-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathpic.py
154 lines (120 loc) · 4.1 KB
/
pic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import matplotlib.pyplot as plt
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve
"""
Create Your Own Plasma PIC Simulation (With Python)
Philip Mocz (2020) Princeton Univeristy, @PMocz
Simulate the 1D Two-Stream Instability
Code calculates the motions of electron under the Poisson-Maxwell equation
using the Particle-In-Cell (PIC) method
"""
def getAcc( pos, Nx, boxsize, n0, Gmtx, Lmtx ):
"""
Calculate the acceleration on each particle due to electric field
pos is an Nx1 matrix of particle positions
Nx is the number of mesh cells
boxsize is the domain [0,boxsize]
n0 is the electron number density
Gmtx is an Nx x Nx matrix for calculating the gradient on the grid
Lmtx is an Nx x Nx matrix for calculating the laplacian on the grid
a is an Nx1 matrix of accelerations
"""
# Calculate Electron Number Density on the Mesh by
# placing particles into the 2 nearest bins (j & j+1, with proper weights)
# and normalizing
N = pos.shape[0]
dx = boxsize / Nx
j = np.floor(pos/dx).astype(int)
jp1 = j+1
weight_j = ( jp1*dx - pos )/dx
weight_jp1 = ( pos - j*dx )/dx
jp1 = np.mod(jp1, Nx) # periodic BC
n = np.bincount(j[:,0], weights=weight_j[:,0], minlength=Nx);
n += np.bincount(jp1[:,0], weights=weight_jp1[:,0], minlength=Nx);
n *= n0 * boxsize / N / dx
# Solve Poisson's Equation: laplacian(phi) = n-n0
phi_grid = spsolve(Lmtx, n-n0, permc_spec="MMD_AT_PLUS_A")
# Apply Derivative to get the Electric field
E_grid = - Gmtx @ phi_grid
# Interpolate grid value onto particle locations
E = weight_j * E_grid[j] + weight_jp1 * E_grid[jp1]
a = -E
return a
def main():
""" Plasma PIC simulation """
# Simulation parameters
N = 40000 # Number of particles
Nx = 400 # Number of mesh cells
t = 0 # current time of the simulation
tEnd = 50 # time at which simulation ends
dt = 1 # timestep
boxsize = 50 # periodic domain [0,boxsize]
n0 = 1 # electron number density
vb = 3 # beam velocity
vth = 1 # beam width
A = 0.1 # perturbation
plotRealTime = True # switch on for plotting as the simulation goes along
# Generate Initial Conditions
np.random.seed(42) # set the random number generator seed
# construct 2 opposite-moving Guassian beams
pos = np.random.rand(N,1) * boxsize
vel = vth * np.random.randn(N,1) + vb
Nh = int(N/2)
vel[Nh:] *= -1
# add perturbation
vel *= (1 + A*np.sin(2*np.pi*pos/boxsize))
# Construct matrix G to computer Gradient (1st derivative)
dx = boxsize/Nx
e = np.ones(Nx)
diags = np.array([-1,1])
vals = np.vstack((-e,e))
Gmtx = sp.spdiags(vals, diags, Nx, Nx);
Gmtx = sp.lil_matrix(Gmtx)
Gmtx[0,Nx-1] = -1
Gmtx[Nx-1,0] = 1
Gmtx /= (2*dx)
Gmtx = sp.csr_matrix(Gmtx)
# Construct matrix L to computer Laplacian (2nd derivative)
diags = np.array([-1,0,1])
vals = np.vstack((e,-2*e,e))
Lmtx = sp.spdiags(vals, diags, Nx, Nx);
Lmtx = sp.lil_matrix(Lmtx)
Lmtx[0,Nx-1] = 1
Lmtx[Nx-1,0] = 1
Lmtx /= dx**2
Lmtx = sp.csr_matrix(Lmtx)
# calculate initial gravitational accelerations
acc = getAcc( pos, Nx, boxsize, n0, Gmtx, Lmtx )
# number of timesteps
Nt = int(np.ceil(tEnd/dt))
# prep figure
fig = plt.figure(figsize=(5,4), dpi=80)
# Simulation Main Loop
for i in range(Nt):
# (1/2) kick
vel += acc * dt/2.0
# drift (and apply periodic boundary conditions)
pos += vel * dt
pos = np.mod(pos, boxsize)
# update accelerations
acc = getAcc( pos, Nx, boxsize, n0, Gmtx, Lmtx )
# (1/2) kick
vel += acc * dt/2.0
# update time
t += dt
# plot in real time - color 1/2 particles blue, other half red
if plotRealTime or (i == Nt-1):
plt.cla()
plt.scatter(pos[0:Nh],vel[0:Nh],s=.4,color='blue', alpha=0.5)
plt.scatter(pos[Nh:], vel[Nh:], s=.4,color='red', alpha=0.5)
plt.axis([0,boxsize,-6,6])
plt.pause(0.001)
# Save figure
plt.xlabel('x')
plt.ylabel('v')
plt.savefig('pic.png',dpi=240)
plt.show()
return 0
if __name__== "__main__":
main()