-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
158 lines (134 loc) · 5.48 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import gradio as gr
import numpy as np
from model import HashNet, ViT, ResNet, transform_image
import timm
import faiss
from datetime import datetime
from transformers import CLIPProcessor, CLIPModel
ALLOWED_SUFFIXES = {".jpg", ".jpeg", ".png", ".webp"}
image_embeddings: faiss.Index = None
cosine_embeddings: faiss.Index = None
image_names = []
def load_indices(name):
global image_embeddings, cosine_embeddings, image_names
data = np.load(f"indices/{name}.npz")
image_names = data["names"]
embeddings = data["index"]
index = faiss.IndexFlatL2(embeddings.shape[1])
index.train(embeddings)
index.add(embeddings)
image_embeddings = index
faiss.normalize_L2(embeddings)
index = faiss.IndexFlatIP(embeddings.shape[1])
index.train(embeddings)
index.add(embeddings)
cosine_embeddings = index
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = timm.create_model("vit_base_patch32_clip_224.openai_ft_in1k", pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
processor = timm.data.create_transform(**data_config, is_training=False)
model.to(device)
load_indices("clip")
nprobe = 20
def on_select(backend_type, image_input, cosine_distance):
global model, processor
if backend_type == "CLIP":
model = timm.create_model("vit_base_patch32_clip_224.openai_ft_in1k", pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
processor = timm.data.create_transform(**data_config, is_training=False)
load_indices("clip")
elif backend_type == "CLIP-L":
model = timm.create_model("vit_large_patch14_clip_224.openai", pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
processor = timm.data.create_transform(**data_config, is_training=False)
load_indices("clip_l")
elif backend_type == "DINOv2":
model = timm.create_model("vit_small_patch14_dinov2.lvd142m", pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
processor = timm.data.create_transform(**data_config, is_training=False)
load_indices("dinov2")
elif backend_type == "ResNet":
model = timm.create_model("resnet18", pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
processor = timm.data.create_transform(**data_config, is_training=False)
load_indices("resnet")
elif backend_type == "ViT":
model = timm.create_model("vit_base_patch16_224", pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
processor = timm.data.create_transform(**data_config, is_training=False)
load_indices("vit")
elif backend_type == "DeepHash ViT":
model = HashNet(ViT())
model = model.eval()
model.net.load_state_dict(
torch.load("models/model_vit.pth", weights_only=True, map_location=device)
)
load_indices("dh_vit")
elif backend_type == "DeepHash ResNet":
model = HashNet(ResNet())
model = model.eval()
model.net.load_state_dict(
torch.load("models/model_resnet.pth", weights_only=True, map_location=device)
)
load_indices("dh_resnet")
model.to(device)
if image_input:
images = on_image_upload(image_input, backend_type, cosine_distance)
else:
images = []
return (f"{backend_type} loaded.", images)
def on_set_probe(nprobe_val):
global nprobe
nprobe = nprobe_val
def on_cosine(backend_type, image_input, cosine_distance):
if image_input:
return on_image_upload(image_input, backend_type, cosine_distance)
else:
return []
def on_image_upload(image, backend_type, cosine_distance):
start_time = datetime.now()
if backend_type == "DINOv2" or backend_type.startswith("CLIP"):
with torch.no_grad():
embedding = model(processor(image).to(device).unsqueeze(0))
else:
img_tensor = transform_image(image).to(device)
with torch.no_grad():
embedding: torch.Tensor = model(img_tensor)
embed_time = datetime.now()
embedding = embedding.cpu().numpy()
if cosine_distance:
faiss.normalize_L2(embedding)
_, sims = cosine_embeddings.search(embedding, 10)
else:
_, sims = image_embeddings.search(embedding, 10)
end_time = datetime.now()
print(
(embed_time - start_time).total_seconds(),
(end_time - embed_time).total_seconds(),
)
return [f"images/{image_names[x]}" for x in sims[0]]
with gr.Blocks() as demo:
with gr.Row():
image_input = gr.Image(type="pil", label="Upload image")
image_gallery = gr.Gallery(label="Similar images", elem_id="gallery")
with gr.Row():
backend_type = gr.Dropdown(
["CLIP", "CLIP-L", "DINOv2", "ResNet", "ViT", "DeepHash ViT", "DeepHash ResNet"], label="Model"
)
distance_type = gr.Checkbox(
label="Cosine distance",
)
display = gr.Text(label="Info")
image_input.upload(
on_image_upload, inputs=[image_input, backend_type, distance_type], outputs=image_gallery
)
distance_type.select(on_cosine, [backend_type, image_input, distance_type], image_gallery)
backend_type.select(on_select, [backend_type, image_input, distance_type], [display, image_gallery])
demo.launch()