-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (65 loc) · 3.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import time
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from torch.utils.tensorboard import SummaryWriter
if __name__ == '__main__':
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('num training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
writer = SummaryWriter()
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
if opt.stage2:
try:
loss_gen_adv,loss_gen_recon_x_b,loss_gen_recon_s_b,loss_gen_recon_c_a,loss_kl_s_b,loss_kl_c_a,classify_loss = model.optimize_parameters(epoch)
writer.add_scalar("loss_gen_adv/train", loss_gen_adv, total_steps)
writer.add_scalar("loss_gen_recon_x_b/train", loss_gen_recon_x_b, total_steps)
writer.add_scalar("loss_gen_recon_s_b/train", loss_gen_recon_s_b, total_steps)
writer.add_scalar("loss_gen_recon_c_a/train", loss_gen_recon_c_a, total_steps)
writer.add_scalar("loss_kl_s_b/train", loss_kl_s_b, total_steps)
writer.add_scalar("loss_kl_c_a/train", loss_kl_c_a, total_steps)
writer.add_scalar("classify_loss/train", classify_loss, total_steps)
writer.flush()
except:
classifier_loss = model.optimize_parameters(epoch)
writer.add_scalar("classifier_loss/pretrain", classifier_loss, total_steps)
writer.flush()
else:
model.optimize_parameters(epoch)
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
writer.close()