-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommons.py
175 lines (153 loc) · 7.51 KB
/
commons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gzip
import math
import matplotlib.pyplot as plt
import numpy as np
import pickle
import pymc
import seaborn
import sympy as sp
# Output fuctions
def plot(trace, combination, var_name, trunc9999=False, weights=None):
'''
:param trace: ndarray to plot
:param combination: name of combination (can use just its number)
:param var_name: name of variable
:param trunc9999: should we truncate tails at HPD 99.99 level in plot? It crops outliers and reduces domain
:param weights: weights of points. None for equal weights.
:return: None
'''
is_weighted = weights is not None
if not is_weighted:
weights = np.array([1]*len(trace))
hpd9999 = pymc.utils.hpd(trace, 1.-0.9999)
hpd95 = pymc.utils.hpd(trace, 1.-0.95)
hpd683 = pymc.utils.hpd(trace, 1.-0.683)
trace_mean = trace.mean()
ticks = []
plt.autoscale(tight=True)
plt.tight_layout()
ax = plt.subplot(111)
plt.xticks(rotation=70)
trace_for_draw = trace
if trunc9999:
trace_for_draw = trace[(hpd9999[0] < trace) & (trace < hpd9999[1])]
plt.hist(trace_for_draw, weights=weights, histtype='stepfilled', bins=100, alpha=0.75, color="#A60628", normed=True)
if not is_weighted:
plt.axvline(hpd95[0], color='black', alpha=0.55, linestyle='dashed', linewidth=1)
plt.axvline(hpd95[1], color='black', alpha=0.55, linestyle='dashed', linewidth=1)
plt.axvline(hpd683[0], color='black', alpha=0.95, linestyle='dashed', linewidth=1)
plt.axvline(hpd683[1], color='black', alpha=0.95, linestyle='dashed', linewidth=1)
plt.axvline(trace_mean, color='black', alpha=0.95, linestyle='dashed', linewidth=2)
ticks = hpd9999.tolist() + hpd95.tolist() + hpd683.tolist() + [trace_mean]
ax.set_xticks(ticks)
ax.set_xticklabels(list("%.4f" % tick for tick in ticks))
ax.set_yticks([])
plt.title("Posterior distributions of the variable {}".format(var_name))
plt.tight_layout()
'''ax = plt.subplot(212)
ax.set_xticks([])
plt.plot(trace)
plt.axhline(hpd95[0], color='black', alpha=0.55, linestyle='dashed', linewidth=1)
plt.axhline(hpd95[1], color='black', alpha=0.55, linestyle='dashed', linewidth=1)
plt.axhline(hpd683[0], color='black', alpha=0.95, linestyle='dashed', linewidth=1)
plt.axhline(hpd683[1], color='black', alpha=0.95, linestyle='dashed', linewidth=1)
plt.axhline(trace_mean, color='black', alpha=0.95, linestyle='dashed', linewidth=2)
plt.title("Values of the trace for {}".format(var_name))
plt.tight_layout()'''
plt.savefig('output/{}_{}.png'.format(combination, var_name))
plt.clf()
with open('output/hpd_95_{}_{}.txt'.format(combination, var_name), 'w+') as file:
file.writelines("{} {}".format(hpd95[0], hpd95[1]))
with open('output/hpd_683_{}_{}.txt'.format(combination, var_name), 'w+') as file:
file.writelines("{} {}".format(hpd683[0], hpd683[1]))
def plot_2d_hist(x, y, fname):
seaborn.jointplot(x, y, kind="hex", stat_func=None)
plt.savefig(fname)
plt.clf()
def print_hpd(var, lvl):
print("{} {}% HPD: {}".format(var.__name__, int(lvl*100), pymc.utils.hpd(var.trace[:] , 1.-lvl)))
def degToRad(degs):
return degs*(math.pi/180)
def cos(x):
return math.cos(degToRad(x))
def sin(x):
return math.sin(degToRad(x))
def x_plus(gamma, deltaB, rB):
return rB*cos(deltaB + gamma)
def y_plus(gamma, deltaB, rB):
return rB*sin(deltaB + gamma)
def x_minus(gamma, deltaB, rB):
return rB*cos(deltaB - gamma)
