forked from openvinotoolkit/openvino_contrib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.py
76 lines (64 loc) · 2.47 KB
/
fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (C) 2018-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import torch
from packaging import version
from typing import List, Tuple, Union
def roll(
data: torch.Tensor,
shift: Union[int, Union[Tuple[int, ...], List[int]]],
dims: Union[int, Union[Tuple, List]],
) -> torch.Tensor:
"""
Similar to numpy roll but applies to pytorch tensors.
Parameters
----------
data : torch.Tensor
shift: tuple, int
dims : tuple, list or int
Returns
-------
torch.Tensor
"""
if isinstance(shift, (tuple, list)) and isinstance(dims, (tuple, list)):
if len(shift) != len(dims):
raise ValueError(f"Length of shifts and dimensions should be equal. Got {len(shift)} and {len(dims)}.")
for curr_shift, curr_dim in zip(shift, dims):
data = roll(data, curr_shift, curr_dim)
return data
dim_index = dims
shift = shift % data.size(dims)
if shift == 0:
return data
left_part = data.narrow(dim_index, 0, data.size(dims) - shift)
right_part = data.narrow(dim_index, data.size(dims) - shift, shift)
return torch.cat([right_part, left_part], dim=dim_index)
def fftshift(data: torch.Tensor, dims) -> torch.Tensor:
shift = [data.size(curr_dim) // 2 for curr_dim in dims]
return roll(data, shift, dims)
def ifftshift(data: torch.Tensor, dims) -> torch.Tensor:
shift = [(data.size(curr_dim) + 1) // 2 for curr_dim in dims]
return roll(data, shift, dims)
class FFT(torch.autograd.Function):
@staticmethod
def symbolic(g, x, inverse, centered, dims):
dims = torch.tensor(dims)
dims = g.op("Constant", value_t=dims)
return g.op('FFT', x, dims, inverse_i=inverse, centered_i=centered)
@staticmethod
def forward(self, x, inverse, centered, dims):
# https://pytorch.org/docs/stable/torch.html#torch.fft
if centered:
x = ifftshift(x, dims)
if version.parse(torch.__version__) >= version.parse("1.8.0"):
func = torch.fft.ifftn if inverse else torch.fft.fftn
x = torch.view_as_complex(x)
y = func(x, dim=dims, norm="ortho")
y = torch.view_as_real(y)
else:
signal_ndim = max(dims)
assert dims == list(range(1, signal_ndim + 1))
func = torch.ifft if inverse else torch.fft
y = func(input=x, signal_ndim=signal_ndim, normalized=True)
if centered:
y = fftshift(y, dims)
return y