-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCSR.cpp
258 lines (243 loc) · 10.6 KB
/
CSR.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include "CSR.h"
using namespace std;
bool compEdgeNodePSO(const EdgeNode &e1, const EdgeNode &e2) {
return (e1.label < e2.label) || (e1.label == e2.label && e1.s < e2.s) \
|| (e1.label == e2.label && e1.s == e2.s && e1.t < e2.t);
}
bool compEdgeNodePOS(const EdgeNode &e1, const EdgeNode &e2) {
return (e1.label < e2.label) || (e1.label == e2.label && e1.t < e2.t) \
|| (e1.label == e2.label && e1.t == e2.t && e1.s < e2.s);
}
void MultiLabelCSR::loadGraph(const std::string &filePath, LineSeq lineSeq) {
FILE *f = nullptr;
f = fopen(filePath.c_str(), "r");
if (!f) {
printf("cannot open file\n");
exit(30);
}
// First pass: get n, m, numLabel, type2label (map in-file labels to consecutive ints)
// Get tmpEdgeList in the first pass (no second pass). Assume edges are sorted by SPO
unsigned u, v;
double type;
unordered_map<double, size_t> &type2label = this->label2idx;
std::vector<EdgeNode> tmpEdgeList;
int readRet = -1;
while (true) {
if (lineSeq == sop)
readRet = fscanf(f, "%u%u%lf", &u, &v, &type);
else if (lineSeq == spo)
readRet = fscanf(f, "%u%lf%u", &u, &type, &v);
if (readRet == -1)
break;
if (u > maxNode) maxNode = u;
if (v > maxNode) maxNode = v;
if (type2label.find(type) == type2label.end()) {
unsigned nextLabel = (unsigned)type2label.size();
type2label[type] = nextLabel;
tmpEdgeList.emplace_back(nextLabel, u, v);
} else
tmpEdgeList.emplace_back(type2label[type], u, v);
}
this->outCsr.clear();
this->inCsr.clear();
this->outCsr.resize(type2label.size());
this->inCsr.resize(type2label.size());
fclose(f);
vector<unsigned> *adjVecPtr = nullptr, *offsetVecPtr = nullptr;
unordered_map<unsigned, unsigned> *v2idxPtr = nullptr;
int curNode = -1, curLabel = -1;
// Out
// Sort tmpEdgeList by PSO
sort(std::execution::par, tmpEdgeList.begin(), tmpEdgeList.end(), compEdgeNodePSO);
// TODO: use omp parallel for to handle each label
for (const auto &te : tmpEdgeList) {
if (curLabel != int(te.label)) {
if (curLabel != -1) {
this->outCsr[curLabel].m = adjVecPtr->size();
this->outCsr[curLabel].n = offsetVecPtr->size();
}
curLabel = te.label;
adjVecPtr = &this->outCsr[curLabel].adj;
offsetVecPtr = &this->outCsr[curLabel].offset;
v2idxPtr = &this->outCsr[curLabel].v2idx;
curNode = -1;
}
if (curNode != int(te.s)) {
v2idxPtr->emplace(te.s, offsetVecPtr->size());
offsetVecPtr->emplace_back(adjVecPtr->size());
curNode = te.s;
}
adjVecPtr->emplace_back(te.t);
}
this->outCsr[curLabel].m = adjVecPtr->size();
this->outCsr[curLabel].n = offsetVecPtr->size();
adjVecPtr = nullptr;
offsetVecPtr = nullptr;
v2idxPtr = nullptr;
curNode = -1;
curLabel = -1;
// In
// Sort tmpEdgeList by POS
sort(std::execution::par, tmpEdgeList.begin(), tmpEdgeList.end(), compEdgeNodePOS);
for (const auto &te : tmpEdgeList) {
if (curLabel != int(te.label)) {
if (curLabel != -1) {
this->inCsr[curLabel].m = adjVecPtr->size();