def y_minus(gamma, deltaB, rB):
return rB*sin(deltaB - gamma)
def load(fname = "output/raw.dat.gz"):
with gzip.open(fname, 'r') as file:
return pickle.load(file)
gamma = sp.Symbol('gamma')
deltaB = sp.Symbol('deltaB')
rB = sp.Symbol('rB')
y_theo = np.array([x_plus, y_plus, x_minus, y_minus]).T
# gamma = 70, deltaB = 120, rB = 0.1
direct = {'y_corr': np.mat([[1.000, 0.000, 0.000, 0.000],
[0.000, 1.000, 0.000, 0.000],
[0.000, 0.000, 1.000, 0.000],
[0.000, 0.000, 0.000, 1.000]]),
'y_exp': np.array([-0.09848, -0.01736, 0.06427, 0.0766]),
'y_var': np.array([0.00000001, 0.00000001, 0.00000001, 0.00000001])}
direct['y_corr_inv'] = np.linalg.inv(direct["y_corr"])
direct['y_std'] = np.sqrt(direct["y_var"])
direct['y_covar'] = np.mat(np.diag(direct['y_std']))*direct["y_corr"]*np.mat(np.diag(direct['y_std']))
direct['y_covar_inv'] = np.linalg.inv(direct['y_covar'])
summer2015 = {'y_corr': np.mat([[1.000, 0.093, 0.000,-0.000],
[0.093, 1.000,-0.000, 0.000],
[0.000,-0.000, 1.000,-0.132],
[-0.000,0.000,-0.132, 1.000]]),
'y_exp': np.array([-0.085, -0.027, 0.044, 0.090]),
'y_var': np.array([(0.023**2 + 0.004**2), (0.023**2 + 0.010**2), (0.023**2 + 0.005**2), (0.026**2 + 0.014**2)])}
summer2015['y_corr_inv'] = np.linalg.inv(summer2015["y_corr"])
summer2015['y_std'] = np.sqrt(summer2015["y_var"])
summer2015['y_covar'] = np.mat(np.diag(summer2015['y_std']))*summer2015["y_corr"]*np.mat(np.diag(summer2015['y_std']))
summer2015['y_covar_inv'] = np.linalg.inv(summer2015['y_covar'])
lumi1fb = {'y_stat_corr': np.mat([
[ 1.000, 0.170,-0.000,-0.000],
[ 0.170, 1.000,-0.000,-0.000],
[-0.000,-0.000, 1.000,-0.110],
[-0.000,-0.000,-0.110, 1.000]]),
'y_sys_corr': np.mat([
[ 1.000, 0.360,-0.000,-0.000],
[ 0.360, 1.000,-0.000,-0.000],
[-0.000,-0.000, 1.000,-0.050],
[-0.000,-0.000,-0.050, 1.000]]),
'y_exp': np.array([-0.103, -0.009, 0.000, 0.027]),
'y_stat_err': np.array([0.045, 0.037, 0.043, 0.052]),
'y_sys_err': np.array([(0.018**2 + 0.014**2)**0.5,
(0.008**2 + 0.030**2)**0.5,
(0.015**2 + 0.006**2)**0.5,
(0.008**2 + 0.023**2)**0.5])}
lumi1fb['y_covar'] = np.mat(np.diag(lumi1fb['y_stat_err']))*lumi1fb["y_stat_corr"]*np.mat(np.diag(lumi1fb['y_stat_err'])) + \
np.mat(np.diag(lumi1fb['y_sys_err']))*lumi1fb["y_sys_corr"]*np.mat(np.diag(lumi1fb['y_sys_err']))
lumi1fb['y_covar_inv'] = np.linalg.inv(lumi1fb['y_covar'])
lumi3fb = {
'y_stat_corr': np.mat([
[ 1.000, 0.106,-0.136,-0.186],
[ 0.106, 1.000,-0.031,-0.074],
[-0.136,-0.031, 1.000,-0.053],
[-0.186,-0.074,-0.053, 1.000]]),
'y_sys_corr': np.mat([
[ 1.000, 0.000,-0.000,-0.000],
[ 0.000, 1.000,-0.000,-0.000],
[-0.000,-0.000, 1.000,-0.000],
[-0.000,-0.000,-0.000, 1.000]]),
'y_exp': np.array([-8.85e-2, -0.12e-2, 3.46e-2, 7.91e-2]),
'y_stat_err': np.array([3.12e-2, 3.65e-2, 2.89e-2/5, 3.83e-2]),
'y_sys_err': np.array([0,0,0,0])}
lumi3fb['y_covar'] = np.mat(np.diag(lumi3fb['y_stat_err']))*lumi3fb["y_stat_corr"]*np.mat(np.diag(lumi3fb['y_stat_err'])) + \
np.mat(np.diag(lumi3fb['y_sys_err']))*lumi3fb["y_sys_corr"]*np.mat(np.diag(lumi3fb['y_sys_err']))
lumi3fb['y_covar_inv'] = np.linalg.inv(lumi3fb['y_covar'])
y_theo_sym = sp.Matrix([rB*sp.cos((deltaB + gamma)*(math.pi/180)),
rB*sp.sin((deltaB + gamma)*(math.pi/180)),
rB*sp.cos((deltaB - gamma)*(math.pi/180)),
rB*sp.sin((deltaB - gamma)*(math.pi/180))])
ys = sp.Matrix([gamma, deltaB, rB])
bounds = {1: ((0,180), (0,180), (0.0001, 0.5)),
4: ((-180,0),(-180,0),(0.0001, 0.5))}