-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiarc_07_2016.tex
1448 lines (1266 loc) · 46.4 KB
/
iarc_07_2016.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[hide notes,intlimits]{beamer}
\mode<presentation>
{
\usetheme[footline]{UAFshade}
\setbeamercovered{transparent}
}
% load packages
\usepackage{multimedia}
\usepackage{animate}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[multidot]{grffile}
\usepackage[amssymb]{SIunits}
\usepackage{tikz}
\usetikzlibrary{shapes,arrows,shadows, calc}
% \usepackage{pgfpages}
% \setbeamertemplate{note page}[plain]
% \setbeameroption{show notes on second screen=right}
\definecolor{dark red}{HTML}{E41A1C}
\definecolor{dark green}{HTML}{4DAF4A}
\definecolor{dark violet}{HTML}{984EA3}
\definecolor{dark blue}{HTML}{084594}
\definecolor{dark orange}{HTML}{FF7F00}
\definecolor{light blue}{HTML}{377EB8}
\definecolor{light red}{HTML}{FB9A99}
\definecolor{light violet}{HTML}{CAB2D6}
\definecolor{uaf red}{HTML}{E41A1C}
\definecolor{uaf blue}{HTML}{377EB8}
\definecolor{uaf green}{HTML}{4DAF4A}
\definecolor{uaf violet}{HTML}{984EA3}
\definecolor{uaf orange}{HTML}{FF7F00}
\setbeamercolor{boxed}{fg=black,bg=uaf yellow}
% Define block styles
\tikzstyle{initialization} = [ellipse, draw,
text badly centered, draw=dark violet,
% The filling:
top color=white,
bottom color=dark violet]
\tikzstyle{initialization faded} = [ellipse, draw,
text badly centered, draw=dark violet!50,
% The filling:
top color=white,
bottom color=dark violet!25]
\tikzstyle{hindcast} = [ellipse, draw,
text badly centered, rounded corners,draw=dark orange,
% The filling:
top color=white,
bottom color=dark orange]
\tikzstyle{hindcast faded} = [ellipse, draw,
text badly centered, rounded corners,draw=dark orange!50,
% The filling:
top color=white,
bottom color=dark orange!25]
\tikzstyle{forecast} = [ellipse, draw,
text badly centered, rounded corners,draw=dark blue,
% The filling:
top color=white,
bottom color=dark blue]
\tikzstyle{forecast faded} = [ellipse, draw,
text badly centered, rounded corners,draw=dark blue!50,
% The filling:
top color=white,
bottom color=dark blue!50]
\tikzstyle{arrow line} = [draw, -latex']
\tikzstyle{line} = [draw]
\graphicspath{{figures/}}
\setbeamerfont{caption}{size=\scriptsize}
% code adapted from http://tex.stackexchange.com/a/11483/3954
% some parameters for customization
\def\shadowshift{3pt,-3pt}
\def\shadowradius{6pt}
\colorlet{innercolor}{black!60}
\colorlet{outercolor}{gray!05}
% this draws a shadow under a rectangle node
\newcommand\drawshadow[1]{
\begin{pgfonlayer}{shadow}
\shade[outercolor,inner color=innercolor,outer color=outercolor] ($(#1.south west)+(\shadowshift)+(\shadowradius/2,\shadowradius/2)$) circle (\shadowradius);
\shade[outercolor,inner color=innercolor,outer color=outercolor] ($(#1.north west)+(\shadowshift)+(\shadowradius/2,-\shadowradius/2)$) circle (\shadowradius);
