-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
253 lines (211 loc) · 8.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import time
import pennylane as qml
import pennylane.numpy as np
from data import create_random_dataset, generate_theta, get_iris_dataset, get_wine_dataset
from kernel import compute_scalar_kernel
from local_model import no_lightcone_local_model
from plot import plot_errors, plot_kernel_histogram, plot_laziness
from train import (
compute_laziness_over_iterations,
compute_laziness_over_qubits,
train_models,
)
from verify import verifier_1layer, verifier_2layers
# Setting the configuration of the experiment, including
# the number of qubits `n_qubits`, the number of layers `n_layers`, the number of data points `n_data`, the number of data features `data_dim`,
# The number of Gradient Descent steps `steps`,
# The rotation axis chosen to encode the data `angle_encoding_axis`,
# The rotation unitary chosen to encode the variational parameters `variational_unitary`
# The 2-qubit gate used to create entanglement between the qubits `entangling_gate`,
# The numerical range of the inputs [`min_x`, `max_x`], outputs [`min_y`, `max_y`] and the variational parameters [`min_theta`, `max_theta`].
angle_encoding_axis = "Y"
variational_unitary = qml.RX
entangling_gate = qml.CZ
##### This section is manually set for random-ish datasets
# n_qubits = 10
# n_layers = 2
# data_dim = 3
# n_data = 10
# min_y, max_y = -1, 1
# min_x, max_x = -2 * np.pi, 2 * np.pi
# # Initializing the dataset w.r.t the number of data, the number of data features and the number of qubits.
# x, y = create_random_dataset(n_data, n_qubits, data_dim, min_x, max_x, min_y, max_y)
# x_prime, y_prime = create_random_dataset(
# n_data, n_qubits, data_dim, min_x, max_x, min_y, max_y
# )
###### Otherwise, uncomment these following lines:
n_data = 100
x, y = get_iris_dataset(n_data, drop_bigger_than=1, multiply_items_rate=5)
data_dim = x.shape[1]
n_qubits = data_dim
n_layers = 2
##### Ends here
# Initializing the randomly initialized variational parameters.
min_theta, max_theta = -2 * np.pi, 2 * np.pi
theta = generate_theta(min_theta, max_theta, (n_layers, n_qubits))
# Fixed number of learning steps
steps = 100
# The config string used to save the experiment data.
config_str = f"q{n_qubits}-l{n_layers}-d{n_data}-m{data_dim}-s{steps}"
# Main function to draw the kernel histogram.
def main_histogram(load_data: bool = False):
if load_data:
x = np.load(f"data/kernel-x-{config_str}.npy")
x_prime = np.load(f"data/kernel-xprime-{config_str}.npy")
kernel_values_xx = np.load(f"data/kernel-x.x-{config_str}.npy")
kernel_values_xxprime = np.load(f"data/kernel-x.xprime-{config_str}.npy")
else:
x, _ = create_random_dataset(n_data, n_qubits, data_dim)
x_prime, _ = create_random_dataset(n_data, n_qubits, data_dim)
kernel_values_xx = []
kernel_values_xxprime = []
for _ in range(steps):
theta = generate_theta(-np.pi, np.pi, (n_layers, n_qubits))
# Since our "datasets" each have one data.
entry_xx = compute_scalar_kernel(n_qubits, n_layers, x[0], x[0], theta)
entry_xxprime = compute_scalar_kernel(
n_qubits, n_layers, x[0], x_prime[0], theta
)
kernel_values_xx.append(float(entry_xx))
kernel_values_xxprime.append(float(entry_xxprime))
# Save the experiment data after it is done.
np.save(f"data/kernel-x-{config_str}", x)
np.save(f"data/kernel-xprime-{config_str}", x_prime)
np.save(f"data/kernel-x.x-{config_str}", kernel_values_xx)
np.save(f"data/kernel-x.xprime-{config_str}", kernel_values_xxprime)
plot_kernel_histogram(kernel_values_xx, n_qubits, n_layers, n_data, config_str)
plot_kernel_histogram(
kernel_values_xxprime,
n_qubits,
n_layers,
n_data,
config_str,
save_str="xxprime",
)
print(f"x = {x}")
print(f"x' = {x_prime}")
