-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphysics.cpp
287 lines (252 loc) · 9.56 KB
/
physics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include "physics.hpp"
#include "opttritri.hpp" //NoDivTriTriIsect
#include <iostream>
#include <fstream>
#include <sstream>
#include <osg/Geode>
#include <osg/Geometry>
#include <osg/io_utils> //cout<<mat
#include <cstdlib> //exit
Physics::Physics():
ActiveAlgorithm(COLLISION_ALGORITHM_TRIANGLE),
kernelCode(""),
workGroupSize(0)
{
std::fstream file("CollisionWithJumps.cl");
std::stringstream ss;
ss<<file.rdbuf();
kernelCode=ss.str();
sources.push_back({kernelCode.c_str(), kernelCode.length()});
}
void Physics::CreateContext()
{
cl::Platform::get(&platforms);
platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);
bool av=0;
int err=CL_SUCCESS;
context = cl::Context(devices, NULL, NULL, NULL, &err);
program = cl::Program(context, sources, &err);
if(err!=CL_SUCCESS)
std::cerr<<"Program creation error: "<<err<<std::endl;
if(program.build({devices[0]})!=CL_SUCCESS)
{
std::cout<<" Error building: "<<program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0])<<"\n";
exit(1);
}
kernel = cl::Kernel(program, "CollisionWithJumps", &err);
if(err!=CL_SUCCESS)
std::cerr<<"kernel creation error: "<<err<<std::endl;
//http://stackoverflow.com/questions/23017005/determine-max-global-work-group-size-based-on-device-memory-in-opencl
std::string extensions="";
unsigned long memSize=0, maxMemAlloc=0, localSize=0;
size_t computeUnits=0;
std::vector<size_t> maxWorkItemSizes;
devices[0].getInfo(CL_DEVICE_EXTENSIONS, &extensions);
devices[0].getInfo(CL_DEVICE_MAX_COMPUTE_UNITS, &computeUnits);
devices[0].getInfo(CL_DEVICE_MAX_MEM_ALLOC_SIZE, &maxMemAlloc);
devices[0].getInfo(CL_DEVICE_GLOBAL_MEM_SIZE, &memSize);
kernel.getWorkGroupInfo(devices[0], CL_KERNEL_WORK_GROUP_SIZE, &maxWorkGroup);
kernel.getWorkGroupInfo(devices[0], CL_KERNEL_LOCAL_MEM_SIZE, &localSize);
devices[0].getInfo(CL_DEVICE_MAX_WORK_ITEM_SIZES, &maxWorkItemSizes);
std::cerr<<"ext: "<<extensions<<std::endl<<"max units: "<<computeUnits<<" max work group: "<<maxWorkGroup<<" err: "<<err<<" devices: "<<devices.size()<<" max mem alloc: "<<maxMemAlloc<<" global mem size: "<<memSize<<" kernel local mem size: "<<localSize<<std::endl;
std::cerr<<"Max work item sizes"<<std::endl;
for(int i=0; i<maxWorkItemSizes.size(); i++)
std::cerr<<maxWorkItemSizes[i]<<" ";
std::cerr<<std::endl;
//platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);
/* std::string out;
devices[0].getInfo(CL_DEVICE_NAME, &out);
std::cerr<<out<<std::endl;*/ //combobox?