\shade[outercolor,inner color=innercolor,outer color=outercolor] ($(#1.south east)+(\shadowshift)+(-\shadowradius/2,\shadowradius/2)$) circle (\shadowradius);
\shade[outercolor,inner color=innercolor,outer color=outercolor] ($(#1.north east)+(\shadowshift)+(-\shadowradius/2,-\shadowradius/2)$) circle (\shadowradius);
\shade[top color=innercolor,bottom color=outercolor] ($(#1.south west)+(\shadowshift)+(\shadowradius/2,-\shadowradius/2)$) rectangle ($(#1.south east)+(\shadowshift)+(-\shadowradius/2,\shadowradius/2)$);
\shade[left color=innercolor,right color=outercolor] ($(#1.south east)+(\shadowshift)+(-\shadowradius/2,\shadowradius/2)$) rectangle ($(#1.north east)+(\shadowshift)+(\shadowradius/2,-\shadowradius/2)$);
\shade[bottom color=innercolor,top color=outercolor] ($(#1.north west)+(\shadowshift)+(\shadowradius/2,-\shadowradius/2)$) rectangle ($(#1.north east)+(\shadowshift)+(-\shadowradius/2,\shadowradius/2)$);
\shade[outercolor,right color=innercolor,left color=outercolor] ($(#1.south west)+(\shadowshift)+(-\shadowradius/2,\shadowradius/2)$) rectangle ($(#1.north west)+(\shadowshift)+(\shadowradius/2,-\shadowradius/2)$);
\filldraw ($(#1.south west)+(\shadowshift)+(\shadowradius/2,\shadowradius/2)$) rectangle ($(#1.north east)+(\shadowshift)-(\shadowradius/2,\shadowradius/2)$);
\end{pgfonlayer}
}
% create a shadow layer, so that we don't need to worry about overdrawing other things
\pgfdeclarelayer{shadow}
\pgfsetlayers{shadow,main}
\newsavebox\mybox
\newlength\mylen
\newcommand\shadowimage[2][]{%
\setbox0=\hbox{\includegraphics[#1]{#2}}
\setlength\mylen{\wd0}
\ifnum\mylen<\ht0
\setlength\mylen{\ht0}
\fi
\divide \mylen by 120
\def\shadowshift{\mylen,-\mylen}
\def\shadowradius{\the\dimexpr\mylen+\mylen+\mylen\relax}
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[#1]{#2}};
\drawshadow{image}
\end{tikzpicture}}
\newcommand\shadowimagec[3][]{%
\setbox0=\hbox{\includegraphics<#1>[#2]{#3}}
\setlength\mylen{\wd0}
\ifnum\mylen<\ht0
\setlength\mylen{\ht0}
\fi
\divide \mylen by 120
\def\shadowshift{\mylen,-\mylen}
\def\shadowradius{\the\dimexpr\mylen+\mylen+\mylen\relax}
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics<#1>[#2]{#3}};
\drawshadow{image}
\end{tikzpicture}}
\newenvironment{transbox}[1][]{%
\begin{tikzpicture}
\node[drop shadow,rounded corners,text width=\textwidth,fill=white, fill opacity=#1,text opacity=1] \bgroup
}{
\egroup;\end{tikzpicture}}
\newenvironment{transbox-tight}{%
\begin{tikzpicture}
\node[drop shadow,rounded corners,fill=uaf yellow, fill opacity=0.75,text opacity=1] \bgroup
}{
\egroup;\end{tikzpicture}}
% title page
\title[] % (optional, use only with long paper titles)
{Disappearing Ice Sheets}
\author[Aschwanden] % (optional, use only with lots of authors)
{Andy Aschwanden}
% - Give the names in the same order as the appear in the paper.
% - Use the \inst{?} command only if the authors have different
% affiliation.
