-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_siamese.py
219 lines (193 loc) · 6.96 KB
/
train_siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import dataclasses
import logging
import os
from dataclasses import dataclass, field
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
EvalPrediction,
GlueDataset,
)
from transformers import GlueDataTrainingArguments as DataTrainingArguments
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
from core.siamese_trainer import SiameseTrainer
from datasets.siamese_dataset import SiameseGlueDataset, siamese_data_collator
from models.siamese_model import SiameseTransformer
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to SiameseTransformer
"""
model_name: str = field(
metadata={
"help": (
"Path to pretrained model or model identifier from"
" huggingface.co/models"
)
}
)
model_weights_path: str = field(
default=None, metadata={"help": "Path from where weights will be loaded"}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": (
"Where do you want to store the pretrained models downloaded from s3"
)
},
)
def main():
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and"
" is not empty. Use --overwrite_output_dir to overcome."
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s,"
" 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
set_seed(training_args.seed)
try:
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_weights_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
model = SiameseTransformer(model_args, config)
if model_args.model_weights_path:
model_path = os.path.join(model_args.model_weights_path, "pytorch_model.bin")
if os.path.isfile(model_path):
ckpt = torch.load(model_path)
logger.info(
"*** Loading model weights from %s***", model_args.model_weights_path
)
model.load_state_dict(ckpt["model_state_dict"])
else:
raise ValueError("Model --model_weights_path is not valid")
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.load_model_path,
cache_dir=model_args.cache_dir,
)
train_dataset = (
SiameseGlueDataset(data_args, tokenizer) if training_args.do_train else None
)
eval_dataset = (
SiameseGlueDataset(data_args, tokenizer, mode="dev")
if training_args.do_eval
else None
)
def build_compute_metrics_fn(task_name: str,) -> Callable[[EvalPrediction], Dict]:
def compute_metrics_fn(p: EvalPrediction) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return glue_compute_metrics(data_args.task_name, preds, p.label_ids)
return compute_metrics_fn
trainer = SiameseTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=siamese_data_collator,
compute_metrics=build_compute_metrics_fn(data_args.task_name),
)
if training_args.do_train:
if model_args.model_weights_path:
trainer.train(model_args.model_weights_path)
else:
trainer.train()
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
eval_results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.append(
SiameseGlueDataset(
mnli_mm_data_args,
tokenizer=tokenizer,
mode="dev",
cache_dir=model_args.cache_dir,
)
)
for eval_dataset in eval_datasets:
result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(
training_args.output_dir,
f"eval_results_{eval_dataset.args.task_name}.txt",
)
with open(output_eval_file, "w") as writer:
logger.info(
"***** Eval results {} *****".format(eval_dataset.args.task_name)
)
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
eval_results.update(result)
if __name__ == "__main__":
main()