}
void Physics::Tick(Scene& scene, const double& miliseconds)
{
scene.ObjectA.PAT->setPosition(scene.ObjectA.PAT->getPosition()+scene.ObjectA.MoveVector*(miliseconds/1000));
if(scene.ObjectA.PAT->getPosition().x()<0)
{
osg::Vec3d position=scene.ObjectA.PAT->getPosition();
position.x()=0;
scene.ObjectA.PAT->setPosition(position);
scene.ObjectA.MoveVector*=-1;
}
else if (scene.ObjectA.PAT->getPosition().x()>2)
{
osg::Vec3d position=scene.ObjectA.PAT->getPosition();
position.x()=2;
scene.ObjectA.PAT->setPosition(position);
scene.ObjectA.MoveVector*=-1;
}
scene.ObjectB.PAT->setPosition(scene.ObjectB.PAT->getPosition()+scene.ObjectB.MoveVector*(miliseconds/1000));
if(scene.ObjectB.PAT->getPosition().x()>0)
{
osg::Vec3d position=scene.ObjectB.PAT->getPosition();
position.x()=0;
scene.ObjectB.PAT->setPosition(position);
scene.ObjectB.MoveVector*=-1;
}
else if(scene.ObjectB.PAT->getPosition().x()<-2)
{
osg::Vec3d position=scene.ObjectB.PAT->getPosition();
position.x()=-2;
scene.ObjectB.PAT->setPosition(position);
scene.ObjectB.MoveVector*=-1;
}
}
bool Physics::CheckCollision(const Scene& scene)
{
switch(ActiveAlgorithm)
{
case COLLISION_ALGORITHM_NONE:
return false;
break;
case COLLISION_ALGORITHM_TRIANGLE:
return TriangleCollisionAlgorithm(scene);
break;
case COLLISION_ALGORITHM_OPENCL:
return OpenCLCollisionAlgorithm(scene);
break;
case COLLISION_ALGORITHM_TRIANGLE_ALL:
return TriangleAllCollisionAlgorithm(scene);
break;
default:
std::cerr<<"Unknown collision algorithm"<<std::endl;
return false;
break;
}
}
bool Physics::TriangleCollisionAlgorithm(const Scene& scene)
{
for(OSGTriangler trianglerA(scene.ObjectA); trianglerA.AnyTrianglesLeft; trianglerA.GetNextTriangle())
for(OSGTriangler trianglerB(scene.ObjectB); trianglerB.AnyTrianglesLeft; trianglerB.GetNextTriangle())
if(NoDivTriTriIsect(trianglerA.v0._v, trianglerA.v1._v, trianglerA.v2._v,
trianglerB.v0._v, trianglerB.v1._v, trianglerB.v2._v))
return true;
return false;
}
bool Physics::OpenCLCollisionAlgorithm(const Scene& scene)
{
OSGTriangler trianglerA(scene.ObjectA), trianglerB(scene.ObjectB);
std::vector<int> indicesA, indicesB;
for(; trianglerA.AnyTrianglesLeft; trianglerA.GetNextTriangle())
{
indicesA.push_back(trianglerA.index0);
indicesA.push_back(trianglerA.index1);
indicesA.push_back(trianglerA.index2);
}
for(; trianglerB.AnyTrianglesLeft; trianglerB.GetNextTriangle())
{
indicesB.push_back(trianglerB.index0);
indicesB.push_back(trianglerB.index1);
indicesB.push_back(trianglerB.index2);
}
std::vector<int> triangleCountVector;
triangleCountVector.push_back(indicesA.size()/3);
triangleCountVector.push_back(indicesB.size()/3);
triangleCountVector.push_back(indicesA.size()/3 * indicesB.size()/3);
cl_int err;
cl::CommandQueue queue(context, devices[0]);
//http://stackoverflow.com/questions/9565253/benchmark-of-cl-mem-use-host-ptr-and-cl-mem-copy-host-ptr-in-opencl
//http://www.cs.virginia.edu/~mwb7w/cuda_support/pinned_tradeoff.html
cl::Buffer transformBufferA(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(double)*4*4, trianglerA.transform.ptr(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer transformBufferB(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(double)*4*4, trianglerB.transform.ptr(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer triangleCountBuffer(context, CL_MEM_READ_ONLY| CL_MEM_COPY_HOST_PTR, triangleCountVector.size()*sizeof(int), triangleCountVector.data(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer vertexBufferA(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*scene.ObjectA.GetVertexArray()->getNumElements(), (void*)scene.ObjectA.GetVertexArray()->getDataPointer(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer indexBufferA(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int)*indicesA.size(), indicesA.data(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer vertexBufferB(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*scene.ObjectB.GetVertexArray()->getNumElements(), (void*)scene.ObjectB.GetVertexArray()->getDataPointer(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer indexBufferB(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int)*indicesB.size(), indicesB.data(), &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer bufferC(context, CL_MEM_WRITE_ONLY, sizeof(bool)*triangleCountVector[2], NULL, &err);
if(err)
std::cerr<<err<<std::endl;
cl::Buffer bufferDebug(context, CL_MEM_WRITE_ONLY, sizeof(int), NULL, &err);
if(err)
std::cerr<<err<<std::endl;
//global się musi dzielić przez local, jeśli nie zostawiamy tego do ogarnęcia opencl
//0 być nie może. musi być wtedy nullrange
kernel.setArg(0, triangleCountBuffer);
kernel.setArg(1, transformBufferA);
kernel.setArg(2, vertexBufferA);
kernel.setArg(3, indexBufferA);
kernel.setArg(4, transformBufferB);
kernel.setArg(5, vertexBufferB);
kernel.setArg(6, indexBufferB);
kernel.setArg(7, bufferC);
kernel.setArg(8, bufferDebug);
if(workGroupSize==0)
err = queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(triangleCountVector[2]), cl::NullRange);
else
{
int i=triangleCountVector[2]/workGroupSize;
while(i*workGroupSize<triangleCountVector[2])
i++;
err = queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(i*workGroupSize), cl::NDRange(workGroupSize));
}
if (err != CL_SUCCESS)
{
std::cerr<<"Queue error: "<<err<<std::endl;
CreateContext();
return false;
}
err = queue.finish();
if (err != CL_SUCCESS)
{
std::cerr<<"Kernel error: "<<err<<std::endl;
CreateContext();
return false;
}
// int debug=0;
// err = queue.enqueueReadBuffer(bufferDebug, CL_TRUE, 0, sizeof(int), &debug);
// if (err != CL_SUCCESS)
// {
// std::cerr<<"Debug read error: "<<err<<std::endl;
// return false;
// }
// std::cerr<<debug<<std::endl;
bool* C;
C = new bool[triangleCountVector[2]]; //Bez alokacji w runtime dla 4k*4k rzuca segfaultem (nic dziwnego w sumie)
for(int i=0; i<triangleCountVector[2]; i++)
C[i]=false;
//read result C from the device to array C
err = queue.enqueueReadBuffer(bufferC, CL_TRUE, 0, sizeof(bool)*triangleCountVector[2], C);
if (err != CL_SUCCESS)
{
std::cerr<<"Read error: "<<err<<std::endl;
delete[] C;
return false;
}
for(int i=0; i<triangleCountVector[2]; i++)
if(C[i]==1)
{
delete[] C;
return true;
}
delete[] C;
return false;
}
bool Physics::TriangleAllCollisionAlgorithm(const Scene& scene)
{
bool collision=false;
for(OSGTriangler trianglerA(scene.ObjectA); trianglerA.AnyTrianglesLeft; trianglerA.GetNextTriangle())
for(OSGTriangler trianglerB(scene.ObjectB); trianglerB.AnyTrianglesLeft; trianglerB.GetNextTriangle())
if(NoDivTriTriIsect(trianglerA.v0._v, trianglerA.v1._v, trianglerA.v2._v,
trianglerB.v0._v, trianglerB.v1._v, trianglerB.v2._v))
collision=true;
return collision;
}
bool Physics::CheckSceneCollision(const Scene& scene)
{
auto squaredDistanceVector = scene.ObjectA.PAT->getPosition() - scene.ObjectB.PAT->getPosition();
return (squaredDistanceVector.length2()-scene.SquaredDistanceWhenCollision)<0.1;
}