\institute[Geophysical Institute] % (optional, but mostly needed)
{Geophysical Institute}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\titlegraphic{\vskip-0.5cm\shadowimage[width=\textwidth]{gris-nw-speed-exp-600m}}
\date{}
\begin{document}
% define what is shown at the beginning of each section
\AtBeginSection[]
{
\begin{frame}<handout:0>
\frametitle{Outline}
\tableofcontents[currentsection,subsectionstyle=hide/hide/hide]
\end{frame}
}
% define what is shown at the beginning of each subsection
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1.0] {\includegraphics[width=\paperwidth]{uaf_beamer_shade_bg}};}
}
% insert titlepage
\begin{frame}
\titlepage
\note[item]{Today I'd like to present some of the work the ``modeling corner'' of the glacier's group is doing}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1] {\includegraphics[height=\paperheight,width=\paperwidth]{uaf_power_plant}};}
}
\begin{frame}[plain]
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=0.5] {\includegraphics[height=\paperheight,width=\paperwidth]{uaf_power_plant}};}
}
\begin{frame}[plain]
\begin{itemize}
\item Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet (Winkelmann \emph{et al.}, 2015)
\item this would raise sea level by 58\,m (plus another 7\,m from the Greenland Ice Sheet)
\end{itemize}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1] {\includegraphics[height=\paperheight,width=\paperwidth]{ant_penguins}};}
}
\begin{frame}[plain]
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1] {\includegraphics[height=\paperheight,width=\paperwidth]{green_penguins}};}
}
\begin{frame}[plain]
\end{frame}
\setbeamertemplate{background canvas}
{
%
}
\begin{frame}{How an ice sheet loses mass}
\begin{figure}
\includegraphics[width=\textwidth]{ice-sheet-cartoon}
\end{figure}
\note[item]{explain surface melt, ice discharge/calving, and basal melt}
\note[item]{snow accumulates in the colder, higher altitude areas in the interior}
\note[item]{turns into ice}
\note[item]{and starts to flow downhill towards the coast}
\note[item]{near the coast, surface melting can occur in the summer}
\note[item]{but also some ice is dumped directly into the ocean}
\note[item]{before the mid-90s mass loss was dominated by surface mass balance (80-90\%)}
\note[item]{contribution of ice discharge was modest (10--20\%)}
\note[item]{explaining in more detail in the next slide}
\end{frame}
\begin{frame}{Why we expect strong mass loss}
\begin{block}{Positive feedbacks}
(at least) two positive feedbacks accelerate mass loss
\begin{itemize}
\item with the climate (Bodvardsson effect)
\item geometrical instability (marine ice sheet hypothesis)
\end{itemize}
\end{block}
\end{frame}
\setbeamertemplate{background canvas}
{
%
}
\begin{frame}{Bodvardsson effect: mountain Glacier}
\begin{figure}
\includegraphics[width=\textwidth]{bodvardsson-effect_mountain_glacier}
\end{figure}
\end{frame}
\begin{frame}{Bodvardsson effect: ice Sheet}
\begin{figure}
\includegraphics[width=\textwidth]{bodvardsson-effect_ice_sheet}
\end{figure}
\end{frame}
\begin{frame}[label=misi]{Marine Ice Sheet Instability Hypothesis}
\begin{figure}
\includegraphics[height=8cm]{vaughan-misi}
\end{figure}
\end{frame}
\begin{frame}{Marine Ice Sheet Instability Hypothesis}
\begin{figure}
\includegraphics[width=\textwidth]{mercer_1978}
\end{figure}
\end{frame}
\begin{frame}{Marine Ice Sheet Instability Hypothesis}
\begin{columns}[c]
\begin{column}{.65\linewidth}
\begin{figure}
\includegraphics<1>[height=8cm]{ant-marine}
\includegraphics<2>[height=8cm]{ant-shelves}
\end{figure}
\end{column}
\begin{column}{.38\linewidth}
\begin{itemize}
\item large areas are below sea level
\item up to 1\,m SLR by 2100 (DeConto \& Pollard, 2016)
\item up to 15\,m SLR by 2500 (DeConto \& Pollard, 2016)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Focus on Greenland}
\begin{columns}[c]
\begin{column}{.60\linewidth}
\begin{figure}
\includegraphics[height=8cm]{gris-marine}
\end{figure}
\end{column}
\begin{column}{.40\linewidth}
\begin{itemize}
\item interior is below sea level
\item but few ``gates'' exist
