-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathnovelty_detector.py
229 lines (169 loc) · 8.65 KB
/
novelty_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright 2018-2020 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch.utils.data
from torchvision.utils import save_image
from net import *
from torch.autograd import Variable
from utils.jacobian import compute_jacobian_autograd
import numpy as np
import logging
import os
import scipy.optimize
from dataloading import make_datasets, make_dataloader, create_set_with_outlier_percentage
from evaluation import get_f1, evaluate
from utils.threshold_search import find_maximum
from utils.save_plot import save_plot
import matplotlib.pyplot as plt
import scipy.stats
from scipy.special import loggamma
def r_pdf(x, bins, counts):
if bins[0] < x < bins[-1]:
i = np.digitize(x, bins) - 1
return max(counts[i], 1e-308)
if x < bins[0]:
return max(counts[0] * x / bins[0], 1e-308)
return 1e-308
def extract_statistics(cfg, train_set, inliner_classes, E, G):
zlist = []
rlist = []
data_loader = make_dataloader(train_set, cfg.TEST.BATCH_SIZE, torch.cuda.current_device())
for label, x in data_loader:
x = x.view(-1, cfg.MODEL.INPUT_IMAGE_SIZE * cfg.MODEL.INPUT_IMAGE_SIZE)
z = E(x.view(-1, 1, cfg.MODEL.INPUT_IMAGE_SIZE, cfg.MODEL.INPUT_IMAGE_SIZE))
recon_batch = G(z)
z = z.squeeze()
recon_batch = recon_batch.squeeze().cpu().detach().numpy()
x = x.squeeze().cpu().detach().numpy()
z = z.cpu().detach().numpy()
for i in range(x.shape[0]):
distance = np.linalg.norm(x[i].flatten() - recon_batch[i].flatten())
rlist.append(distance)
zlist.append(z)
zlist = np.concatenate(zlist)
counts, bin_edges = np.histogram(rlist, bins=30, normed=True)
if cfg.MAKE_PLOTS:
plt.plot(bin_edges[1:], counts, linewidth=2)
save_plot(r"Distance, $\left \|\| I - \hat{I} \right \|\|$",
'Probability density',
r"PDF of distance for reconstruction error, $p\left(\left \|\| I - \hat{I} \right \|\| \right)$",
cfg.OUTPUT_FOLDER + '/mnist_%s_reconstruction_error.pdf' % ("_".join([str(x) for x in inliner_classes])))
for i in range(cfg.MODEL.LATENT_SIZE):
plt.hist(zlist[:, i], bins='auto', histtype='step')
if cfg.MAKE_PLOTS:
save_plot(r"$z$",
'Probability density',
r"PDF of embeding $p\left(z \right)$",
cfg.OUTPUT_FOLDER + '/mnist_%s_embedding.pdf' % ("_".join([str(x) for x in inliner_classes])))
def fmin(func, x0, args, disp):
x0 = [2.0, 0.0, 1.0]
return scipy.optimize.fmin(func, x0, args, xtol=1e-12, ftol=1e-12, disp=0)
gennorm_param = np.zeros([3, cfg.MODEL.LATENT_SIZE])
for i in range(cfg.MODEL.LATENT_SIZE):
betta, loc, scale = scipy.stats.gennorm.fit(zlist[:, i], optimizer=fmin)
gennorm_param[0, i] = betta
gennorm_param[1, i] = loc
gennorm_param[2, i] = scale
return counts, bin_edges, gennorm_param
def main(folding_id, inliner_classes, ic, total_classes, mul, folds=5, cfg=None):
logger = logging.getLogger("logger")
torch.set_default_tensor_type('torch.cuda.FloatTensor')
device = torch.cuda.current_device()
print("Running on ", torch.cuda.get_device_name(device))
train_set, valid_set, test_set = make_datasets(cfg, folding_id, inliner_classes)
print('Validation set size: %d' % len(valid_set))
print('Test set size: %d' % len(test_set))
train_set.shuffle()
G = Generator(cfg.MODEL.LATENT_SIZE, channels=cfg.MODEL.INPUT_IMAGE_CHANNELS)
E = Encoder(cfg.MODEL.LATENT_SIZE, channels=cfg.MODEL.INPUT_IMAGE_CHANNELS)
G.load_state_dict(torch.load(os.path.join(cfg.OUTPUT_FOLDER, "models/Gmodel_%d_%d.pkl" %(folding_id, ic))))
E.load_state_dict(torch.load(os.path.join(cfg.OUTPUT_FOLDER, "models/Emodel_%d_%d.pkl" %(folding_id, ic))))
