This repository has been archived by the owner on May 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsphere.py
75 lines (62 loc) · 1.76 KB
/
sphere.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import glm
class Sphere:
def __init__(self, color: glm.vec3, depth: int):
self._depth = depth
self._color = color;
self._generate_vertices()
def _generate_vertices(self):
self._vertices = []
v1, v2, v3, v4, v5, v6 = (
(1, 0, 0),
(0, 1, 0),
(0, 0, 1),
(-1, 0, 0),
(0, -1, 0),
(0, 0, -1)
)
for triangle in [
(v2, v1, v3),
(v2, v1, v6),
(v2, v4, v6),
(v2, v3, v4),
(v5, v1, v3),
(v5, v1, v6),
(v5, v4, v6),
(v5, v3, v4)
]:
self._generate_triangle(*triangle, self._depth)
def _generate_triangle(
self,
v1: tuple,
v2: tuple,
v3: tuple,
depth: int
):
if depth == 0:
self._vertices.extend([*v1, *v2, *v3])
return
v12 = self._normalize(self._middle_point(v1, v2))
v23 = self._normalize(self._middle_point(v2, v3))
v31 = self._normalize(self._middle_point(v3, v1))
for subtriangle in [
(v1, v12, v31),
(v2, v23, v12),
(v3, v31, v23),
(v12, v23, v31)
]:
self._generate_triangle(*subtriangle, depth - 1)
def _normalize(self, v: tuple) -> tuple:
return v / np.linalg.norm(v)
def _middle_point(self, v1: tuple, v2: tuple) -> tuple:
return tuple(
(v1[i] + v2[i]) / 2
for i
in range(3)
)
@property
def vertices(self) -> np.ndarray:
return np.array(self._vertices, dtype = np.float32)
@property
def color(self) -> glm.vec3:
return glm.vec3(self._color)