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1] {\includegraphics[height=\paperheight,width=\paperwidth]{nasa-mapping-greenland-ice-sheet}};}
}
\begin{frame}[plain]
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=.5] {\includegraphics[height=\paperheight,width=\paperwidth]{nasa-mapping-greenland-ice-sheet}};}
}
\begin{frame}[plain]
\begin{itemize}
\item extent of $1200\,\text{km}\,\times 2400\,\text{km}$ \dots it's a ``dwarf continent''
\item total area: 2.1 million km$^2$
\item ice covered area: 1.7 million km$^2$
\item \alert{for comparison: that's the total area of Alaska}
\item has ice equivalent to 7 m of sea-level rise
\item big enough to create its own weather
\item over past 2 decades: losing mass at an accelerating rate
\end{itemize}
\note[item]{Explain why Greenland is of interest}
\end{frame}
\setbeamertemplate{background canvas}
{
%
}
\begin{frame}[plain]
\begin{figure}
\movie[showcontrols=true,loop,width=12cm]{\includegraphics[width=12cm]{grace_greenland_2004_2012_still_print}}{grace_greenland_2004_2013_1080p.mov}
\end{figure}
\begin{itemize}
\item<2> 280\,Gt is about half of Lake Eerie or a 15\,cm high layer of water covering Alaska
\end{itemize}
\note[item]{show NASA GRACE mass loss animation}
\note[item]{greatest losses occur on the west coast and SE coast}
\note[item]{explain how much 280 Gt really are}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=.5] {\includegraphics[height=\paperheight,width=\paperwidth]{nasa-mapping-greenland-ice-sheet}};}
}
\begin{frame}[plain]
\textbf{The increase in mass loss is roughly equally split between changes in}
\begin{columns}[c]
\begin{column}{.3\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{gris-melt-ponds}
\end{figure}
\end{column}
\begin{column}{.3\linewidth}
\textbf{surface mass balance}
\end{column}
\end{columns}
\begin{columns}[c]
\begin{column}{.3\linewidth}
\begin{figure}
\includegraphics<1>[width=\linewidth]{storeglacier}
\end{figure}
\end{column}
\begin{column}{.3\linewidth}
\textbf{ice discharge}
\end{column}
\end{columns}
\bigskip
\textbf{What does that mean?}
\note[item]{}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=.65] {\includegraphics[height=\paperheight,width=\paperwidth]{outlet-glacier-collage-01}};}
}
\begin{frame}[plain]
\textbf{In Greenland}
\begin{itemize}
\item surface mass balance: Regine talked about this
\item here we focus on ice dynamics
\item ice discharge to the ocean occurs through 200+ ``outlet glaciers''
\item outlet glaciers are flowing fast ($>$200\,m/yr), are controlled by bedrock geometry, and terminate in narrow fjords ($\sim <$10\,km wide)
\end{itemize}
\note[item]{outlet glaciers look pretty spectacular}
\end{frame}
\setbeamertemplate{background canvas}
{
%
}
\begin{frame}{Focus on Greenland}
\begin{figure}
\includegraphics[height=8cm]{gris-marine-4outlet}
\end{figure}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1] {\includegraphics[height=\paperheight,width=\paperwidth]{outlet-glacier-collage-01}};}
}
\begin{frame}[plain]
\note[item]{some very passionate glaciologists get really close to the terminus in their sailing boats}
\end{frame}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=1] {\includegraphics[height=\paperheight,width=\paperwidth]{outlet-glacier-collage-alun-01}};}
}
\begin{frame}[plain]
\note[item]{some very passionate glaciologists get really close to the terminus in their sailing boats}
\end{frame}
\setbeamertemplate{background canvas}
{
%
}
\begin{frame}{Jakobshavn Isbr{\ae}, west Greenland}
\begin{figure}
\includegraphics[height=.8\textheight]{MODISGreenlandJakobshavn} \\
\scriptsize{based on MODIS data from M. Fahnestock}
\end{figure}
\note[item]{in this talk I will focus on Jakobshavn}
\note[item]{Greenland's biggest and fastest flowing outlet glacier}
\note[item]{drains about 7\% of the entire ice sheet}
\end{frame}
\begin{frame}{A short history}
\begin{figure}
\includegraphics[width=\textwidth]{Jakobshavn_groundline_retreat} \\
\end{figure}
\note[item]{Will Harrison and late Keith Echelmeyer investigated Jakobshavn in the mid-80s}
\note[item]{at that time JIB had a $\sim$10\,km long floating tongue}
\note[item]{they found high flow speeds}