this->inCsr[curLabel].n = offsetVecPtr->size();
}
curLabel = te.label;
adjVecPtr = &this->inCsr[curLabel].adj;
offsetVecPtr = &this->inCsr[curLabel].offset;
v2idxPtr = &this->inCsr[curLabel].v2idx;
curNode = -1;
}
if (curNode != int(te.t)) {
v2idxPtr->emplace(te.t, offsetVecPtr->size());
offsetVecPtr->emplace_back(adjVecPtr->size());
curNode = te.t;
}
adjVecPtr->emplace_back(te.s);
}
this->inCsr[curLabel].m = adjVecPtr->size();
this->inCsr[curLabel].n = offsetVecPtr->size();
}
// v is the vertex ID in the original graph before mapping
void MappedCSR::getAdjIntervalByVert(unsigned v, AdjInterval &aitv) const {
auto iter = v2idx.find(v);
if (iter == v2idx.end()) {
aitv.start = nullptr;
aitv.len = 0;
aitv.offset = 0;
return;
}
aitv.start = &adj;
unsigned idx = iter->second;
size_t len = 0, curOff = offset[idx];
if (idx == n - 1)
len = m - curOff;
else
len = offset[idx + 1] - curOff;
aitv.len = len;
aitv.offset = curOff;
}
bool MappedCSR::operator == (const MappedCSR &c) const {
if (n != c.n || m != c.m)
return false;
unordered_set<unsigned> curNei;
unordered_map<unsigned, unsigned>::const_iterator it;
AdjInterval aitv1, aitv2;
for (const auto &pr : v2idx) {
it = c.v2idx.find(pr.first);
if (it == c.v2idx.end())
return false;
getAdjIntervalByVert(pr.first, aitv1);
c.getAdjIntervalByVert(pr.first, aitv2);
if (aitv1.len != aitv2.len)
return false;
curNei.clear();
curNei.insert(aitv1.start->begin() + aitv1.offset, aitv1.start->begin() + aitv1.offset + aitv1.len);
for (size_t i = 0; i < aitv2.len; i++) {
if (curNei.find((*aitv2.start)[aitv2.offset + i]) == curNei.end())
return false;
}
}
return true;
}
// Union the results in the list to get new result
void QueryResult::assignAsUnion(const std::vector<QueryResult> &qrList) {
this->tryNew();
MappedCSR *curCsrPtr = nullptr, *innerCsrPtr = nullptr;
size_t numQr = qrList.size();
for (size_t i = 0; i < numQr; i++) {
if (qrList[i].hasEpsilon)
this->hasEpsilon = true;
curCsrPtr = qrList[i].csrPtr;
for (const auto &pr : curCsrPtr->v2idx) {
size_t v = pr.first, vIdx = pr.second;
if (this->csrPtr->v2idx.find(v) == this->csrPtr->v2idx.end()) {
this->csrPtr->v2idx[v] = this->csrPtr->offset.size();
this->csrPtr->offset.emplace_back(this->csrPtr->adj.size());
size_t adjStart = curCsrPtr->offset[vIdx], adjEnd = vIdx < curCsrPtr->n - 1 ? curCsrPtr->offset[vIdx + 1] : curCsrPtr->adj.size();
move(curCsrPtr->adj.begin() + adjStart, curCsrPtr->adj.begin() + adjEnd, std::back_inserter(this->csrPtr->adj));
for (size_t j = i + 1; j < numQr; j++) {
innerCsrPtr = qrList[j].csrPtr;
auto it = innerCsrPtr->v2idx.find(v);
if (it != innerCsrPtr->v2idx.end()) {
size_t vIdx2 = it->second;
size_t adjStart2 = innerCsrPtr->offset[vIdx2], adjEnd2 = vIdx2 < innerCsrPtr->n - 1 ? innerCsrPtr->offset[vIdx2 + 1] : innerCsrPtr->adj.size();
move(innerCsrPtr->adj.begin() + adjStart2, innerCsrPtr->adj.begin() + adjEnd2, std::back_inserter(this->csrPtr->adj));
}
}
}
}
}
this->csrPtr->n = this->csrPtr->v2idx.size();
