-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_clustering.py
336 lines (295 loc) · 11.1 KB
/
train_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import dataclasses
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
import torch
from sklearn.cluster import MiniBatchKMeans
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
EvalPrediction,
GlueDataset,
)
from transformers import GlueDataTrainingArguments as DataTrainingArguments
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
from core import Clustering_Processor
logger = logging.getLogger(__name__)
@dataclass
class Clustering_Arguments:
batch_size: Optional[int] = field(default=None, metadata={"help": "Batch size to use for MiniBatchKMeans"})
num_clusters: Optional[int] = field(default=None, metadata={"help": "number of clusters to obtain"})
embedding_path: Optional[str] = field(default=None,
metadata={"help": "Path from where embeddings will be loaded"}
)
data_pct: Optional[float] = field(
default=None, metadata={"help": "specifies how much data will be used for progressive sampling"}
)
cluster_data_pct: Optional[float] = field(
default=None, metadata={"help": "sample specified pct of data from clusters"})
num_clusters_elements: Optional[int] = field(
default=None,
metadata={
"help": (
"specifies the number of clusters that will be used. If this"
" is enabled, `cluster_data_pct` should be set to None"
)
},
)
cluster_output_path: Optional[str] = field(
default=None, metadata={"help": "Path where embedding will be stored"}
)
cluster_only: Optional[bool] = field(default=False, metadata={"help": "Run only clustering"})
random_state: int = field(
default=0,
metadata={"help": "for producing deterministic results with MiniBatchKMeans"},
)
cluster_input_path: Optional[str] = field(
default=None,
metadata={"help": "Path from there clustering labels will be loaded"},
)
cluster_n_jobs: Optional[int] = field(
default=-1,
metadata={"help": "Number of parallel processes to run for clustering"},
)
centroid_elements_only: Optional[bool] = field(
default=False,
metadata={"help": "Specify to use cluster centroid elements for training"},
)
use_diverse_stream: Optional[bool] = field(
default=False,
metadata={"help": "Use diverse stream from clusters"}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": (
"Path to pretrained model or model identifier from"
" huggingface.co/models"
)
}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": (
"Where do you want to store the pretrained models downloaded from s3"
)
},
)
def main():
parser = HfArgumentParser(
(
ModelArguments,
DataTrainingArguments,
TrainingArguments,
Clustering_Arguments,
)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
(
model_args,
data_args,
training_args,
clustering_args,
) = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and"
" is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s,"
" 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
if not clustering_args.cluster_input_path:
try:
os.path.isfile(clustering_args.embedding_path)
except FileNotFoundError:
raise ValueError(f"Embeddings not found at %s", clustering_args.embedding_path)
if clustering_args.embedding_path:
logger.info("Loading embeddings")
embeddings = torch.load(clustering_args.embedding_path)
embeddings = np.concatenate(embeddings)
logging.info("*** Loaded %s samples ***", len(embeddings))
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
if clustering_args.cluster_output_path and not clustering_args.cluster_input_path:
logging.info("Forming clusters")
clustering = MiniBatchKMeans(
n_clusters=clustering_args.num_clusters,
batch_size=clustering_args.batch_size,
random_state=clustering_args.random_state,
).fit(embeddings)
torch.save(vars(clustering), clustering_args.cluster_output_path)
logging.info(
"*** INFO: Clustering labels saved at %s",
clustering_args.cluster_output_path,
)
if clustering_args.cluster_only:
sys.exit(0)
else:
clustering = torch.load(clustering_args.cluster_input_path)
logging.info("INFO: Clustering labels loaded")
if training_args.do_train:
if clustering_args.data_pct and clustering_args.num_clusters_elements:
raise ValueError("You can either specify `data_pct` or `num_clusters`")
if clustering_args.num_clusters_elements:
assert clustering_args.num_clusters >= clustering_args.num_clusters_elements
train_dataset = GlueDataset(data_args, tokenizer)
clustering_proc = Clustering_Processor(clustering)
if clustering_args.cluster_data_pct:
cluster_indices = clustering_proc.get_cluster_indices_by_pct(
clustering_args.cluster_data_pct, len(train_dataset)
)
elif clustering_args.num_clusters_elements:
cluster_indices = clustering_proc.get_cluster_indices_by_num(
clustering_args.num_clusters_elements
)
elif clustering_args.centroid_elements_only:
cluster_indices = clustering_proc.get_cluster_indices_from_centroid(
embeddings
)
elif clustering_args.use_diverse_stream:
cluster_indices = clustering_proc.get_diverse_stream()
assert len(cluster_indices) == len(train_dataset)
if clustering_args.data_pct:
logging.info("Length of cluster indices " + str(len(cluster_indices)))
pct = int((len(cluster_indices)*clustering_args.data_pct)/100)
cluster_indices = cluster_indices[:pct]
train_dataset = torch.utils.data.Subset(train_dataset, cluster_indices)
logging.info("Length of dataset "+ str(len(train_dataset)))
# SANITY CHECK
if len(train_dataset) < 10:
raise ValueError("Length of Dataset is less than 10")
eval_dataset = (
GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
if training_args.do_eval
else None
)
def compute_metrics(p: EvalPrediction) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return glue_compute_metrics(data_args.task_name, preds, p.label_ids)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path
if os.path.isdir(model_args.model_name_or_path)
else None
)
trainer.save_model()
# Evaluation
results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.append(
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev")
)
for eval_dataset in eval_datasets:
result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(
training_args.output_dir,
f"eval_results_{eval_dataset.args.task_name}.txt",
)
with open(output_eval_file, "w") as writer:
logger.info(
"***** Eval results {} *****".format(eval_dataset.args.task_name)
)
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()