\note[item]{relatively steady behavior}
\note[item]{in 1997, the glacier suddenly switched from slow thickening to rapid thinning}
\note[item]{caused by an increase in subsurface ocean temperature from 1.7degC in 1995 to 3.3degC in 1998, leading to increased melting}
\note[item]{In summer 1998 the first major increase in surface velocity was seen}
\note[item]{first departure from the normal pattern of frontal positions 1998}
\note[item]{retreat of the ice front started around 2002}
\end{frame}
\begin{frame}{Frontal retreat 1990--2005}
\begin{figure}
\includegraphics<1>[width=\textwidth]{jib-front-1990}
\includegraphics<2>[width=\textwidth]{jib-front-1990-floating}
\includegraphics<3>[width=\textwidth]{jib-front-2005}
\includegraphics<4>[width=\textwidth]{jib-front-1990-2005-change}
\includegraphics<5>[width=\textwidth]{jib-front-1990-2005-plug}
\end{figure}
\note[item]{the loss of the floating tongue is what I'm calling pulling the plug}
\note[item]{exact timing of the break-up remains elusive due to poor satellite coverage at that time}
\end{frame}
\begin{frame}{When you pull the plug: speed-up 1992-2000}
\begin{itemize}
\item almost doubled its flow speed between the 1992 and 2000
\item slow but steady increase since then
\end{itemize}
\begin{figure}
\includegraphics[width=\textwidth]{Joughin2004Fig2} \\
\footnotesize{Joughin et al. (2004)}
\end{figure}
\note[item]{illustration of the speed up}
\end{frame}
\againframe{misi}
\setbeamertemplate{background canvas}
{
\tikz{\node[inner sep=0pt,opacity=0.8] {\includegraphics[height=\paperheight,width=\paperwidth]{jakobshavn-2007}};}
}
\begin{frame}{When you pull the plug: changes in ice discharge 2000-2010}
\begin{itemize}
\item increase in discharge from 40\,Gt/yr in 2000 to $\sim$60\,Gt/yr in 2010
\item compared to $\sim$75\,Gt/yr total mass loss from all Alaskan glaciers
\item fresh water flux into Artic ocean affects ocean circulation
\end{itemize}
\note[item]{illustration of the speed up}
\end{frame}
\setbeamertemplate{background canvas}
{
%
}
\begin{frame}{When you pull the plug: surface elevation changes 1985-2007}
\begin{figure}
\includegraphics[width=.8\textwidth]{jib-obs-surface-diff-motyka} \\
\footnotesize{Motyka, Fahnestock, Truffer (2010)}
\end{figure}
\note[item]{as a consequence of the increased discharge, the ice surface is drawing down near the glacier terminus}
\end{frame}
\begin{frame}{How can we reconcile/understand these changes?}
\begin{figure}
\includegraphics[height=4.15cm]{Joughin2004Fig2} \\
\includegraphics[height=3.20cm]{jib-front-1990-2005-change}
\includegraphics[height=3.20cm]{jib-obs-surface-diff-motyka}
\end{figure}
\end{frame}
\begin{frame}{Answer: use an ice sheet model}
\begin{figure}
\includegraphics[width=8cm]{grn_system_eqns}
\end{figure}
\begin{columns}[c]
\begin{column}{.40\linewidth}
\begin{itemize}
\item ice dynamics
\item thermodynamics
\item surface processes
\end{itemize}
\end{column}
\begin{column}{.55\linewidth}
\begin{itemize}
\item boundary conditions
\item hydrology
\item ice-ocean interaction (e.g. calving)
\end{itemize}
\end{column}
\end{columns}
\note[item]{An ice sheet model solves numerical approximations to the balance equations of mass, momentum}
\note[item]{Ice flow is governed by Stokes equations with a power-law rheology}
\note[item]{Because the viscosity of ice strongly depends on the thermal state, we also need to solve an energy balance equation}
\note[item]{This makes the problem thermomechanically-coupled.}
\end{frame}
\begin{frame}{Why ice sheet modeling is easy}
\begin{columns}[c]
\begin{column}{.28\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{ggstokes}
\\ \scriptsize{G.~G.~Stokes}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{itemize}[<+- | alert@+>]
\item composed of a single, largely homogeneous material
\item flow governed by the Stokes equations known since the mid-19th century
\item flows slowly: we can ignore turbulence, Coriolis and other inertial effects
\item no density/salinity stratification
\item most of what makes atmosphere and ocean flow interesting is missing
\item so what makes the flow of slow, cold, laminar ice interesting?