this->csrPtr->m = this->csrPtr->adj.size();
}
// If encounter * or ? type:
// If left & right both has epsilon, mark as has epsilon;
// If only left (right) has epsilon, add all the right (left) results into the final result
void QueryResult::assignAsJoin(const QueryResult &qrLeft, const QueryResult &qrRight) {
this->tryNew();
for (const auto &pr : qrLeft.csrPtr->v2idx) {
unordered_set<size_t> exist;
size_t v = pr.first, vIdx = pr.second;
size_t adjStart = qrLeft.csrPtr->offset[vIdx], adjEnd = vIdx < qrLeft.csrPtr->n - 1 ? qrLeft.csrPtr->offset[vIdx + 1] : qrLeft.csrPtr->adj.size();
for (size_t i = adjStart; i < adjEnd; i++) {
size_t nextNode = qrLeft.csrPtr->adj[i];
auto it = qrRight.csrPtr->v2idx.find(nextNode);
if (it != qrRight.csrPtr->v2idx.end()) {
size_t nextNodeIdx = it->second;
size_t adjStart2 = qrRight.csrPtr->offset[nextNodeIdx], adjEnd2 = nextNodeIdx < qrRight.csrPtr->n - 1 ? qrRight.csrPtr->offset[nextNodeIdx + 1] : qrRight.csrPtr->adj.size();
for (size_t j = adjStart2; j < adjEnd2; j++) {
size_t nextNextNode = qrRight.csrPtr->adj[j];
if (exist.find(nextNextNode) == exist.end()) {
exist.emplace(nextNextNode);
this->csrPtr->adj.emplace_back(nextNextNode);
}
}
}
}
if (!qrLeft.hasEpsilon && qrRight.hasEpsilon) {
for (size_t i = adjStart; i < adjEnd; i++) {
size_t nextNode = qrLeft.csrPtr->adj[i];
if (exist.find(nextNode) == exist.end()) {
exist.emplace(nextNode);
this->csrPtr->adj.emplace_back(nextNode);
}
}
} else if (qrLeft.hasEpsilon && !qrRight.hasEpsilon) {
auto it = qrRight.csrPtr->v2idx.find(v);
if (it != qrRight.csrPtr->v2idx.end()) {
size_t vIdx2 = it->second;
size_t adjStart2 = qrRight.csrPtr->offset[vIdx2], adjEnd2 = vIdx2 < qrRight.csrPtr->n - 1 ? qrRight.csrPtr->offset[vIdx2 + 1] : qrRight.csrPtr->adj.size();
for (size_t j = adjStart2; j < adjEnd2; j++) {
size_t nextNextNode = qrRight.csrPtr->adj[j];
if (exist.find(nextNextNode) == exist.end()) {
exist.emplace(nextNextNode);
this->csrPtr->adj.emplace_back(nextNextNode);
}
}
}
}
if (!exist.empty()) {
this->csrPtr->v2idx[v] = this->csrPtr->offset.size();
this->csrPtr->offset.emplace_back(this->csrPtr->adj.size() - exist.size());
}
}
if (qrLeft.hasEpsilon && !qrRight.hasEpsilon) {
// Handle the remaining results on the right
for (const auto &pr : qrRight.csrPtr->v2idx) {
size_t v = pr.first;
if (this->csrPtr->v2idx.find(v) == this->csrPtr->v2idx.end()) {
this->csrPtr->v2idx[v] = this->csrPtr->offset.size();
this->csrPtr->offset.emplace_back(this->csrPtr->adj.size());
size_t adjStart = qrRight.csrPtr->offset[pr.second], adjEnd = pr.second < qrRight.csrPtr->n - 1 ? qrRight.csrPtr->offset[pr.second + 1] : qrRight.csrPtr->adj.size();
move(qrRight.csrPtr->adj.begin() + adjStart, qrRight.csrPtr->adj.begin() + adjEnd, std::back_inserter(this->csrPtr->adj));
}
}
} else if (qrLeft.hasEpsilon && qrRight.hasEpsilon)
this->hasEpsilon = true;
this->csrPtr->n = this->csrPtr->v2idx.size();
this->csrPtr->m = this->csrPtr->adj.size();
}