-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_2.nb
32 lines (27 loc) · 797 Bytes
/
plot_2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
(*
Adapted from http://kaurov.com/wordpress/?p=1246
Dimensions - min: 1, max: 8
*)
n = 3;
u1[a_, b_] := .5 (E ^ (a + I * b) + E ^ (-a - I * b));
u2[a_, b_] := .5 (E ^ (a + I * b) - E ^ (-a - I * b));
z1k[a_, b_, n_, k_] := E ^ (k * 2 * Pi * I / n) * u1[a, b] ^ (2.0 / n);
z2k[a_, b_, n_, k_] := E ^ (k * 2 * Pi * I / n) * u2[a, b] ^ (2.0 / n);
calabi[x_, y_, z_, \[Alpha]_, t_, c_] := Table[
With[
{ alpha = \[Alpha] - t },
ParametricPlot3D[
Evaluate@{
Re[z1k[a, b, n, k1]] + x,
Re[z2k[a, b, n, k2]] + y,
Cos[alpha] * Im[z1k[a, b, n, k1]] +
Sin[alpha] * Im[z2k[a, b, n, k2]] + z
},
{a, -1, 1},
{b, 0, \[Pi] / 2}
]
],
{k1, 0, n - 1},
{k2, 0, n - 1}
]
model=Show[calabi[0, 0, 0, 0, Pi / 4, False], PlotRange->All]