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Why ice sheet modeling is so hard}
\begin{columns}[c]<1-2>
\begin{column}{.3\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{bw_front_sm}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{block}{Computational costs}
\begin{itemize}
\item solving the Stokes equations is computationally very expensive
\end{itemize}
\end{block}
\end{column}
\end{columns}
\begin{columns}[c]<1>
\begin{column}{.28\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{canale_grande_V05}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{block}{Initial conditions}
\begin{itemize}
\item ice has a long memory
\item ice thickness / subglacial topography is a first order constraint on ice flow
\end{itemize}
\end{block}
\end{column}
\end{columns}
\begin{columns}[c]<1>
\begin{column}{.28\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{storeglacier}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{block}{Boundary conditions}
\begin{itemize}
\item seaward margin boundary condition
\item basal boundary condition
\end{itemize}
\end{block}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{From Navier-Stokes to Stokes}
\begin{block}{Momentum Balance}
\begin{equation}
\underbrace{\rho \frac{\text{d} \mathbf{v}}{\text{d} t}}_{\text{acceleration}} = - \underbrace{\nabla \cdot \mathbf{T'}}_{\text{deviatoric}} + \underbrace{\nabla p}_{\text{isotropic}} + \underbrace{\rho\mathbf{g}}_{\text{gravity}} - \underbrace{2\rho\boldsymbol{\Omega} \times \mathbf{v}}_{\text{Coriolis force}}
\end{equation}
This is the \alert{Navier-Stokes} equation for incompressible flow
\vskip.5em
\begin{itemize}
\item rather complicated
\item do we really need all these terms?
\item \alert{Scale Analysis} is a power- and useful concept to assess the relative importance of terms
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{From Navier-Stokes to Stokes}
\begin{block}{Ice sheets are shallow}
\begin{itemize}
\item below in red is a no-vertical-exaggeration cross section of Greenland at $71^\circ$
\small
\item green and blue: standard vertically-exaggerated cross section
\end{itemize}
\begin{center}
\includegraphics[width=0.4\textwidth]{green_transect} \\
\footnotesize{Figure by E. Bueler}
\end{center}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Scale Analysis}
\begin{block}{Some typical values for an ice sheet}
\begin{equation*}
\begin{array}{rccl}
\text{horizontal extend} & [L] & = & \unit{1000}\kilo\meter\\
\text{vertical extend} & [H] & = & \unit{1}\kilo\meter \\
\text{horizontal velocity} & [U] & = & \unit{100}\meter\power{a}{-1}\\
\text{vertical velocity} & [W] & = & \unit{0.1}\meter\power{a}{-1}\\
\text{pressure} & [P] & = & \rho g[H] = \unit{10}\mega\pascal\\
\text{time-scale} & [T] & = &[L]/[U] = 10^{4}\usk\power{a}{1}\\
\end{array}
\end{equation*}
\end{block}
The aspect ratio $\epsilon$ is defined as
\begin{equation*}
\epsilon = \frac{[H]}{[L]} = \frac{[W]}{[L]} = 10^{-3} \text{ for an ice sheet}
\end{equation*}
\begin{itemize}
\item The scaling argument for valley glaciers is almost the same
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Scale Analysis}
\begin{block}{Froude number}
The \alert{Froude number $Fr$} is the ratio of acceleration and pressure gradient. In the horizontal we have
\begin{equation*}
Fr = \frac{\rho[U]/[t]}{[P]/[L]} = \frac{\rho[U]^{2}/[L]}{\rho g [H]/[L]} = \frac{[U]^{2}}{g[H]} \approx 10^{-15}
\end{equation*}
and in the vertical
\begin{equation*}
Fr = \frac{\rho[W]/[t]}{[P]/[L]} = \frac{\rho[W]^{2}/[L]}{\rho g [H]/[L]} = \frac{[\epsilon U]^{2}}{g[H]} \approx 10^{-21}
\end{equation*}