# Verifying the kernel values for the cases where we have analytically computed the expectation values.
if n_layers == 2:
verifier = verifier_2layers
elif n_layers == 1:
verifier = verifier_1layer
else:
verifier = lambda x, xp, n: 0
print(f"Analytical E[K(x, x)] = {verifier(x[0], x[0], n_qubits)}")
print(f"Empirical mean K(x, x) = {np.mean(kernel_values_xx)}")
print("-----------")
print(f"Analytical E[K(x, x')] = {verifier(x[0], x_prime[0], n_qubits)}")
print(f"Empirical mean K(x, x') = {np.mean(kernel_values_xxprime)}")
# Main function to draw the error plot over the training iterations.
def main_errplot(
load_data: bool = False,
do_local: bool = False,
do_global: bool = False,
do_global_linear: bool = False,
do_local_linear: bool = False,
):
(local_errs, global_errs, linear_local_errs, linear_global_errs) = [None] * 4
# Load the experiment data if it has already been done before and we're only drawing the plots again.
if load_data:
if do_local:
local_errs = np.load(f"data/errs-local-{config_str}.npy")
if do_global:
global_errs = np.load(f"data/errs-global-{config_str}.npy")
if do_local_linear:
linear_local_errs = np.load(f"data/errs-lin_local-{config_str}.npy")
if do_global_linear:
linear_global_errs = np.load(f"data/errs-lin_global-{config_str}.npy")
else:
(
steps_until_convergence,
local_grad_w0_s,
local_errs,
linear_local_errs,
global_errs,
linear_global_errs,
w_local_over_time,
) = train_models(
x,
theta,
y,
n_data,
n_qubits,
n_layers,
steps,
do_local=do_local,
do_global=do_global,
do_local_linear=do_local_linear,
do_global_linear=do_global_linear,
)
# Save the data after completing the experiments
np.save(f"data/errs-local-{config_str}", local_errs)
np.save(f"data/errs-global-{config_str}", global_errs)
np.save(f"data/errs-lin_local-{config_str}", linear_local_errs)
np.save(f"data/errs-lin_global-{config_str}", linear_global_errs)
plot_errors(
n_qubits,
n_layers,
n_data,
data_dim,
config_str,
loc_errs=local_errs,
lin_loc_errs=linear_local_errs,
glob_errs=global_errs,
lin_glob_errs=linear_global_errs,
)
# Main function to draw the laziness plot over the number of iterations / number of qubits
# Which one to plot is specified by the `over_qubits` argument.
def main_lazy(lazy_qubits: list, load_data: bool = False, over_qubits: bool = False):
if over_qubits:
lazy_list = [
compute_laziness_over_qubits(
lazy_qubits, n_data, data_dim, n_layers, steps, load_data=load_data
)
]
labels = None
else:
lazy_list = [
compute_laziness_over_iterations(
qu, n_layers, n_data, data_dim, steps, load_data=load_data
)
for qu in lazy_qubits
]
labels = [f"{q} Qubits" for q in lazy_qubits]
plot_laziness(
lazy_list,
over_qubits,
n_qubits,
n_layers,
n_data,
data_dim,
steps,
config_str,
labels=labels,
)
# Main function to compute the gradients and print the results.
def main_grad():
t = theta.flatten()
f = no_lightcone_local_model(x[0], theta, n_qubits, n_layers, True, True)
grad_fn = qml.jacobian(no_lightcone_local_model, argnum=1)
grad_t = grad_fn(x[0], t, n_qubits, n_layers, False, False)
grad_t = np.around(grad_t, decimals=4)
print(f"x = {x}")
print(f"theta = {t}")
print(f"f(x, Θ) = {f}")
print(f"grad_t f(x, Θ) = {grad_t}")
# The main entry point of the program:
# This is the part where you change if you want to run a different aspect of the experiment.
def main():
main_errplot(
load_data=False,
do_local=True,
do_global=False,
do_global_linear=False,
do_local_linear=True,
)
# Runs the program and tells you how much time it took.
if __name__ == "__main__":
start_time = time.time()
main()
elapsed_time = time.time() - start_time
print(f"Time Elapsed = {elapsed_time}")