-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsiamese_test.py
41 lines (33 loc) · 1.5 KB
/
siamese_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torchvision
from torchvision import transforms
from siamese_dataset import SiameseNetworkDataset
from siamese_network import SiameseNetwork
from helpers import imshow
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
class Config():
testing_dir = "/home/wingman2/datasets/personas/test/"
# testing_dir = "/home/wingman2/code/Facial-Similarity-with-Siamese-Networks-in-Pytorch/data/faces/testing/"
model = SiameseNetwork().cuda()
model.load_state_dict(torch.load('/home/wingman2/models/siamese-faces-160.pt'))
model.eval()
data_transforms_test = transforms.Compose([
transforms.Resize((100, 100)),
transforms.ToTensor()
])
folder_dataset_test = ImageFolder(root=Config.testing_dir)
siamese_dataset = SiameseNetworkDataset(imageFolderDataset=folder_dataset_test,
transform=data_transforms_test,
should_invert=False)
test_dataloader = DataLoader(siamese_dataset, num_workers=8, batch_size=1, shuffle=True)
dataiter = iter(test_dataloader)
x0, _, _ = next(dataiter)
for i in range(10):
_, x1, label2 = next(dataiter)
concatenated = torch.cat((x0, x1), 0)
output1, output2 = model(Variable(x0).cuda(), Variable(x1).cuda())
euclidean_distance = F.pairwise_distance(output1, output2)
imshow(torchvision.utils.make_grid(concatenated), 'Dissimilarity: {:.2f}'.format(euclidean_distance.item()))