$\Rightarrow$ The \alert{acceleration term} is \alert{negligible}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Scale Analysis}
\begin{block}{Rossby number}
The \alert{Rossby number $Ro$} is the ratio of acceleration and Coriolis force
\begin{equation*}
Ro = \frac{\rho[U]/[t]}{2\rho\Omega[U]} = \frac{\rho[U]^{2}/[L]}{2\rho\Omega[U]} = \frac{[U]}{2 \Omega [L]} \approx 2\times10^{-8}
\end{equation*}
and thus the Coriolis to pressure gradient is
\begin{equation*}
\frac{2\rho\Omega[U]}{[P]/[L]} = \frac{Fr}{Ro}\approx 5 \times 10^{-8}
\end{equation*}
$\Rightarrow$ The \alert{Coriolis term} is also \alert{negligible}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Stokes Equation}
By neglecting both the
\begin{itemize}
\item acceleration term
\item Coriolis term
\end{itemize}
the Navier-Stokes equation simplifies to
\begin{eqnarray}
\nabla \cdot \left(\eta\left(\nabla \mathbf{v} + \nabla \mathbf{v}^{\text{T}}\right)\right) - \nabla p & = & - \rho \mathbf{g}
\end{eqnarray}
\begin{itemize}
\item gravitational force exerted on the ice is balanced by stress within the ice
\end{itemize}
\end{frame}
\begin{frame}{Constitutive equation: ice viscosity $\eta$}
\begin{columns}
\column[c]{2.25cm}
\begin{figure}
\includegraphics[width=2cm]{figures/fig_4_04}
\end{figure}
\column[c]{9cm}
Numerous lab experiments and field measurements suggest
\begin{equation}
\frac{1}{\eta\left(T,p,\sigma_{\text{e}}\right)} =2A\left(T,\omega,p\right)f\left(\sigma_{\text{e}}\right)
\end{equation}
\begin{equation*}
\begin{array}{rcll}
A(T,\omega,p) & = & A_{0} e^{-(Q+pV)/T} + f(\omega) &\quad \text{Arrhenius law-ish}\\[.25em]
f\left(\sigma_{\text{e}}\right) & = &\sigma_{\text{e}}^{n-1} &\quad \text{power law}
\end{array}
\end{equation*}
\end{columns}
\begin{itemize}
\item $A$ is called \alert{rate factor}, $T$ is temperature, $\omega$ is water content
\item $n$ is the exponent of the flow law, usually taken as $n=3$
\end{itemize}
\vskip1em
This is known as \alert{Glen's flow law} but similar to Norton's flow law for the flow of steel at high temperatures
\end{frame}
\begin{frame}{Viscosity}
\begin{itemize}
\item Because viscosity depends on temperature and water content, we have a thermodynamically-coupled problem
\item[$\Rightarrow$] need to solve an energy balance equation
\item if ice is at the pressure melting point, it becomes a two-phase flow problem and a Stefan problem
\end{itemize}
\end{frame}
\begin{frame}{High Performance Computing (HPC)}
\begin{block}{Exploit modern HPC through parallelism}
\begin{figure}
\includegraphics[width=5.5cm]{jason-parallel}
\hfill
\includegraphics[width=5.5cm]{bw_front_sm}
\end{figure}
\end{block}
\end{frame}
\begin{frame}{Parallel Ice Sheet Model (PISM)}
\includegraphics[width=4cm]{pism-logo}
\begin{itemize}
\item open-source, fully-parallel from start in 2006
\item primary development at UAF, with global user base
\item $>$100k lines of code; mostly C++
\item sustained NASA support \tiny (NAG5-11371, NNX09AJ38C, NNX13AM16G, NNX13AK27G), PI's Bueler, Aschwanden
\end{itemize}
\begin{columns}
\column[c]{4.75cm}
\begin{figure}
\includegraphics[width=\textwidth]{pism-uaf-publications}
\end{figure}
\column[c]{6.25cm}
\includegraphics<1>[width=\textwidth]{pism-users}
\end{columns}
\end{frame}
\begin{frame}{Why ice sheet modeling is so hard}
\begin{columns}[c]<1>
\begin{column}{.3\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{bw_front_sm}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{block}{Computational costs}
\begin{itemize}
\item solving the Stokes equations is computationally very expensive
\end{itemize}
\end{block}
\end{column}
\end{columns}
\begin{columns}[c]<1-2>
