-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
157 lines (119 loc) · 5.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
from nltk import Tree
from time import time
from math import log
from itertools import product
from pickle import load
import argparse
from pcfg import read_corpus_pcfg, pcfg_lexicon_constructor, CYK
from oov import N_grams, deal_with_oov
from tqdm import tqdm
import multiprocessing as mp
Pool = mp.Pool
parser = argparse.ArgumentParser(description='Arguments for the scripts of the 2nd NLP assignment')
#PCFG args
parser.add_argument('--data-file', type=str, default='sequoia-corpus+fct.mrg_strict',
help="path to the parse data file.")
parser.add_argument('--train-frac', type=float, default=0.9,
help='the train percentage : default = 0.9')
#OOV args
parser.add_argument('--emb-file', type=str, default='polyglot-fr.pkl',
help="path to the pickled word embedding for the oov module")
parser.add_argument('--lev-cands', type=int, default=2,
help='number of levenstein candidates to search for (default: 2)')
parser.add_argument('--emb-cands', type=int, default=20,
help='number of embedding candidates to search for (default: 10)')
parser.add_argument('--alpha', type=float, default=0.8,
help='coefficient for the bigram linear interpolation (default: 0.8)')
#Parsing args
parser.add_argument('--test-mode', action = 'store_true',
help="call this argument if you want to test on new sentences, if not, the default behavior is to train on a fraction of the data and test on the rest")
parser.add_argument('--input', type=str, default='test_sentences.txt',
help="path to the test sentences if test-mode is True")
parser.add_argument('--output', type=str, default='result.txt',
help="the path to the result file. if test_mode is true : it will store the parse of the test sentences, else, it will store the results on the test split.")
parser.add_argument('--n_jobs', type=int, default= 1,
help="Number of processors to use, -1 means use all processors, in Windows, multiprocessing doesn't work, go for n_jobs = 1")
args = parser.parse_args()
print('Reading the training corpus :')
filename = args.data_file
corpus = read_corpus_pcfg(filename)
print('Binarizing the trees :')
trees = [Tree.fromstring(sentence) for sentence in corpus]
for tree in trees :
tree.chomsky_normal_form(horzMarkov = 2)
tree.collapse_unary(True, True)
train_frac = args.train_frac
print('Training on %.2f %% of the data: '%(100*train_frac))
size = len(corpus)
train_size = int(train_frac*size)
train, test = corpus[:train_size], corpus[train_size:]
train_t, test_t = trees[:train_size], trees[train_size:]
if not args.test_mode :
entername = 'frac_data_sentences.txt'
outname = 'evaluation_data.parser_output'
print("The script is run in default mode : we will test on a fraction of our dataset:")
print('the sentences of the test split are written in : ', entername)
with open(entername, 'w' ,encoding ='utf-8') as file :
for (i,t) in enumerate(test_t) :
if not i : file.write(' '.join(t.leaves()))
else : file.write('\n' + ' '.join(t.leaves()))
else :
print("The script is run in test mode :")
entername= args.input
outname = args.output
print("We will test on : ", entername)
print("The output will be written in : ", outname, " \n")
print('Defining the pcfg :')
pcfg, word_toA, A_toword, axioms = pcfg_lexicon_constructor(train_t)
binaries = {}
for lhs in pcfg.keys() :
for rhs in pcfg[lhs] :
if not rhs in binaries.keys() : binaries[rhs] = set()
binaries[rhs].add(lhs)
left_bin = set([B[0] for B in binaries.keys()])
right_bin = set([B[1] for B in binaries.keys()])
set_bin = set(binaries.keys())
print('Building the OOV :')
pickled = args.emb_file
raw_sentences = [t.leaves() for t in train_t]
vocab = set([word for sentence in raw_sentences for word in sentence])
words, embeddings = load(open(pickled, 'rb'), encoding='latin')
all_words_embed = {word : embeddings[i] for (i,word) in enumerate(words)}
interest_emb = {word : embeddings[i] for (i,word) in enumerate(words) if word in vocab}
vocab_embed = set(words)
indexed_vocab = {word : idx for idx, word in enumerate(vocab)}
n_words = len(indexed_vocab)
alpha = args.alpha
bigram, unigram = N_grams(raw_sentences, indexed_vocab, n_words, alpha)
print('Begin the parsing :')
print('our test sentences come from : ', entername)
with open(entername, 'r', encoding='utf-8') as entry :
tokenized = [sent.strip().split() for sent in entry]
n_emb, n_lev = args.emb_cands, args.lev_cands
print('the results will be written in : ', outname)
def return_result(sent):
replacement = deal_with_oov(sent, vocab, n_emb, n_lev, indexed_vocab,
unigram, bigram, vocab_embed, all_words_embed, interest_emb)
bracketed = CYK(replacement, pcfg, A_toword, binaries, axioms, right_bin, left_bin, set_bin, raw_sent = sent)
return '( ' + bracketed + ')'
def multiprocess_func(func, n_jobs, arg):
if n_jobs == -1: n_jobs = mp.cpu_count()
start = time()
with Pool(n_jobs) as p: res = p.map(func, arg)
print("Parsing took %.3f seconds"%(time() - start))
return res
n_jobs = args.n_jobs
if n_jobs == 1:
print('Using only one processor : ')
result = []
for (i, sent) in tqdm(enumerate(tokenized)) :
result.append(return_result(sent))
else :
print('Using %d processors : '%(n_jobs))
result = multiprocess_func(return_result, n_jobs, tokenized)
with open(outname, 'w', encoding='utf-8') as output :
for (i, sent) in enumerate(result) :
if not i : output.write(sent)
else : output.write('\n' + sent)
print('Finished.')