.add_argument("--restore", help="Restore checkpoint")
parser.add_argument('--reload_every', help="Reload env. every x episodes", default=1000)
parser.add_argument("--ckpt_every", help="Save checkpoint every x episodes", default=1000)
parser.add_argument("--log_every", help="Log metric every number of episodes", default=50)
parser.add_argument("--episodes", help="Number of episodes to run", default=2000)
parser.add_argument("--save_thresh", help="Saving threshold", default=10.0)
parser.add_argument("--final_exp_ep", help="final exploaration episode", default=500)
parser.add_argument("--ini_eps", help="initial epsilon", default=1.0)
parser.add_argument("--final_eps", help="final epsilon", default=0.01)
parser.add_argument("--ini_beta", help="initial beta", default=0.4)
parser.add_argument("--final_beta", help="final beta", default=1.0)
parser.add_argument("--prio", help="With or without prioritized experience replay", default=False)
parser.add_argument("--lrate", help="Learning rate", default=5.0e-4)
parser.add_argument("--training_starts", help="Beginning of training iteration", default=1000)
parser.add_argument("--tau", help="Soft update rate", default=0.001)
args = parser.parse_args()
train(
env_file=args.env_file,
out_file=args.out_file,
restore=args.restore,
reload_every=int(args.reload_every),
log_every=int(args.log_every),
ckpt_every=int(args.ckpt_every),
episodes=int(args.episodes),
save_thresh=float(args.save_thresh),
final_exp_ep=int(args.final_exp_ep),
prio=bool(args.prio),
ini_eps=float(args.ini_eps),
final_eps=float(args.final_eps),
lrate=float(5.0e-4),
training_starts=int(args.training_starts),
tau=float(args.tau)
)