forked from PhoebusSi/Alpaca-CoT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune.py
236 lines (196 loc) · 6.83 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import sys
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset
import transformers
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
)
import argparse
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--size', type=str, help='the size of llama model')
parser.add_argument('--data', type=str, help='the data used for instructing tuning')
parser.add_argument('--local_rank', default=-1, type=int,help='node rank for distributed training')
args = parser.parse_args()
# optimized for RTX 4090. for larger GPUs, increase some of these?
MICRO_BATCH_SIZE = 4 # this could actually be 5 but i like powers of 2
BATCH_SIZE = 128
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 3 # we don't always need 3 tbh
LEARNING_RATE = 3e-4 # the Karpathy constant
CUTOFF_LEN = 512 # 256 accounts for about 96% of the Alpaca data
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = 2000
TARGET_MODULES = [
"q_proj",
"v_proj",
]
if args.data == "alpaca":
DATA_PATH = "data/alpaca_data_cleaned.json"
elif args.data == "belle":
DATA_PATH = "data/belle_data_cn.json"
elif args.data == "alpaca-belle":
DATA_PATH = "data/alpaca_plus_belle_data.json"
elif args.data == "cot":
DATA_PATH = "data/CoT_data.json"
elif args.data == "alpaca-cot":
DATA_PATH = "data/alcapa_plus_cot.json"
elif args.data == "alpaca-belle-cot":
DATA_PATH = "data/alcapa_plus_belle_plus_cot.json"
else:
print("Error: Wrong type of data.")
assert 1==2
# Your own local path for saving model weights
OUTPUT_DIR = "saved-"+args.data+args.size+"b"
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-"+args.size+"b-hf",
load_in_8bit=True,
device_map=device_map,
)
tokenizer = LlamaTokenizer.from_pretrained(
"decapoda-research/llama-"+args.size+"b-hf", add_eos_token=True
)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
data = load_dataset("json", data_files=DATA_PATH)
def generate_prompt(data_point):
# sorry about the formatting disaster gotta move fast
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}"""
def tokenize(prompt):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
def generate_and_tokenize_prompt(data_point):
# This function masks out the labels for the input,
# so that our loss is computed only on the response.
user_prompt = (
(
f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
"""
)
if data_point["input"]
else (
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
"""
)
)
len_user_prompt_tokens = (
len(
tokenizer(
user_prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
)["input_ids"]
)
- 1
) # no eos token
full_tokens = tokenizer(
user_prompt + data_point["output"],
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)["input_ids"][:-1]
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens
+ full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=100,
num_train_epochs=EPOCHS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=20,
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=200 if VAL_SET_SIZE > 0 else None,
save_steps=200,
output_dir=OUTPUT_DIR,
save_total_limit=3,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train()
model.save_pretrained(OUTPUT_DIR)
print("\n If there's a warning about missing keys above, please disregard :)")