G.eval()
E.eval()
sample = torch.randn(64, cfg.MODEL.LATENT_SIZE).to(device)
sample = G(sample.view(-1, cfg.MODEL.LATENT_SIZE, 1, 1)).cpu()
save_image(sample.view(64, cfg.MODEL.INPUT_IMAGE_CHANNELS, cfg.MODEL.INPUT_IMAGE_SIZE, cfg.MODEL.INPUT_IMAGE_SIZE), 'sample.png')
counts, bin_edges, gennorm_param = extract_statistics(cfg, train_set, inliner_classes, E, G)
def run_novely_prediction_on_dataset(dataset, percentage, concervative=False):
dataset.shuffle()
dataset = create_set_with_outlier_percentage(dataset, inliner_classes, percentage, concervative)
result = []
gt_novel = []
data_loader = make_dataloader(dataset, cfg.TEST.BATCH_SIZE, torch.cuda.current_device())
include_jacobian = True
N = (cfg.MODEL.INPUT_IMAGE_SIZE * cfg.MODEL.INPUT_IMAGE_SIZE - cfg.MODEL.LATENT_SIZE) * mul
logC = loggamma(N / 2.0) - (N / 2.0) * np.log(2.0 * np.pi)
def logPe_func(x):
# p_{\|W^{\perp}\|} (\|w^{\perp}\|)
# \| w^{\perp} \|}^{m-n}
return logC - (N - 1) * np.log(x) + np.log(r_pdf(x, bin_edges, counts))
for label, x in data_loader:
x = x.view(-1, cfg.MODEL.INPUT_IMAGE_CHANNELS * cfg.MODEL.INPUT_IMAGE_SIZE * cfg.MODEL.INPUT_IMAGE_SIZE)
x = Variable(x.data, requires_grad=True)
z = E(x.view(-1, cfg.MODEL.INPUT_IMAGE_CHANNELS, cfg.MODEL.INPUT_IMAGE_SIZE, cfg.MODEL.INPUT_IMAGE_SIZE))
recon_batch = G(z)
z = z.squeeze()
if include_jacobian:
J = compute_jacobian_autograd(x, z)
J = J.cpu().numpy()
z = z.cpu().detach().numpy()
recon_batch = recon_batch.squeeze().cpu().detach().numpy()
x = x.squeeze().cpu().detach().numpy()
for i in range(x.shape[0]):
if include_jacobian:
u, s, vh = np.linalg.svd(J[i, :, :], full_matrices=False)
logD = -np.sum(np.log(np.abs(s))) # | \mathrm{det} S^{-1} |
# logD = np.log(np.abs(1.0/(np.prod(s))))
else:
logD = 0
p = scipy.stats.gennorm.pdf(z[i], gennorm_param[0, :], gennorm_param[1, :], gennorm_param[2, :])
logPz = np.sum(np.log(p))
# Sometimes, due to rounding some element in p may be zero resulting in Inf in logPz
# In this case, just assign some large negative value to make sure that the sample
# is classified as unknown.
if not np.isfinite(logPz):
logPz = -1000
distance = np.linalg.norm(x[i].flatten() - recon_batch[i].flatten())
logPe = logPe_func(distance)
P = logD + logPz + logPe
result.append(P)
gt_novel.append(label[i].item() in inliner_classes)
result = np.asarray(result, dtype=np.float32)
ground_truth = np.asarray(gt_novel, dtype=np.float32)
return result, ground_truth
def compute_threshold(valid_set, percentage):
y_scores, y_true = run_novely_prediction_on_dataset(valid_set, percentage, concervative=True)
minP = min(y_scores) - 1
maxP = max(y_scores) + 1
y_false = np.logical_not(y_true)
def evaluate(e):
y = np.greater(y_scores, e)
true_positive = np.sum(np.logical_and(y, y_true))
false_positive = np.sum(np.logical_and(y, y_false))
false_negative = np.sum(np.logical_and(np.logical_not(y), y_true))
return get_f1(true_positive, false_positive, false_negative)
best_th, best_f1 = find_maximum(evaluate, minP, maxP, 1e-4)
logger.info("Best e: %f best f1: %f" % (best_th, best_f1))
return best_th
def test(test_set, percentage, threshold):
y_scores, y_true = run_novely_prediction_on_dataset(test_set, percentage, concervative=True)
return evaluate(logger, percentage, inliner_classes, y_scores, threshold, y_true)
percentages = cfg.DATASET.PERCENTAGES
# percentages = [50]
results = {}
for p in percentages:
plt.figure(num=None, figsize=(8, 6), dpi=180, facecolor='w', edgecolor='k')
e = compute_threshold(valid_set, p)
results[p] = test(test_set, p, e)
return results