\begin{column}{.28\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{canale_grande_V05}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{block}{Initial conditions}
\begin{itemize}
\item ice has a long memory
\item<1> ice thickness / subglacial topography is a first order constraint on ice flow
\end{itemize}
\end{block}
\end{column}
\end{columns}
\begin{columns}[c]<1>
\begin{column}{.28\linewidth}
\begin{figure}
\includegraphics[width=\linewidth]{storeglacier}
\end{figure}
\end{column}
\begin{column}{.67\linewidth}
\begin{block}{Boundary conditions}
\begin{itemize}
\item seaward margin boundary condition
\item basal boundary condition
\end{itemize}
\end{block}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Initialization}
\begin{figure} \footnotesize
\begin{tikzpicture}[node distance = 3cm, auto]
% Place nodes
\node [initialization] (initialization) {initialization};
\node [hindcast faded, right of=initialization] (hindcast) {hindcast};
\node [forecast faded, right of=hindcast] (forecast) {forecast};
\path [arrow line] (initialization) -- (hindcast);
\path [arrow line] (hindcast) -- (forecast);
\end{tikzpicture}
\end{figure}
\begin{itemize}
\item ice sheet model simulations require an initialized ice sheet
\end{itemize}
\begin{columns}[c]
\begin{column}{.5\textwidth}
\begin{figure}
\includegraphics[width=0.25\textwidth]{sr-greenland_topg} \vspace{.1em}
\includegraphics[width=0.25\textwidth]{sr-greenland_thk} \vspace{.1em}
\includegraphics[width=0.25\textwidth]{sr-greenland_temp}
\end{figure}
\end{column}
\begin{column}{.5\textwidth}
distribution of
\begin{itemize}
\item mass (ice thickness)
\item momentum (basal friction)
\item energy (temperature)
\end{itemize}
within the ice sheet
\end{column}
\end{columns}
\vspace{1em}
\begin{columns}[t]
\begin{column}{.5\textwidth}
\begin{block}{Problem}
\begin{itemize}
\item full set of initial conditions not readily available through observations alone
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{block}{Solution}
\begin{itemize}
\item use of assimilation techniques
\begin{itemize}
\item inverse methods
\item past climate initialization (``spin-up'')
\end{itemize}
\end{itemize}
\end{block}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Initialization}
\begin{figure} \footnotesize
\begin{tikzpicture}[node distance = 3cm, auto]
% Place nodes
\node [initialization] (initialization) {initialization};
\node [hindcast faded, right of=initialization] (hindcast) {hindcast};
\node [forecast faded, right of=hindcast] (forecast) {forecast};
\path [arrow line] (initialization) -- (hindcast);
\path [arrow line] (hindcast) -- (forecast);
\end{tikzpicture}
\end{figure}
\begin{transbox}[0.75]
Two general types of methods
\begin{block}{Inverse methods}
\begin{itemize}
\item assimilate present-day data
\item obtain missing data using inverse theory
\end{itemize}
\end{block}
\begin{block}{Past climate initialization}
\begin{itemize}
\item start simulation far back in the past with initial guess
\item forward simulation using information about past climate
\end{itemize}
\end{block}
\end{transbox}
\end{frame}
\begin{frame}{Initialization: inverse methods}
data assimilation using adjont methods
\begin{columns}[c]
\begin{column}{.46\textwidth}
\begin{figure}
\alert{surface velocities} \\
\includegraphics[height=6cm]{greenland-sar}
\end{figure}
\end{column}
\begin{column}{.04\textwidth}
\alert{\Large $\Rightarrow$}
\end{column}
\begin{column}{.46\textwidth}
\begin{figure}
\alert{basal yield stress} \\
\includegraphics[height=6cm]{tauc}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Initialization: glacial cycle}
\begin{figure} \footnotesize
\begin{tikzpicture}[node distance = 3cm, auto]